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Abstract
Order protection through delayed messaging”

Several financial exchanges have recently introduced messaging delays (e.g., a 350
microsecond delay at IEX and NYSE American) intended to protect ordinary inves-
tors from high-frequency traders who exploit stale orders. We propose an equilib-
rium model of this exchange design as a modification of the standard continuous
double auction market format. The model predicts that a messaging delay will
generally improve price efficiency and lower transactions cost but will increase
queuing costs. Some of the predictions are testable in the field or in a laboratory
environment.

Keywords: Market design, high—frequency trading, continuous double auction, IEX, lab
experiments.

JEL codes: C91, D44, D47, D53, G12, G14
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1 Introduction

Financial firms have invested many billions of dollars to speed up order placement and
execution. For such high-frequency trade (HFT) firms, communication lags in major financial
markets have shrunk several orders of magnitude, from seconds to milliseconds in recent

decades, to tens of microseconds in recent years.

With HFT now constituting a majority of market transaction volume (SEC, 2014), finan-
cial exchanges face competing incentives to accommodate both HFT firms and traditional
slower clients (O’Hara, 2015), many of whom feel that HFT puts them at a disadvantage.
Some reform proposals intended to protect ordinary traders (e.g., by Budish et al. (2015),
Du and Zhu (2017), and Kyle and Lee (2017)) would fundamentally change the market
format by batching orders or by making allocations continuous functions of time. Several
exchanges have already responded with incremental changes to allocation rules, notably the
Chicago Stock Exchange (CHX), Electronic Broking Services (EBS), Investors Exchange
(IEX), NYSE American, Thomson Reuters and TSX Alpha, all of which have imposed a de-
terministic or randomized messaging delay — a uniform waiting time applied to all inbound

and outbound messages processed by an exchange.*

Does HFT indeed harm ordinary traders in the traditional continuous market format?
Does a messaging delay help ordinary traders and does it have unintended consequences? The
present paper contributes to the growing theoretical literature that addresses such questions.
We develop an equilibrium model that spotlights the consequences of imposing a uniform
delay on new orders when previously hidden, liquidity-providing orders (“pegged” orders)
are automatically repriced without delay. That is, our model captures the essential elements
of HF T-inspired reforms at IEX and NYSE American, and is closely related to those of CHX
and TSX Alpha (see Appendix C.2).

'Such changes have caused heated policy debates, surrounding acceptable exchange design and the defi-
nition of time itself. For example, the September 2015 application by IEX to the SEC to become a national
securities exchange was followed by divisive commentary regarding the appropriateness of a public exchange
that deliberately delays orders. Prior to the subsequent approval of IEX’s application in June 2016, the
SEC made a very important rule change to define “immediacy” as 1 millisecond. This change has enormous
impact on Regulation National Market System (Reg NMS) Rule 611, known as the “Order Protection Rule”,

which requires exchanges to immediately pass orders to markets in the national system with better prices.



Our work is similar in spirit to Budish et al. (2015), who focus on the equilibrium balance
between sniping and market making. Their model features a continuous range of prices and
highlights differences between frequent batch auctions and the traditional continuous auction
format. Our focus on pegged orders demands a different model, in which prices lie on an
exogenous grid. Menkveld and Zoican (2017) address the impact of an exogenous increase in
execution speed, and show that it has offsetting effects on the equilibrium spread. Again, our
model differs by imposing an exogenous price grid and also allows slow traders to effectively

acquire speed by using pegged orders.

Our paper is also informed by the empirical literature on HFT. Such papers often distin-
guish between aggressive (liquidity removing) and passive (liquidity adding) HF T strategies.
Passive HFT is generally associated with improved market performance; see e.g. Jovanovic
and Menkveld (2015), Hagstromer et al. (2014), Menkveld and Zoican (2017), Malinova et al.
(2014), and Brogaard et al. (2017). Although aggressive HFT is generally associated with
informed price impact, especially over short horizons, it can increase adverse selection costs
for other traders, increase short-term volatility, and raise trading costs for institutional and
retail traders, as shown by Brogaard et al. (2014), Zhang and Riordan (2011), and Menkveld
and Zoican (2017). The estimated net benefits of aggressive and passive HFT are often
positive overall, but usually with the acknowledgment of non-negligible costs, e.g., Brogaard
and Garriott (2017), Hasbrouck and Saar (2013), Bershova and Rakhlin (2012), and Breck-
enfelder (2013). The findings in Hirschey (2017) suggest that HF'T behavior provides a net

improvement to liquidity, but increases costs to non-HF'T traders.

Popular accounts of financial market format reforms involving a messaging delay (e.g.,
Lewis, 2015; Pisani, 2016) have focused on the 350 microsecond “speed bump” caused by
routing communications through a 38-mile cable coiled in a “shoe box”. On its own, a
speed bump of this form offers no protection to slow traders, as it does not change the
order in which fast and slow messages are received at an exchange. However, such a delay
allows the exchange to have a timely view of the National Best Bid and Offer (NBBO)
— an aggregation of competitive price quotes across all public equities exchanges — and to
automatically reprice pegged orders before predatory orders arrive at the matching engine.
As a result, slow traders using pegged orders are protected from fast traders who attempt

to “snipe” stale orders when new information enters the market.



Pegged orders are common on all national securities exchanges in the United States. They
are commonly “hidden” (not visible in the limit order book) and exchanges typically charge
a fee for placing and /or executing such orders. To encourage the submission of visible ( “lit”)
orders, exchanges give priority to lit orders at any given price, even those that arrive after
hidden orders. Thus, pegged orders face the implicit cost of always being queued behind
visible orders. This cost is non-trivial due to the fixed price grid (mandated by the Securities
and Exchange Commission) used at all equities exchanges; it is not possible to “just barely”
beat another trader on price, so position in the queue at a given price typically matters.
Indeed, we shall see that microsecond speed advantages are valuable only because ties on

price are so common on a discrete price grid.

Our model is intended to capture the trade-offs between pegged orders and traditional or-
der types (market and limit orders) emphasized in the prior microstructure literature, and to
assess the consequences of an exchange-imposed delay to protect pegged orders. The model
allows for the simultaneous expression of both passive and aggressive proprietary trading
strategies. Proprietary liquidity providers (referred to as makers) and fast liquidity con-
sumers (referred to as snipers) are in some respects similar to agents in the “sniping” models
of Budish et al. (2015), Baldauf and Mollner (2016) and Menkveld and Zoican (2017). In
addition to proprietary agents, we also model a population of noise traders (“investors”) that
endogenously choose whether to enter the marketplace with pegged orders (which transact at
better prices but may incur queuing delay) or with market orders (which obtain immediacy
but may transact at less favorable prices). The model is general enough to nest both the

traditional continuous market and the uniform-delay market as special cases.

The model equilibrium is largely determined by the endogenous steady-state distribution
of the pegged order queue, which we derive in closed form. In choosing between market
orders and pegged orders, investors trade off immediacy with trading costs (which can also
be interpreted as price deterioration). Since the distribution of pegged orders is directly
related to immediacy and queuing costs, it is crucial in determining the endogenous fraction
of investors that place pegged orders, both when protection is and is not offered via messaging
delay. In certain instances, the distribution of pegs, and hence the equilibrium, is especially
sensitive to model parameters related to investor impatience and the relative fraction of price

movements (sniping opportunities) to investor arrivals.



The model thus yields a wealth of predictions that can be tested against laboratory
or field data. For example, in equilibrium a messaging delay that protects pegged orders
will, under a wide range of exogenous parameter values, result in (a) a substantially higher
proportion of pegged orders, (b) a lower sniper/maker ratio, (¢) transactions prices that
deviate less from fundamental value, (d) lower transactions costs, but (e) higher queuing
cost. The model also identifies parametric conditions under which some of these effects are

diminished or even reversed.

To our knowledge, ours is the first model of financial markets that deals with pegged
orders and realistic price grids. It also introduces some minor novelties in defining perfor-
mance metrics and in mathematical techniques for financial applications. Most importantly,
the model offers insight into major recent financial market innovations, and testable predic-

tions regarding the impact of high-frequency trade and exchange-imposed messaging delay.

Our analysis begins in Section 2 by describing order types, the traditional continuous
double auction (CDA) format, and the variation of CDA that delays messages to and from
an exchange. It also presents summary data from IEX, the first exchange to provide pegged
order protection through delayed messaging. Section 3 lists our simplifying assumptions
and obtains closed-form equilibrium expressions for the usage rates of market orders vs.
pegged orders and the prevalence of trader types. Section 4 obtains parallel results for CDA
markets while also checking robustness by relaxing some of the more restrictive assumptions.
Section 5 summarizes the impact of removing order protection and presents comparative
statics, and Section 6 provides a concluding discussion, including some empirically testable
implications. Proofs, additional technical details, and additional institutional details can be

found respectively in Appendices A, B and C.

2 Institutional Background

A financial market format specifies how orders are processed into transactions. In this section
we provide a general description of continuous double auctions (CDA) and a more specific
description of a format that protects pegged orders via a uniform delay on processing new
orders, first implemented by the Investors Exchange (IEX). We then present a summary of

data from IEX and use that data to motivate elements of the model introduced in Section 3.



