
Gutierrez, Federico H.

Working Paper

A Sharing Model of the Household: Explaining the Deaton-
Paxson Paradox and Computing Household Indifference
Scales

GLO Discussion Paper, No. 166

Provided in Cooperation with:
Global Labor Organization (GLO)

Suggested Citation: Gutierrez, Federico H. (2018) : A Sharing Model of the Household: Explaining the
Deaton-Paxson Paradox and Computing Household Indifference Scales, GLO Discussion Paper, No.
166, Global Labor Organization (GLO), Maastricht

This Version is available at:
https://hdl.handle.net/10419/173217

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/173217
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


A Sharing Model of the Household:

Explaining the Deaton-Paxson Paradox and Computing Household

Indifference Scales∗

Federico H. Gutierrez†

Vanderbilt University

January 8, 2018

Abstract

This paper presents a new model of the household that is able to explain a variety of consumption

patterns that existing models cannot describe, most notably, those associated with the Deaton and

Paxson (1998) paradox. The most distinctive feature of this model is the presence of common-pool

goods (rival and non-excludable) previously ignored in the literature. Under regularity conditions, the

model can be interpreted as a hybrid between non-cooperative and a collective models of the household.

Empirically, the paper revisits the Deaton-Paxson paradox exploiting household splits in longitudinal

data and computes the elusive indifference scales coefficients.
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1 Introduction

The economic theory of individual decision-making is almost undisputed. However, theoretical models ex-

plaining household choice remain controversial. Since most people live in multi-person households, modeling

group behavior correctly is crucial in many theoretical and empirical studies. Previous research indicates

that ignoring the interaction of household members affects the measurement of demand elasticities (Brown-

ing and Chiappori (1998)), family labor supply (Chiappori (1988), Fortin and Lacroix (1997), Browning and

Meghir (1991)) and the impact of social policies (Lundberg et al. (1997), Duflo (2003)).

This paper presents a model for the intra-household allocation of resources where each member fully

controls his/her income and voluntarily shares purchased goods with other members. The main ingredient

that differentiates this model, denominated here the “sharing model”, from others previously studied in the

literature is the presence of common-pool goods. These largely ignored commodities have the characteristics

of being rival in consumption yet non-excludable to household members, and are capable of affecting the

household demand system in fundamental ways. The sharing model can be viewed as a natural generalization

that nests existing theories of the household. However, it has the ability to explain several consumption

regularities that have been proven incompatible with previous models, in particular those associated with

the Deaton and Paxson (1998) paradox discussed below. In light of the solution proposed for this paradox,

this paper derives and implements a method to compute household indifference of scale that reconciles the

economic theory with the empirical evidence previously in conflict.

In the sharing model, the allocation of goods is determined by their nature and the norms in the household.

In this respect, the model contemplates three types of commodities: public goods, private goods and, new

in the literature, common-pool goods. These latter commodities are ignored in standard theories of the

household. Common-pool goods have the characteristic of being rival and non-excludable in consumption.

Thus, when a household member purchases such goods, she knows that they have to be shared with others.

An example of a common-pool good is food at home that can be consumed by any household member

irrespectively of who purchased it. The non-excludability condition of common-pool goods does not mean

the absence of a rule to allocate them. It means that the buyer cannot fully appropriate the benefits because

other members are allowed to consume them. The existence of common-pool goods is in the essence of the

household. For example, the United Nations defines a multi-person household “as a group of two or more

persons living together who make common provision for food or other essentials for living”(emphasis

added).1 Similarly, the majority of surveys defines the household as a function of common goods, usually

food.2

1http://unstats.un.org/unsd/demographic/sconcerns/fam/fammethods.htm
2For example, the Mexican Family Life Survey used in this study defines a household as “a person or group of people, related

or unrelated by biological bonds, who usually live together in a part of, or in an entire building/ dwelling and usually consume

meals provided by a common budget on the same stove/oven and may even use the same utensils for preparing meals”
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The contribution of the sharing model becomes apparent when it is contrasted with the theories of the

household that are most commonly adopted in the literature: i) non-cooperative models, iii) unitary models

and iii) collective models. Non-cooperative models of the household are theoretically analyzed in Chen

and Woolley (2001), Lechene and Preston (2011), Lundberg and Pollak (1993) and Browning et al. (2010).

Among other things, these models deal with voluntary contributions of public good. Their analysis is tightly

connected with previous studies in the public finance literature on the private provision of public goods

(Warr (1983), Bergstrom et al. (1986), Fraser (1992), Bergstrom et al. (1992)). All of these papers ignore

common-pool goods.

Unitary models assume that households can be treated ‘as if’ they were individuals. Specifically, the

mechanism governing household members’ interactions results in well-defined group preferences capable of

being represented by an aggregate utility function. Unitary models accurately represent household’s choices

in some specific cases, such as households where only one person makes all the decisions or households where

all members have identical preferences. However, these models cannot account for the general case. Two

empirical implications of unitary models have been tested in the literature: the income pooling property (i.e.

the identity of the income earner should not affect household demands for goods) and the symmetry of the

Slutsky matrix. The empirical evidence is now ample against the unitary model (Thomas (1990), Schultz

(1990), Lundberg et al. (1997), Deaton and Paxson (2003), Browning and Chiappori (1998), Attanasio and

Lechene (2002)).

Collective models, originally developed by Chiappori (1988) and later extended by Blundell et al. (1993),

Browning and Chiappori (1998), Bourguignon et al. (2009) and Chiappori and Ekeland (2009) among others,

are commonly used and accepted alternative to unitary models. They recognize that households are formed

by interacting individuals with different preferences and incentives. However, this theory does not explicitly

model the group decision process. It simply assumes that such process leads to an efficient allocation of

resources in the household. Collective models are appealing because they make only one extra assumption

on top of individual rationality and are compatible with a great number of mechanisms.

Theoretical papers related to collective models deal with the question of whether this theory is too general

to obtain meaningful conclusions and testable implications. These papers take Pareto-optimality as given

and derive the conclusions that emerge from it. On the other hand, empirical studies take the implications

of the collective model to test whether this theory is a valid representation of households’ behavior. Despite

the attractiveness of the collective setting, the evidence is not conclusive. While some studies cannot reject

the collective model hypothesis (Browning and Chiappori (1998), Bobonis (2009), Attanasio and Lechene

(2014)), others find strong evidence against Pareto-optimality within the household (Udry (1996), Duflo and

Udry (2004), Dercon and Krishnan (2003)).

The existing models of the household just described have proven to be valuable devices. However, there are

empirical regularities that none of them can explain. The most important one is the fact that, holding total
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household per capita expenditures constant, per capita food consumption tends to decline with household

size. This relationship, which was first described by Deaton and Paxson (1998), contradicts the predictions

of the Barten (1964) model in relation to the presence of household economies of scale. The ample evidence

of this empirical relationship across a wide range of countries and periods suggests that previous household

models fall short in fully explaining intra-household allocation.3 The sharing model presented in this paper

provides a natural explanation.

The Deaton and Paxson (1998) paradox can be summarized as follows. Household economies of scale

are thought to come from the presence of public goods (e.g. housing). Because these goods are non-rival

in consumption, per capita monetary contributions to maintain a given level of consumption declines as

household size increases (i.e. the effective price of public goods declines). Then, under reasonable price and

income elasticities, the share of food on total expenditure is expected to increase with household size, but the

opposite is observed in most of the countries. The sharing model in this paper gives a simple and intuitive

explanation of this paradox. Since food is likely to be a common-pool good, as households become larger,

the individual consumption of each additional unit of food purchased declines. Consequently, household

members have incentives to reallocate resources away from food to private goods (e.g. shoes) for which the

buyer can fully appropriate the benefits.

The sharing model generates non-monotonic economies of scale, or more precisely indifference scales, in

relation to household size.4 As a result, there is an economically optimal number of members in the family

beyond which household division is welfare-enhancing. In contrast, previous economies of scale models

(Barten (1964), Deaton and Paxson (1998)) predict that adding an extra member in the household while

holding per capita income constant always (weakly) expands the consumption choice set, implicitly indicating

that the economically optimal household size tends to infinity.

In addition to the fact that i) food as a share of total expenditure tends to decline with household

size, the sharing model is able to explain ii) why the expenditures on food as a share of food plus housing

increases with household size (Gan and Vernon (2003) explanation of the paradox) despite the observed

decline in per capita food expenditures (Deaton and Paxson (2003) response to Gan and Vernon), and iii)

why food consumed away from home tends to increase with household size. Moreover, if the sharing model

is enriched by allowing the altruistic parameter to vary with income as the experimental evidence indicates

(Chowdhury and Jeon (2014)), it can explain iv) why the Deaton-Paxson paradox is more prevalent in

low-income countries and v) why the Engel’s curve tends to be hump-shaped in poor regions.

An interesting feature of the sharing models is that, under certain regularity conditions, it can be written

3Logan (2011) finds evidence of this empirical relationship as far back as 1888 in the U.S.
4Chiappori (2016) indicates the difference between economies of scale and indifference scales. The former refers to “How

much income would an individual living alone need to attain the same utility level as a family of given composition?” and the

latter to “How much income would an individual living alone need to attain the same indifference curve over goods that this

individual attains as a member of a family of given composition?” p539.
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as a hybrid between a collective model and a non-cooperative model. This hybrid model consists of two-

stages. In the first stage, each family member non-cooperatively decides how much to spend on a given set of

goods and how much to contribute to a common pool of resources. In the second stage, household members

jointly decides how to allocate the common pool of resources following a conditional collective model.5 The

standard non-cooperative household model (Chen and Woolley (2001) and Lechene and Preston (2011)) and

the pure collective model (Chiappori (1988) and Blundell et al. (1993)) are polar cases of this hybrid model.

The hybrid representation of the sharing model helps understand why some statistical tests fail to reject the

collective model hypothesis despite that the intra-household allocation is Pareto inefficient.

The contradictions between theoretical predictions and empirical regularities stated in the Deaton and

Paxson (1998) paradox constitute a serious obstacle to recover meaningful economies of scale (or indifference

scales) from the data. Using predictions from the sharing model, which proposes a solution to this paradox,

the empirical section of this paper develops and implements a method to estimate household indifference

scales. That is, a measure of “how much income would an individual living alone need to attain the same

indifference curve over goods that this individual attains as a member of a family of given composition” Chi-

appori (2016) p539. This concept is closely related to economies of scale, but has some desirable properties.

The measurement of economies of scale or indifference scales is fundamental for the analysis of individual

living standards using household data. It affects all poverty and inequality indexes. Therefore, the policy

implications are enormous since many social programs determine eligibility on the basis of poverty status.6

Nonetheless, the estimation of economies and indifference scales has been elusive.

Recent papers in the literature of indifference scales are Browning et al. (2013) and Dunbar et al. (2013).

These studies provide remarkable methodological contributions to estimating indifference scales and are

likely to be valid in certain contexts. Nonetheless, both papers work under the assumption that households

allocate resources in accordance to the collective model. As previously mentioned and furthered discussed

elsewhere in the paper, this model cannot conceptually explain the stylized facts in Deaton and Paxson

(1998).

The rest of the paper is organized as follows. Section 2 presents the theoretical model. It first describes

the different types of goods consumed in the household and why the rules to allocate them differ between

each other (section 2.1). Then, it presents the sharing model (section 2.2) and the necessary conditions to

be interpreted as a hybrid between non-cooperative and collective models (section 2.3). Section 3 discusses

the Deaton-Paxson paradox and other empirical regularities unexplained by existing models. Section 3.1

specifies a caring functional for the utility functions to obtain close form solutions and show how the sharing

model is able to explain the consumption patterns described in the previous section. Section 4 presents a

5The term conditional indicates that the collective model applies i) after individual voluntary contributions have been made,

and ii) over subset of good that can vary to none to all commodities. The specificities will be clear in the next section.
6Most conditional cash transfer programs determine eligibility on the basis of living standards, for example Progresa-

Oportunidades in Mexico and Juntos in Peru.
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method to measure household indifference scales. Section 5 shows the results of the estimated Engel’s curve

and the indifference scales coefficients. Finally, section 6 presents the conclusions of the paper.

