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Abstract

The aim of this research is to build on a theory for explaining economic development

in a (neoclassical) growth model with endogenous fertility. The economy is comprised

of overlapping generations of rational and identical individuals and identical competitive

firms producing with a constant-returns-to-scale technology with no externalities. From

a theoretical perspective, the distinguishing feature of this work is that endogenous fer-

tility per se is able to explain the existence of low and high development regimes. It

provides alternative reasons (history driven or expectations driven) why some countries

enter development trajectories with high GDP and low fertility and others experience

under-performances with low GDP and high fertility. The model is also able to reproduce

fertility fluctuations and explain the baby busts and baby booms observed in the last

century in some developed countries.
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1 Introduction

"...if the theory is complicated, it’s wrong." Richard P. Feynman

The present research explains the reasons why some countries develop whilst others remain

entrapped in stagnation or poverty by using a neoclassical growth model with overlapping

generations (OLG) and endogenous fertility (child quantity). The work enters the debate

about history versus self-fulfilling expectations as in the seminal articles of Krugman (1991)

and Matsuyama (1991). It introduces a novel utility-driven mechanism describing the exis-

tence of different convergence groups of countries and confirming the empirical findings of

Mankiw et al. (1992) and the related literature. It also provides a new theoretical reason

why economies starting from similar initial conditions experience different development tra-

jectories or initially poorer (resp. richer) economies enter a phase of sustained development

(resp. under-development) with larger values of GDP and lower fertility rates (resp. smaller

values of GDP and higher fertility rates), as several European, Latin American and East Asian

countries show by considering the end of World War II as a starting point. From a theoretical

perspective, this work complements the continuous-time optimal growth model (encompassing

the child quantity-quality trade-off) of Palivos (1995), where multiple steady states and prob-

lems of coordination failures were production-driven. The work now proceeds by discussing the

main motivations and the links to the related literature.

Demographic variables were recognised to play a preeminent role as determinants of long-

term macroeconomic outcomes of nations. The interactions between demographics and eco-

nomics are the object of a growing body of theoretical and empirical studies [see, for instance,

Fogel (2004); Galor (2011); Cervellati and Sunde (2013)]. Human beings in Western countries

have experienced tremendous improvements in both the standard of living and quality of life

in the past two centuries, although there is still no clear consensus on which were the main

sources of this development (e.g., human capital accumulation [Glaeser et al. (2004)] and/or

quality of institutions [Acemoglu et al. (2001)]). The influence of longevity and fertility on

economic growth (a concept referred to the growth of an economic variable such as GDP per

capita) and development (a multi-dimensional phenomenon related - amongst other things - to

fertility, life expectancy, poverty, quality of institutions, the distribution of income and so on)

has led several economists to consider them as endogenous variables and tackle this issue in

models that - since the pioneering work of Becker (1960) - have originated the Unified Growth

Theory (UGT) [Galor and Weil (2000); Galor and Moav (2002, 2004); Galor (2011)]. This the-

ory aims at explaining the process of economic development based on the interaction between

endogenous technological progress and human capital formation by showing that endogenous

fertility [Galor and Weil (2000)] and endogenous human evolution [Galor and Moav (2002)] are

relevant causes of the demographic transition (that is, the transition from stagnation to growth

is accompanied by a demographic shift from high to low birth and death rates [Jones and Ter-
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tilt (2006)]). A distinctive feature of this literature is the building of a conceptual framework

to explain the process of development across nations and continents. This process is usually

divided in three phases: 1) Malthusian epoch (a long period that ends up almost at 1750 AD).

2) Post-Malthusian regime (1750-1870). 3) Modern growth regime (1870-today). The works

belonging to this literature have substantially modified the standard OLG model by including

some additional ingredients, such as human capital accumulation, child and adult mortality

and so on. Except some of the seminal contributions of Galor and his co-authors, which tend

to emphasise the importance of fertility and child mortality as determinants of the economic

and demographic transition, the mechanisms leading from a phase of pre-industrialisation to

a phase of intensive industrial production are technology-and-mortality-driven [Cervellati and

Sunde (2005, 2015); Fiaschi and Fioroni (2014)]. In these works, fertility is introduced to ex-

plain the phases of the demographic transition without representing, however, the triggering

factor amongst the various stages of development.

There are several contributions analysing problems of economic development in growth

models with endogenous fertility that do not strictly belong to the UGT. These works aim at

explaining the reasons why some countries achieve high values of GDP and low fertility rates

whereas others remain entrapped in a situation where GDP is low and fertility is high. In

most cases, scholars use the OLG framework. This is because it represents a natural basis

where including demographic variables, although there exist some works in a continuous-time

set up with infinite horizon optimising agents [Wang et al. (1994); Palivos (1995); Palivos et

al. (1997)]. Within the class of OLG models with finite lived individuals, we mention here

the works of Galor and Weil (1996), Blackburn and Cipriani (2002) and Fanti and Gori (2014)

that consider fertility as a consumption good and come to light several distinct reasons why

multiple stationary equilibria can exist. All these models share the same characteristic, i.e. they

include substantial changes to the standard OLG framework. In particular, Galor and Weil

(1996) examine the relationship between fertility and economic growth by including gender

differences. The decrease in fertility and the increase in output growth is due to a threefold

reason: the increase in capital per worker and women’s relative wages; the resulting increase

in the opportunity cost of children that contributes to reduce fertility; the decline in fertility

eventually favours an additional the increase in capital per worker. Multiple development

regimes were possible because of the positive effect on the rate of output growth caused by

women joining the labour force. Differently, the existence of multiple steady states in the

models of Blackburn and Cipriani (2002) and Fanti and Gori (2014) is due to (endogenous)

adult mortality changes driven, respectively, by education and public health expenditure. The

main findings are that poor countries tend to have high fertility and mortality rates together

with a low level of GDP per capita, according to the empirical evidence on the demographic

transition.