2.1 Continuous Double Auction format

Most modern financial markets use variants of the continuous double auction (CDA) format,
also known as the continuous limit order book (CLOB). A limit order is a message to the
exchange comprised of four basic elements: (a) direction: buy (sometimes called a bid) or
sell (sometimes called an ask or offer), (b) limit quantity (maximum number of units to buy
or sell), (c) limit price (highest acceptable price for a bid, lowest acceptable price for an
offer), and (d) time in force (indicating when the order should be canceled). The CDA limit
order book collects and sorts bids by (1) price and (2) time received (at each price), and
likewise collects and sorts offers. The highest bid price and the lowest offer price are referred
to, respectively, as the best bid and best offer, and the difference between them is called the

spread.

The CDA processes each limit order as it arrives. If the limit price locks (equals) or
crosses (is beyond) the best contra-side price — e.g., if a new bid arrives with limit price
equal to or higher than the current best offer — then the limit order immediately transacts
(“executes” or “fills”) at that best contra-side price, and the transacted quantity is removed
from the order book. On the other hand, if the price is no better than the current best
same-side price, then the new order is added to the order book, behind other orders at the

same price.

The SEC mandates that prices displayed in the order book are discrete, e.g., in pennies
per share but not fractions of a penny. In contrast, time remains essentially continuous. We
will see that the disjunction between discrete price and continuous time creates interesting

complications for the CDA format.

At present, there are 12 SEC-approved “national securities exchanges” in the United
States that trade U.S. equities instruments. Under Regulation National Market System (Reg
NMS) these exchanges are required to report transactions and quotations to a centralized
processor, known as the Securities Information Processor (SIP). The SIP monitors all bids
and offers at all 12 exchanges, and constantly updates the official National Best Bid and
Offer (NBBO), consisting of the National Best Bid (NBB) and National Best Offer (NBO).
However, since the speed of light is finite and the 12 exchanges have different physical
locations, there is no “true” NBBO — at best there is an NBBO from the perspective of



the SIP. For this reason, unlike the order books internal to an exchange, which never lock or
cross, it is possible for the NBB or NBO to temporarily lock or cross with the best bid or offer
at a specific exchange. These instances are fleeting, as Reg NMS requires other exchanges

with less aggressive quotations to pass orders on to those with better bids or offers.

Most CDA exchanges recognize a variety of order types beyond simple limit orders.
Market orders are the most common variation, specifying a very high bid or very low offer
price and essentially zero time in force. Most exchanges also recognize “hidden” orders which
are not publicly displayed in the order book and which are given lower priority than ordinary
“lit” (displayed) orders. The lexicographic priority system then is: price, display, time. For
example, all hidden bid orders are prioritized after the lit bids at the same price; among
themselves they are prioritized on a first-come, first-served basis, even if there are different

types of hidden orders.

An important type of hidden order is a pegged limit order. An NBB peg is a limit order
that enters the book at the current NBB and is automatically re-priced by the exchange
when the NBB changes. An NBO peg is treated symmetrically at the NBO. The SEC also
permits exchanges to offer hidden (but not lit) midpoint pegs: bids or offers that track the
midpoint (and hence at half-penny prices) of NBB and NBO.

2.2 The IEX format

The IEX market format (also implemented by NYSE American) is a CDA variant that delays
all inbound and outbound messages to its messaging server by 350 microseconds. This delay
is long enough to allow the system a fresh view of the NBBO and to reprice pegged orders
ahead of new messages that are coincident with changes in the NBBO. As a result, pegged

orders are protected from fast traders who would profit from transacting at stale prices when

the NBBO changes.

Besides traditional (lit) limit and market orders, IEX (and NYSE American) offers the
following types of (hidden) pegged orders:

e Midpoint peg. Limit orders pegged to the NBBO midpoint. By virtue of their more

aggressive price, they have priority over traditional limit orders.



e Primary peg. Limit orders that are booked one price increment (typically $0.01) away
from NBB or NBO, but which are promoted to transact at NBB or NBO if sufficient

trading interest arrives at those prices.

e Discretionary peg. Limit orders which first enter the (non-displayed) order book at
the midpoint but, if not executed immediately, rest at either the NBB or NBO; see
Appendix C for more details.

Unlike other US exchanges, ITEX charges fees only for midpoint transactions and for

nothing else.

2.3 Some Data

Other Nonroutable Primary Peg
Hidden Lit Hidden Lit
BBO Mid | BBO Mid | BBO Mid | BBO Mid
Agency Remover | 0.0349 0.0069 | 0.0395 0 0 0 0 0
Prop Remover 0.0474 0.0072 | 0.0255 0 0 0 0 0
Agency Adder 0.0078 0.0100 | 0.0691 0 | 0.0264 0 0 0
Prop Adder 0.0080 0.0021 | 0.0473 0 | 0.0219 0 0 0
Midpoint Peg Discretionary Peg
Hidden Lit Hidden Lit
BBO Mid | BBO Mid | BBO Mid | BBO Mid
Agency Remover 0 0.1008 0 0 0 0.1004 0 0
Prop Remover 0 0.0719 0 0 0 0.0233 0 0
Agency Adder 0.0063 0.0716 0 0 {0.0391 0.1968 0 0
Prop Adder 0.0002 0.0212 0 0 | 0.0009 0.0136 0 0

Table 1: TEX volume shares for December 2016 by order type and transaction price. Excludes

routable orders and transactions in locked or crossed market conditions.

Table 1 reports transaction volume statistics at TEX during the month of December

2016. The data exclude periods when markets were locked or crossed with the NBBO (3.4%

8



of volume) and exclude transactions involving orders routable to other exchanges (12.3% of
volume; see Appendix C for a discussion of routable orders). The Table entries are normalized

to sum to 100%, and so they are shares of the remaining 84.3% of all transactions.

IEX classifies traders into two broad types: (1) agencies (brokers), who provide services
to and receive fees from external clients and who compete to offer rapid order execution at
favorable prices, and (2) proprietary firms, who trade on their own account, maintaining net
positions close to zero, and who earn revenue by buying at prices a bit lower on average than
selling prices (either by adding liquidity at a spread or removing liquidity when stale quotes

persist in the order book). Firms that do both are classified as agencies.

Table 1 shows that Agency firms represent over 70% of volume at IEX; volume at other
exchanges is typically more evenly split between agencies and proprietary traders. Agency

volume has three main components:

1. Adding lit orders at BBO: 7.7% of transaction volume. Our model in the next section

will attribute this to the proprietary arm of integrated agency firms.

2. Removing orders at BBO: 7.4% of volume. Our model will attribute this to impatient

investor clients.

3. Midpoint and discretionary peg orders transacting at midpoint: 47.0% of volume. Our

model will attribute this to less impatient clients.
Following is a similar breakdown for proprietary firms; again see Appendix C for more details.

1. Passive (adding) orders at BBO: 5.5% of volume. Our model attributes this to market

making by proprietary firms.

2. Aggressive (removing) orders at BBO: 7.3% of volume. The model attributes this
to proprietary “snipers,” who exploit unprotected stale limit orders when the NBBO

changes.

3. Midpoint and discretionary peg orders transacting at midpoint: 13.0% of volume. For
simplicity, and since they comprise only 25% of all midpoint and discretionary orders,
our model will group this order flow with midpoint orders transmitted by agencies on

behalf of their clients.



3

Baseline Model

Our baseline model is of a continuous double auction that protects midpoint pegs. The

model highlights tradeoffs between order types under simplifying assumptions on the grid of

asset prices and on exogenous variables specifying investor arrival and changes in the asset’s

fundamental value. This baseline model also makes stark assumptions regarding who buys

speed and which orders are protected from fast traders; the extended model in Section 4 will

eliminate protection and will examine speed purchase decisions.

3.1

Al.

A2.

A3.

A4.

Assumptions

The market consists of a single asset trading at a single exchange, one indivisible unit

at a time.

Prices lie on a discrete, uniform grid P = 1,2, ... ,p. A price unit, i.e., the grid step

size, represents half of the minimum price increment (e.g. a half penny per share).

The fundamental value of the asset, V, follows a marked Poisson process on P. The
fundamental value changes to V' € {V — 2,V 4 2} with equal innovation rate v > 0.
That is, the total innovation rate is 2v, with one-sided rate v of a two-increment (e.g.,

one penny) upward jump and one-sided rate v of a two-increment downward jump.

An exogenous flow of impatient investors with unit demands arrive independently at

Poisson rate p > 0 on each side of the market.

a. Investors have gross surplus ¢ > 1 per unit of the asset.

b. An investor may have the broker transmit a market order. If there is a contra-
side midpoint order resting in the (hidden) order book, then the market order
executes immediately at midpoint and incurs execution fee d € (0, 1). Otherwise,
the market order executes immediately at the BBO and incurs trading cost of 1

(e.g. a half penny per share).

c. Alternatively, an investor may have the broker transmit a midpoint peg order. If
there is a contra-side midpoint order, then the transmitted order executes imme-

diately at midpoint and incurs execution fee d € (0, 1). Otherwise the transmitted

10



order goes to the end of the same-side (hidden) order queue. If the transmitted

order is not executed immediately, its net surplus is discounted at rate 6 > 0.
A5. The cost of speed, ¢ > 0, and time lags in responding to innovations in V' are such that

a. Traders placing orders at BBO do not purchase speed and, when V' jumps, are

susceptible to sniping by other proprietary traders who do purchase speed.
b. Snipers can reverse transactions immediately at V.

c. Pegged orders track V' with so short a lag that they are protected from sniping.