2 Theoretical Framework

This section presents a general version of the sharing model. It first classifies the goods consumed in the

household in relation to their intrinsic characteristics and allocation rules. Then, it describes the components

of the sharing model and its equilibrium. Finally, it shows that under certain regularity conditions the sharing

model can be interpreted as a hybrid between a standard non-cooperative model and a collective model.

2.1 Appropriable and non-appropriable goods in the household

The literature on intra-household allocation of resources has traditionally dealt with only two types of goods

consumed in the household, public goods and private goods. The distinction between them is made on the

principles of rivalry and excludability. Public goods are modeled as non-rival and non-excludable in the sense

that they are consumed simultaneously by all members in the household, while private goods are modeled

as fully rival and excludable since they are assigned to and consumed by only one person at a time.7

Notably, previous papers on intra-household allocation of resources have ignored goods that can be con-

sumed by only one person, but cannot be ex-ante appropriated. That is, goods that are rival in consumption

yet non-excludable to household members. These ‘common-pool’ goods are expected to constitute an im-

portant share of the household budget. According to the United Nations:

A multi-person household [is] defined as a group of two or more persons living together who

make common provision for food or other essentials for living.8(emphasis added)

Excludability within the household arises due to intrinsic characteristics of the good - e.g. items that

are size specific such as shoes - or as a consequence of norms - e.g. no underage alcohol consumption.

Non-excludable goods are likely to be those that are sharable by nature such as food. In this paper the

terms ‘common-pool goods’, ‘sharable goods’ and ‘non-appropriable goods’ are used interchangeably. Non-

excludability in this context does not mean a complete absence of rules to allocate common-pool goods in

the household. It means that once a member purchases a quantity of such goods, he or she cannot fully

appropriate it. For example, food presumably has to be shared somehow with other household members.

Definition 1. There are three types of goods consumed by member i = 1, .., n in the household. Private

goods, which consumption is denoted by xi, are rival and excludable (e.g. clothing specific to each member).

7The literature has also covered the intermediate case of public goods with congestion where the principle of rivalry is only

partially satisfied. In this case, the addition of a household member affects the quantity or quality of the public good consumed

by others.
8http://unstats.un.org/unsd/demographic/sconcerns/fam/fammethods.htm
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Public goods, denoted by Q, are non-rival and non-excludable (e.g. housing). Sharable goods, non-

appropriable goods or common-pool goods, which consumption is si, are rival but non-excludable (e.g. food).

The three types of commodities in Definition 1 are extreme cases. Goods vary continuously in terms of

rivalry - i.e. different degrees of congestions - and excludability - i.e. goods that are sharable for a subset

of the household such as tobacco. However, these intermediate cases add little or no insight to the model

at the cost of reducing tractability. Nonetheless, the empirical section 5.4 analyzes the role of congestion in

public goods.

Excludability is a characteristic that affects the mechanism to allocate goods among household members

and, as a result, the individual incentives to purchase them. Unitary and collective models cannot differ-

entiate private goods from common-pool goods because they do not explicitly model household members’

interaction. Instead, they maximize the objective function of a household ‘central planner’, resulting in the

same allocation as the underlying ‘true’ mechanism once certain conditions are met. However, the treatment

that the central planner gives to two rival goods is identical, even is one of them is excludable and the other

one not. This problem becomes evident in the next two sections.

2.2 A sharing model of the household

The sharing model assumes a non-cooperative behavior of household members.9 Assume that each person i

in a household with n members has an additively separable caring utility function (Browning et al. (2014))

that he/she maximizes.

max Ui(xi, si, Q) + τi

 1

n− 1

n∑
j 6=i

αijUj(xj , sj , Q)

 (1)

The function Ui(.) is the egotistic component that maps own consumption of private goods (xi), public

goods (Q) and common-pool or sharable goods (si) on utility. The parameter τi ≥ 0 is the level of altruism.

It indicates how much individual i values the (weighted average) utility that other members of the household

derive from consumption. The weights αij measure altruism heterogeneity from i to other members (e.g. a

mother may care more about her children than her in-laws.). The caring functional form (1) is non-essential.

However, it simplifies the analysis, exposition and interpretation.

The characteristics of goods and norms in the household imply that purchased and consumed quantities

may differ. For private goods (e.g. shoes), the quantity consumed xi equals the purchases x̃ji made by all

9The non-cooperative behavior is similar to that in Chen and Woolley (2001), Lechene and Preston (2011), Lundberg and

Pollak (1993) and Browning et al. (2010).
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the j = 1, .., n members in individual i’s behalf.10

xi =

n∑
j=1

x̃ji (2)

The sharable good si (e.g. food) is rival but non-excludable in consumption. Thus, buyers cannot

allocate it to a specific person. The purchases s̃j made by each j member go to a common pool. Then, total

household purchases
∑n
j=1 s̃j are distributed to each member i using the following rule.

si = fi

 n∑
j=1

s̃j

 (3)

s.t.

n∑
j=1

s̃j =

n∑
i=1

fi

 n∑
j=1

s̃j

 (4)

The function fi(.) maps total household purchases of the sharable good to individual consumption si.

For example, the allocation rule fi

(∑n
j=1 s̃j

)
= δi

∑n
j=1 s̃j indicates that member i receives a constant

share δi of total purchases. Alternatively, the function fi

(∑n
j=1 s̃j

)
= s̃i indicates that member i receives

exactly what he/she purchased, making the sharable good indistinguishable from a private good. In general,

the functional form fi(.) depends on a variety factors: i) what breadwinners are supposed to provide for

their families according to the society where they live, ii) the bargaining power of household members, iii)

individual incomes, prices, etc. As discussed in the next section, the allocation rule (3) can be obtained from

the weights attributed to household members in an embedded collective model.

Equation (4) is an accounting identity that the allocation rule of sharable goods should satisfy. It says

that the sum of individual consumptions of the sharable good, i.e. the right-hand side, must be identical to

total purchases, i.e. the left-hand side.

Being non-rival and non-excludable, the total consumption of the public good Q equals the sum of all

members’ purchases Q̃j , for j = 1, .., n.

Q =

n∑
j=1

Q̃j (5)

Individuals are in full control of his/her resources and voluntarily decides to purchase goods. Thus, a

person with income yi facing prices px, ps and pq have the following budget constraint.

px

n∑
j=1

x̃ij + pss̃i + pqQ̃i = yi (6)

Notice that the subscripts for the purchases of private goods are interchanged from (2) to (6). The

summation in the first case indicates the goods purchased by all household members transferred to member

10For example, private goods consumed by a teenager in the household could be clothing that his mother bought for him, a

motorcycle his father gave him and video games he bought for himself.
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i, while the summation in the budget constraint refers to all the private goods purchased by member i in

her’s and others’ behalf.

Given the quantities purchased by other household members, individual i maximizes utility (1) subject

to equalities (2) to (6) and non-negative constraints. The result is a system of conditional demands that

represents the best response functions in a static non-cooperative game.

x̃cij = gcij

(
yi, p1, p2, pq, n,

{∑n
k 6=i x̃kr

}n
r=1

,
∑n
k 6=i s̃k,

∑n
k 6=i Q̃k

)
s̃ci = hci

(
yi, p1, p2, pq, n,

{∑n
k 6=i x̃kr

}n
r=1

,
∑n
k 6=i s̃k,

∑n
k 6=i Q̃k

)
Q̃ci = lci

(
yi, p1, p2, pq, n,

{∑n
k 6=i x̃kr

}n
r=1

,
∑n
k 6=i s̃k,

∑n
k 6=i Q̃k

)
The Marshallian demands (7) are obtained when the household reaches a Nash equilibrium.

x̃ij = gij (yi, p1, p2, pq, n)

s̃i = hi (yi, p1, p2, pq, n)

Q̃i = li (yi, p1, p2, pq, n)

(7)

The conditions for the existence and uniqueness of an equilibrium are those of non-cooperative models

without common-pool goods.11

Intuitively, when altruism is imperfect, i.e. ceteris paribus the consumption of other members is valued

strictly less than own consumption, the equilibrium described by (7) is not efficient since individuals have

the incentive to purchase sub-optimal quantities of sharable goods and public goods (the free rider problem)

and purchase above-optimal quantities of private goods which benefits can be fully appropriated. The mis-

allocation of resources occurs even when there is a single breadwinner in the household. In this case, the

household head can perfectly control the consumption of the private good for each member in the household

(e.g. buying clothes for each child and the spouse) but not the consumption of the sharable good (e.g. food)

since everyone eats from one common pot. As a result, members with zero income will consume more food

and less clothing than what they would in an efficient equilibrium.

A natural question in such situation is to what extent the breadwinner is able to perfectly control

fi(.) ∀i = 1, .., n in equation (3), which would make sharable goods indistinguishable from private goods.

There are two reasons to believe that this is not the case. First, the breadwinner is unlikely to perfectly

monitor at no cost what others eat. Second and most importantly, social norms related to households and

families seem to agree with the existence of common-property goods (see U.N. definition of the household

in section 2.1). The allocation of such goods may not be completed determined by the breadwinner. For

example, a stay-at-home mother may be the one who makes the decisions regarding food consumption.

11These condition are in Browning et al. (2010), Bergstrom et al. (1986), Bergstrom et al. (1992), Fraser (1992) and Lechene

and Preston (2005).
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Recurrence and the folk theorem The household is a relatively stable unit where the process of allo-

cating resources is repeated over time. Without a certain date of household dissolution, the problem given

by equations (1)-(6) does not have a unique equilibrium. The game theory literature indicates that two of

infinite equilibria in this household “game” of allocating resources over time are i) the Nash equilibrium

in the static game and ii) the subgame perfect equilibrium supporting an efficient outcome (folk

theorem).12

The collective model previously described, which imposes efficiency within the household, is conceived

with the idea that the folk theorem holds, see Browning and Chiappori (1998). That is, the recurrence

interaction of household members generates mechanisms to avoid any mis-allocation of resources. Although,

this equilibrium is supported by problem (1)-(6) in a repeated setting, this paper states that it is not the

one prevailing. Instead, the observed consumption patterns described below are highly consistent with a

Nash equilibrium in the static game as that described in (7). A well-known result in the literature is that a

Nash equilibrium in a static game is always a subgame perfect equilibrium in the repeated game. Then, the

allocation described in the static model (1)-(6) is also an equilibrium in a dynamic setting.

2.3 The sharing model as a hybrid between the collective and the non-cooperative

household models

Under specific conditions, the sharing model is equivalent to a hybrid where a collective model is a voluntary

arrangement embedded in a non-cooperative environment. Assume the utility function (1) is separable in si,

i.e. the egotistic part of the utility can be expressed as Ui(xi,Ki(si), Q) where Ki(.) is a strictly increasing

real-value function independent of xi and Q (Deaton and Muellbauer (1980), Bergstrom (2016)), then the

sharing model can be written as a two-step problem. In the first stage, each individual non-cooperatively

decides i) on the purchases and the allocation of a set of goods and ii) on how much to contribute to a

common pool of resources. Then, in the second stage, household members jointly decides how to spend

common resources.

Assume that the only goods purchased with common resources are those previously denominated sharable

goods - as explained below, this is just one case of many in this two-stage procedure. Then, the first stage

is identical to the sharing model described above with the caveats that i) the budget constraint (6) becomes

px

n∑
j=1

x̃ij + pqQ̃i + ci = yi (8)

where ci is the voluntary contribution to the common pool of resources, and ii) the allocation rule (3) is

determined endogenously by an embedded collective model in the second stage. More precisely, the common

12Infinitely repeated games generate a continuum of equilibria. This paper focuses on the static Nash equilibrium, which is

capable of explaining consumption patters.
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pool of resources is allocated in the second stage with the following procedure.

max

n∑
i=1

µi(Y,p, c, z)

Ki(si) + τi

 1

n− 1

n∑
j 6=i

αijKj(sj)

 (9)

s.t. ps

n∑
i=1

si =

n∑
i=1

ci (10)

Problem (9)-(10) is a standard collective model. But, instead of maximizing the weighted sum of the

entire utility of individuals - expression (1) - as is common practice, it operates exclusively with the separable

components K(.) in Ui(xi,Ki(si), Q) that derives utility from the sharable good. Following the collective

model literature, the weight functions µi(Y,p, c, z) for i = 1, ..., n may depends on the vectors of prices

p = (px, ps, pq), incomes Y = (y1, ..., yn), and variables z, called ‘distribution factors’, which affects the

negotiation process within the household but not individual preferences Ui(.). In this particular two-step

model, the weights may also depend on the individual contributions to the common pool of resources c =

(c1, ..., cn). The solution to problem (9)-(10) is as follows.

si = fi

(
n∑
i=1

ci, µ(Y,p, c, z)

)
(11)

Expression (11) is the allocation rule (3), but obtained endogenously from an embedded collective model

and explicitly indicating the influence of the n-vector of weights µ(Y,p, c, z) = (µ1(Y,p, c, z), ..., µn(Y,p, c, z)).