The present article adds to the literature an explanation (history or expectations driven)

for the fertility transition within the wider phenomenon of the demographic transition based on
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the existence of a high regime of development (the accumulation of capital is high and fertility

is low), which resembles the Modern growth regime, and a low regime of development (the

accumulation of capital is low and fertility is high), which resembles the Malthusian regime.

These results were obtained in a very basic framework with homogeneous agents and no ex-

ternalities in production. This is worth to be mentioned as the model is able to give rise to

coordination failures: agents know that there exist multiple equilibria but do not know how to

coordinate themselves to avoid Pareto dominated outcomes. This is uncommon in the absence

of externalities and, to the best of our knowledge, it is the first time that indeterminacy is

fertility-driven instead of labour-supply-driven in an OLG model.

The rest of the article proceeds as follows. Section 2 develops a simplified version of the

model of child quantity and time cost of children of Galor and Weil (1996). Section 3 charac-

terises the conditions for the existence of stationary equilibria and studies equilibrium dynamics

by clarifying the main theoretical results with simulative exercises (global analysis). Section 4

outlines the conclusions. An Appendix provides some mathematical results.

2 The model

This section builds on a simplified version of the model of Galor and Weil (1996). The OLG

(general equilibrium) closed economy is populated by a continuum of (perfectly) rational and

identical individuals of measure Nt per generation (t = 0, 1, 2, ...). The life of the typical agent

is divided into childhood and adulthood. As a child, an individual does not make economic

decisions and spends time in the parent’s household by consuming resources directly from him.

As an adult, an individual is economically active, works and takes care of children when he

is young, and retires when he is old. The Nt young members of generation t overlap for one

period (youth) with Nt−1 old individuals belonging to generation t− 1 and for one period (old-

age) with Nt+1 young individuals belonging to generation t+ 1. When young, an individual is

endowed with 2 units of time.1 We assume that raising children is a purely time consuming

activity [see Guryan et al. (2008) for empirical evidence]. The child rearing technology requires

an exogenous fraction q < 2 of the parent’s time endowment to raise a child that represents

parent’s foregone earnings. Then, by letting nt > 0 be the number of children at time t, qnt

is the time needed to care for nt descendants of a parent that belongs to generation t. This

implies that the time required to care for children cannot be spent working and the marginal

time cost of children is constant, i.e. the opportunity cost of children is proportional to the wage

rate. The remaining share ℓt = 2 − qnt > 0 of time is supplied to firms in exchange for wage

wt per unit of labour. Individuals consume only in the second period of their life [Woodford

(1984); Reichlin (1986); Galor and Weil (1996)]. The budget constraint of the young individual

1Considering a time endowment larger than one allows obtaining a growth factor of population larger than,

smaller than or equal to one, i.e. a population that grows, decreases or it is stationary over time.
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representative of generation t is st = wtℓt, i.e. labour income is entirely saved (st) to consume

one period later. When old, an individual retire and consumption (Ct+1) is determined by

the amount of resources saved when young plus expected interest accrued from time t to time

t+ 1, so that Ct+1 = Re
t+1st where Ret+1 is the expected interest factor, which will become the

realised interest factor at time t+1. Therefore, the lifetime budget constraint can be expressed

as follows:

Ct+1 = Ret+1wt(2− qnt), (1)

where qnt < 2 must hold to satisfy the constraint dictated by the individual time endowment.

An adult individual of generation t has preferences towards the number of children and

material consumption. Parents are selfish and give birth to children not for being supported

when they will be old or enjoying their well-being but exclusively to increase their own utility.

The lifetime utility index of the individual representative of generation t is described by the

following additively separable function:

Ut(nt, Ct+1) =
n1−γt

1− γ
+

C1−σ
t+1

1− σ
, (2)

where γ > 0 (γ �= 1) and σ > 0 (σ �= 1) measure the constant elasticity of marginal utility with

respect to fertility and consumption, respectively. This functional form of a utility function is

aimed for generality. In the particular case γ = 1 and σ = 1, the expression in (2) boils down

to Ut(nt, Ct+1) = ln(nt) + ln(Ct+1). The formulation for lifetime utility as those expressed in

(2) is crucial for the results shown later in this article and, in the case of no young material

consumption, 1/σ (resp. 1/γ) may be interpreted as a proxy for measuring the (constant)

elasticity of substitution in consumption (resp. children). An increase in σ (resp. γ) causes a

decline in the marginal utility of material consumption (resp. fertility) when Ct+1 (resp. nt)

increases. Empirical evidence [Hall (1988); Jones and Schoonbroodt (2010); Havranek et al.