Assumptions A1l and A2 are straightforward simplifications to sharpen the analysis. A3
and A4 are unrealistic? but together they capture the idea that the fundamental value V
equilibrates supply and demand even while experiencing exogenous shifts. We think of V'
as representing the NBBO midpoint, which is observed on other exchanges, but taking it as

exogenous sharpens the comparison of market formats on a single exchange.

Assumptions Ada and A4c are intended to capture investors’ impatience in a simple
way and A4b implicitly assumes a deep order book at the BBO. Assumption A4c conflates
discretionary pegs with midpoint pegs and ignores primary pegs; see Appendix C for a
justification of this simplification. Assumption A5 is intended to streamline the first part of

the analysis; later sections will analyze timing issues in more detail.

3.2 Action Space and State Space
The model uses a streamlined set of just three order types:

r: proprietary traders add single unit regular lit limit orders at the best bid (V' — 1) and
best offer (V +1).

p:  brokers add single unit midpoint peg limit orders at price V. These orders are hidden,

and are subject to a transaction fee d upon execution. For example, at IEX d = $0.0009,

%Indeed, at extreme prices (V = 1,2 and P 1, ]5), some jumps are infeasible so A3 must be modified. As
a practical matter, the SEC permits the grid to be redefined in such extreme cases. Here, to keep the focus
on matters of greater interest, we assume that such modifications are negligible because we are operating far

away from the extremes.

11



less than one half spread (typically $0.005). Since p orders execute against each other,

there can be resting p orders on only one side of the market at any given time.

m: brokers’ market orders remove liquidity at the midpoint if it is occupied by contra-side
orders, in which case they also incur the fee d. When there are no contra-side midpoint

orders, an m order removes an r order at the best bid or best offer.

Since we assume that the order book is deep at BBO, and since there can be a positive
number of midpoint orders on only one side of the market, the state of the market is described
by the level of the fundamental value, V' € P, and the order imbalance k € Z at the midpoint
price. By convention, £ < 0 means that there are precisely —k > 0 midpoint peg buy orders
(hidden) in the order book, k& > 0 indicates k& midpoint peg sell orders (hidden) in the order
book, and k£ = 0 indicates an empty queue at the midpoint price V. See Figure 1.

10008 AA BO' AAAAaa BO'
10007 ®@ a a® v e v
10006 AAA aa BO g BfB =5 BB ZEEDD BB'
10005 aa@ v @

10004 ®B YN BB

Figure 1: Example states in IEX market. Uppercase (lowercase) denotes lit (hidden) orders to buy
(B/b) and to sell (A/a) at each price; those to the left have higher priority at that price. Panel I:
initial state is £ = 2 and V' = 10005 half-pennies (i.e., V' = $50.025 per share); event (1) is a market
sell order which ‘crosses the spread’ to transact at BB 10004 = $50.02; event (2) is a midpoint offer
which rests at V' implying a transition to k = 3. Panel II: V has jumped to 10007 = $50.035; event
(3) is a market buy order or midpoint bid which transacts at V' and triggers transition k = 3 — 2.

Panel III: V remains at 10007 but an excess of bids relative to offers has driven & to -2.

New investor arrivals can trigger transitions in k. Let w denote the fraction of arrivals

that brokers transmit as midpoint peg orders, with the remaining 1 —w fraction transmitted

12



as market orders. Given the symmetry in Assumption A4, a new arrival generates a midpoint
peg buy or sell order with probability w/2 each, or a market buy or sell order with probability
(1 —w)/2 each. A new pegged sell (buy) order always generates a transition & — k + 1
(k — k —1). A new market sell (buy) order generates a transition k¥ — k£ + 1 when k£ < 0

(k — k —1 when k > 0) and otherwise executes at BBO and generates no transition.

The following proposition, proved in Appendix A, characterizes the stationary distribu-

tion of k.

Proposition 3.1. Let w € (0,1) be the probability that an investor arrival on either side
of the market results in a midpoint peg order. Given Assumptions A1-Ab, there is a unique

steady state distribution q : Z — (0,00) of the order imbalance, with

l—w

G = (—> Wk ke (3.1)

1+w

Equation (3.1) tells us that the steady state distribution is symmetric around a sharp peak
at zero, and drops off at exponential rate as |k| increases. The distribution has a single
parameter, the fraction w of investor orders that are transmitted as midpoint peg orders
rather than as market orders. That fraction is determined endogenously in equilibrium, as

shown below.

3.3 Investor Surplus

Following assumption A4, investors choose between midpoint peg orders and market orders.

Peg. A midpoint peg order generates surplus ¢ less the execution charge d. These orders
transact immediately with contra-side midpoint peg orders if any are present, and otherwise
are placed at the back of the midpoint queue (e.g., to position k+ 1 when the state is k& > 0),
and thus incur queuing costs expressed in terms of the given discount rate §. The relevant
discount factor is = exp (—%) < 1 when contra-side orders arrive at rate p > 0. Thus, by

A4, the conditional expected net surplus is (¢ — d)3**! for a pegged sell order when k > 0.

Using steady state probabilities (3.1) for order imbalance k, the unconditional expected

net surplus for a midpoint peg sell order is
—1

mp = (¢ —d) [ > ZQkﬁkH]
k=0

k=—o00

13
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The model’s symmetry ensures that (3.2) also applies to pegged buy orders.

Market order. Like a pegged order, with probability 2;21700 qr a market order will execute
immediately against a contra-side midpoint peg and earn ¢ — d. With probability > 72 g,
there will be no contra-side midpoint orders and, unlike a pegged order, a market order
will then execute immediately against an r order at BBO. In that case, since the price is 1
half-spread away from V', it earns ¢ — 1. Thus the expected net surplus for a market order

(either buy or sell) is

14w 1+w

wm=<<,o—d>ijqw(so—l)qu:(“”‘d)w#”‘l (33)
k=0

k=—00

3.4 Proprietary Trader Profits

Proprietary traders divide themselves into two groups: market makers and snipers.

Snipers trade off the flow cost, ¢, of buying speed against profits from sniping stale r
orders following a jump in the fundamental value V. The number of potential targets, N,

is the equilibrium number of regular limit orders at best bid and best offer. Thus, when

Ny

an opportunity arises, each of N, snipers uses fast market orders to obtain on average %
S

successful snipes.® By assumptions A3 and A5, each successful snipe of a resting r order
involves buying (or selling) a single share at V' + 1 (or V' — 1) and reversing the transaction
at V' =V +2 (or V! =V —2), yielding a profit of 1 half-spread. Since opportunities arrive
at both sides of the market at rate v, the expected flow profit for a sniper is

Ny
Ts = QVE —c. (3.4)

3 Assumption A1l can be construed as limiting each sniper to at most one snipe per V jump. Under that
interpretation (which we do not adopt), the factor %—; in equation (3.4) is replaced by min{1, %—:}, and (3.5)
requires a similar modification. In that case, when 2v < ¢, snipers necessarily earn negative profit, so in
equilibrium there are N; = 0 snipers and N, = +00 market makers. However, in the less expensive sniping

case 2v > ¢, the formulas below are unaffected by the alternative interpretation of Al.
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Market makers place r orders at the BBO, trading off the single half-spread gain of trans-
acting with a market order against a possible half-spread loss to a sniper. Market orders
arrive at each side of the market at rate (1 — w)p and jumps to each side occur at rate v so,

by maintaining both a bid and ask at BBO, a market maker obtains expected flow profit

2(1 —
= _£_7Vf£l£ “o, (3.5)

3.5 Equilibrium

Definition 3.1. Given an exogenous flow cost of speed ¢ > 0, midpoint transaction fee
d > 0, investor gross surplus ¢ > 1, discount factor = exp (—%) € (0,1), and arrival
rates p,v > 0 for investors and fundamental value innovations, the vector (w*, N}¥, N¥)

constitutes a market equilibrium f

1. at w* € (0,1) (resp. w* =0), a midpoint peg order has (resp. no more than) the same

expected net surplus as a market order, and

2. with N} > 0 snipers and N > 0 market makers, proprietary traders earn zero expected

profit from either activity.

The idea behind the first equilibrium condition is that investors and brokers will increase
the fraction w € (0,1) of pegged orders whenever the expected surplus differential 7, — 7, is
positive, and decrease w when the differential is negative. Hence expected (net discounted)
surplus should be equal at an interior steady state, while at w* = 0 we should have m, <
Tm. Later we will see that w* = 1 is not consistent with impatient investors. The second
equilibrium condition arises from the reasonable assumption that there are no substantial

barriers to entry or exit for either of the two proprietary activities.