The two-step procedure just described can be applied to any partition of goods as long the utility function

is separable in the two sets: the set of goods purchased with common resources in the second stage and the

set of goods purchased with individual resources in the first stage. For example, it could be reasonable to

assume that public goods are also purchased with common resources in the second stage. Although, the

general case given by equations (1)-(6) and the two-step procedure just described do not always give the

same solution, the two approaches are identical for the model in section 3.1 used to study indifference scales

(see Appendix I).13

There are two polar cases in this two-step procedure. One where all goods are purchased with individual

resources in the first stage, which reduces the model to a pure non-cooperative model as those mentioned

above. In this case, all goods that are rival in consumption are also excludable (i.e. no sharable goods).

The other polar case is where all goods are purchased with ‘common’ resources in the second stage, which

transform the model into a pure collective model. Which of the non-rival goods are shareble and allocated

in the second stage an which are private and allocated in the first stage remits to the discussion in section

2.1.

13For example, Browning et al. (2010) show that household members jointly contribute to at most one public good in a non-

cooperative two-person household model similar to that given by (1)-(6) but without common-pool goods. Their result implies

a local income pooling (i.e., a small redistribution of income among members does not affect the intra-household allocation for

certain rage of income shares), that does not necessarily hold in the two-step procedure described above.

11



Remark 1. Multiple accounts and mental accounting. It worth mentioning that the two-step proce-

dure just described does not necessary require a unique common pool of resources. For example, a family

may have separate accounts for food and transportation. In such case, the are two parallel second stages

(9)-(10), one for the allocation of each of the two categories just mentioned. Having several ‘accounts’ for

different types of goods is in line with the concept of mental accounting in behavioral economics (e.g. Thaler

(1985)) but applied to the household rather than the individual.

Remark 2. The limited power of collective model tests. The hybrid model presented above may

help explain why some collective model tests fail to reject their null hypothesis despite that several other

papers find the intra-household allocation of resources to be inefficient. For example, Attanasio and Lechene

(2014) develop and implement a clever test for the collective model. This test exploits that the distribution

factors z affect the demand for goods only indirectly by modifying individual weights µi, see equation (9),

(Bourguignon et al. (2009)). Then, under the null hypothesis that the collective model is true, for any pair

of goods (v, w) and any pair of distribution factors (z1, z2), equality (12) should hold.14

H0 :

∂v

∂z1
∂v

∂z2

=

∂w

∂z1
∂w

∂z2

(12)

If the sharing model from section 2.2 is true (i.e. the collective model is false), the null hypothesis

(12) should not hold for at least one pair (v, w) of goods. If v and w are taken from different commodity

composites (e.g. v is a sharable good and w is a private good), equality (12) certainly fails. However,

Attanasio and Lechene use only the components of total food expenditures to test (12). In such a case, when

only sharable goods are used, this type of collective model tests has no power against the sharing model.

3 The Deaton-Paxson paradox and other unexplained regularities

of the Engel’s curve

This section presents empirical regularities in consumption that are incompatible with existing theories of

the household, but can be explained by the sharing model introduced above.

Deaton and Paxson (1998) seminal paper reveals inconsistencies between the predictions of micro-

economic models of the household and consumption patterns observed across countries. Specifically, the

existence of intra-household economies of scale implies that, as household size increases, per capita ex-

penditure on public goods (e.g. housing) should decrease, freeing resources to increase the consumption of

non-public goods (e.g. food). However, evidence from developed and developing countries consistently shows

the opposite. Formally, the Deaton-Paxson model (and the Barten (1964) model) with pure private and pure

14Attanasio and Lechene (2014) do not test directly condition (12) but the equivalent z-conditional demands.
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public goods is as follows.15

max U(s,Q) (13)

s.t. pss+
pq
n
Q = y (14)

In model (13)-(14), all household members are identical, thus symmetry is pre-imposed and the variables

s and Q are per capita consumptions of a rival good (e.g. food) and a public good (e.g. housing). The effect

of household size is clear from the per capita budget constraint (14). Holding total per capita expenditures

y constant, an extra member in the household generates a de-facto decrease in the average price of public

good Q that each member faces. Then, the condition for per capita consumption of food s to increase with

n is as follows:16

ξcsps > −ξsy(1− ωq) (15)

As stated in Deaton and Paxson (1998), inequality (15) is expected to hold. The own compensated price

elasticity of food ξcsps is presumably small and the income elasticity of food ξsy at the equilibrium share of the

public good ωq = pqQ/Y is expected to be relatively large, particularly in low-income countries. Nonetheless,

the empirical evidence is broadly inconsistent with inequality (15). As household size increases, the share of

food expenditures tends to decline in both developed and developing countries. This is commonly referred

in the literature as the Deaton-Paxson paradox.

Utility (13) can be obtained as a weighted sum of identical household members’ utilities given by ex-

pression (1). That is U(s,Q) =
∑n
i=1 µi(Y,p, z)

(
U(si, Q) + (τ/(n− 1))

∑n
j 6=i U(sj , Q)

)
after pre-imposing

symmetry. Thus, condition (15) can be interpreted as that obtained from either a unitary model if Pareto

weights µi are fixed and identical for all i = 1, ..., n or a collective model if the functions µi(.) are identical

for all members.

It can be easily proven (see Appendix II), that replacing model (13)-(14) by a standard non-cooperative

model does not do better in explaining the Deaton-Paxson parodox. However, this and the following unex-

plained regularities of the Engle’s curve are consistent with the sharing model.

Consumption regularities: i) As household size increases, the share of food in total expenditure declines

(Deaton-Paxson paradox), ii) food as a share of food plus housing increases with household size (consistent

with the Barten model) despite a simultaneous decline in per capita food expenditure, iii) food consumed away

from home increases with household size, iv) The Engel’s curve tends to be hump-shaped in poor countries,

v) The Deaton-Paxson paradox is more evident in low-income countries (i.e., the decline in food share with

household size is stronger).

15Deaton and Paxson also consider the intermediate case of partially rival goods, but not sharable goods.
16The per capita demand for food is a function s = s(px, ps,

pq
n
, Y
n

). Holding per capita income constant (i.e. increasing Y

in the same proportion as n), the elasticity of s with respect to n equals the negative elasticity of s with respect to pq . Using

the Slutsky equation, inequality (15) is obtained.
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Regularities i) and iii) are described in Deaton and Paxson (1998). The first part of regularity ii) is shown

by Gan and Vernon (2003) in response to the paradox, claiming that the evidence is consistent with the

Barten model when one includes food and a good that is clearly more public than food. Nonetheless, Deaton

and Paxson (2003) reply to Gan and Vernon arguing that the puzzle is not solved since the decline in per

capital food consumption remains unexplained (second part of regularity ii). Regularity iv) has received less

attention, but it is equally important. For several countries, the share of food in total expenditure increases

with living standards among the poor, which appears to be inconsistent with the standard micro theory.

Regularity v), also described in Deaton and Paxson (1998), strengthens the paradox. In poor countries,

price elasticities of food are expected to be relatively low and the income elasticity of food relatively high,

making inequality (15) more likely to hold. The next section shows how the sharing model can explain all

the regularities in remark 1.

3.1 Sharing Model: Symmetric case with Stone-Geary utilities

This section specifies the functional form of the utility function (1) to make the model tractable and obtain

close form solutions that are capable of explaining the consumption patterns described in section 3. Appendix

V shows the condition that the income and price elasticities should satisfy to solve the Deaton and Paxson

(1998) paradox for a generic utility function.

Consider a household with n identical members in relation to preferences and endowments. There is no

heterogeneity in the level of altruism (αij = 1 ∀i, j). Then, the utility function (1) for member 1 reduces to:

max

(
x1−σ1

1− σ
+

(s1 − γ)1−σ

1− σ
+
Q1−σ

1− σ

)
+ τ

(
x1−σ2

1− σ
+

(s2 − γ)1−σ

1− σ
+
Q1−σ

1− σ

)
(16)

The utility derived from own consumption U1(.) has a Stone-Geary shape. The constant γ is usually

interpreted as the minimum food consumption for subsistence. While γ = 0 simplifies the expression to a

CES utility, γ > 0 breaks the homotheticity and guarantees the 1st Engel’s law to hold (i.e. the share of

food declines with income). All the other (n− 1) members of the household are identical. Thus, setting the

consumption of all of them to be the same imposes no constraint. The altruistic term in (1) simplifies to the

utility that any of the other members derives from consumption, such as member 2.17

The rules (2)-(5) simplify. The total consumption of member 1’s private good x1 equals the quantity she

purchases to be consumed by her x̃11 plus the (n − 1) identical quantities purchased by each of the other

members of the household in her’s behalf x̃21, equation (17). On the other hand, the private goods consumed

by each of the other household members x2 equals the quantity member 1 gives to each of them x̃12, the

quantities they purchase for themselves x̃22 and the transfers/gifts made among them x̃21 (equation (18)),

17In equilibrium x2 = x3 = ... = xn, thus 1
n−1

∑n
j=2 U(xj , sj , Q) = U(x2, s2, Q) =

(
x1−σ2
1−σ +

(s2−γ)1−σ
1−σ + Q1−σ

1−σ

)
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which by symmetry should be identical to the quantities given to member 1 in (17).

x1 = x̃11 + (n− 1)x̃21 (17)

x2 = x̃12 + x̃22 + (n− 2)x̃21 (18)

The purchases of sharable goods go to a common pool formed by member 1’s contribution s̃1 and the

n− 1 contributions of others. Each member consumes an equal share.

s1 = s2 =
s̃1 + (n− 1)s̃2

n
(19)

Finally, the consumption of public goodsQ equals the contribution of member 1 (Q̃1) plus the contribution

of the other (n− 1) members in the household (Q̃2), equation (20).

Q = Q̃1 + (n− 1)Q̃2 (20)

The budget constraint for the symmetric case is as follows.

px(x̃11 + (n− 1)x̃12) + pss̃1 + pqQ̃1 = y (21)

In (21), increasing the quantity of private goods consumed by others in one unit requires member 1 to

buy (n−1) goods (e.g. one pair of shoes for each child) for this reason x̃12 is multiplied by this constant. The

variable y represents individual income and also per capita income considering that all members are identical.

The Nash equilibrium after each member maximizes (16) subject to (17)-(21) and plays a simultaneous game

of complete information gives the following system of equations for per capita purchases (see appendix I for

derivation). 

x̃ ≡ x̃11 = x̃22 =
y − psγ

P p
1/σ
x (1 + τ)1/σ

x̃12 = x̃21 = 0

s̃ =
y − psγ

P p
1/σ
s n1/σ

+ γ

Q̃ =
y − psγ
P p

1/σ
q n

(22)

where

P ≡
(

(1 + τ)−1/σ p1−1/σx + n−1/σ p1−1/σs + n−1 p1−1/σq

)
(23)

When altruism is imperfect (i.e. ceteris paribus the consumption of other members is valued strictly less

than own consumption), each person will only purchase private goods for herself making zero transfer/gift

to others in the household. All members will purchase a non-zero quantity of food s̃ and public goods Q̃.