(2015)] finds that the elasticity of substitution in consumption is consistently smaller than one

(σ > 1). Differently, 1/γ can be interpreted as a measure for the elasticity of (inter-generational)

substitution between consumption and children. In a recent work, Córdoba and Ripoll (2016)

find that this index is significantly larger than one (γ < 1), meaning that material goods and

children tend to be substitutes over time.

By substituting out (1) in (2) and taking factor prices as given, the maximisation problem

of the individual representative of generation t is:

max
nt∈(0,2/q)

�
n1−γt

1− γ
+

�
Ret+1wt(2− qnt)

�1−σ

1− σ

�

. (3)

Therefore, the first order condition is given by:

n−γt = q(Ret+1wt)
1−σ(2− qnt)

−σ. (4)

Eq. (4) implies that the marginal utility of an extra child should be equal to the (indirect)

marginal utility of consumption. It tells us how much consumption to give up when old to
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consume one more child when young by keeping utility unaltered. The expression in (4) can

also be rewritten as follows:
nγt

(2− qnt)σ
=
(Ret+1wt)

σ−1

q
. (5)

This formulation allows clarifying the effects (at the individual level) of a change in wage income

on the demand for children. In particular, the left-hand side of (5) is an increasing function of

nt. An increase in the wage causes a twofold effect. On the one hand, it implies that children

become more costly relative to material consumption. Then, at the optimum, an individual

wants to substitute the consumption of children when young for the consumption of material

goods when old (substitution effect). On the other hand, an individual gets richer as the value

of his overall time endowment increases (income effect). As he offers a positive amount of his

time endowment to firms (labour supply), what eventually determines the sign of the change in

the demand for children following a wage increase is the sign of the income effect. When σ > 1

(resp. σ < 1) the income effect is positive (resp. negative) and children are a normal (resp.

inferior) good. Therefore, an increase in wage income increases (resp. reduces) the demand for

children through this channel. When σ = 1 children are neither normal nor inferior goods (the

substitution and income effects cancel each other out in that case) and the demand for children

is independent of the (capitalised) wage income. Definitely, when children are a normal good

(σ > 1) the substitution effect and the income effect are of opposite sign and the final effect of

a change in wage income on the demand for children is a priori uncertain. In contrast, when

children are an inferior good (σ < 1) the substitution effect and the income effect are both

negative so that the demand for children reduces when the wage increases (this is in accord

with the Beckerian tradition).2 Therefore, an additively separable (non-log) utility function is

able per se to provide a reason why fertility reacts differently to a change in wage income. This

adds a novel utility-driven mechanism that can potentially explain the historical pattern of the

fertility transition within the wider phenomenon of the demographic transition. The analysis

of the relationship between the number of children and GDP per young person will be clarified

later in this article in both cases σ > 1 and σ < 1 when we will account for the macroeconomic

(general equilibrium) effects of the model.

Firms are identical and act competitively on the market. At time t, the representative firm

produce a homogeneous good (Yt) by combining capital (Kt) and labour (Lt) by means of the

neoclassical technology:

Yt = AF (Kt, Lt) = AKα
t L

1−α
t , (6)

where 0 < α < 1 is the output elasticity of capital and A > 0 is the (constant) total factor pro-

2This result can be ascertained by imposing the restriction γ = σ. In this case, in fact, from (5) one can get

the unique closed-form expression for nt. However, this simplification does not represent a good approximation

to characterise all the development scenarios the model is able to generate. Then, given also the different

empirical estimates on γ and σ, we will continue studying the model by keeping these parameters at different

values.
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ductivity. Profits are given by AKα
t L

1−α
t −wtLt−RtKt. The temporary equilibrium condition

in the labour market is given by Lt = ℓtNt = (2− qnt)Nt, i.e. the amount of labour hired by

firms is equal to the mass of young individuals of generation t times the fraction of time they

spend working. By taking factor prices as given, profit maximisation gives:

wt = (1− α)Akαt (2− qnt)
−α, (7)

Rt = αAkα−1t (2− qnt)
1−α, (8)

where kt := Kt/Nt is the stock of capital per young person.

The market-clearing condition in the capital market is Kt+1 = St = stNt. As Nt+1 = ntNt

determines the evolution of fertility, equilibrium implies:

kt+1 =
st
nt
, (9)

where st = wt(2 − qnt) and nt is determined by the individual first order conditions. By

using (4), (7), (8), (9) and knowing that individuals have perfect foresight, so that Rt+1 =

αAkα−1t+1 (2− qnt+1)
1−α,3 the dynamics of the economy is characterised by the two-dimensional

map:

M :






kt+1 = Q1(kt, nt) :=
A(1− α)kαt (2− qnt)

1−α

nt

nt+1 = Q2(kt, nt) :=
1
q

	
2− k

−α
2

1−α

t (2− qnt)
−α+ 1

(1−σ)(1−α) n
−1− γ

(1−σ)(1−α)

t B


 , (10)

where capital per young person (resp. fertility) is a state (resp. control) variable and

B : = A
−(1+α)
1−α (1− α)

−α

1−α α
−1
1−α q−

1
(1−σ)(1−α) . (11)

We note that the initial value of the control variable (n0) does not affect the initial value

of the state variable k0 := K0/N0. The assumptions of additively separable preferences and

perfect foresight are crucial and contribute to determine a dynamic expression for the number

of children, which is absent in the case of log-utility (in which it is not necessary to specify

any expectations formation mechanisms about the future interest factor). In fact, if γ = 1

and σ = 1 fertility is constant and given by n = 1/q so that the dynamics of the economy

is characterised by the uni-dimensional map kt+1 = q(1− α)Akαt , from which one can get the

unique (globally asymptotically stable) stationary equilibrium k∗ = [q(1− α)A]
1

1−α .