Under current assumptions, equilibrium takes a simple form.

Proposition 3.2. Under assumptions A1 - A5 and parameter restrictions ¢ > 1 >d > 0,
B = exp (—%) € (0,1), and ¢, p,v > 0, there is a unique market equilibrium (w*, N¥, N¥).

The equilibrium fraction of brokers/investors choosing midpoint pegs vs. market orders is

@—d—ﬂ%¢—0}’

(3.6)

w :maX{O, 4

15



and the equilibrium numbers of proprietary traders choosing to act as market makers and

snipers are, respectively,

N o= Pa—w (3.7)
Nt = 2{(1-@. (3.8)

Proof. Applying the first market equilibrium condition we obtain equation (3.6) as fol-

lows:

_ p—d\ [Bl-w)] ¢-1
T = Mm (1+w>[1—5w}_1+w
= (p—d)B(l-w)=(p—1)(1 - bw)

p—d—pFp—-1)

= w= T : (3.9)

If the last expression in (3.9) is negative, then it is straightforward to show that 7,(0) < ,,(0)
and so w* = 0. Note that # < 1 and the other parameter restrictions ensure that w* < 1 in

(3.9).

To obtain Equations (3.7) and (3.8), apply the second market equilibrium condition
7, = ms = 0 to Equations (3.5) and (3.4) and solve for N, and N;. O

4 Extension: Unprotected Midpoint Pegs: ¢ =1

The equilibrium in Section 3 was derived under the assumptions that pegged orders are
protected from sniping, that a sufficient number of r orders always rest at the BBO, and
that market makers do not purchase speed technology. We now explore what happens when

some of those assumptions are relaxed.

Timing notation. Jumps in the fundamental value V are registered at the Securities
Information Processor (SIP) and resting p orders automatically adjust in parallel with latency
Tsrp > 0. Traders’ messages to the exchange have default round-trip latency 7., but at
flow cost ¢ > 0, traders can reduce their latency to Ttes < Tsiow. The exchange imposes an
additional uniform delay 7 > 0 so that Tro = Tfast + 1 and Teow = Tsiow + 1. In traditional

CDA markets, n = 0, while at IEX it is chosen so that Trast = Tfest +1 > Tsrp. To compress
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notation, define the composite binary parameter

1 if %fast = Tfast +n < Tsip
&= (4.1)
0 if 7~_foLst = Tfast +n > Tsip-
When & = 0, pegged orders are fully protected from sniping and jump in tandem with V

before any other messages reach the exchange, as in assumption A5c. When ¢ = 1, however,

they may be profitably sniped by fast traders.

We continue to assume that liquidity adders do not have access to speed technology, so
resting p orders are vulnerable when V' jumps and £ = 1. A successful sniper gains (and the
liquidity adder loses) |V' — V| = 2 half-spreads on a midpoint peg, rather than the usual 1
half-spread on an order resting at BBO.

When a midpoint peg offer is queued behind k other pegged offers, it will be sniped if and

only if a positive jump in V occurs before k£ 4+ 1 buy orders arrive from brokers. Thus, the

k+1
conditional probability of not being sniped is (p f@) , with expected profit (¢ — d)B*!,
where the discount factor is still 5 = exp (—%) . With complementary probability, the offer
is sniped, resulting in a 2 half-spread loss discounted in the same manner. Midpoint peg

bids are treated the same way as offers.

The steady state distribution of order imbalance, k € Z, is different than in the protected
case, because sniping now induces transitions & — 0. The following proposition, proved in

Appendix A, generalizes the stationary distribution of & to cover the unprotected case.

Proposition 4.1. Let w € (0,1) be the probability that an investor arrival on either side of
the market results in a midpoint peg order. Given assumptions A1-Abb, there is a unique

steady state distribution G : Z — (0,00) of the order imbalance, with

G = <ﬂ> M ke, (4.2)

1 1% 1 v 2
() () e coa e

and the variable £ = 0 (resp. £ = 1) indicates that pegged orders are protected from sniping

where

(resp. are not protected).
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Note that that (4.3) collapses to A = w in the protected case £ = 0.

We proceed as before to obtain the equilibrium value of A\, and thus w.
Peg. Following Proposition 4.1 and the preceding discussion, one readily verifies that Equa-

tion (3.2), the expected net surplus for a midpoint peg order, generalizes to:

—1 0 BP k+1 OO p ktl
_ B 5 - . ~ nk+1 _
ol [Z QHZCM(H@) ] 2;;%5 [1 (p+5”> ]

A 1-) Bp }

TTA  TIA(p+Ev— 3o
C1SA 28 1-a 2
L+A(1 =8N 1+X(p+&v—pFpA)

=(90—d)[

(4.4)

Market order. An investor choosing a market order will earn the same expected net surplus

as in Equation (3.3) with g replacing gy:

I(SO—d)k:Z_mkor ; (¢ — d%ﬂ@ 1)14%\. (4.5)

As in the protected case, the first terms in (4.4) and (4.5) represent execution against a
contraside midpoint peg. Since they are identical, they again cancel in the equal surplus

condition.

Sniper profit. Snipers now have N, + {N, potential targets: the regular orders plus
unprotected pegged orders. Since the profit is 2 half-spreads on the latter, Equation (3.4)
becomes

N, + 2N,

522
T 1% Ns

(4.6)

Market maker profit. The conditions for market makers are unchanged, so (3.5) still
characterizes their profitability. The only difference is in the equilibrium fraction of investors

choosing pegged orders, as we now show.

Proposition 4.2. Under assumptions A1 - A5 and parameter restrictions ¢ > 1 > d > 0,

£ = exp ( p) (0,1), and ¢, p,v > 0, there is a unique market equilibrium, with

A\ v
)\—l-f(l_)\) ;, (4.7&)

18



P

N =(1 —@*);, and (4.7b)
N} + 2N \
N;:2yr—£p:@(l—w*)+4€—y )\~ : (4.7¢)
c c c 1 — )2
where
\ A
N, = T and (4.8)
- 1 )
S —d) — 1) — _
A= S [ﬁ ply —d) = BEv(p +1) = Bp(p +d = 2)

- ( (Bevip +1) + Bplp +d - 2) — Bp(p — d))°

~48%p(1 — d) (Bply — d) — ply — 1) — vl — 1+ 26)) )”2]
(4.9)

Proof. Equating expected surplus m, = m,, for pegged and market orders in Equations (4.4)
and (4.5) yields the following quadratic expression in A:
1—A —d 26(1 — A 20p(1 — A\
p+E&v— BpA 1—=BX  p+&v—PBpA

Solving for A via the usual quadratic formula results in two solutions. Appendix A shows

that the condition A < 1 requires the larger (smaller) solution to satisfy

(1=8)(p—1(r+p(l+75)) <0(>0) (4.11)

The parameter restrictions ensure that the left-hand-side of Equation (4.11) is nonnegative,
so the relevant solution involves the negative discriminant, which is written in Equation (4.9).

Equation (4.7a) follows from Corollary A.1 in Appendix A.

Equation (4.8) gives the expected number N of pegged orders vulnerable to sniping:

0 (&%) N o) N i N
1—\ - 1—\ A A
N* = 0d, + Y ki = —= Y kN = : = — 4.12
=2 0 ;q’“ 1+>\; <1+)\>(1—/\)2 1 - a2 (4.12)

k=—o00

Equations (4.7¢) and (4.7b) follow by substituting (4.7a) and (4.8) into Equations (3.5)
and (4.6), setting them equal to zero in accordance with the equilibrium condition, and

solving for N, and ;.
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The notation [-], in (4.9) means that \ and hence (4.7a) are truncated below at 0. For
parameters such that the truncation binds, the same logic as in the previous proposition
shows that profit inequalities imply that ©* = 0. For the other boundary case, Appendix

A.3 explains why the market equilibrium value of w is always < 1.

Corollary 4.1. In the limiting case §/p — 0 (8 — 1), the steady-state value of \ is

“ 1
A:1—§(("10jd;%, (4.13)
which is valid for p > ?ﬁ—dl)u.
Proof. When g = 1, Equation (4.10) simplifies to
(e =d)(T=XNp+2(1 = A)p=(p+1)(p+Ev—pA) (4.14)

from which (4.13) follows. O

5 Comparative statics

Proposition 4.2 predicts the precise impact of removing midpoint peg protection. Given any
admissible parameter vector, the predicted impact is the difference between evaluating the
equilibrium expressions at £ = 0 and at £ = 1. In this section, we will develop metrics for

assessing that impact, and will see how the impact varies with the other model parameters.

It helps in such exercises to have a have a common starting point, or baseline, from which
to consider variations. A casual look at financial market data, summarized in Appendix B,

leads us to these baseline parameter values: (c,d, ¢, 8, p,v) = (10,0.18,1.8,0.80, 12.8,6.4).