Appendix I shows that the demand system (22) is identical to that obtained by the two-step procedure in

section 2.3 when both food and housing are purchased with common resources.
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Explaining regularity i) As household size increases, the share of food in total expenditure

declines (Deaton-Paxson paradox)

The expression for the expenditure share of food ωs ≡ pss̃/y derived from (22) is given by

ωs =
p
1−1/σ
s

n1/σ P

(
1− psγ

y

)
+
psγ

y
(24)

Then, the condition for the share of food to decrease with household size as observed in the data is

∂ωs
∂n

< 0 ⇐⇒ (1 + τ)−1/σ (px/pq)
1−1/σ

+ n−1(1− σ) > 0 (25)

⇐⇒ σ < 1 + (ωx/ωq) s.t. ωx ≡ pxx̃/y ωq ≡ pqQ̃/y (26)

Inequality (26) indicates that there is an upper limit in relation to the complementarity of goods for

the model to be consistent with the observed consumption patters. Intuitively, if the complementarity of

a sharable good, say meat, and a private good, say wine, is too high, then the expenditure on meat will

not decline (or may even increase) with household size to keep enjoying wine. One the other hand, if

private goods and sharable goods are substitutes, the addition of a member to the household makes everyone

reduce the expenditures on sharable goods because they have to be divided among more people, favoring

the consumption of private goods which benefits are fully appropriable by the buyer. The elasticity of

substitution between the composite goods s, x and Q is expected to be relatively low (Deaton and Paxson

(1998)). Inequality (26) indicates that the sharing model can explain the Deaton-Paxson paradox in the

realistic case when composite goods are gross complements.

Explaining regularity ii) food as a share of food plus housing increases with household size

(consistent with Barten model) despite a decline in per capita food expenditure

A potential explanation for the Deaton-Paxson paradox is that there are other goods consumed by household

members that are more rival than food.18 Thus, the share of food in food plus housing expenditures only

should increase with household size. This idea is used by Gan and Vernon (2003) to argue that there is no

contradiction between theory and empirical evidence.19 The sharing model is consistent with the sign of this

food share derivative but provides a different explanation.

ps(s̃− γ)/y

pqQ̃/y
=

(
psn

pq

)1−1/σ

=⇒
∂
(
pss̃/(pqQ̃+ pss̃)

)
∂n

> 0, if σ > 1 (27)

18Both, Deaton and Paxson (1998) and Gan and Vernon (2003) mention goods that are less public than food rather than

more rival. However, the model they use cannot deal with non-excludable goods (see section 2.1). Thus, rivalry is the only

characteristic modeled in their papers.
19Using the same data as Deaton and Paxson (1998), Gan and Vernon estimate Engel’s curves replacing the dependent

variable with the share of food in food plus housing expenditures only. Their results show that the share of food in food plus

housing increases with household size in accordance to economic theory.
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The first term in (27) is approximately the ratio of food share to housing share. This ratio is clearly

increasing in household size n for a low elasticity of substitution (i.e. σ > 1), a realistic assumption consid-

ering that the model is written for composite goods (see Deaton and Paxson (1998) page 901). Since Q̃ is

decreasing in household size, the share of food in food plus housing increases with household size consistent

with the evidence presented in Gan and Vernon (2003).20

Deaton and Paxson (2003) point out that Gan and Vernon’s argument does not solve the paradox since

it does not explain why per capita food consumption declines with household size. It only shows that food

consumption decreases less rapidly than housing. In the sharing model, the condition for per capita food

consumption to decline is given by

∂s̃

∂n
< 0 if σ < 1 + (ωx/ωq) s.t. ωx ≡ pxx̃/y ωq ≡ pqQ̃/y (28)

which is identical to inequality (26) and the core of the paradox. While the hypothesis that other

goods are more rival than food is insufficient (at least empirically) to explain the decline in per capita food

consumption, the sharing model gives the theoretical conditions in (28) for this regularity.21

Explaining regularity iii) food consumed away from home increases with household size

A given explanation for the Deaton-Paxson paradox is the plausible existence of economies of scale in food

preparation. However, Deaton and Paxson discard this hypothesis because the decline in per capita time

required to prepare food associated with an increase in household size should induce individuals to substitute

food consumed away from home for food prepared at home. But, the data tend to show the opposite.22

While this regularity may serve as evidence against the existence of strong economies of scale in food

preparation, it is difficult to be explained by standard models of the household. However, the sharing model

gives an intuitive explanation. Food at home is a common-pool good - rival yet non-excludable. Then, as

the household becomes larger the share consumed by the person who purchases it becomes smaller. But,

food away from home is a private good. If desired, it is consumed entirely by the person who purchases it.

To illustrate this point, assume that food s in equation (16) is a composite of food at home fh and food

away from home fa given by (29).

s = fh + fκa , 0 < κ < 1 (29)

Since food at home is a non-appropriable good, it follows allocation rule (19). But, food consumed away

20 ps(s̃−γ)/y
pqQ̃/y

=
pss̃/y

pqQ̃/y
− psγ/y

pqQ̃/y
, since ∂Q̃

∂n
< 0, then

pss̃/y

pqQ̃/y
is necessarily increasing in n.

21As Deaton and Paxson (2003) indicate in relation to Gan and Vernon (2003) argument, “Gan and Vernon focus on the

possibility that there are substantial economies of scale in food consumption, which, if true, would certainly help resolve the

puzzle. But they generate no empirical evidence to support their contention that food has greater economies of scale than

clothing or transportation” page 1362.
22Deaton and Paxson (1998) main argument against this hypothesis is that the food shares contain only food purchases not

the combination of food expenditure plus the time allocated to food preparation.
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from home is a private good and the allocation is given by rules (17)-(18). It can be shown that per capita

demand for food consumed away from home is given by equation (30).

f̃a =

(
nphκ

pa(1 + τ)

)1/(1−κ)

(30)

where ph and pa are the prices of food consumed at home and food consumed away from home. Consistent

with the evidence presented in Deaton and Paxson (1998), food away from home is clearly increasing in

household size even when food at home declines with n (see equation (28)).

The sign of ∂f̃a/∂n depends of the relative income elasticities of food at home and food away from home.

The quasi-linearity functional form imposed in (29) is an extreme case where every additional amount of

money allocated to food is spent on food at home. The demand for food away from home responds only to

the price effect induced by an extra member in the household.23

Explaining regularities iv) The Engel’s curve tends to be hump-shaped in poor countries and

v) The Deaton-Paxson paradox is more evident in low-income countries

Regularity v) is documented in Deaton and Paxson (1998). The decline in food share when household size

increases is more pronounced in low-income countries. This fact exacerbates the paradox. Poor people are

expected to have a higher income elasticity in food expenditure making (15) more likely to hold. Regularity

iv) has received less attention, but it is equally problematic to be explained by existing models of the

households. The Engel’s curve in low-income countries tends to be increasing at the low end of the income

distribution and declining for the rest of the population. If food is the most important necessity for survival,

how is it possible that the extreme poor spends a lower proportion of their income on food than households

with higher living standards?

The sharing model can explain, at least partially, regularities iv) and v) by making the altruistic parameter

τ to depend on income.24 The positive relationship between altruism and income has been documented by

Chowdhury and Jeon (2014) in an experimental study.25 Assume that τ in the utility function (16) is

heterogeneous and has the following functional form.

τ =
(n− 1)yβ

1 + yβ
(31)

Expression (31) allows the level of altruism τ to depend positively on income and household size. This

functional form restricts the level of altruism to be non-negative (i.e. no hate or envy among household

23Gan and Vernon (2003) point out that consumption regularity iii) explained here does not hold for all of countries. A

plausible explanation is that the income effect of food consumed away from home is relatively large in countries where this

regularity is violated.
24There may be other reasons in addition to variable altruism to explain hump-shaped Engel’s curves. I am not aware of any

other theory explaining this regularity. More research is needed in this area.
25The same paper discusses alternative behavioral models. However, the psychological reasons linking altruism and income

are beyond the scope of the sharing model. Here, the relationship between altruism and income is taken as an assumption.
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members) and less than (n− 1) (i.e. utility derived from own consumption of goods is valued more than the

utility obtained from the consumption of others).

ωs =
p
1−1/σ
s

n1/σ P

(
1− psγ

y

)
+
psγ

y
(32)

where P ≡
(

(1 +
(n− 1)yβ

1 + yβ
)−1/σ p1−1/σx + n−1/σ p1−1/σs + n−1 p1−1/σq

)
Equation (32) is the theoretical Engel’s curve obtained from equations (22) and (31). Consistent with

evidence, it is non-monotonic in income. Figure 1 shows the Engel’s curve (32) for a two-person household.

It has a hump-shaped profile.

Expression (32) is cumbersome, but the intuition is simple. As income increases, household members

become more altruistic creating incentives to contribute more to common-pool goods. But, simultaneously

food share tends to decrease because it is a necessity good (1st Engel’s law). For poor people, the changes

in altruism may dominate, resulting in increasing levels of food consumption. Because altruism is assumed

to be bounded from above (i.e. it cannot grow indefinitely), then there is an income threshold for which the

first Engel’s law begins to dominate.

Allowing altruism to be non-fixed as in (31) can also explain why the Deaton-Paxson paradox is stronger

in low-income countries. As τ increases, the demand system (22) approaches that obtained from the Barten

Model.

as τ → (n− 1), ωs →
p
1−1/σ
s(

p
1−1/σ
x + p

1−1/σ
s + (pq/n)1−1/σ

) (1− psγ

y

)
+
psγ

y
(33)

Expression (33) is exactly the share of food derived from a Barten model with individual utility function

(16).26

In addition to higher income, another reason to expect relatively high levels of intra-household altruism

in developed countries is that households are usually formed by nuclear families, in contrast to developing

countries where households are more likely to be organized around extended families. Since altruistic be-

haviors are plausibly less likely to occur towards in-laws than towards spouses or children, (33) is expected

to be closer to the Barten model in developed countries.

3.2 Non-monotonic family size effects and household division

The sharing model generates a non-monotonic relation between members’ individual utility and household

size (i.e., it generates both economies of scale and diseconomies of scale depending on the number of mem-

bers), which naturally explains why households cannot grow indefinitely. In contrast, the Barten model can

26When τ = (n− 1), the collective model with identical individuals and weights µi = 1/n in (??) reduces to maximizing the

function
(
x1−σ

1−σ +
(s−γ)1−σ

1−σ + Q1−σ

1−σ

)
subject to pxx+ pss+

pq
n
Q = y
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only generate economies of scale, implying that the larger the household is, the better their members are.

V =
1 + τ

1− σ
(y − psγ)1−σ

P̃
P1−σ (34)

where P is defined in (23) and

P̃ ≡ (1 + τ)1−1/σ p1−1/σx + n1−1/σ p1−1/σs + p1−1/σq

The indirect utility function (34) resulting from converting quantities purchased into quantities consumed

in (22) and replacing them in (16) is increasing in household size when this is small and decreasing when

large. The reason for a non-monotonic indirect utility function is that an additional members in the household

generates two opposite effects. On the one hand, it decreases the per capita cost of public goods. On the

other hand, it reduces the individual consumption share of the marginal common-pool good. When the first

effect dominates the second one, there are household economies of scale, otherwise there are diseconomies

of scale. Figure 2 shows the theoretical indirect utility function for different levels of altruism τ . The

optimal household size positively depends on the level of altruism. Above the maximum, members benefits

by splitting the household. As indicated in the conclusions, the sharing model can be used to study the

economic incentives for household formation and household dissolution together with group behaviors in an

integrated framework.

4 Measuring indifference scales in the household

This section presents a method to estimate household indifference scales, defined as the amount of money a

person should receive to attain the same indifference curve as that arising from an additional household

member (Browning et al. (2013), Dunbar et al. (2013), Chiappori (2016)). The concept of indifference scales

is theoretically and empirically less demanding that the traditional income-based economies of scale, which

is defined as the amount of money a person/family should receive to attain the same utility as that arising

from an additional household member.

The procedure in this section is derived from the sharing model introduced in section 2.2. The method

imposes no functional form for the utilities Ui(.). By assuming that all household members are identical, the

resulting measure should be interpreted as the monetary increment that put the reference individual in the

same indifference curve as having an extra household member identical to herself/himself. Empirically, all

regressions include characteristics of the household that account for observable heterogeneity in preferences.

Consider the indirect utility function obtained from problem (1)-(6)

V(px, ps, pq, y, n)

The derivative of the indirect utility function with respect to household size n can be written as a function
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of marginal utilities evaluated at the optimum and changes in quantities demanded with respect to n.