3This is an important assumption allowing to get a link between k and n at time t+ 1.
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3 Existence of stationary equilibria and equilibrium dy-

namics

The analysis begins with by identifying the stationary equilibria of the map. By the first

equation of map M we have that at the stationary state it must hold

k = h(n) := (2− qn)

	
A(1− α)

n


 1
1−α

. (12)

The steady-state values of the fertility rate are solutions of the following equation:

g(n) : =
1

q

�
2− n

2α−1

(1−α)2
+ γ

(σ−1)(1−α) (2− qn)−
α

1−α
−

1
(σ−1)(1−α) D

�
= n, (13)

where D := B [(1− α)A]
−

α
2

(1−α)2 . From the expression in (12) it follows a negative relationship

between n and k at the stationary state. This implies that larger values of the capital stock are

related to lower values of fertility. Then, under the assumption that children are a normal good

(σ > 1) the model overcomes the paradox between individual choices and macro behaviour.

In fact, the empirical evidence shows the existence of a positive relationship between wage

income and the number of children (positive income effect) at the individual level, whereas

larger values of GDP are associated with lower fertility rates in the last stages of the economic

and demographic transition at an aggregate level. Although assessing the effects of changes in

fertility on growth is not an easy task (this is because population variables change endogenously

along the process of development), there exists evidence confirming the importance of fertility

declines for explaining GDP growth [Jones and Tertilt (2006); Ashraf et al. (2013)].

In order to characterise the number of equilibria, we now study the behaviour of g when

n→ 0+ and when n→ (2/q)−.

Lemma 1 Let

γ̃ :=
(1− 2α)(σ − 1)

1− α
, (14)

be a threshold value of γ. (1) If σ > 1 and γ > γ̃ or if σ < 1 and γ < γ̃ then lim
n→0+

g(n) = 2/q.

(2) If σ > 1 and γ < γ̃ or if σ < 1 and γ > γ̃ then lim
n→0+

g(n) = −∞. (3) If σ > 1 then

lim
n→(2/q)−

g(n) = −∞. (4) If σ < 1 then lim
n→(2/q)−

g(n) = 2/q. (5) In addition, g has a critical

point

ncrit :=
(4σ − 2γ − 4)α− 2σ + 2γ + 2

[α2 (σ − 1) + (σ − γ)α− σ + γ] q
, (15)

in the interval (0, 2/q) if and only if γ < γ̃. (6) If

[(1− α) γ + 2ασ − 2α− σ + 1] [(1− α) γ + 3ασ − 2α− 2σ + 1] (σ − 1) > 0 (16)

then one or two inflection points for g can exist in the interval (0, 2/q).
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Proof. Results (1)-(4) are obtained by studying the sign of the exponents of the terms n and

2− qn in the expression g(n). Results (5) and (6) are obtained by noting that the sign of g′(n)

coincides with the sign of the first degree polynomial:

p(n) := q
�
σ(α2 + α− 1)− (α− 1)γ − α2

�
n+ (2σ − 1)(1− 2α)− 2γ(1− α), (17)

and the sign of g′′(n) coincides with the sign of the second degree polynomial:

P (n) := P2n
2 + P1n+ P0, (18)

where

P2 :=

	
σ −

1

3
γ −

2

3



α−

2

3
σ +

1

3
γ +

1

3

� �
(σ − 1)α2 + (σ − γ)α− σ + γ

�
q2, (19)

P1 :=


4

3
q(αγ − 2ασ + 2α− γ + σ − 1)

�
[αγ − 3ασ + 2α− γ + 2σ − 1] , (20)

P0 := −

�
8

3

�
(σ − 1)α2 + (−4σ + γ + 4)α+ 2σ − γ − 2

��	
σ −

1

2
γ − 1



α−

1

2
σ +

1

2
γ +

1

2

�
.

(21)

Remark 2 From an empirical point of view, 1 − 2α > 0 as α < 0.5 generally holds [Krueger

(1999); Gollin (2002); Jones (2004)]. Values of the capital share in income larger than 0.5 may

make sense by broadening the concept of capital including human components [see Chakraborty

(2004) and the literature cited therein]. However, all numerical simulations presented in this

work adopt the usual notion of physical capital and make use of a standard value around 0.33,

which is consistent with the data.

From Lemma (1) we get the proposition characterising the existence and number of station-

ary equilibria of map M .