5.1 Performance metrics
Does protection enhance market performance? Taking the investor’s perspective, the main
issues are price, fees, and delay due to queuing. We propose these three performance metrics:

Price efficiency. The mean absolute deviation, D P, of transaction price from fundamental

value should be as small as possible. In our model, the realized deviation is 0 for orders
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transacting at the midpoint, 1 for orders transacting at BBO, and 2 for midpoint orders
that are sniped. For each market format, D P will be a probability-weighted average of those

possible realizations. To help compute the weights, let

= .. A
Q= ;Qk = —1+)\ and (5'1>
00 k+1
B . B P 1 1—A p
S_kgo%ll (p—i—fu) ]_1—1—)\ (1+)\)p+§u—p)\
- & (5.2)

(142 (p(1 =) +&v)’
be (respectively) the probabilities that an investor order encounters contra-side interest at
the midpoint, and that an investor order transmitted as a midpoint peg is sniped; of course

S = 0 if midpoint pegs are protected (£ = 0). Thus

DP=0-Q+1-(1-w)(1-Q)+2 -wS
_1—w+ 28vw
LA (N (p(1 =N )

When £ = 0, we have A = w and Equation (5.3) simplifies to DP = L‘r—g

Transaction cost. Investors pay brokerage fee b, which is typically 0.6 to 1 full half spread
($0.003 — $0.005)); as an approximation, we set the default value to 0.8. With probability
(), a market order executes immediately at midpoint and is charged an additional explicit
fee of d, while with probability 1 — @ it executes at BBO and pays an additional implicit fee
of 1 half spread in the form of worse execution price. Thus for a market order, the per-share
mean transaction cost is

1+dA

TC =b+d- 1-(1-Q)=b .
C +d-Q+1-(1-Q) +1+A

(5.4)

In market equilibrium, 7T'C' will be the same for either type of order when w > 0, so equation
(5.4) also applies to pegged orders. Since profit is just the (net of brokerage fee) surplus ¢

less T'C, this metric also tracks investor profit, up to a sign change.

Queuing cost. The expected fractional loss of surplus due to discounting is zero except for
orders transmitted as midpoint pegs that go to the back of the queue. By the logic of the
previous section, conditional on same-side imbalance k > 0, the expected discount factor is

k+1 k+1
< Be ) , implying a proportional loss [1 — ( Bp ) } of net surplus. We define QC' as

p+ev ptev
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the unconditional expected proportional loss,

QCzw;qkll— p+5u

_w o whp (1A~ BeA
14 p+§u(1+A>2;(p+§u>
W (p+fv—ﬂp)
L+ A \p+&v—0pr/)~

5.2 Impact of order protection

What impact do model parameters have on equilibrium and performance? We focus here
on the parameters v (controlling the frequency of jumps in the fundamental value) and 3

(patience of investors), and track their effects on the equilibrium peg fraction w*, the sniper

ratio 2=, and the three performance metrics.

N*’

Figure 2 depicts those equilibrium ratios and performance metrics as we vary the funda-
mental jump arrival rate v € (0,4) with investor arrival rate p held constant at its baseline
value 12.8. Panel (a) shows that with protection, the equilibrium share w* of pegged orders
is independent of the jump rate v; the horizontal dashed black line shows that it remains at
its baseline value 0.756 and the dashed blue line shows that it is a bit higher when investors
are more patient. The solid lines show that when protection is removed, £ = 1, midpoint
pegs disappear for v > 2.66 in the baseline, and for a somewhat higher value when investors
are more patient; in those regions, the high probability of sniping renders midpoint pegs

unprofitable. As a result, panel (b)

Ne _ 2v _

N = for ¢ =1 and large
v, since midpoint pegs nonexistent. Another consequence, seen in the remaining panels, is
that all three performance measures are constant and reach their maximal discrepancies for

large v, which includes the baseline value v = 6.4.

We conclude that, for a considerable range around the baseline value of “turbulence”
parameter v, order protection has a powerful effect: it increases equilibrium pegged orders
from zero to majority share and dramatically reduces price inefficiency (DP) and transac-
tions costs (T'C'). Queuing costs (QC'), however, increase from zero to a moderate value of

approximately 0.25.

Figure 2 also shows what our model predicts for very low values of turbulence. When there
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Figure 2: Impact of v on equilibrium ratios and performance metrics. Other parameters are held
fixed at baseline values, except that blue lines show impact when g = 0.9 instead of baseline 8 = 0.8.

Dotted lines show values for £ = 0 and solid lines for £ = 1. Panel (a) shows the equilibrium fraction

w* of pegged orders, Panel (b) shows the equilibrium sniper ratio %z, and panels (c), (d) and (e)

respectively show the performance metrics price inefficiency, transactions cost and queuing cost.

are vanishingly few jumps in the fundamental relative to investor order arrivals, protection
becomes irrelevant and we get the same equilibrium values and performance metrics with
& = 1 as with & = 0. Between v = 0 and the point where unprotected pegs disappear
(e.g., v > 2.66 in the baseline) the equilibrium ratios and the performance metrics are all

monotonic, as one might expect, but with one surprising exception: the peg share w*.

Counterexample. A natural conjecture is that midpoint pegs are always more common

when they are protected. The results of Appendix A show that this is true in the sense
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that removing protection decreases the mean peg queue length Nj. It is also true in the

sense that, conditional on order imbalance k, removing protection impairs the profitability

of midpoint peg orders more than that of market orders and thus tends to reduce their

equilibrium share. However, there is a subtle indirect effect that goes in the other direction:

the distribution of queued orders shifts towards smaller imbalances, resulting in faster fills

for midpoint peg orders. This reduces the sniping hazard and makes pegs more attractive.

Panel (a) of Figure 2 shows that the conjecture is false. Panel (a) of Figure 2 shows that

w* > @* for very small values of v when 5 = 0.9 (not for the baseline ). Evidently, for some

extreme parameter values, the indirect effect more than offsets the direct effect.

1.00

0.75

o 050

0.25

0.00
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Impact of investor patience on equilibrium ratios and performance metrics. The hori-
[

zontal axis is § = exp <_E)' All other parameters are at baseline values for black lines, and all

except ¥ = 1.28 = 0.1p for blue lines. Dotted lines show values for £ = 0 and solid lines show £ = 0.
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Figure 3 offers a more complete picture of how the impact of order protection depends

on investor patience . For very low values (i.e., for very impatient investors), w* = ©* = 0.

*

Consequently (as with low v in the previous figure) in this range we have xr = 27” and the

performance metrics are independent of protection (¢ € {0,1}). However, for 5 2 0.5, the
protected equilibrium results in w* > 0, which is associated with uniformly lower pricing

errors (DP) and transactions costs (T'C') at the expense of uniformly higher queuing costs

(QC). These cases also result in a higher fraction of snipers to makers, %T, for unprotected
markets.
(a) Baseline
Market w* NY/N} DP TC QC
E=0 0.756 1.28 0.139 1.45 0.218
E=1 0 1.28 1 1.8 0
Diff 0.756 0 -0.861 -0.35 0.218
(b) v =1.28 (c) p=64,v=128
w* NfN* DP  TC  QC w* N:N* DP TC  QC
&E=0 0.756  0.256 0.139 1.45 0218 | £=0 0.756 2.56 0.139 1.45 0.218
E=1 0494 0.308 0.458 1.53 0.137 [ (=1 0 2.56 1 1.8 0
Diff 0.262 -0.0518 -0.32 -0.0819 0.0813 | Diff  0.756 0 -0.861 -0.35 0.218
(d) B=0.1 (e) B =0.99
w* NN DP  TC  QC w* NYN* DP  TC  QC
&E=0 0 1.28 1 1.8 0 E=0 0.99 1.28  0.00495 1.39 0.252
E=1 0 1.28 1 1.8 0 E=1 0 1.28 1 1.8 0
Diff 0 0 0 0 0 Diff 0.99 0 -0.995 -0.41 0.252
(f) v = 0.128, B = 0.9 (g) v =128, ¢c=30
w* NfN* DP  TC  QC w* N:N* DP  TC  QC
E=0 0.892 0.0256 0.0573 1.41 0239 | =0 0.756 0.0853  0.139 1.45 0.218
&=1 0931 0.0511 0.107 1.4 0238 | £=1 0494 0.103 0.458 1.53 0.137
Diff  -0.039 -0.0255 -0.0497  0.01 0.001 | biff  0.262 -0.0173 -0.32 -0.0819 0.0813

Table 2: Performance metrics at market equilibrium with (£ = 0) and without (£ = 1) order
protection. Panel (a) corresponds to baseline parameters ¢ = 10, d = 0.18, ¢ = 1.8, f = 0.8,

p =12.8 and v = 6.4; the remaining panels use specified deviations from the baseline case.
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Interestingly, panel (e) of Figure 3 shows that queuing costs decrease in the unprotected
case for very high values of 5. This is a result of the fact that queuing costs are decreasing
in the discount factor 3%, but increasing in the fraction of pegged orders w*(). For most
values of (3, the second effect is stronger than the first, resulting in increasing queuing costs.
However, when ¢ = 1, the increase in w*(f) is not enough to overcome the discount factor

for large (3, and queuing costs decline.

Table 2 reports specific equilibrium values and performance metric comparisons for the

baseline parameterization (Panel (a)) and specified deviations from baseline.