∂V

∂n
=
∂U∗

∂x

∂x

∂n
+
∂U∗

∂s

∂s

∂n
+
∂U∗

∂Q

∂Q

∂n
(35)

Expression (35) is the increase in ‘utils’ as a result of having a extra member in the household. The

first order conditions in the maximization problem and the symmetry obtained from identical individuals

generate the following expressions for the Lagrange multiplier λ (see Appendix I).

λ =
∂U∗

∂x

1

px
=
∂U∗

∂s

(1 + τ)

nps
=
∂U∗

∂Q

(1 + τ)

pq
(36)

Using (36) and the fact than in equilibrium the relationship between per capita consumed and per capita

purchased goods are: s = s̃, x = x̃ and Q = nQ̃, then (35) simplifies to the following expression:27

∂V

∂n
/λ = px

∂x̃

∂n
+

nps
(1 + τ)

∂s̃

∂n
+

npq
(1 + τ)

∂Q̃

∂n
+

pqQ̃

(1 + τ)
(37)

=
y

(1 + τ)

(
(1 + τ)

n

∂ωx
∂log(n)

+
∂ωs

∂log(n)
+

∂ωq
∂log(n)

+ ωq

)
(38)

Usually, the Lagrange multiplier in a utility maximization problem is equal to the marginal utility of

income. But in this case, λ is the marginal utility of income conditional on the purchases of other members

to be constant. Instead, the quantity needed is the marginal utility of income after arriving to the new Nash

equilibrium. It can be shown (see appendix III) that (38) can be adjusted in a simple way:

∂V

∂n
/λC =

y

C(1 + τ)

(
(1 + τ)

n

∂ωx
∂log(n)

+
∂ωs

∂log(n)
+

∂ωq
∂log(n)

+ ωq

)
(39)

where

C =

[
1 + τ

(
∂ωx

∂log(y)
+ ωx

)
+ (n− 1)

(
∂ωs

∂log(y)
+ ωs

)
+ (n− 1)

(
∂ωq

∂log(y)
+ ωq

)]
(40)

The left hand side of (39) is the indifference scale coefficient. It is the amount of money that a person living

in a household with n members should receive to attain the same indifference curve as himself/herself living

in an household with n+ 1 members holding the same per capita income in both cases. The right hand side

of (39) is formed by quantities that can be estimated with a standard Engel’s curve, with the exception of

the altruistic parameter. Section 5.3 estimates indifference scales coefficients for different values of τ .28

5 Empirical Analysis

5.1 Data

The dataset used in the analysis is the Mexican Family Life Survey (MxFLS), Rubalcava and Teruel (2006,

2013). It is a multi-thematic nationally representative longitudinal survey. Individuals are followed over time

27Equation (38) is obtaining using the fact that the change in the budget share ωh of good h ∈ {s, x,Q} with respect to

household size n is ∂ωh/∂n = (pn/y)(∂h/∂n).
28The fact that τ is not identified is not a drawback of this paper. Other studies in the literature of economies of scale or

indifference scales simply compute their results assuming implicitly or explicitly zero altruism.
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regardless of changes in residence and household division. This characteristic makes the data particularly

suitable to study indifference scales and resource allocation within the household. There are currently

three rounds available. The first round took place in 2002, the second round in 2005-2006 and the third

round in 2009-2010. All the rounds contain information about consumption and income. Consumption

expenditures are measured at the household level and include a detailed enumeration of food and non-food

items. Labor income is reported at the individual level and non-labor income at both, the individual level and

the household level. The sample used in this study includes all households with non-zero income and non-zero

food expenditure. The last row of Table 2 shows the total number of households with these characteristics

disaggregated by year.

The family and the household The analysis exploits the distinction between the family and the house-

hold. This is new in this literature. The definition of the household is taken from the survey. It consists

of people who live under the same roof and share resources.29 The family is defined as a group of people

that belonged to the same household in 2002 regardless of whether they moved and formed a new household

in subsequent years. This definition is purely instrumental for the econometric analysis. It does not try

to follow any sociological or anthropological definition. Figure 3 shows diagrammatically the relationship

between households and families. For example, in the first round of the survey, two identical households are

observed, say the father, the mother and one son. In both households, the son gets married and has a baby

between the first and the second rounds. However, in one case the son and his nuclear family move to a new

house and in the other case the son and his nuclear family stay in the same house. Family A and family B

are treated as identical in all dimensions except that A is considered to be split (i.e. living in two houses

rather than in one) in the last two rounds.

The longitudinal structure of the data allows the empirical analysis to follow closely the ideal situation

to study indifference scales. According to the Barten model, when a household splits their members are on

average worse off because they have to duplicate the expenditure on public goods to obtain the same per

capita consumption. For example, if all members in families A and B in Figure 3 want a new refrigerator

in 2005, then family A has to reduce more the consumption of other goods to release resources to buy two

new refrigerators, one for each house, and obtain the same per capita fridge consumption as family B. Table

2 shows the total number of families defined as in Figure 3. In 2002, the number of households and the

number of families are the same by construction.

Consumption shares and rent imputation The largest component of household public goods is pre-

sumably housing. However, most of the household heads report paying no rent or mortgage. Ignoring

29The survey defines the household as “A person or group of people, related or unrelated by biological bonds, who usually

live together in a part of or in an entire building/dwelling and usually consume meals prepared with a common budget on the

same stove/oven and even use the same tools for preparing the meals.”
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housing in total consumption underestimates the share of public goods and overestimates the shares of food

and other non-food items in total expenditure. A solution to this problem is imputing the rent. Since the

2005-2006 round, interviewees were asked about the hypothetical rent that they would pay for the house

they live in. Although this measure is expected to be noisy, on average it is assumed to be correct. The rent

imputation procedure is based on the following hedonic regression.

log(hjls) = x′ilα+ ds + ul + εjl (41)

The log reported hypothetical rent hjls for house j in administrative unit (state) s in locality l is regressed

on characteristics of the house xjls, dummy variables for the state ds where the house is located and dummy

variables for the population size of the locality ul. The house characteristics included in the regression are the

materials of the roof, walls and floors, the access to drinkable water inside the house, the number of rooms,

sewage, whether the house has a kitchen and the fuel used to cook. Regression (41) is computed for round

2005-2006 when the hypothetical rent is available.30 Since the regressors are available in all periods, the

imputed rent (42) for each household in each period t is computed taking the exponential of the predictions.

irentjlst = exp(x′ilstα̂+ d̂s + ûl) t = 2002, 2005, 2009 (42)

The total consumption is computed by adding the imputed rent and the reported consumption expendi-

tures of other goods. Results without imputed rent are also reported. All values are adjusted by inflation.

Following the theory from previous section, goods are classified into: i) sharable goods (food), ii) public

goods (housing and durables) and iii) private goods (the rest of the goods). The shares are reported in Table

2 with and without imputed rent. A detailed list of the components of each commodity composite is in Table

1.

5.2 Empirical strategy

The first part of the empirical section revisits the Deaton-Paxson paradox enhancing the econometric method

commonly used to measure household economies of scale (or indifference scales). In addition to analyzing

how food share correlates with household size, the specification exploits household splits in longitudinal data.

ωsft = βs1log(yft) + βs2log(nft) + βs3splitft + z′jtβ
s
4 + ζsf + ψst + εsft (43)

The estimating equation (43) is an augmented Engel’s curve where the share of food in total expenditure

ωsft for family f in period t is regressed on (log) family per capita expenditures yft. As is common practice,

the size of the family nft in the regression is intended to measure the existence of economies of scale (or

more recently indifference scales). In the presence of public goods, β2 should be positive to agree with

30The round 2009-2010 also contains information about hypothetical rent. Results are almost identical when this round is

used in the hedonic regression. The correlation of imputed rents using the 2005-2006 and the 2009-2010 rounds is above 0.9.
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the prediction of the Barten model. Regression (43) also includes the variable split. It is an indicator

that takes the value one if the family lives in two houses and zero if it lives in one house (see Figure 3).

Conditional on family size, β3 is expected to be negative in the presence of positive indifference scales. The

coefficients β2 and β3 measures the same underlying phenomenon. So, they have to agree on the conclusions.

If the Deaton-Paxson paradox is genuinely a behavioral fact contradicting existing theoretical models of the

household rather than the result of an econometric misspecification, not only should β2 be negative, but also

β3 positive.

A potential econometric problem generally not addressed in the estimation of Engel’s curves is the

endogeneity of family size. The desire for a relatively large family may be associated with the composition

of goods consumed. Although heterogeneous preferences are partially controlled for with the inclusion of

demographic variables zft, age and sex may not be sufficient statistics. To the extent that preferences are

stable over time, the inclusion of family fixed effects ζf in longitudinal data solves the problem.31

Previous studies on Engel’s curves focus on the consequences of a potential misspecified functional forms

and the presence of measurement error. The evidence indicates that, even though the relationship between

per capita household expenditure and the share of food consumed may not be log linear as in (43), allow-

ing more flexibility in the functional form does not alter the conclusions in relation to indifference scales.

Potentially more problematic is the measurement error in total family expenditures because it affects simul-

taneously the right hand side and the denominator of the left hand side of (43). Following previous studies,

(log) family per capita expenditures is instrumented with (log) family per capita income. The measurement

errors between the instrument and the instrumented variables are likely uncorrelated. Finally, ψt in (43) is

a set of survey round fixed effects and εft is a disturbance term.

Indifference scales Equation (43), which is estimated for the share of food, can also be computed for

the share of public goods Q and private goods x as defined in the previous section. Then, the estimated

coefficients can be used to construct a plug-in estimator of indifference scales by taking the sample counterpart

of equations (39) and (40).

ŝcale(n, y, τ) =
1

Ĉ(1 + τ)

(
(1 + τ)

n
β̂x2 + β̂s2 + β̂q2 + ω̂q(y)

)
(44)

where

Ĉ =
[
1 + τ

(
β̂x1 + ω̂x(y)

)
+ (n− 1)

(
β̂s1 + ω̂s(y)

)
+ (n− 1)

(
β̂q1 + ω̂q(y)

)]
(45)

Equation (44) differs from (39) in that the right hand side is divided by family per capita expendi-

tures. Then, the scale coefficient is now interpreted as the equivalent percentage change in total expenditure

31There are no clear instruments in the literature for household size. Studies about fertility and child investment use twining

as a natural experiment. However, twins’s datasets containing detailed information about income and consumption are rare.

Even when such data are obtained, changes household size cannot be disentangled from changes in household composition.
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corresponding to an additional member in the family. The coefficient depends on family size, per capita

expenditures and level of altruism. Two of these variables are observed, τ has to be assumed.

The coefficient superscripts in (44)-(45) indicate the dependent variable used to estimate (43) (s: food, x:

private goods and q: public goods). The linearity in (43) guarantees that the estimated elasticities sum zero,

so there is no need to impose that βsm + βxm + βqm = 0 for m = 1, 2. The non-homotheticity of preferences

implies that the shares depend on household per capita expenditures. The next section shows results for the

mean and quartiles of the distribution.

5.3 Results

Table 3 the shows results from estimating Engel’s curves. Panel A columns 1 to 3 use the standard method

where the unit of observation is the household and the presence of indifference scales is identified with the

coefficient associated with log number of members. Column 1 shows the result of estimating equation (43) by

OLS after pooling the three rounds of the survey. Column 2 instruments household per capita expenditures

with income. Column 3 exploits the panel structure of the data by including household fixed effects in

addition to instrumenting household per capita income. In these first three regressions, the computation

of household expenditures does not include imputed rent. The specifications used in columns 4 and 5 are

identical to those used in columns 2 and 3 but including imputed rent in the denominator of food shares and

in total log household per capita expenditures.

In all the regression in panel A, the coefficient associated with household size is negative and statistically

different from zero. The results contradict the Barten model and are in line with the Deaton-Paxson paradox

described in other countries.

In Table 3 panel B, the unit of observation is the family instead of the household. Then, it is possible to

measure the impact that living in two houses (split = 1) rather than in one (split = 0) has on the share of

food. Other than this, the specifications in panel B are identical to those in panel A. Per capita expenditures

on public goods, such as housing, appliances, furniture and house decoration, are expected to increase when

households split. As a result, the share of food should decline according to the Barten model. However, all

the regressions in panel B show the opposite. Holding family size and total family per capita consumption

constant, the share of food increases when households split. These results lead to the same conclusions

obtained in panel A and reinforces the Deaton-Paxson observation that the empirical evidence contradicts

the standard theory.