Proposition 3 [Existence and number of stationary equilibria]. (1) If σ > 1 and γ > γ̃ then

there exists a unique interior fixed point. (2) If σ > 1 and γ < γ̃ [this case is meaningful only

when α < 1/2] then there exists a threshold value Ã > 0 such that for A < Ã there are no

interior fixed points and for A > Ã there exist two interior fixed points. (3) If σ < 1 and γ > γ̃

then there exists a unique interior fixed point. (4) If σ < 1 and γ < γ̃ [this case is meaningful

only when α > 1/2] then there exists a threshold value Ā > 0 such that for A < Ā there exist

two interior fixed points and for A > Ā there are no interior fixed points.
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Proof. We separate the proof with respect to the cases introduced in the statement of the

proposition. (1) By Lemma 1, g′(n) has constant and negative sign in the interval (0, 2/q).

In fact, given γ̂ := [α2(σ − 1) + σ(α − 1)]/(α − 1) we have that if γ < γ̂ then p(n) defines a

negatively sloped linear function that vanishes at a point n < 0, whereas if γ > γ̂ then p(n)

defines a positively sloped linear function that vanishes at a point n > 2/q. (2) By Lemma 1, g

has an interior maximum point nmax := ncrit by the study of g′′(n) it follows that no inflection

points do exist and then g is always concave. (3) It is easy to show that g is increasing in

the interval (0, 2/q) and lim
n→0+

g(n) = −∞, and g(2/q) = 2/q and g′(2/q) = 0 (then, the the

graph of g lies above the 45 degree line). To verify that g is concave we consider two cases. If

γ̃ < γ < (3σ−2)α+1−2σ
α−1

then the discriminant of the polynomial in (18) is negative so that there

do not exist interior inflection points and g′′(n) ≤ 0 in the interval (0, 2/q). If γ > (3σ−2)α+1−2σ
α−1

then the roots of the polynomial in (18) are located outside the interval (0, 2/q) and g′′(n) ≤ 0

in the interval (0, 2/q). (4) Function g always admits a minimum point nmin in the interval

(0, 2/q). First, define the following threshold value of γ: γ̄ := (α2 − 4α + 2)(σ − 1)/(1 − α),

where γ̄ < γ̃. Second, to inquire about the number of fixed points, it is convenient to distinguish

between two cases. If γ̄ < γ < γ̃ then g is decreasing and convex in the interval (0, nmin), where

nmin := ncrit; it is increasing and convex in the interval (nmin, 2/q); it is increasing and concave

in the interval (f1, 2/q), where f1 ∈ (nmin, 2/q) is the unique inflection point; it eventually

ends up at point 2/q with g(2/q) = 2/q and g′(2/q) = 0. If γ < γ̄ then g has two inflection

points f1 and f2 in the interval (0, 2/q). Function g is decreasing and concave in the interval

(0, f1); it is decreasing and convex in the interval (f1, nmin); it is increasing and convex in the

interval (nmin, f2); it is increasing and concave in the interval (f2, 2/q) with g(2/q) = 2/q and

g′(2/q) = 0.

The geometry of existence and number of stationary states of map M outlined in Proposition

3 is illustrated in Panels (a)-(d) of Figure 1. The stationary states are the intersection points

of g(n) with the 45
◦

degree line. Depending on parameter configurations, there exist either

uniqueness (Panels (a) and (c)) or multiplicity (Panels (b) and (d)). In the case of multiple

equilibria, the Total Factor Productivity parameter plays a crucial role in determining the gap

between the two states. This is in line with the result of the endogenous lifetime model of

Chakraborty (2004).
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(a) (b)

(c) (d)

Figure 1. Geometry of existence and number of stationary states (denoted by the black point)

of map M as detailed in Proposition 3. (a) Case 1: σ > 1 and γ > γ̃. There is a unique stationary

state. (b) Case 2: σ > 1 and γ < γ̃ [this case is meaningful only when α < 1/2]. If A < Ã there

are no stationary states (red curve). If A > Ã there are two stationary states (black curve) (c) Case

3: σ < 1 and γ > γ̃. There is a unique stationary state. (d) Case 4: σ < 1 and γ < γ̃ [this case is

meaningful only when α > 1/2]. If A < Ā there are two stationary states (black curve). If A > Ā

there are no stationary states (red curve). In Case 3 and Case 4, n = 2/q (denoted by the empty

circle) is not a stationary state of the map. However, it can play an important role for the dynamics

of the model, as is shown later in this article.

Let us compare now a situation where there exist two stationary states under the assumption

that children are a normal good (σ > 1). In the long term, workers will get a lower wage at a

stationary state with a low stock of capital (less developed economy) in comparison with the

wage will be obtained at a stationary state where capital is larger (developed economy). Given

the same interest factor (partial equilibrium), this means that individuals choose to have less

children in a context of underdevelopment than in richer countries. However, the model also

implies that the interest factor is higher where the capital stock is lower. As children are a

normal good and the interest factor is an element that helps capitalising wage income over

time, in the long term (general equilibrium) fertility increases when the capital stock reduces.

Then, this theory is able to explain the empirical behaviour on the demand for children both
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at microeconomic and macroeconomic levels.

Of course, the existence of one or more stationary states is economically meaningful only

whether there exist trajectories leading to convergence. The following results provide a classi-

fication of the equilibrium dynamic properties of map M .

Lemma 4 If (a) σ < 1 and γ > σ or (b) if σ > 1 and γ > σ(2−qnss)
2−qnss

then the determinant of

the Jacobian matrix of map M is positive, where nss is the generic stationary state value of n.