An important implication of Equations 3.6 — 3.8 and 4.7a — 4.7b is that the cost of speed
technology, ¢, only affects equilibria through the number of snipers, N}; it does not impact

the share of pegged orders or the number of market makers. As a result, the performance

measures do not vary with ¢. However, it does affect the sniper ratio, % The third columns
of panels (b) and (f) of Table 2 report values for the difference in % under the two market

formats when v = 1.28; panel (e) reports the same difference for v = 0.128 and g = 0.9.

6 Discussion

The ultimate source of profits for both proprietary traders and brokers in our model is the
exogenous order flow from investors. Investor orders provide fee income to brokers, whose
transactions subsequently provide income to proprietary traders who make markets via lit
resting orders at the best bid and best offer. Some of that income is diverted to snipers,
who transact with stale BBO orders immediately following a jump in the fundamental value.
Intuitively, we have a food chain, with impatient investors’ market orders sustaining regular

limit orders, which sustain sniping.

For a relatively small fee d < 1, the IEX format offers investors/brokers an attractive
new option: a hidden midpoint peg that is protected from snipers and executes at a (half
spread) better price. However, pegged orders incur an expected queuing cost that increases
with the fraction w of investors that choose pegs. Since pegged orders are hidden, traders
can not observe the actual queue in advance, but in equilibrium they know its expected

length and the corresponding delay cost. When that expected queuing cost is sufficiently
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disadvantageous, investors (or their brokers) will resort to standard market orders, which

execute against market makers’ lit best bids and offers.

6.1 Testable predictions

Our model lays out the equilibrium consequences of those tradeoffs, providing predictions
that can be tested against laboratory and field data. The simplest version of the model is
intended to capture the functioning of the IEX format in calm conditions. It assumes a thick
order book of slow (unprotected) regular orders at BBO, and assumes that midpoint pegged

orders are protected from sniping. Key predictions include:

1. Both the number of active market makers, IV,, and snipers, Ny, will increase when the
flow of investors, p, increases. Indeed, if the discount rate § is proportional to p,* so
that f and w* remain constant, the equilibrium quantities of both types of proprietary

traders are directly proportional to p, as seen in equations (3.7) - (3.8).

2. Equations (3.7) - (3.8) also show that an increase in v (i.e., an increase in turbulence,
hence in sniping opportunities) will proportionately decrease the population size of
market makers, N,, but (perhaps surprisingly) have no impact on the population size

of snipers, ;.

3. The ratio v/p is a key indicator of market conditions. All equilibrium expressions save
one can be cast as functions of that ratio; for them varying v is the inverse of varying

p. The exception is the number of snipers N7, which scales as 1/p.

4. An increase in the cost of speed, ¢, will proportionately reduce the population size of

snipers, Ny, but will have no effect on the population size of market makers, N,.

5. The fraction of impatient investors that transmit pegged orders, w*, is an increasing

function of the discount factor, f = exp (—%) € (0,1].

What happens when midpoint orders are not protected from sniping (£ = 1)? According

to Propositions 4.1 and 4.2:

4This might be the case if impatience arises mainly from concerns about preemption by other investors.
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1. Given a positive fraction of orders transmitted as pegs, w, Equation (4.3) tells us that

A < w, i.e., the order imbalance is more tightly concentrated around zero.

2. The equilibrium value of w* is smaller when & = 1 for a wide range of parameter values,
including baseline parameters. However, the inequality can go the other way for certain

extreme parameter values.

3. In the usual case that ©* < w*, Equations (3.7), (3.8), (4.7c), and (4.7b) show that the

number N, of limit orders at BBO and the number of snipers N, will be larger when

£=1.

4. Most importantly, for parameter values in a large neighborhood of baseline, imposing
midpoint peg order protection makes transaction prices far more efficient and substan-

tially lowers transactions costs, but somewhat increases queuing costs.

6.2 Future work

To isolate the impact of order protection, we have assumed that IEX’s unique fee structure
is maintained throughout. Future work with small variants on the present model could

investigate the impact of fee structure, with and without order protection.

How well do current results stand up when key simplifying assumptions are relaxed? In
particular, what happens when we relax Assumption A5 and allow liquidity adders (either
of lit orders at BBO or of hidden midpoint pegs) to also purchase speed at flow cost ¢ > 07
Those who purchase speed have some chance of escaping snipers. Closed-form solutions are
no longer possible, but one can use recursion techniques (in particular, the Erlang B model)
to solve for equilibrium numerically. Preliminary work so far indicates no qualitative changes

to current results, but more work is needed.

A more ambitious extension of the present model would consider what happens when
the fundamental value follows a more complicated rule than Assumption A3, or when it is
unobservable and tied to the investor arrival process. Thus, one could replace A3 and A4 by
an exogenous and time-varying process of investor arrivals in which V' is implicitly defined

by balancing buy and sell orders in expectation.
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Another important theoretical extension is to relax Assumption Al and to model com-
peting exchanges, and possibly multiple securities. The NBBO and the fundamental values
would be endogenous, given some appropriately specified overall investor demand that would
distribute itself across exchanges, assets and order types. Such an extension would highlight
how protecting pegged orders via exchange delay relies on viewing the NBBO established
elsewhere. In that sense, such protection can not be a complete solution to perceived prob-

lems caused by high-frequency trading.

Empirical work need not wait for these theoretical extensions. In the laboratory, one
could investigate whether human subjects in the broker role track «w when the experimenter
varies parameters such as (, ¢, d), and whether human subjects in the proprietary trader
role follow the comparative static predictions of the impact on (N,, Ny) of the parameters
(v, p,c). Using field data, one might examine the order imbalance distribution and the
present model’s comparative statics. We hope that the present paper encourages such new

empirical and theoretical research.

Appendices

A Distribution of Order Imbalance

A.1 Protected Pegged Orders

Proposition 3.1. Let w € (0,1) be the probability that an investor arrival on either side
of the market results in a midpoint peg order. Given Assumptions A1-Ab, there is a unique

steady state distribution q : Z — (0,00) of the order imbalance, with

1l —w

g = (_> WM ke (3.1)

1+ w

Proof. As noted in the text, an investor arrival generates a midpoint peg buy or sell order,
or a market buy or sell order, with respective probabilities w/2,w/2, (1 — w)/2, (1 — w)/2.

Recall also that a new pegged sell (resp. buy) order generates a transition k& — k + 1 (resp.
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k — k —1), while a new market sell (resp. buy) order generates a transition £ — k+ 1 when

k <0 (resp. kK — k —1 when k£ > 0) and otherwise no transition.

Thus an arrival updates a negative imbalance probability p(k|k < 0) to p'(klk < 0) =
p(k + 1|k < 0) + 52p(k|k < 0) + ip(k — 1|k < 0); the first two terms arise from p and m
buy orders respectively, and the third term from any sell order. In steady state p'(k|k < 0)
is equal to the pre-update value p(k|k < 0). Thus we obtain the following steady state
equation for negative imbalance, together with analogous equations for a zero imbalance and

a positive imbalance:

plHk < 0) = Zp(k +1[k < 0) + 1 Zp(klk <0) + Sp(h— 1k <0) (A1)
p(0) = 5p(1) + (1~ w)p(0) + 2p(1) (4.2)
p(klk > 0) = Zp(k + 11k > 0) + + Zp(klk > 0) + Sp(k— 1k >0). (A3

Substituting p(k|k < 0) = gx in (3.1) for all £ < 0, and writing b = (;—Z) to reduce notation,

we verify directly that equation (A.1) holds:

1- 1
bk = gbuf(k*l) + waw*k + §bw’(k“)
1 1 1 1
N el b —k 2w —(k+1)
(2 + 2) w "+ <2 2) w
= bw". (A.4)

Verifying that ¢ = p(k|k > 0) in (3.1) satisfies (A.2) and (A.3) is similarly straightforward.
Any other solution of the steady state equations (A.1) - (A.3) must be proportional to ¢, so
to prove the proposition it suffices to verify that ¢ is a probability distribution on Z:

> 1+w
—b[1+2 Flop(142— J=p- " t=1 O
R (o R (e R

keZ
A.2 Unprotected Pegged Orders

When midpoint peg orders are not protected from sniping, the set of possible events increases
to six: the four types of investor arrivals, in addition to increasing and decreasing jumps
in the fundamental. The stationary distribution then has the same general form as in the

protected case, but is a more complicated function of the exogenous parameters.
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Proposition 4.1. Let w € (0,1) be the probability that an investor arrival on either side of
the market results in a midpoint peg order. Given assumptions A1-Ab5b, there is a unique

steady state distribution G : Z — (0,00) of the order imbalance, with

11—\
. = [ —2= ) A 7 4.2
where
1 Ev 1 Ev 2
)\—2(1+p+w)—2\/(1+p+w) — 4w € (0,w], (4.3)

and the variable £ = 0 (resp. & = 1) indicates that pegged orders are protected from sniping

(resp. are not protected).