The enhanced method to estimate Engel’s curve suggests that the lack of agreement between theory

and empirics is not the result of econometric problems. Instead, it is the theory that should be revised to

reconcile it with the facts. The sharing model introduced in section 2.2 is a plausible explanation of this old

puzzle.

Gan and Vernon (2003) suggest that the Deaton-Paxson paradox is not such. They claim that there are
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goods consumed in the household that are more rival than food.32 When they consider a basket of goods

containing only food and goods that are presumably less rival than food (e.g. housing), the predictions of

the Barten model holds. That is, the evidence shows that the share of food on food plus housing increases

with household size.

Table 4 shows the result of estimating (quasi) Engel’s curves where the dependent variable is the share of

food in the consumption of food and housing. Columns 1 and 2 follow the standard method. As in Gan and

Vernon (2003), the share of food in food plus rent increases with household size. This result is maintained

in columns 3 and 4. As predicted by the Barten model, families that live in two houses rather than in one

(split = 1) consume a smaller share of food in food plus housing.

Despite that results in Table 4 agree with the Barten model, Deaton and Paxson (2003) argue that the

paradox is not solved because the fact that, at a given level of total per capita consumption, per capita food

consumption (not the food share) tends to decline as households become larger remain unexplained. In the

presence of public goods, the monetary contribution each member has to make to obtain a given level of

consumption declines as household size increases. Then, the freed resources can be used to consume more.

Being food a normal good, the Barten model predicts that its consumption should increase.

Table 5 shows the demand for food. The specifications are identical to those in Table 3 but with log

per capital food consumption as a dependent variable instead of the food share. Deaton and Paxson (2003)

critique is evident. Panel A shows that per capita food consumption declines with household size. This

fact cannot be explained by arguing that other goods are less rival than food as in Gan and Vernon (2003).

Panel B corroborates the results in panel A. Families that liven in two houses rather that in one, consume

on average more food per capita at a given level of total per capita expenditures.

The sharing model presented in section 2.2 is capable of explaining the consumption patterns in Tables

3-5. If food is a common-pool good but still rival in consumption, then the larger the household is, the

smallest the portion a member gets from her marginal contribution to the common pot. Thus, as households

become larger, their members have more incentives to reallocate resources from sharable goods (e.g. food)

to private goods (e.g. clothing).

Economies of scale coefficients, a traditional approach The Engel’s curve specification used to

compute scale coefficients in this section corresponds to the pooled instrumental variable as shown in column

4 Table 3. This specification generates similar results to panel-fixed-effects, but allows the computation of

scale coefficients for different quartiles of the distribution.33

Table 6 shows estimated household indifference scales using formula (44)-(45). In this case, the public

32This paper as well as others in the the literature refer as goods that are more private rather than more rival. However, the

only characteristic in these models that distinguishes private and public goods is rivalry. They cannot incorporate excludability

(see discussion in section ??)
33Some families change quartiles from one round to another creating problems in partitioning the sample by living standards.
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goods, private goods, and food shares are evaluated at the sample mean. Each column is generated using

a different assumption about the level of altruism in the family. The results indicate, for example, that a

two-person household with no altruism (τ = 0) would need 12.4% more income to obtain the same utility

level as adding an extra member and maintaining the same per capital income.

The last row of Table 6 shows the single adjustment factor that best fits the results. Inequality and

poverty studies that attempt to adjust per capita consumption/income by traditional economies of scale

usually rely on the following single parameter formula (Deaton (1997)).

yadj =
Y

nξ
, 0 ≤ ξ ≤ 1 (46)

Adjusted household per capita income/consumption yadj is computed dividing total income/consumption

Y by household size adjusted by ξ. Depending on the level of altruism assumed, the estimated adjustment

factor ξ̂ ranges from 0.7 to 0.84. Figure 4 plots two of the columns in Table 6 (solid lines) and the implied

coefficients computed with formula (46) and the estimated ξ at the bottom of the Table (dotted lines). The

estimated values and the fitted lines using (46) are remarkably similar.

For comparison reasons, the last column of Table 6 reports similar statistics than previous columns but

computed with scale parameters used by the OECD, see Cowell (2011). The OECD assumes significantly

stronger economies of scale from a one-person household to a two-person households.34

Table 7 shows the scale coefficients for different quartiles of the total family expenditures distribution.

The adjustment for indifference scales is not monotonic along the income distribution because the slope of

the Engel’s curve is highest (in absolute terms) for the second quartile.

The method used in this section to measure indifference scales in the family is easily implemented and

does not require panel data. It can be computed with any cross-section data containing information about

household consumption.

5.4 Public goods with congestion

For the computation of indifference scales, goods are considered extreme cases in relation to rivalry and

excludability (e.g. public goods are considered fully non-rival and non-excludable). This section presents a

sensitivity analysis changing these assumptions.

When congestion affect public goods, the sharing rule (20) should be modified.

Q =
Q̃1 + (n− 1)Q̃2

nφ
, 0 ≤ φ ≤ 1 (47)

34The formula used by the OECD to adjust family income is yadj = Y∑n
i di

, where Y is total family income and di is a value

assigned to household member i = 1, .., n. The values are di = 0.67 for the first adult in the household di = 0.33 for each of the

other adults and di = 0.2 for each child under 14 years old (Cowell (2011) page 105). Last column in Table 6 assumes that all

members are adults.
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The parameter φ controls the degree of congestion. When φ = 0, the good is completely non-rival, when

φ = 1 the good is fully rival and the allocation rule becomes identical to that for sharing goods in equation

(19). It can be shown that congestion affects the measurement of indifference scales by adjusting the last

term of (39). This expression becomes (see appendix IV)

∂V

∂n
/λC =

y

C(1 + τ)

(
(1 + τ)

n

∂ωx
∂log(n)

+
∂ωs

∂log(n)
+

∂ωq
∂log(n)

+ ωq(1− φ)

)
(48)

Table 8 shows indifference scales coefficients for congestion levels φ = 0.1 and φ = 0.3 (low and medium

levels of altruism). The values in this Table are lower in relation to those in Table 6. For relatively high

congestion φ = 3 the scale coefficients decline approximately one third.

6 Summary and conclusions

This paper presents a new model for the allocation of resources in the household where individuals are

assumed to control their own income and voluntarily share purchased goods with other members of the

family. The allocation rule for each good depends on the intrinsic characteristic of the commodity and on

the norms governing the interaction of household members. In this respect, in addition to public goods and

private goods commonly included in other models, this paper recognizes the existence of common-pool goods.

Common-pool goods are rival in consumption, but contrary to private goods, they are non-excludable. These

goods cannot be fully appropriated by the buyer because they are supposed to be shared with other members

in the household. Food is argued to be a common-pool good. The ‘common provision of food’ is considered

a distinctive characteristic in many definitions of the household.

The model in the paper challenges the assumption made by the collective model that the allocation of

resources in the household is efficient. A Pareto-efficient allocation is incompatible with the consumption

patterns observed in the data, but not with the Nash equilibrium described in the paper. More specifically,

the model is able to explain why per capita food consumption tends to decline as household size increases.

This fact is considered un unresolved puzzle (Deaton-Paxson paradox). Previous models of the household

are not capable of explaining this consumption patterns.

Under certain conditions, the sharing model can be interpreted as a hybrid between a traditional non-

cooperative model and a pure collective model. This characteristic of the model can explain why some

empirical test of collective models fail to reject their null hypothesis while at the same time other papers

reject the Pareto-efficient allocation implied buy such models.

The first part of the empirical analysis revisits the Deaton-Paxson paradox exploiting household divisions

in longitudinal data. Results using the new approach reinforces the conclusions found in Deaton and Paxson

(1998). The second part of the empirical section derives and implements a method to compute household

indifference scales. The estimation of indifference scales coefficients has been elusive because of the unresolved
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Deaton-Paxson paradox. The correct computation of indifference scales has enormous policy implications

since it affects how to measure inequality and poverty.

The empirical papers in the literature rejecting intra-household Pareto-optimality do not usually model

households’ behavior to explain their findings. Udry (1996) suggests that more theoretical research is needed

to explain why households do not reach the utility-possibility frontier as described in his paper. The sharing

model is a simple and tractable theory that breaks the tradition of imposing intrahoushold efficiency. It is

grounded on the reasonable idea that allocation rules differ by good type. The ability of the sharing model

to explain consumption regularities that other theories cannot describe suggests that the model deserves

more examination.

The sharing model presented in this paper can be used to study a variety of topics. Ongoing research

includes the unification of theories about household formation, household dissolution and intrahousehold

allocation of resources, as well as the study of joint labor supply.

29



References

Attanasio, O. P. and V. Lechene (2002). Tests of income pooling in household decisions. Review of Economic

Dynamics, Vol. 5, pp. 720–748.

Attanasio, O. P. and V. Lechene (2014). Efficient responses to targeted cash transfers. The Journal of

Political Economy, Vol. 122:1, pp. 178–222.

Barten, A. P. (1964). Family composition, prices and expenditure patterns. In Econometric Analysis for

National Economic Planning,. edited by P. Hart, G. Mills and J. Whitaker.

Bergstrom, T., L. Blume, and H. Varian (1986). On the private provision of public goods. Journal of public

economics 29 (1), 25–49.

Bergstrom, T. C. (2016). Lecture notes on separable preferences. Economics Department, UCSB .

Bergstrom, T. C., L. Blume, and H. Varian (1992). Uniqueness of nash equilibrium in private provision of

public goods: an improved proof. Journal of Public Economics 49 (3), 391–392.

Blundell, R., P. Pashardes, and G. Weber (1993). What do we learn about consumer demand patterns from

micro data? The American Economic Review, Vol. 83:3, pp. 570–597.

Bobonis, G. J. (2009). Is the allocation of resources within the household efficient? new evidence from a

randomized experiment. The Journal of Political Economy, Vol. 117:3, pp. 453–503.

Bourguignon, F., M. Browning, and P.-A. Chiappori (2009). Efficient intra-household allocations and distri-

bution factors: Implications and identification. The Review of Economic Studies, Vol. 76, pp. 503–528.

Browning, M. and P. A. Chiappori (1998). Efficient intra-household allocations: A general characterization

and empirical tests. Econometrica, Vol. 66:6, pp. 1241–1278.

Browning, M., P.-A. Chiappori, and V. Lechene (2010). Distributional effects in household models: Separate

spheres and income pooling. The Economic Journal 120 (545), 786–799.

Browning, M., P.-A. Chiappori, and A. Lewbel (2013). Estimating consumption economies of scale, adult

equivalence scales, and household bargaining power. Review of Economic Studies 80 (4), 1267–1303.

Browning, M., P.-A. Chiappori, and Y. Weiss (2014). Economics of the Family. Cambridge University Press.

Browning, M. and C. Meghir (1991). The effects of male and female labor supply on commodity demands.

Econometrica, Vol. 59:4, pp. 925–951.

Chen, Z. and F. Woolley (2001). A cournot–nash model of family decision making. The Economic Jour-

nal 111 (474), 722–748.

30



Chiappori, P. A. (1988). Rational household labor supply. Econometrica, Vol. 56:1, pp. 63–89.

Chiappori, P.-A. (2016). Equivalence versus indifference scales. The Economic Journal 126 (592), 523–545.

Chiappori, P. A. and I. Ekeland (2009). The microeconomics of efficient group behavior: Identification.

Econometrica, Vol. 77:3, pp. 763–799.

Chowdhury, S. M. and J. Y. Jeon (2014). Impure altruism or inequality aversion?: An experimental inves-

tigation based on income effects. Journal of Public Economics, Vol. 118, pp. 143–150.

Cowell, F. A. (2011). Measuring inequality. Oxford University press,, Chapter 5.

Deaton, A. (1997). The analysis of household surveys: A microeconometric approach to development policy.

World Bank,, Chapter 4.

Deaton, A. and J. Muellbauer (1980). Economics and consumer behavior. Cambridge university press.

Deaton, A. and C. Paxson (1998). Economies of scale, household size, and the demand for food. The Journal

of Political Economy, Vol. 106:5, pp. 897–930.

Deaton, A. and C. Paxson (2003). Engel’s what? a response to Gan and Vernon. The Journal of Political

Economy, Vol. 111:6, pp. 1378–1381.