Proposition 5 [Local stability of stationary equilibria]. Under the hypotheses of Lemma 4, if

the graph of g at nss intersects the 45
◦

lines from below, the point (kss, nss) is a saddle, where

kss is the generic stationary state value of k obtained by the expression in (12).

Proposition 6 Let σ < 1 and γ > − (1−σ)(α2qnss−2α+2)+qnssσ
2−qnss

. If the graph of g at nss intersects

the 45
◦

lines from above, the point (kss, nss) is not a saddle.

Proof. The proof of Lemma 4 and Propositions 5 and 6 are in the Appendix.

In the light of the previous results, we can give an insight about the stability of equilibrium

points in the different cases outlined in Figure 1. Specifically, under the assumptions introduced

in the propositions, the left-located stationary state in Panel (b) identifies a saddle point. This

means that given an initial condition on the stock of capital, there exists a unique choice on

the control variable allowing the economy to lie on the trajectory converging towards it. The

same result holds for the unique stationary state identified in Panel (c) and for the right-located

one of Panel (d). Instead, nothing can be said in the case detailed in Panel (a) as equilibrium

dynamics can have different properties. In order to clarify the outcome in this case, Figure 2

shows the possibility that the equilibrium is locally indeterminate. Although this is the unique

stationary state of the model, there exist infinite choices on the control variable (fertility) that

generating trajectories that lead towards it for a given initial condition of the state variable

(capital). These trajectories are characterised by different values of capital accumulation and

fertility.
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Figure 2. Parameter set: α = 0.354, σ = 4.01993, A = 1.61, q = 0.94 and γ = 1.4485. Local

indeterminacy of the unique attractor of the map. The grey-coloured region is the basin of attraction

of the attractor. The white area is the region of unfeasible trajectories.

When the hypotheses of the previous results are violated, the classification of the stationary

states of map M is quite cumbersome from an analytical point of view, with conditions that

are very difficult to be interpreted economically. More details are available in the Appendix.

As is shown in Proposition 3, there exist cases with respect to which there are multiple

stationary states. This makes it possible to have also global indeterminacy. This implies

that the model is able to generate distinct development trajectories leading to different long-

term values of capital per young person (state variable) and fertility (choice variable). For

instance, with the following parameter values (which are plausible values also from an empirical

point of view) α = 0.33, σ = 4.7, q = 0.53 (which represents almost the 30 per cent of the

time endowment of parents for the caring of children), A = 1.545, γ = 0.183 we obtain two

stationary states. One of these two states represents the under-development outcome (low

GDP and high fertility), i.e. the low development regime, and its coordinate values are given

by (k∗, n∗) = (1.23, 1.13). The other, instead, represents the paradigm for developed countries

(high GDP and low fertility), i.e. the high development regime, and its coordinate values

are given by (k∗∗, n∗∗) = (1.96, 0.88). The long-term low development regime is a locally

indeterminate fixed point, whereas the long-term high development regime is a saddle (Figure

3).

Figure 3. Parameter set: α = 0.33, σ = 4.7, q = 0.53, A = 1.545, γ = 0.183. Global

indeterminacy. The grey-coloured region is the basin of attraction of (k∗, n∗). The black line represents

an approximation of a branch of the stable manifold of the saddle (k∗∗, n∗∗) on which an economy

converges towards the developed state.

On the existence of feasible trajectories with kt → 0 and nt → 2/q when σ < 1. By exploring

the two equations of map M , it is not possible to have feasible trajectories such that kt → 0

and nt → 2/q when σ < 1. In this case, point (0, 2/q) is an attractor of the system even though
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the map is not defined on such a point. This event is shown through numerical simulations in

the example of Figure 4. Panel (a) depicts the (grey-coloured) basin of attraction of (0, 2/q),

depicted in red in the figure, whereas the boundary of the basin is defined by the stable manifold

of the interior stationary state, i.e. the saddle (black) point (k∗, n∗). The white region represents

the space of initial conditions for which trajectories become unfeasible after a finite number of

iterations. From Figure 4(a), one may conclude that the system is globally indeterminate as

there exist two distinct long-term outcomes (only one of them is an interior fixed point) that

can be achieved given the same initial condition. Specifically, there exist (1) an infinite number

of trajectories leading to the locally indeterminate state (0, 2/q), which represents a poverty

trap scenario with a low level of capital and high fertility, and (2) a unique (saddle) path on

which the economy converges to the interior stationary state, which represents a paradigm

of developed countries with a high level of capital and low fertility. Converging towards one

of these long-term state is a matter of individuals’ choices about fertility. This is a typical

expectations-driven outcome leading to coordination failures. In fact, U evaluated at (0, 2/q)

is smaller than U evaluated at (k∗, n∗) meaning that (k∗, n∗) Pareto dominates (0, 2/q) but

individuals can choose to coordinate themselves on the Pareto dominated equilibrium. This

holds because individuals (by expecting a low return on capital) tend to increase the amount

of time devoted to child rearing. Then, fertility increases approaching its upper bound (2/q)

and capital increasingly reduces. Panel (b) of Figure 4 shows two typical trajectories leading

to the poverty trap outcome.

