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1 Introduction

More than half a century ago Yaari (1965) proved convincingly that private annuities are very

attractive insurance instruments when non-altruistic individuals face longevity risk. Simply

put, annuities are desirable because they insure such agents against the risk of outliving

their assets. Yaari also proved a much stronger result: in the absence of an intentional

bequest motive, rational utility-maximizing individuals should fully annuitize all of their

savings. Yaari derives this result under the strong assumption that actuarially fair annuities

are available. In a more recent paper, however, Davidoff et al. (2005) have demonstrated

that the full annuitization result holds in a much more general setting than the one adopted

by Yaari, for example when annuities are less than actuarially fair.

Despite the theoretical attractiveness of annuities, there is a vast body of empirical evi-

dence showing that in reality people do not invest heavily in private annuity markets. The

discrepancy between the theoretical predictions and the observable facts regarding annuity

markets is know as the annuity puzzle. Of course there are many reasons why individuals may

not choose to fully annuitize their wealth. Friedman and Warshawsky (1990, pp. 136-7), for

example, argue that purchases of private annuities are low because (a) individuals may want

to leave bequests to their offspring, (b) agents may already implicitly hold social annuities

because they are participating in a system of mandatory public pensions, and (c) private

annuities may be priced unattractively, for example because of transaction costs and taxes,

excessive profits extracted by imperfectly competitive annuity firms, and adverse selection.

Intuitively, under asymmetric information annuity companies cannot observe an individual’s

health status. Adverse selection arises in such a setting because agents with above-average

health are more likely to buy annuities. This implies that such “high-risk types” are over-

represented in the group of clients of annuity firms and that pricing of annuities cannot be

based on the average health status of the population at large.

While recognizing their potential role in accounting for parts of the annuity puzzle, we

ignore intentional bequest motives, administrative costs, and imperfect competition in this

paper. Instead, we follow inter alia Abel (1986), Walliser (2000), Palmon and Spivak (2007),

Sheshinski (2008), and Heijdra and Reijnders (2012) by focusing on the adverse selection

channel. We approach the material sequentially by first demonstrating the adverse selection

effect in an economy without public pensions. In the next step we introduce social annuities

and study the general equilibrium interactions between private and public annuity markets

under different pension benefit rules.

Our paper is most closely related to earlier work by Heijdra and Reijnders (2012). They

study a discrete-time overlapping generations model in which non-altruistic agents differ in

their innate health status, which is assumed to be private information. The private annuity

market settles in a risk-pooling equilibrium in which the unhealthiest segment of the popu-

lation experiences binding borrowing constraints (because they are unable to go short on
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annuities) and the other agents receive a common yield on their annuity purchases. They

also show that the introduction of a mandatory public pension system—though immune to

adverse selection by design—leads to a reduction in steady-state welfare, an aggravation of

adverse selection in the private annuity market, and a reduction in the economy-wide capital

intensity.

We extend the work by Heijdra and Reijnders (2012) by assuming that the individuals

populating the economy differ by two dimensions of heterogeneity (health and ability) rather

than just a single one (health). The introduction of heterogeneous abilities serves two pur-

poses. First, as was shown by Walliser (2000, pp. 374-375) in a partial equilibrium setting,

“(the simulations reveal that) between 40 and 60 percent of the measured adverse selection

is due to the positive correlation between income and mortality. . . ” By incorporating health-

ability heterogeneity, and by assuming that there is a positive correlation between the two

characteristics, we are able to capture this reputedly important source of adverse selection

in the private annuity market. There is a second reason why heterogeneity matters which

is related to the type of funded public pension system that is in place. Indeed, depending

on the details regarding pension contributions and receipts, social security systems can have

vastly different welfare implications for consumers with different health status and/or ability.

In this paper we consider three different public pension schemes which differ in the degree to

which they lead to (implicit or explicit) redistribution from healthy to unhealthy individuals.