Dercon, S. and P. Krishnan (2003). In sickness and in health: Risk sharing within households in rural

Ethiopia. The Journal of Political Economy, Vol. 108:4, pp. 688–727.

Duflo, E. (2003). Grandmothers and granddaughters: Old-age pensions and intrahousehold allocation in

South Africa. The World Bank Economic Review, Vol. 17:1, pp. 1–25.

Duflo, E. and C. Udry (2004). Intrahousehold resource allocation in Cote d’Ivoire: Social norms, separate

accounts and consumption choices. NBER Working Paper, No. 10498.

Dunbar, G. R., A. Lewbel, and K. Pendakur (2013). Children’s resources in collective households: identifica-

tion, estimation, and an application to child poverty in malawi. The American Economic Review 103 (1),

438–471.

Fortin, B. and G. Lacroix (1997). A test of the unitary and collective models of household labour supply.

Economic Journal, Vol. 107, pp. 933–955.

Fraser, C. D. (1992). The uniqueness of nash equilibrium in the private provision of public goods: an

alternative proof. Journal of Public Economics 49 (3), 389–390.

31



Gan, L. and V. Vernon (2003). Testing the Barten model of economies of scale in household consumption:

Toward resolving a paradox of Deaton and Paxson. The Journal of Political Economy, Vol. 111:6, pp.

1361–1377.

Lechene, V. and I. Preston (2005). Household nash equilibrium with voluntarily contributed public goods.

Technical report, IFS Working Papers, Institute for Fiscal Studies (IFS).

Lechene, V. and I. Preston (2011). Noncooperative household demand. Journal of Economic Theory 146 (2),

504–527.

Logan, T. D. (2011). Economies of scale in the household: Puzzles and patterns from the american past.

Economic Inquiry 49 (4), 1008–1028.

Lundberg, S. and R. A. Pollak (1993). Separate spheres bargaining and the marriage market. Journal of

political Economy 101 (6), 988–1010.

Lundberg, S. J., R. A. Pollak, and T. J. Wales (1997). Do husbands and wives pool their resources? evidence

from the United Kingdom child benefit. The Journal of Human Resources, Vol. 32:3, pp. 463–480.

Rubalcava, L. and G. Teruel (2006). Mexican family life survey, second round. Working Paper, www.ennvih-

mxfls.org .

Rubalcava, L. and G. Teruel (2013). Mexican family life survey, third round. Working Paper, www.ennvih-

mxfls.org .

Schultz, T. P. (1990). Testing the neoclassical model of family labor supply and fertility. The Journal of

Human Resources, Vol. 25:4, pp. 599–634.

Thaler, R. (1985). Mental accounting and consumer choice. Marketing science 4 (3), 199–214.

Thomas, D. (1990). Intra-household resource allocation: An inferential approach. The Journal of Human

Resources, Vol. 25:4, pp. 635–664.

Udry, C. (1996). Gender, agricultural production, and the theory of the household. The Journal of Political

Economy, Vol. 104:5, pp. 1010–1046.

Warr, P. G. (1983). The private provision of a public good is independent of the distribution of income.

Economics letters 13 (2-3), 207–211.

32



7 Figures and tables

Figure 1: Hump-shaped Engel’s curve (n=2):

Food share as a function of log per capita income

The parameter values are: σ = 2, β = 3, γ = 0.043. The prices of all

goods are set to 1.

Figure 2: Indirect utility as a function of household size:

Different levels of altruism

The parameter values are: σ = 2, γ = 0.043. Per capita expenditures

are set to 10. The three indirect utilities are rescaled to equal one for

n = 1.
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Figure 3: ‘Empirical’ definition of households and families

Note: Each diamond represents a person-round observation.
The arrows follow persons across the longitudinal dataset
rounds.

Figure 4: Percentage increase in per capita income

equiv. to adding a household member (by family size)

Table 1: Consumption components

Commodity composite Goods included List

Sharable goods food except meals vegetables, fruits, cereals, grains,
consumed away from home meets, industrially-processed food

Public goods housing, durables imputed rent, TV sets, radios, cameras,
and school fees washing machines, refrigerators,

furniture, school tuition and fees, etc.

Private goods clothing, tobacco, clothing, toys, medicines, doctor’s visits
transportation, hygiene, etc. lotions, deodorants, magazines, etc.

Note: Some studies consider children as household public goods, this is why
school tuitions and fees are included in this category. Results are very similar
when these items are considered private goods.
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Table 2: Summary statistics

Survey year

2002 2005-2006 2009-2010

mean s.d. mean s.d. mean s.d.

family size 4.419 1.982 4.939 2.343 5.699 2.878

split 0.000 0.000 0.082 0.275 0.182 0.386

shares w/imputed rent

share food 0.427 0.163 0.456 0.155 0.465 0.151

share private 0.329 0.153 0.307 0.155 0.311 0.147

share public 0.245 0.127 0.237 0.120 0.224 0.111

shares without imp. rent

share food 0.520 0.196 0.564 0.194 0.569 0.184

share private 0.394 0.172 0.369 0.174 0.373 0.166

share public 0.086 0.123 0.067 0.104 0.058 0.092

(log) per capita expend. 7.356 0.833 7.298 0.814 7.275 0.752

(log) per capita income 7.244 1.232 7.239 1.117 7.200 1.085

families in sample 5,304 4,840 4,465

households in sample 5,304 5,205 5,165

35



Table 3: Engel’s curve

Food share (excl. rent) Food share (w/imp. rent)

OLS IV-GMM IV-FE IV-GMM IV-FE
(1) (2) (3) (4) (5)

Panel A: Households

log household per capita exp.+ -0.132*** -0.175*** -0.174*** -0.137*** -0.124***

(0.00169) (0.00468) (0.0287) (0.00453) (0.0288)

log household size -0.0644*** -0.0980*** -0.0999*** -0.0641*** -0.0538**

(0.00341) (0.00518) (0.0206) (0.00492) (0.0209)

Constant 1.553*** 1.913*** 1.897*** 1.523*** 1.401***

(0.0155) (0.0402) (0.232) (0.0398) (0.239)

Observations 15,639 15,639 15,639 15,674 15,674

Panel B: Families

log family per capita exp.++ -0.132*** -0.173*** -0.170*** -0.135*** -0.116***

(0.00173) (0.00479) (0.0272) (0.00457) (0.0266)

log family size -0.0679*** -0.0998*** -0.0911*** -0.0682*** -0.0459**

(0.00362) (0.00542) (0.0208) (0.00510) (0.0205)

split 0.0336*** 0.0529*** 0.0539*** 0.0381*** 0.0310**

(0.00543) (0.00527) (0.0150) (0.00486) (0.0145)

Constant 1.562*** 1.902*** 1.854*** 1.517*** 1.325***

(0.0159) (0.0412) (0.220) (0.0403) (0.221)

Observations 14,609 14,609 14,609 14,609 14,609

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

All regressions include survey round fixed effects and dummies for the share of household

members with ages 0-5, 6-11, 12-17, 18-64 and 65+ by gender

+ instrumented with log household per capita income in columns 2 to 5

++ instrumented with log family per capita income in columns 2 to 5
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Table 4: (quasi) Engel’s curve:

Dep. var.: share of food in food plus imputed rent

Households Families

IV-GMM IV-FE IV-GMM IV-FE
(1) (2) (3) (4)

log household per capita exp.+ -0.0211*** 0.0698***

(0.00421) (0.0204)

log family per capita exp.++ -0.0189*** 0.0735***

(0.00419) (0.0189)

log household size 0.0341*** 0.101***

(0.00457) (0.0149)

log family size 0.0301*** 0.0947***

(0.00469) (0.0146)

split -0.0159*** -0.0605***

(0.00455) (0.0103)

Constant 0.808*** 0.0509 0.797*** 0.0283

(0.0366) (0.169) (0.0367) (0.157)

Observations 15,633 15,633 14,609 14,609

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

All regressions include survey round fixed effects and dummies for the share

of household members with ages 0-5, 6-11, 12-17, 18-64 and 65+ by gender

+ instrumented with log household per capita income

++ instrumented with log family per capita income
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Table 5: Demand for food

Dep. var. log per capita food consumption

excl. imputed rent w/imputed rent

OLS IV-GMM IV-FE IV-GMM IV-FE
(1) (2) (3) (4) (5)

Panel A: Households

log household per capita exp.+ 0.688*** 0.590*** 0.584*** 0.620*** 0.651***

(0.00431) (0.0123) (0.0707) (0.0134) (0.0813)

log household size -0.121*** -0.197*** -0.228*** -0.158*** -0.162***

(0.00868) (0.0133) (0.0516) (0.0145) (0.0606)

Constant 1.633*** 2.445*** 2.517*** 2.054*** 1.828***

(0.0394) (0.104) (0.572) (0.116) (0.676)

Observations 15,630 15,630 15,630 15,630 15,630

Panel B: Families

log family per capita exp.++ 0.687*** 0.595*** 0.598*** 0.625*** 0.667***

(0.00442) (0.0126) (0.0674) (0.0137) (0.0776)

log family size -0.123*** -0.195*** -0.184*** -0.156*** -0.116*

(0.00924) (0.0141) (0.0514) (0.0153) (0.0597)

split 0.0960*** 0.140*** 0.150*** 0.119*** 0.111***

(0.0139) (0.0123) (0.0371) (0.0131) (0.0423)

Constant 1.645*** 2.415*** 2.388*** 2.020*** 1.673***

(0.0405) (0.107) (0.545) (0.119) (0.645)

Observations 14,609 14,609 14,609 14,609 14,609

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

All regressions include survey round fixed effects and dummies for the share of household

members with ages 0-5, 6-11, 12-17, 18-64 and 65+ by gender

+ instrumented with log household per capita income in columns 2 to 5

++ instrumented with log family per capita income in columns 2 to 5
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Table 6: Perc. increase in per capita income equiv.

to adding a household member

family altruism

size τ = 0 τ = 0.2 τ = 0.5 τ = 0.8 OECD∓

1 0.241 0.200 0.159 0.132 0.340

2 0.124 0.103 0.081 0.067 0.128

3 0.086 0.071 0.056 0.046 0.068

4 0.067 0.055 0.043 0.036 0.037

5 0.055 0.045 0.036 0.029 0.030

6 0.047 0.039 0.030 0.025 0.022

7 0.041 0.034 0.027 0.022 0.013

8 0.036 0.030 0.024 0.019 0.014

9 0.033 0.027 0.021 0.018 0.011

ξ̂ 0.704 0.753 0.803 0.837 0.752

In all cases shares are evaluated at sample mean

∓ Computed using modified-OECD equivalence scales

Table 7: Economies of scale by income quartile, altruism and family size

family low altruism (τ = 0) medium altruism (τ = 0.5)

size q1 q2 q3 q4 q1 q2 q3 q4

1 0.295 0.257 0.248 0.219 0.204 0.244 0.149 0.133

2 0.135 0.089 0.147 0.139 0.091 0.069 0.087 0.084

3 0.087 0.052 0.112 0.108 0.059 0.038 0.065 0.065

4 0.064 0.036 0.093 0.090 0.043 0.026 0.054 0.055

5 0.051 0.028 0.082 0.078 0.034 0.020 0.048 0.048

6 0.042 0.022 0.074 0.069 0.028 0.016 0.043 0.043

7 0.036 0.019 0.068 0.063 0.024 0.013 0.040 0.039

8 0.031 0.016 0.064 0.058 0.021 0.011 0.037 0.036

9 0.027 0.014 0.061 0.054 0.018 0.010 0.035 0.033

ξ̂ 0.696 0.796 0.614 0.638 0.791 0.833 0.768 0.774

39



Table 8: Economies of scale in the presence of congestion

family τ = 0 τ = 0.5

size φ = 0.1 φ = 0.3 φ = 0.1 φ = 0.3

1 0.217 0.169 0.145 0.117

2 0.110 0.080 0.072 0.055

3 0.075 0.054 0.049 0.036

4 0.058 0.041 0.038 0.027

5 0.048 0.033 0.031 0.022

6 0.040 0.028 0.026 0.019

7 0.035 0.024 0.023 0.016

8 0.031 0.021 0.021 0.014

9 0.028 0.019 0.019 0.013

ξ̂ 0.739 0.808 0.825 0.869
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Appendix I: Derivation of demand system

The Kuhn-Tucker conditions in problem (16)-(21) obtained from increasing in one unit the quantity purchased

of each good are:

x−σ1 ≤ λpx , x̃11 ≥ 0 , x̃11
(
x−σ1 − λpx

)
= 0

τx−σ2 ≤ λ(n− 1)px , x̃12 ≥ 0 , x̃12
(
τx−σ2 − λ(n− 1)px

)
= 0

(s1 − γ)−σ + τ(s2 − γ)−σ ≤ λnps , s̃1 ≥ 0 , s̃1
(
(s1 − γ)−σ + τ(s2 − γ)−σ − λnps

)
= 0

Q−σ + τQ−σ ≤ λpq , Q̃1 ≥ 0 , Q̃1

(
Q−σ + τQ−σ − λpq

)
= 0

In the symmetric case x1 = x2, which implies that the second equation holds with strict inequality when

the first one holds with equality for τ < (n− 1). This means that there will be zero gift/transfer of private

goods to other members (x̃12 = 0). The symmetry of the game implies that x̃11 = x̃22 , x̃12 = x̃21 = 0 ,

s̃1 = s̃2 and Q̃1 = Q̃2. Then, using conditions (17)-(20), the Kuhn-Tucker conditions simplifies to

x̃−σ = λpx (49)

(1 + τ)(s̃− γ)−σ = λnps (50)

(1 + τ)(nQ̃)−σ = λpq (51)

where x̃, s̃ and Q̃ are per capita expenditures on each of the composite goods. These equalities together

with the budget constraint pxx̃+ pxs̃+ pqQ̃ = y determine the per capita demand system (22).

