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Abstract 

 

A common problem with differences-in-differences (DD) estimates is the failure of the parallel-trend 

assumption. To cope with this, most authors include polynomial (linear, quadratic…) trends among 

the regressors, and estimate the treatment effect as a once-in-a-time trend shift. In practice that 

strategy does not work very well, because inter alia the estimation of the trend uses post-treatment 

data. An extreme case is when sample covers only one period before treatment and many after. Then 

the trend's estimate relies almost completely on post-treatment developments, and absorbs most of 

the treatment effect. What is needed is a method that i) uses pre-treatment observations to capture 

linear or non-linear trend differences, and ii) extrapolates these to compute the treatment effect. This 

paper shows how this can be achieved using a fully-flexible version of the canonical DD equation. It 

also contains an illustration using data on a 1994-2000 EU programme that was implemented in the 

Belgian province of Hainaut. 
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1. Introduction 

 

When the parallel-trend assumption fails, most authors (e.g. Friedberg, 1999; Autor, 2003; Besley 

& Burgess, 2004) resort to a polynomial (linear,…) trend-augmented version of the canonical DD 

model (Angrist & Pischke, 2009).  

 

Yit= α + ∑ 𝛼𝜏𝐼𝜏,𝑡
𝑇
𝜏=𝑡2  + αDDi +  ηAFTERt*Di  [+ θ t*Di ] [1.] 

with Iτ,t=1 if t=τ  and 0 otherwise, and where Yit is entity i's outcome in time t, D the 

treatment  dummy, AFTER the after treatment dummy, and here t is a continuous variable.  

 

Coefficient θ captures the linear trend characterizing the treated entities. And η  - a trend shift 

around t=0 – measures the treatment effect. As suggested by Wolfers (2006), the problem with this 

strategy is that it uses post-treatment observations, and that the treatment outcome takes the form of 

a once-in-a-time trend shift. A case in point is visible on Figure 1. The latter describes the evolution 

of income per head in the Belgian province of Hainaut (in deviation to the rest of Belgium), before 

and after it benefited from EU money.1 That treatment began in 1994 and lasted until 2000. The 

trend is clearly negative prior to treatment, and still so after. The estimation of η, using the 

canonical DD model 10 years after treatment, delivers a negative value, in the range of -300€. A 

'placebo' estimation of that model evidently reveals that there was no parallelism before the 

treatment started. So, the - 300€ figure is not trustworthy. This justifies estimating the trend-

augmented eq.[1]. The red line on Figure 1 depicts the result. After treatment, the income handicap 

tends to stabilize, and this explains the moderately negative estimated trend (θ <0). By 

construction, this trend applies to the pre-treatment period. Being negative, it delivers "corrected" 

DD estimates that are less negative than the traditional ones (-245.8€>-297.3€). Also, η corresponds 

to the trend shift just after t=0.2 And as income handicap after treatment is larger, that shift is still 

negative; suggesting that  the EU policy failed (it "caused" approx: - 245€ of additional income 

handicap). Yet, θ underestimates the actual pre-treatment trend (in blue on Figure 1). Before 

treatment, the handicap was growing faster than after. Prolonging the initial trend up to t=10 

suggests that, ceteris paribus, the income handicap might have reached -3,000€, while it ended 

being less than -2,000€. The tentative conclusion is that the real treatment outcome was positive (in 

                                                 

 

1 See Vandenberghe (2016) for more details about EU-Objective 1-Hainaut. 
2 Defining t=year-1993 
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the range of +1,000€). What we propose hereafter is an alternative way of correcting DD 

estimation, that solely uses pre-treatment observations.  

 

Figure 1 – The liminations of trend-augmented DD$  

 

 
$ 

Plotted values are (municipal)- population-weighted mean differences between Hainaut and rest-of-Belgium. These are used to 

estimate a linear trend-adjusted DD model.  