Proof. The relative probabilities of the four investor events are unchanged from the
previous proposition, but to accommodate the directional jumps in the fundamental value,
those four probabilities all shrink by the factor #. An upwards jump has probability %erLu
and causes the transition £ — 0 when & > 0 and £ = 1, and otherwise has no effect. A
downwards jump has the same probability and causes the transition £ — 0 when k£ < 0 and

¢ =1, and otherwise has no effect.

With those modifications, the equations parallel to (A.1) - (A.3) that define the steady

state distribution become:

p(k|k < —1) = gpf@p(k 1]k < —1)
+ (%—%pf@) p(klk < —1)+%p+p€yp(k—1|k< ) (A5)
W0 =3 e+ oL p0) 4 (1w L Y0+ 5L ()
- %pf—yél/ B %pf—yfl/p(o) " %pf@p“) " (1 _wp—i—fy) p(0)+ %pf&/p(_l)
- %piyfv i %pfév W+ (1 - %) PO+ %#M_l)
(A.6)
p(klk > 1) = %pf@p(mr 1)k > 1)
+ (%—%pf@) p(k|k > 1)—|—%p+p€yp(k—1|k> ). (A.7)
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By symmetry, p(1) = p(—1), so the equation for p(0) implies

p0) = (-1 = (w4 5 ) o0) - 52 (A8)

Solving Equations (A.5) - (A.8) for p(k|k < 0) and p(k|k > 0), we find
p(k+1[k > 0) = (1 4 %” —i—w) p(k|k > 0) — wp(k — 1]k > 0) (A.9)
p(k— 1]k < 0) = (1 4 %” +w) p(k|k < 0) — wp(k + 1|k < 0). (A.10)

Equations (A.9) and (A.10) are linear second order homogeneous difference equations,

whose general solution takes the form

p(k) = al)\llkl + ag)\‘;‘, (A.11)
where
2
/\1:1(1 f—y+W>+1\/<1+£—V‘|‘w> — 4w (A.12)
2 p 2 p
2
A2:l<1 §—"ﬂ;)—1\/(1+§—”+w> — dw, (A.13)
2 p 2 p

are the roots of the quadratic equation

/\2—(1 %+w)/\+w:0. (A.14)

2 2
The discriminant <1 + %V + w) — 4w is bounded above by (1 + %” + w) and bounded
2 2
below by <l—|— %” —i—w) —4dw(1 + %’) = (1 + %” —w) for all v,p > 0 and &, w € [0,1]. As
a result, A\; > 1 and, as required by equation (4.3) of the proposition, A = Ay € (0,w). It is

easily seen that A = w when £ = 0.

From the boundary condition p(k) — 0 as k — oo, we see that a; = 0 since A\; > 1.
Consequently, Equation (A.11) implies that p(0) = ay. Enforcing the summability constraint
for a probability distribution, we find:

- - A 1+ A
1= k) = 2 No=ay |142——| = A.15
k:ZOOP< ) =as + ng az[ + 1_)\} az {1_)\1, ( )
Hence, ay = p(0) = L‘L—i and from Equation (A.11) we obtain the desired expression (3.1). OJ
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Corollary A.1. Given parameters v, p and &, the steady-state fraction of brokers choosing
to place midpoint peg orders is

Ww=AtE [ﬁ] %, (A.16)

where X\ is the steady state value determined in Proposition 4.1.

Proof The result is obtained by solving for w in Equation (A.14).

Remark. Clearly w is strictly increasing in A for the relevant parameter values, so its inverse

function Mw|¢ = 1, v, p) exists and is also strictly increasing.

A.3 What happens when w — 17

Suppose the model parameters are chosen so that w = 1. Then equation (3.2) says that
Tp = %l. That is, with probability % there is a contra-side queue and a pegged order
executes immediately, yielding surplus ¢ — d. When there is no contra-side queue, the

pegged order joins an arbitrarily long queue and has zero present value.

Formulas such as (3.2) may not convey the intuition behind this result. To better under-
stand it, consider the limiting distribution gx(w) in (3.1) as w — 1. Up to a multiplicative
normalizing constant, the probability w!* approaches unity for any fixed k. More precisely,
for any large but fixed integer K and centered sequence K = (=K, —K+1,...,—1,0,1,..., K—
1, K), each queue length k € IC has probability g < ﬁ in the limit as w — 1. Thus, in the
limit we have an improper distribution on Z, in which the probability “leaks out to 4+00.”.

The result is an infinite expected wait time and zero present value.

When w = 1, equation (3.3) gives 7, = &% + &1 = 7, + &1 > 7, That is, as usual,
the market order gets the same fill as a peg when there is a contra-side queue, but if there
is not, the market order is filled profitably (at the BBO) and so dominates a pegged order.
Thus, the equal profit condition always fails when w = 1 (and ¢ > 1), and so w = 1 is
never part of a market equilibrium. The logic applies equally to protected and unprotected
midprice orders. Of course, the deep-book-at-BBO assumption does not make sense in this

case, unless the BBO orders are routed from other exchanges (see Appendix C.2).
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B Baseline Model Calibration

Here we explain how our baseline parameter values connect with available market data.

B.1 Investor Fraction w*

Recall that w is the fraction of investor orders transmitted as midpoint pegs and for &€ =0

QZ;%Z HLw (B.1)
=1

is the probability that there is a contra-side order resting at midprice (see, e.g., Equa-

tion (3.3)). A new investor order is represented in Table 1 in one of three ways:

1. With probability @), an agency will remove liquidity at midprice.

2. With probability w(1 — @), an agency will add liquidity at midprice.

3. With probability (1 —w)(1 — @), an agency will remove liquidity at BBO.
Conditional on an agency order, these probabilities sum to unity; unconditionally (given the

presence of proprietary traders) the sum of probabilities (.2081, .2784, .0744, respectively)
is 0.5609. As a result,

0.2081 w
05600 ¢ 13, o w0 (B2)
0.2784 1

— 1— - ~ 1.01 B.
o600 WU =@ =1, — wxl0 (B.3)
0.0744 1 —w

Cl—wW)(1-0Q)= Y ~ 0.77. B.4
05600 ~ LTI -Q) =177 = w077 (B4)

(B.5)

The average of these values is 0.79, so we will choose baseline parameters that yield w ~ 0.75.

B.2 Midprice Transaction Fee

The TEX fee for transacting at the mid price is $0.0009. As a single price unit in our model
is equivalent to $0.005, we set d = 0.18 price units.
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B.3 Investor Surplus

We define ¢ as the surplus for the marginal investor with impatience 5* (defined below).
Such an investor is willing to transmit a market order at unit cost (0.5 spreads or pennies)
in addition to the direct fee, b, of $0.003 — $0.005 (an approximation reported to us by
practitioners) per share. The direct fee is equivalent to 0.6 — 1 half-spreads, so ¢ &~ 140.8 =
1.8 half-spreads.

B.4 Discount Factor

Suppose each investor i has private impatience parameter ; € [0, 1], drawn independently
from a given distribution F'(/3). In practice, investors choose from a long menu of broker

algorithms for placing and canceling orders, and their choices partially reveal their values of
Bi-

In our model, investors only choose between midpoint pegs and market orders, implying
a threshold, 3, such that more patient investors (those with f; > B) choose pegs and less
patient investors choose market orders. Thus, given B ,afractionw =1—F (5) of the orders

are transmitted as pegs.

Our steady state distribution of order imbalances (Proposition 3.1) implies a distri-
bution of waiting times, and thus expected investor profits m;(0|w, ;), for order types
0 € {peg,mkt}. By maximizing over € (choosing the preferred order type) we obtain a
new threshold 3. The result is a map M : [0,1] — [0,1], 3 — 3.

Lemma B.1. If the distribution F' is continuous, then the mapping M, defined above, has
a unique fized point B* € [0, 1].

Proof sketch. M is continuous and monotone decreasing, so the conclusion follows from

the intermediate value theorem.

This result allows us to infer §* from our calibration of w* and the other parameters: given
vector (w*, ¢, d) we use the equal profit condition for the marginal investor, Equation (3.9),

to solve

p p—d—w(1—d)
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1.8 -1

" 1.8—0.18—0.75 x (1 — 0.18)

=0.79.

(B.6)

Substituting p = 12.82 (determined below) into the relation g* = exp(—d/p) we arrive at

0 = —plog(B*) =~ 3.

B.5 Arrival Intensities

Table 3 reports the S&P 500 exchange traded fund (ticker SPY) transaction volume at IEX

for the month of December, 2016.

As we consider the asset in our model to be similar

to a highly liquid asset such as SPY, we use the volume statistics in Table 3 to calibrate

the investor arrival intensity parameter, p. The total number of SPY shares traded by

Other Nonroutable

Primary Peg

Hidden Lit Hidden Lit
BBO Mid BBO Mid | BBO Mid BBO Mid
Agency Remover | 489370 80279 | 2506659 0 0 0 0 0
Prop Remover 2262796 230826 | 1201430 0O 0 0 0 0
Agency Adder 146504 24141 | 2030384 0O 263913 0 0 0
Prop Adder 14655 1041 5978539 0 | 1882565 0 0 0
Midoint Peg Discretionary Peg
Hidden Lit Hidden Lit
BBO Mid BBO Mid | BBO Mid BBO Mid
Agency Remover 0 1644581 0 0 0 591604 0 0
Prop Remover 0 565548 0 0 0 2200 0 0
Agency Adder 99915 1228941 0 0 | 1800154 2057015 0 0
Prop Adder 0 4802 0 0 3100 4490 0 0

Table 3: TEX SPY volume for December 2016 by order type and transaction price. Excludes

routable orders and transactions in locked or crossed market conditions.