Our main findings are as follows. Firstly, a plausibly calibrated version of the model

reveals that, compared to the case with full information, asymmetric information on the

part of annuity companies is important quantitatively in that it causes substantial reductions

in steady-state output per efficiency unit of labour and the capital intensity. The general

equilibrium effects are thus shown to matter a lot. Second, the introduction of a funded

social security system reduces the capital intensity and output per efficiency unit even further,

more so the larger is the system, i.e. the higher is the replacement rate it incorporates. These

results are consistent with Palmon and Spivak (2007) and Heijdra and Reijnders (2012).

Third, privatizing social security (by abolishing the public pension system) is not generally

Pareto improving to all generations. Indeed, in our simulations we find that healthy agents

born at the time of the shock would have been better off if the social security system had not

been privatized. Just as for unfunded pensions, getting rid of a pre-existing funded system is

not an easy task to accomplish.

The remainder of the paper is organized as follows. In Section 2 we set up the model and

characterize the microeconomic choices and the resulting macroeconomic equilibrium under

full information, i.e. the hypothetical case in which insurance companies can perfectly observe

an individual’s characteristics. In Section 3 we introduce asymmetric information inhibiting

insurance companies and show that it leads to a pooling equilibrium in the annuity market.

In Section 4 we introduce a fully-funded social security system in which pension contributions
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are proportional to labour income during youth. We analyze three specific versions of this

system which differ with respect to the pension receipts during old age. Section 5 considers

the consequences of privatizing social security. The final section concludes. Some technical

issues are dealt with in three brief appendices.

2 Model

2.1 Consumers

In each period the population in the closed economy under consideration features two over-

lapping generations of heterogeneous agents. Each person can live at most for two periods,

namely ‘youth’ (superscript y) and ‘old age’ (superscript o). Individuals are heterogenous

along two exogenously given dimensions. First, they differ by health status which we capture

by the probability of surviving into old-age. Everyone faces lifetime uncertainty at the end of

the first period, and the survival probability is denoted by µ. This means that unhealthy pe-

ople have a higher risk of dying and a shorter expected life span (which equals 1+µ periods).

Second, individuals differ in their working ability as proxied by innate labour productivity η.

We assume that consumer types are continuous and uniformly distributed on these two

dimensions, i.e. µ ∈ [µL, µH ] (such that 0 < µL < µH < 1) and η ∈ [ηL, ηH ] (such that

0 < ηL < ηH). Furthermore, we postulate that µ and η are positively correlated. Hence, a

person in better health is more likely to possess higher working abilities, and vice versa. The

bivariate uniform distribution used in this paper is characterized by the following probability

density function:

h(µ, η) =
1 + ξ (µ− µ̄)(η − η̄)

(µH − µL)(ηH − ηL)
, (1)

where ξ is a parameter regulating the correlation between µ and η (such that ξ > 0), and µ̄

and η̄ denote the unconditional means of µ and η, respectively. In Figure 1 the distribution

function is depicted in panel (a) whilst the probability density function is shown in panel

(b). From the graph of the density function it is clear that there is a higher probability for

healthier consumers to possess higher working abilities, and vice versa. For future reference

we postulate Lemma 1 which summarizes some useful properties of the bivariate distribution

that we employ.

Lemma 1 The distribution function for the survival probability µ and labour productivity η

is given by:

H(µ, η) =
(µ− µL)(η − ηL)

(µH − µL)(ηH − ηL)

[
1 +

ξ

4
(µH − µ)(ηH − η)

]
,

where µL ≤ µ ≤ µH and ηL ≤ η ≤ ηH . The density function is given in (1). Further
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properties of the distribution are: (i) the marginal density functions are hµ(µ) = 1/(µH −µL)

and hη(µ) = 1/(ηH − ηL); (ii) the unconditional means are µ̄ = (µL + µH)/2 and η̄ = (ηL +