 

2. Beyond polynomial trend-corrected DD 

 

Mora & Reggio (2012) suggest that DD analysis can be done by estimating a generalize fully-

flexible equation, where the right-hand part only consists of time, treatment and timeXtreatment 

dummies: 

 

Yit= γ + ∑ 𝛾𝜏𝐼𝜏,𝑡
𝑇
𝜏=𝑡2

 + γDDi + ∑ 𝛾𝜏
𝐷𝐼𝜏,𝑡

𝑇
𝜏=𝑡2

𝐷𝑖 [2.] 

with  t=t1,…. T  and Iτ,t=1 if t=τ  and 0 otherwise, covering before and after treatment 

periods. 
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The advantages to this equation are manyfold. First, conditional on the availability of many pre-

treatement periods in the data, the OLS-estimated coefficients can be used to compute a whole 

family of difference-in-difference estimators DD[p], where p=1, 2...q is the degree of parallelism 

underpinning identification. The canonical DD model is noted DD[1], and rests on parallelism of 

degree 1 (Parallel[1] hereafter).3  Without Parallel[1], one should estimate DD[2] that rests on 

Parallel[2], i.e. outcome growth rate parallelism.4 If Parallel[2] fails, one should turn to DD[3] with 

requires Parallel[3] or outcome acceleration5 parallelism…and so on up to degree p=q, if data 

permit.  Second, eq. [2], unlike eq.[1] can capture dynamic (ie. lagged) responses to treatment.6 

Third,  – and this is something we particularly stress in the contex to this paper as it brings a 

solution to Wolfer's trend & shift problem –  corrections for the violation of Parallel[p] rests solely 

on pre-treatment observations. 

 

Consider the canonical DD[1]/Parallel[1] estimator, with just before-and-after observations t* and 

t*+1. Treatment effect writes7,8  

 

DD[p=1]
t*+1;t*=(γD

t*+1+γD)- (γD
t* +γD)=γD

t*+1 - γ
D

t*. [3.] 

 

Also, Eq. [2] can be used to assess Parallel[1] prior to treatment. Using pre-treatment periods t*-2, 

t*-1, one can compute 'placebo' DD[1] capturing the deviation from Parallel[1] prior to treatment. 

For instance, DD[1]
t*;t*-1=γD

t* - γ
D

t*-1. should not be statistically different from zero. It not, then 

treated and control trends diverge before treatment (as illustrated on Figure 1 or its stylised 

equivalent Figure 2). And identification should rests on Parallel[2]. The point is this can be easly 

achieved by computing 

 

                                                 

 

3   If outcome level change by unit of time (i.e 1st derivate) is "speed", then Parallel[1] means stable level differences due 

to identifical speeds. 
4  If outcome growth rate change by unit of time (2nd derivative) is "acceleration" , then Parallel[2] means stable growth 

rate differences  due to same accelerations.  
5  If outcome acceleration change by unit of time (3rd derivative) is "surge", then Parallel[3] corresponds to a situation 

where acceleration differences remain stable due to identical surges.  
6  The pattern of lagged effects is usually of substantive interest, e.g. if treatment effect should grow or fade as time 

passes. 
7
  When estimating eq. [2] with only 2 periods, γD

t* is subsumed into the constant γDand DD[1]  is directly captured by 

the timeXtreatment coefficient. 
8  Treatment effect' standard error must account for the fact that it consists of a linear combination of estimated 

coefficients, and thus of the covariance between variables. That is automatically done by STATA test or lincom 

commands used hereafter, that exploit the variance-covariance matrix of the estimated coefficients. 
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DD[p=2]
t*+1; t*-1=DD[1]

t*+1; t*-DD[1]
t*;t*-1=(γD

t*+1- γ
D

t*)-(γ
D

t*-γ
D

t*-1) = γD
t*+1- 2γD

t* +γD
t*-1  [4.] 

 

which is the difference between the observed t*+1 outcome level handicap9  γD
t*+1 and its prediction 

γD
t*+ DD[1]

t*;t*-1 given the handicap in t* and its expected rise due to growth-rate difference between 

t* and t*-1. This prediction uses only regression coefficients driven by pre-treatment observations; 

a major difference with the trend-augmented method of eq.[1]. Note finally that the above logic can 

be generalized in many ways: to the case of lagged/dynamic treatment effects, or to 

DD[p=q]/Parallel[p=q].where q>2 (Vandenberghe, 2016). 

 

Figure 2 – How DD[2] copes with failure of Parallel[1] 

 
$ On this figure, t*-1 is considered to be the first period observed in the data. Hence, γD

t*-1 is subsumed into γD and, in contraxt with eq;[6], DD[2] is 

computed using only 2 coefficients. 