(a) (b)

Figure 4. Parameter set: α = 0.354, σ = 1.3, A = 1.07, q = 0.94, γ = 0.004. (a) Basin of

attraction (depicted in grey) of (0, 2/q) (the red point) and the boundary of the basin that defines

the stable manifold of the saddle (black) point (k∗, n∗). (b) Time series of nt and kt of a trajectory

approaching towards (0, 2/q).

Another result the model is able to reproduce is given by (endogenous) fertility fluctuations

that are in line with the baby busts and baby booms observed the last century in some developed

countries. There are two recent articles analysing the reasons why fertility fluctuates over time.

We refer to the works of Doepke et al. (2015) and Jones and Schoonbroodt (2016). The
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former wishes to assess the effects of the shock of World War II on subsequent baby boom

in U.S. (following the historical decrease in fertility due to working of demographic transition

forces). The author consider a model where women can choose labour supply, the number of

children and when having children and there exists an interaction amongst subsequent cohorts.

Then, they perform quantity experiments to explain the post-war increase in fertility on the

basis of a drop in labour force participation of young women (whose wages declined in that

period) because of the increase in competition caused by the higher participation of older

women (and the persisted high demand of female labour after the end of World War II). Then,

younger women exited the labour market and started having children. The latter work, instead,

considers a general equilibrium model with endogenous fertility and dynastic altruism showing

that fertility and the opportunity cost of children in U.S. are pro-cyclical. Our theory simplifies

the framework substantially and it is able to give an explanation of these fluctuations within

a typical neoclassical set up. The main economic mechanism behind fertility fluctuations is

similar to the one developed by Doepke et al. (2015) (see Figure 5 for a simulative exercise).

This is because in our model an increase in fertility directly reduces both the labour supply

and labour productivity.

Figure 5. Parameter set: α = 0.3, σ = 1.956, A = 1, q = 0.3, γ = 0.34. Fertility fluctuations.

4 Conclusions

For a very long time in human history, the number of births and deaths were almost equivalent

and the world total population was relatively stable (fluctuating around a low level). During

this extended period, income per person remained quite constant or it grew slowly [Galor and

Weil (2000)]. After the process commonly known as Industrial Revolution, mortality started

declining in newly industrialised countries and after an initial stage of stability, fertility followed

a declining trend as well. In these phases, total population started increasing together with

income. Then, Europe faced a long age of dramatic social, political and institutional changes

that subsequently spread to other countries all over the world.
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Economic development is a long-term involved phenomenon that includes social, institu-

tional, economic and demographic changes across nations and continents. The present work

treated development on the side of economic and demographic transition. Why do some coun-

tries achieve high levels of GDP and low fertility and others low levels of GDP and high fertility?

Standard one-sector models of neoclassical growth often conclude that economies with similar

technologies will converge towards a common stationary-state equilibrium even if the initial

conditions are very different. This is the main result of the Solow-type growth set up implying

that poorer countries will growth faster than richer countries. This finding is also shared by

several works in the (OLG and continuous-time optimal) growth literature in both cases of

exogenous fertility and endogenous fertility. However, it was widely accepted that there exist

persistent differences in the level of real activity and fertility rates amongst (distinct groups of)

countries [e.g., Mankiw et al. (1992); Palivos (1995); Hall and Jones (1999); Jones and Tertilt

(2006)]. This kind of models, therefore, cannot explain these macroeconomic and demographic

differences, so that the above as well as other similar questions are likely to remain unanswered

within both the basic neoclassical growth set up and endogenous growth one. This unsatis-

factory result has led several economists to modify these frameworks in several ways trying to

building on more suitable theories with exogenous fertility [Azariadis and Drazen (1990)] or

endogenous fertility [Galor and Weil (1996)]. The literature has then grown rapidly leading to

what is commonly known as the UGT [Galor (2011)], where the main factors explaining the

demographic and economic transitions were generally child mortality/fertility (surviving chil-

dren), adult mortality, human capital accumulation and structural changes. However, it is still

difficult to find theories where fertility per se represents the triggering factor for the transition

amongst the various stages of development. The present article used a basic OLG model of neo-

classical growth to fill that gap. The works most closely related to the present one are Palivos

(1995) and Galor and Weil (1996). The former introduced endogenous fertility (child quantity

and child quality) in a continuous-time neoclassical optimal growth set up with infinite lived

individuals, finding a production-driven channel through which fertility choices may be a source

of multiple steady states and coordination failures. The latter emphasised the importance of

gender differences in wage income for the existence of multiple paths of economic development

in an OLG model with child quantity. The present work showed that multiple paths of economic

development can exist also in a simplified version of Galor and Weil (1996) with homogeneous

agents. It also introduced a new utility-driven mechanism through which fertility is a source

of global indeterminacy. The model entered the debate about history versus self-fulfilling ex-

pectations and provided reasons why economies with different initial conditions (history) or,

alternatively, similar or the same initial condition(s) (expectations) converge towards different

long-term equilibria.