Agency Removers (across all order types) is 5,312,493 and the shares traded by Agency
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Adders via only Midpoint and Discretionary pegs is 5,186,025, resulting in a total volume
of 10,498,518 shares by the equivalent of investors in our model. Since our model considers
an investor arrival to be a unit transaction, and since a unit transaction at IEX is 100
shares, there were a total of 10,498,518/100 ~ 105,000 investor arrivals during the 21
trading days, or 21 x 6.5 x 60 = 8190 trading minutes of December, 2016, resulting in
p = 105,000/8190 = 12.82 investor arrivals per minute or roughly 1 arrival every 4.68

seconds.

To calibrate v we utilize SPY quotation data at Nasdaq, which, given its liquidity and
overall market share, is a good surrogate for the SPY NBBO. Our sample covers the period
16 June — 11 September, 2014. There are 26,216,524 quotations in the 62-day period, which
comprises 1,450,800,000 milliseconds during trading hours, or approximately 1 quote every 55
milliseconds. Defining a jump as any midpoint price change of magnitude at least $0.01 over
the period of four quotations, or 220 milliseconds, resulted in an average of approximately

2,500 jumps per day, v = 6.41 jumps per minute, or one jump every 9.36 seconds.

Combining the values of p and v, our baseline measures suggest ¥ ~ 0.5, or that the

v
o
intensity of value jumps is about half that of investor arrivals.

B.6 Cost of Speed

At the time of this writing, one of the premier microwave transmission services, McKay
Brothers LLC, offers low latency data services for 8 select ETFs (such as SPY) for $3,100
per month. This translates to $3100/(8 x 8190) = $0.047 or approximately ¢ = 10 half-

spreads per symbol, per minute.

C Institutional Information

C.1 Exchanges Imposing Delay

Several exchanges impose messaging delays to their systems. On May 16, 2017, nearly a year

after the SEC approval of IEX to operate as a national securities exchange, NYSE American
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(formerly NYSE MKT) received similar approval to impose a 350 microsecond delay to all
inbound and outbound messages in its system. Much like IEX, the delay protects non-
displayed pegged orders, which include a discretionary pegged order type (nearly identical
to the TEX discretionary peg) that was approved by the SEC in June, 2016.

Several months later, the Chicago Stock Exchange (CHX) also received approval to im-
pose a 350 microsecond delay. Unlike the predecessor systems mentioned above, the CHX
messaging delay protects all pegged orders, not only those that are non-displayed. This sys-
tem, referred to as Liquidity Enhancing Access Delay (LEAD), also allows limit and cancel
orders sent by specially designated market makers to be exempt from the delay. To ob-
tain LEAD market maker status, traders are subject to specific month-to-month liquidity

provision and transaction requirements.

Unlike the foregoing systems, TSX Alpha, launched in September 2015, imposes a longer,
random delay of 1 — 3 milliseconds. Like CHX, the TSX messaging delay protects all pegged
orders. Additionally, “post-only” limit orders are not subject to the delay. Post-only orders
enter the order book as traditional limit orders, but in the event that they cross a standing
quotation, they are either repriced (less aggressively) or cancelled. TSX Alpha also uses an
inverted taker-maker fee structure, issuing a rebate ($0.0010) to traders taking liquidity and
charging fees ($0.0014 — $0.0016 for post-only limits and $0.0013 — $0.0014 for non-post-only
limits) to traders providing liquidity. As a result, traders may surpass the delay by paying

an explicit fee to the exchange.

C.2 Order Routing

In accordance with Regulation National Market System (Reg NMS), all exchanges in the
United States route orders to protected quotations at other exchanges when those quotations
offer price improvement. The IEX router does this both at initial receipt of an order, and
at periodic intervals for orders resting on the book. The latter feature is referred to as
resweep. To be eligible for such protection, orders must be designated as “routable”, whereas

“nonroutable” orders are sent directly to the IEX book and are not eligible for resweep.

The order book and router are distinct components of the IEX system. After passing

through the initial 350 microsecond point-of-presence delay, nonroutable orders are sent
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directly to the IEX order book, whereas routable orders are sent to the router. The IEX
order router then disseminates these latter orders to all national market systems (including
their own) following a proprietary routing table. Messages that are passed between the IEX
order book and router are subject to an additional one-way 350 microsecond delay. As a
result, routable orders that are sent to the IEX order book experience a cumulative delay of
700 microseconds before queuing behind other orders in the system. No additional delay is

enforced between the IEX router and external exchanges.

As noted in Section 2, routable orders constitute only 15% of IEX trading volume and
represent traders that use the IEX router as an access point to the national market sys-
tem. The remaining, nonroutable volume, represents trading interest intended to capture

incentives of the IEX market design.

C.3 Pegged Order Types

Section 2 lists the three types of pegged orders at IEX. Midpoint pegs rest at the midpoint
of NBBO, whereas primary pegs are booked in the hidden order queue one price increment
(typically $0.01) below (above) NBB (NBO), and are promoted to transact at NBB or NBO
if sufficient trading interest arrives at those prices. Discretionary pegs combine the benefits
of these first two: when entering the order book, they check the NBBO midpoint for contra-
side interest, but in the absence of such interest, are pegged to NBB or NBO and are queued
behind other hidden orders at those prices. Further, in the event that contra-side interest
subsequently arrives at the NBBO midpoint, discretionary peg orders can be promoted to

transact at the midpoint. If no such interest arrives, discretionary pegs are treated as typical

hidden NBBO orders.

Table 1 shows that midpoint trading constitutes a little more than 60% of volume, discre-
tionary peg trading accounts for 37% of volume and 89% of discretionary pegs are transacted
at the midpoint. The implication is that midpoint volume is nearly evenly split between mid-
point and discretionary pegs. Primary pegs and discretionary pegs transacted at BBO each
account for 5% or less of reported volume. Thus, while there is a distinction between mid-
point and discretionary peg orders, in practice nearly all discretionary peg orders transact

at midpoint. For this reason, we reduce the decision space for order types in our model to a
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simple midpoint peg.

Table 1 also reports small volume statistics for seemingly incongruous trades: (1) mid-
point orders that transact at BBO and (2) hidden nonroutable orders (not pegs) that transact
at midpoint. The first case occurs when midpoint pegs are booked with a limit price con-
straint which binds after subsequent movements in the NBBO. In such instances, an order
that originally rested at midpoint might later rest and transact at BBO. The second case
occurs under nuanced conditions where the NBBO is more than a single price increment
wide or when the IEX BBO is wider than the NBBO (which may be a single increment). In
such instances, the NBBO may coincide with the IEX midpoint or the hidden order at IEX
may be subject to a special midpoint price constraint® and later transact with contra-side

orders at midpoint.

C.4 Crumbling Quote

The volume statistics for midpoint pegs in Table 1 show that proprietary firms are three
times more likely to act as liquidity removers at midpoint (7.16% of volume) than as liquidity
adders (2.12% of volume). This is indicative of opportunistic stale-quote arbitrage in advance
of movements in the NBBO. Despite the fact that the IEX delay is intended to combat
such exploitative activities, the company has reported an increase in anticipatory trading:
midpoint quotes being removed at unfavorable prices immediately prior to changes in the
NBBO (Bishop, 2017). This trading is almost certainly a result of improved probabilistic
modeling of NBBO liquidity shifts by fast traders.

In an effort to further protect pegged orders from adverse selection, IEX has developed the
“crumbling quote signal”: a model that forecasts changes in the NBBO (the crumbling quote)

and temporarily prevents primary and discretionary peg orders from exercising discretion at

5When the IEX BBO is wider than the NBBO and a nonroutable hidden order enters the order book with
a limit that would otherwise be passed on to another exchange displaying NBBO, the order is booked at the
NBBO midpoint and may be promoted to transact at the NBBO at a later time. For example, suppose the
NBBO is $10.00 x $10.01 and the IEX order book is $10.00 x $10.02 when a nonroutable hidden buy order
arrives with a limit of $10.01. The order will be booked at $10.005 and will later transact at $10.01 if a sell
limit arrives at that price. Alternatively, it may transact with midpoint pegs, discretionary pegs, or market

orders at midpoint.
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their potentially more aggressive prices in order to minimize their exposure to anticipatory
traders. That is, when the crumbling quote signal is on, discretionary pegs do not transact at
midpoint and primary pegs do not transact at BBO. Midpoint pegs do not receive protection

from the crumbling quote signal.

While we view the crumbling quote signal as an important innovation to the IEX market
design, we have excluded it from our model in order to focus attention on the primary role
of the speed bump and its interaction with pegged order types. We consider study of the

crumbling quote signal, however, to be a valuable direction for future work.
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