ηH)/2; (iii) the unconditional variances are σ2
µ = (µH − µL)

2 /12 and σ2
η = (ηH − ηL)

2 /12;

(iv) the covariance is cov (η, µ) = ξσ2
ησ

2
µ and the correlation is cor (η, µ) = ξσησµ; (v) the

conditional probability density functions are:

hµ|η (µ) ≡
h (η, µ)

hη (η)
=

1 + ξ (µ− µ̄)(η − η̄)

µH − µL

,

hη|µ (η) ≡
h (η, µ)

hµ (µ)
=

1 + ξ (µ− µ̄)(η − η̄)

ηH − ηL
,

and (vi) the conditional mean of η for a given µ is:

Γ1 (µ) ≡

∫ ηH
ηL

ηh (η, µ) dη
∫ ηH
ηL

h (η, µ) dη
=

hµ(µ)
∫ ηH
ηL

ηhη|µ (η) dη

hµ(µ)
= η̄ + ξσ2

η(µ− µ̄).

Proof: see Appendix A. �

Figure 1: Features of the distribution for µ and η

(a) Distribution (b) Density
H(µ, η) h(µ, η)
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Legend Health and innate ability are proxied by, respectively, the survival probability µ and
the labour productvity parameter η. The two characteristics of an individual are positively
correlated. The distribution H(µ, η) is bivariate uniform. The marginal distributions of µ and
η are both uniform. See Appendix A and Lemma 1 for further features of the distribution.

From the perspective of birth, the expected lifetime utility of a person with health status
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µ and working ability η is given by:

EΛt(µ, η) ≡ U (Cy
t (µ, η)) + µβU

(
Co
t+1(µ, η)

)
, (2)

where Cy
t (µ, η) and Co

t+1(µ, η) are consumption during youth and old age, respectively, β is

the parameter capturing pure time preference (0 < β < 1), and U(C) is the felicity function:

U(C) ≡





C1−1/σ − 1

1− 1/σ
, for σ 6= 1,

lnC for σ = 1,

(3)

where σ is the intertemporal elasticity of substitution (σ > 0). Equation (2) incorporates the

assumption that individuals do not have a bequest motive, i.e. utility solely depends on own

consumption during one’s lifetime.

In this section we postulate the existence of perfect private annuities. Specifically, we

adopt the following assumptions regarding the market for private annuities:

(A0) Health status is public information.

(A1) The annuity market is perfectly competitive. A large number of risk-neutral firms offer

annuities to individuals, and annuity firms can freely enter or exit the market.

(A2) Annuity firms do not use up any real resources.

As is explained by Heijdra and Reijnders (2012, pp. 322–3), in this Full Information case

(abbreviated as FI) each health type receives its actuarially fair rate of return and achieves

perfect insurance against longevity risk. If Ap
t (µ, η) denotes the private annuity holdings of

an agent of health type µ then the net rate of return on annuities will be equal to:

1 + rpt+1 (µ) =
1 + rt+1

µ
, (4)

where rt+1 is the net rate of return on physical capital (see also below). Since the survival

rate is such that 0 < µ < 1, it follows from (4) that rpt+1 (µ) exceeds rt+1 so that all agents

will completely annuitize their wealth. This classic result was first derived by Yaari (1965).

We assume that individuals work full time during youth and part time in old age as a

result of a system of mandatory retirement. With full annuitization of assets the periodic

budget identities are given by:

Cy
t (µ, η) +Ap

t (µ, η) = wt(η), (5)

Co
t+1(µ, η) = λwt+1(η) + (1 + rpt+1 (µ))A

p
t (µ, η), (6)
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where wt(η) is the wage rate of an η type in period t, λ is the proportion of time that is

devoted to work in old age (0 < λ < 1), and 1 + rpt+1 (µ) is the rate of return on private

annuities. The periodic budget identities can be combined to obtain the consolidated budget

constraint:

Cy
t (µ, η) +

Co
t+1(µ, η)

1 + rpt+1 (µ)
= wt(η) +

λwt+1(η)

1 + rpt+1 (µ)
. (7)

The present value of lifetime consumption (left-hand side) equals the present value of lifetime

income (right-hand side). That is, people consume their human wealth.