The work had the ambition of giving an answer to the question raised by Jones et al. (2008):

"Fertility Theories: Can They Explain the Negative Fertility-Income Relationship?" Of course,

we are aware that this is toy model and preferences may depend on culture, beliefs and social
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norms specifically related to institutions or ethnic groups (often followed by linguistic and

religious contours that also affect choices about contraception), and that these elements should

therefore be included as endogenous variables in the analysis. However, the main goal of the

work was to keep the model as simple as possible to bring to light some theoretical outcomes

that remained until now unexplored within the standard economic theory of fertility.
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Appendix

For the sake of completeness, we analyse here some mathematical details of map M not discussed

in the main text.

On the feasible region of map M . Map M is defined on a sub set of the non-negative orthant.

In fact, given nt > 0 and kt > 0, in order to have nt+1 > 0 and kt+1 > 0 it must hold that

kt >



(2− qnt)
−α− 1

(σ−1)(1−α)n
−1+ γ

(σ−1)(1−α)

t

2B





1−α
α2

. (22)

Depending on the parameter setting we have three different cases.

1) If σ > 1 and γ > (σ − 1)(1 − α) then the region defined by the inequality in (22) is

described by the grey area in Panel (a) of Figure A.1.

2) If σ > 1 and γ < (σ − 1)(1 − α) then the region defined by the inequality in (22) is

described by the grey area in Panel (b) Figure A.1.

3) If σ < 1 then the region defined by the inequality in (22) is described by the grey area

in Panel (c) of Figure A.1.

The regions detailed above ensure the possibility of computing a single iterate. However,

in order to have well-defined forward dynamics, the trajectory generated by a generic initial

condition must be bounded in this region for every iterate. For this reason, the economically

meaningful trajectories analysed in the main text actually lie on in a smaller region than the

one shown in the three panels of Figure A.1.
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(a) (b) (c)

Figure A.1. Feasible region (grey-coloured) of map M depending on the parameter setting.

On the non-existence of feasible trajectories with vanishing nt. If σ > 1 and γ > (σ− 1)(1−α)

then we can rule out the existence of feasible trajectories with nt → 0. In fact, if there were

feasible trajectories such that nt → 0 then kt → +∞, as can be ascertained by looking at the

first equation of map (10). However, this would not be consistent with the second equation of

that system, which describes the dynamics of fertility, as kt → +∞ would imply nt → 2/q.

On the non-existence of feasible trajectories with an unbounded growth of kt. If σ > 1 and

γ > (σ−1)(1−α) then we can rule out the existence of feasible trajectories with kt → +∞. In

fact, if there were feasible trajectories such that kt → +∞ then nt → 2/q, as can be ascertained

by looking at the second equation of map (10). However, this would not be consistent with

the first equation of that system, which describes the dynamics of the stock of capital, as when

nt → 2/q for a high enough value of kt one would get kt+1 < kt.

On the non-existence of feasible trajectories with an unbounded growth of kt and nt → 2/q.

Consider a feasible trajectory with nt → 2/q. Then, for a value of t sufficiently large it holds

that kt+1 = A(1− α)kαt (2− qnt)
1−α < A(1− α)kαt → k∗ = [(1− α)A]

1
1−α .

On the non-existence of feasible trajectories with nt → 2/q when σ > 1. We can rule out

the existence of feasible trajectories with nt → 2/q in the case σ > 1. If there were feasible

trajectories such that nt → 2/q then by the first equation in (10) kt → 0. However, this would

not be consistent with the second equation in (10) as kt → 0 would imply nt+1 < 0.

Proof of Lemma 4 and Propositions 5 and 6. Results about stability of the stationary states

follows by the study of Jacobian matrix evaluated at a generic state (kss, nss). The Jacobian

matrix is the following:

J(kss, nss) :=

�
J1,1 J1,2

J2,1 J2,2

�

, (23)

where

J11 := α > 0, (24)
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J1,2 := − [(1− α)A]
1

1−α n
α−2
1−α (2− αqnss) < 0, (25)

J2,1 :=
α2k

α2

α−1
ss (2− qnss)

(α2−α)(1−σ)+1
(1−σ)(1−α) n

(1−α)(σ−1)−γ
(1−σ)(1−α)

ss B

q(1− α)kss
> 0, (26)

J2,2 :=
J2,1kss {[α

2(σ − 1)− σ] qnss + 2(σ − 1)(1 + α)− (2− qnss)γ}

α2(σ − 1)(2− qnss)nss
. (27)

In particular, we note that g(n) = v(h(n), n) from which g′(n) = v′k(h(n), n)h
′

n(n)+v′n(h(n), n).

At a stationary state such expression becomes:

v′k(kss, nss)

∂Q1
∂n

��
(k,n)=(kss,nss)

1− ∂Q1
∂k

��
(k,n)=(kss,nss)

+ v′n(kss, nss). (28)

Corresponding to an intersection from below (resp. above) of the graph of g with the 45
◦

line,

the expression in (28) is greater (resp. smaller) than one. Rearranging terms, we have that

such an expression identifies the condition for which Det(J(kss, nss))− Tr(J(kss, nss)) + 1 < 0.

Results follows from the sign of Det(J(kss, nss)), where

sgn {Det(J(kss, nss))} = sgn

�
2 + (γ − σ)(2− qn)

q(2− qn)(1− σ)

�
(29)

and by identifying a sufficient condition for which J22 > 0 (that guarantees Tr(J(kss, nss)) > 0).
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