3. Application to Hainaut data 

 

To illustrate the properties of the eq. [2]-based generalized fully-flexible DD estimator, we use 

municipal data on taxable income per head. Time series are available for each of Belgium’s 589 

municipalities, from 1988 to 2003, covering years before 1994 (start of EU policy) and after 2000 

(end of the policy). The treated entities are the 69 municipalities of Hainaut (Table 1 & Figure 3). 

                                                 

 

9  Net of the initial handicap in t*-1 : γD 
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The 520 other ones form the control group. All reported estimates are obtained using data that are 

weighted by municipal population sizes & deflated by 2010 consumer-price index. 

 

Figure 3  – Hainaut vs rest of Belgium/ 

 

Table 1– Municipality count 

 

Rest of Belgium 520 

Hainaut 69 

Total 589 
 

 

Table 2 displays the results for the canonical DD[1]/ Parallel[1]. Year t*=1993 is the most immediate 

year before the treatment, and t*+s=2003  the moment the treatment is evaluated. Results confirm 

what was already visible on Figure 1. Compare to the rest of Belgium, the income handicap grew 

larger between 1993 and 2003 (-329.8€).  But placebo DD[1] point at a rising income handicap prior 

to treatment. Thus Parallel[1] does no hold. 

 

Table 2: DD[1] estimation + DD[1] placebo estimations 
 

DD[1] Placebo DD[1] 

DD -329.88* -121.29*** -268.83*** -80.24*** -68.37* -106.81*** 

prob DD=0$ 0.017 0.000 0.000 0.000 0.035 0.000 

Post-treat. year 2003 1989 1990 1991 1992 1993 

Pre-treat. year 1993 1988 1989 1990 1991 1992 

Nobs 21,832 21,832 21,832 21,832 21,832 21,832 

R2 0.92 0.92 0.92 0.92 0.92 0.92 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Thus, it is necessary to go beyond Parallel[1] to capture EU-Objective 1's true impact. Interestingly, 

as we possess many pre-treatment periods, we can implement both the traditional trend-corrected 

DD method and DD[2]/
 Parallel[2]. Results are reported in Table 3. The last two columns correspond 

to year 2003 (t*+10).  As anticipated, the two estimators deliver treatment effect estimates that 

significantly diverge. Whereas the traditional linear-trend corrected method concludes to a negative 

impact (i.e. the income handicap rose by -238.5€), our preferred fully-flexible DD[2]/
 Parallel[2] 

method diplays a gain of 916.2€. This illustrates the striking differences induced by a method that 

only uses pre-treatment observations to account for trend differences, and also lift the constraint of  
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outcome as one-in-a-time trend shift. 

 

Table 3 - Linear trend-corrected DD vs DD[2] 
 2000 2003 

 Corrected 

DD[1] 

DD[2] Corrected 

DD[1] 

DD[2] 

DD 76.55 255.56*** -238.52*** 961.19*** 

prob DD=0$ 0.154 0.000 0.001 0.000 

Post-treat. year 1997 1997 2003 2003 

Pre-treat. year 1 1993 1993 1993 1993 

Pre-treat. year 2 1988 1988 1988 1988 

Nobs 5,890 21,832 9,421 21,832 

R2 0.96 0.92 0.95 0.92 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Finally, we assess the legitimacy of Parallel[2] by estimating placebo DD[2]
  using 3 pre-treatment 

years. Results (Table 4) are all supportive of DD[2]
 =0, suggesting that Parallel[2] was a realistic 

description of the relative dynamics of Hainaut’s income per head prior to EU-Objective 1, and that 

the positive DD[2]
 values in Table 3 properly identify the programme's causal impact. 

 

Table 4- DD[2] 'placebo' estimation 
 DD[2] 

1990 

DD[2] 

1991 

DD[2] 

1992 

DD[2] 

1993 

DD -147.54 188.59 11.87 -38.43 

prob DD=0$ 0.593 0.448 0.959 0.843 

Post-treat. year 1990 1991 1992 1993 

Pre-treat. year 1 1989 1990 1991 1992 

Pre-treat. year 2 1988 1989 1990 1991 

Nobs 21,832 21,832 21,832 21,832 

R2 0.92 0.92 0.92 0.92 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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