Consumers choose Cy
t (µ, η) and Co

t+1(µ, η) in order to maximize expected lifetime utility

(2) subject to the budget constraint (7). The optimal consumption plans and annuity demands

are fully characterized by:

Cy
t (µ, η) = Φ

(
µ,

1 + rt+1

µ

)[
wt(η) +

λµwt+1(η)

1 + rt+1

]
, (8)

µCo
t+1(µ, η)

1 + rt+1
=

[
1− Φ

(
1 + rt+1

µ

)][
wt(η) +

λµwt+1(η)

1 + rt+1

]
, (9)

Ap
t (µ, η) =

[
1− Φ

(
µ,

1 + rt+1

µ

)]
wt(η)− Φ

(
µ,

1 + rt+1

µ

)
λµwt+1(η)

1 + rt+1
, (10)

where we have substituted the expression for the actuarially fair annuity rate (4), and where

Φ(µ, x) is the marginal propensity to consume out of lifetime income during youth:

Φ(µ, x) ≡
1

1 + (µβ)σxσ−1
. (11)

From equations (8) and (9) we find that consumption during youth and old-age are both pro-

portional to human wealth. Furthermore, equation (10) shows that annuity demand depends

positively on the wage income during youth and negatively on old-age labour income.

The optimal consumption choices of different types of consumers are illustrated in Figure

2. To avoid cluttering the diagram we illustrate the choices made by the four extreme ty-

pes, unhealthy and healthy lowest-skilled (µL, ηL) and (µH , ηL), and unhealthy and healthy

highest-skilled (µL, ηH) and (µH , ηH). For a given working ability type ηi, the line labelled

LBC(µL, ηi) and LBC(µH , ηi) are the lifetime budget constraints as given in (7). For skill

type ηL the income endowment point (wt(η), λwt+1(η)) is located at point EL. With perfect

annuities, LBC(µL, ηi) is steeper than LBC(µH , ηi) because the unhealthy get a much higher

annuity rate than the healthy.

In the presence of perfect annuities and under full annuitization, the consumption Euler

equation is given by:

U ′(Cy
t (µ, η))

βU ′(Co
t+1 (µ, η))

= µ
(
1 + rpt+1 (µ)

)
= 1 + rt+1, (12)
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Figure 2: Consumption-saving choices under full information

!

A

MRSC

!

EL

Ct+1(µ,η)
o

Ct(µ,η)
y

LBC(µL, ηL)

LBC(µL, ηH)

LBC(µH, ηL)

LBC(µH, ηH)

!

!

!
!

EH

B

C

D IEL

Legend LBC(µi, ηj) is the lifetime budget constraint for an individual with survival probabi-
lity µi and productivity level ηj . IEL is the income endowment line and agents are located on
the line segment ELEH . MRSC is the consumption Euler equation under perfect information
with actuarially fair annuities at the individual level. Optimal consumption for individual
(µi, ηj) is located at the intersection of MRSC and LBC(µi, ηj). All individuals purchase
annuities.

7



where we have used (4) to get from the first to the second equality. The crucial thing to

note is that all agents equate the marginal rate of substitution between current and future

consumption to the gross interest factor on capital. Intuitively, as was first pointed out

by Yaari (1965), the mortality rate drops out of the expression characterizing the life-cycle

profile of consumption because agents are fully insured against the unpleasant aspects of

lifetime uncertainty. For the homothetic felicity function (3) it is easy to show that (12) is a

ray from the origin—see the locus labelled MRSC in Figure 2. Optimal choices are located at

the intersection of MRSC and the relevant lifetime budget constraint. It follows that types

(µL, ηL) and (µH , ηL) consume at points A and B respectively.