Equivalence with two-step procedure

Section 2.3 presented a two-step procedure. In the first stage, individuals decides on the purchases of a set

of goods and on the contribution to a common pool of resources. In the second stage, members of the family

jointly decide how to use the ‘common’ pool of resources and how to allocate individual consumptions.

The solution is obtained by solving the second stage given the set of contributions and then solve the

non-cooperative first stage. The second stage for the symmetric case is,

max

[
(s1 − γ)1−σ

1− σ
+
Q1−σ

1− σ

]
+ (n− 1)

[
(s2 − γ)1−σ

1− σ
+
Q1−σ

1− σ

]
(52)

s.t ps(s1 + (n− 1)s2) + pqQ = c1 + (n− 1)c2 (53)

The solution to this problem is as follows.

s1 = s2 = δ
(c1 + (n− 1)c2)

psn
+ (1− δ)γ (54)

Q = (1− δ) (c1 + (n− 1)c2)

pq
− psn

pq
γ (55)
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where

δ =
p
σ−1
σ

s

p
σ−1
σ

s + (pq/n)
σ−1
σ

(56)

In the first stage, household members maximize their utility knowing what the allocation of the second

step will be. That is, individuals maximize his/her utility (1) subject to (54), (55), the allocation rule for

private goods (17) and (18) and the budget constraint.

px(x̃11 + (n− 1)x̃12) + c1 = y (57)

The first order conditions after imposing the symmetry condition s1 = s2 are as follows.

x−σ1 = λpx (58)

(1 + τ)

(
δ

psn
(s1 − γ)−σ +

1− δ
pq

Q−σ
)

= λ (59)

Q

s1 − γ
=

(1− δ)psn
δpq

(60)

where equality (60) is obtained from (54) and (55). Given that x1 = x̃, s1 = s̃, Q = nQ̃, c1 = pss̃+ pqQ̃ and

that the expression for δ is (56), then the system (58)-(60) is identical to the system (49)-(51), and therefore

their solutions.

Appendix II: Comparison of Deaton-Paxson model and non-cooperative

model

Consider a household which members behave in accordance to a non-cooperative model rather than to the

collective model (13)-(14). Then, each household member’ problem becomes a follows.

max U(s1, Q) + τU(s2, Q) (61)

s.t. ps(s̃11 + (n− 1)s̃12) + pqQ̃ = y (62)

s1 = s̃11 + (n− 1)s̃21 (63)

s2 = s̃12 + s̃22 + (n− 2)s̃21 (64)

Q = Q̃1 + (n− 1)Q̃2 (65)

Similarly to utility (13), the objective function (61) can be obtained from (1) when all individuals are

identical. That is, U(s1, Q)+τU(s2, Q) = U(si, Q)+(τ/(n−1))
∑n
j 6=i U(sj , Q) after re-labeling the problem

maximizer, i.e. si = s1 and pre-imposing identical allocation to the rest of the members, i.e., sj = s2 for all

j = 2, ..., n. Equality (63) indicates that the total consumption of member 1’s food s1 equals the quantity

she purchases to be consumed by her s̃11 plus the (n− 1) identical quantities purchased by each of the other
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members of the household in her’s behalf s̃21. On the other hand, equality (64) the amount of food consumed

by each of the other household members s2 equals the quantity member 1 gives to each of them s̃12, the

quantities they purchase for themselves s̃22 and the transfers/gifts made among them s̃21. Equality (65)

show that the consumption of public goods Q equals the contribution of member 1 (Q̃1) plus the contribution

of the other (n− 1) members in the household (Q̃2). Finally, the budget constraint for the symmetric case

is given by (62).

Model (61)-(65) is identical to that given by equations (16)-(21) but ignoring the presence of sharable

goods and assuming a generic caring utility function. Thus, the details of the maximization are those in

appendix I, which results indicate that the first order conditions of (61)-(65) after imposing symmetry are

as follows.

Us
Uq

=
ps(1 + τ)

pq
(66)

y = pss1 +
pq
n
Q (67)

On the other hand, the first order conditions of the Deaton-Paxson model (13)-(14) are:

Us
Uq

=
psn

pq
(68)

y = pss1 +
pq
n
Q (69)

The comparison of conditions (66) and (68) reveals that an increase in household size n induces a sub-

stitution towards the consumption of the public good in the latter case that is not present in the former.

Thus, the change in food share as household size increases is larger in the non-cooperative model than in the

collective model. As a result, if model (13)-(14) is inconsistent with facts, then the non-cooperative model

(61)-(65) is also inconsistent.

Appendix III: Marginal utility of income

The Lagrange function evaluated at the optimum is

L∗ = (1 + τ)U(x̃∗, s̃∗, nQ̃∗) + λ
[
y − pxx̃− pss̃− pqQ̃

]
(70)

The marginal utility of per capita income (after arriving to a new Nash equilibrium) is

∂L∗

∂y
= (1 + τ)

[
U ′x

∂x̃∗

∂y
+ U ′s

∂s̃∗

∂y
+ nU ′Q

∂Q̃∗

∂y

]
+ λ

[
1− px

∂x̃∗

∂y
− ps

∂s̃∗

∂y
− pq

∂Q̃∗

∂y

]
(71)

= λ

[
1 + τpx

∂x̃∗

∂y
+ (n− 1)ps

∂s̃∗

∂y
+ (n− 1)pq

∂Q̃∗

∂y

]
(72)

= λ

[
1 + τ

(
∂ωx

∂log(y)
+ ωx

)
+ (n− 1)

(
∂ωs

∂log(y)
+ ωs

)
+ (n− 1)

(
∂ωq

∂log(y)
+ ωq

)]
(73)
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Using the FOC (49)-(51) expression (71) becomes (72). Then, the fact that

∂ωx
∂log(y)

= px
∂x̃∗

∂y
− pxx̃

∗

y

is used to obtain (73)

Appendix IV: Measuring indifference scales in the presence of pub-

lic goods with congestion

Consider the sharing rule (47). The three expressions for the Lagrange multiplier in (36) become:

λ =
∂U∗

∂x

1

px
=
∂U∗

∂s

(1 + τ)

nps
=
∂U∗

∂Q

(1 + τ)

nφpq
(74)

Replacing (74) in (35) and using the fact than in equilibrium the relationship between per capita consumed

and per capita purchased goods are: s = s̃, x = x̃ and Q = n(1−φ)Q̃, then (39) simplifies to the following

expression:

∂V

∂n
/λC = px

∂x̃

∂n
+

nps
(1 + τ)

∂s̃

∂n
+

npq
(1 + τ)

∂Q̃

∂n
+
pqQ̃(1− φ)

(1 + τ)
(75)

=
y

C(1 + τ)

(
(1 + τ)

n

∂ωx
∂log(n)

+
∂ωs

∂log(n)
+

∂ωq
∂log(n)

+ ωq(1− φ)

)
(76)

Appendix V: Generic utility function (on-line material)

Equations (16)-(21) describes the problem for a household with n identical members and Stone-Gery utilities.

Equations (78)-(82) reproduces the same problem but with generic utility functions.

max U(x1, s1, x2, s2, Q) (77)

s.t. px(x11 + (n− 1)x12) + pss̃+ pqQ̃ = y (78)

x1 = x11 + (n− 1)x21 (79)

x2 = x̃12 + x̃22 + (n− 2)x̃21 (80)

s1 =s2 =
s̃1 + (n− 1)s̃2

n
(81)

Q = Q̃1 + (n− 1)Q̃2 (82)

Using simple algebra and the fact that no member in the household will transfer private good when τ < 1

(i.e., xij = 0 for i 6= j, see section 3.1), the model with identical individuals can be re-written as

max U(x1, s1, Q)+τU(x2, s1, Q) (83)

s.t. pxx1 + psns+ pqQ = y + ps(n− 1)s̃2 + pq(n− 1)Q̃2 (84)
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Conditional on the purchases of other members in the household problem (83)-(84) gives standard demand

functions for own consumption.

x1 = g
(
px, psn, pq, y + ps(n− 1)s̃2 + pq(n− 1)Q̃2

)
(85)

s1 = h
(
px, psn, pq, y + ps(n− 1)s̃2 + pq(n− 1)Q̃2

)
(86)

Q = l
(
px, psn, pq, y + ps(n− 1)s̃2 + pq(n− 1)Q̃2

)
(87)

In equilibrium s1 = s̃1 = s̃2 and Q̃1 = Q̃2 = Q/n, then the demand system in term of purchases rather

than consumptions is as follows.

x̃1 = g
(
px, psn, pq, y + ps(n− 1)s̃1 + pq(n− 1)Q̃1

)
(88)

s̃1 = h
(
px, psn, pq, y + ps(n− 1)s̃1 + pq(n− 1)Q̃1

)
(89)

Q̃1n = l
(
px, psn, pq, y + ps(n− 1)s̃1 + pq(n− 1)Q̃1

)
(90)

Equations (88)-(90) form a system with three equations and three unknowns, x̃1, s̃1 and Q̃1, that can be

solved recursively. First, equations (89) and (90) jointly determine an expression for s̃1 and Q̃1. Second, the

resulting expressions can be replaced on the right-hand side of (88) to solve for x̃1.

Applying the implicit function theorem over (89) and (90) and doing the corresponding algebra, the

expressions for the elasticities of s̃1 and Q̃1 with respect to household size (i.e. φs̃n = ∂s̃1
∂n

n
s̃ and φq̃n = ∂Q̃1

∂n
n
Q̃

)

are given by the following system. (1− ηsyωs(n− 1)) (−ηsyωq(n− 1))

(−ηqyωs(n− 1)) (1− ηqyωq(n− 1))

 φs̃n

φq̃n

 =

 ηs̃ps + ηs̃y(ωs̃ + ωq̃)n

ηq̃ps + ηq̃y(ωs̃ + ωq̃)n− 1


where ωq̃ =

pqQ̃1

y , ωs̃ = pss̃1
y are expenditure shares, and ηsy, ηqy, ηsps and ηqps are the usual un-

compensated income and price elasticities. These elasticities correspond to system (85)-(87), holding other

members’ purchases as given, while φs̃n and φs̃n are elasticities after the Nash equilibrium is reached. Ap-

plying Cramer’s rule, the expression for φs̃n > 0 that would solve the Deaton and Paxson (1998) paradox is

as follow.

φs̃n =
ηs̃ps (1− ηq̃yωq(n− 1)) + ηs̃y ((ωs + ωq)n− ωq(n− 1)(1− ηq̃ps))

1− (n− 1) (ηq̃yωq + ηs̃yωs)
> 0 (91)
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