What about the choices made by the highest-ability types? Given the specification of

technology adopted below, it follows that wt(η) = ηwt and wt+1(η) = ηwt+1 so that income

endowment points lie along the ray from the origin labelled IEL. Furthermore, it follows

from (7) that LBC(µL, ηH) is parallel to LBC(µL, ηL) whilst LBC(µH , ηH) is parallel to

LBC(µH , ηL). Hence types (µL, ηH) and (µH , ηH) consume at points C and D respectively.

Several conclusions can be drawn from the microeconomic behaviour discussed in this sub-

section. First, in this closed economy featuring a positive capital stock (see below) all agents

are net savers, i.e. everybody expresses a positive demand for private annuities, Ap
t (µ, η) > 0

for all µ and η. This result follows readily from Figure 2 because the MRSC line lies to the left

of the IEL line. Second, for a given value of agent productivity η, the demand for annuities

is increasing in the survival probability µ, i.e. ∂Ap
t (µ, η)/∂µ > 0. Intuitively, healthy people

buy more annuities than do unhealthy people of the same skill category because they expect

to live longer a priori. Again this result follows readily from Figure 2 because LBC(µL, ηi)

is steeper than LBC(µH , ηi). Third, the demand for annuities is increasing in the skill level,

i.e. ∂Ap
t (µ, η)/∂η > 0. This can be see graphically in Figure 2 and can be proved formally by

noting that Ap
t (µ, η) in (10) is linear in η.

2.2 Demography

Let Lt denote the size of the population cohort born at time t. The density of consumers

with health type µ and working ability η is thus:

Lt(µ, η) ≡ h(µ, η)Lt, (13)

where the density function h(µ, η) is stated in (1) above. The density of (young and old)

consumers of type µ alive at time t is given by:

Pt(µ) ≡ µ

∫ ηH

ηL

Lt−1(µ, η)dη +

∫ ηH

ηL

Lt(µ, η)dη = µhµ(µ)Lt−1 + hµ(µ)Lt, (14)
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where hµ(µ) is the marginal distribution of µ (see Lemma 1(i)). If newborn cohort sizes

evolves according to Lt = (1 + n)Lt−1 (with n > −1), the total population at time t is given

by:

Pt ≡

∫ µH

µL

Pt(µ)dµ =
1 + n+ µ̄

1 + n
Lt, (15)

where µ̄ ≡
∫ µH

µL
µhµ(µ)dµ is the average survival rate of a newborn cohort.

2.3 Production

We assume that perfect competition prevails in the goods market. The technology is repre-

sented by the following Cobb-Douglas production function:

Yt = Ω0K
ε
tN

1−ε
t , (16)

where Yt is total production, Kt is the aggregate capital stock, ε is the efficiency parameter

of capital (0 < ε < 1), Ω0 is total factor productivity (assumed to be constant), and Nt is the

effective labor force, which is defined as:

Nt ≡

∫ ηH

ηL

∫ µH

µL

η [Lt(µ, η) + λLt−1(µ, η)] dµdη. (17)

Note that Nt has the dimension of worker efficiency (denoted by η) times number of working

hours. By using (13) in (17) and noting that Lt = (1 + n)Lt−1 we find that Nt/Lt can be

written as:

Nt

Lt
= η̄ +

λ

1 + n
[η̄µ̄+ cov (η, µ)] , (18)

where cov (η, µ) ≡ ξσ2
ησ

2
µ is the (positive) covariance between µ and η (see Lemma 1(iv)).

By defining yt ≡ Yt/Nt and kt ≡ Kt/Nt, the intensive-form production function can be

written as:

yt = Ω0k
ε
t . (19)

Firms choose efficiency units of labour and the capital stock such that profits are maximized.

This optimization problem gives the following factor demand equations:

rt + δ = εΩ0k
ε−1
t , (20)

wt = (1− ε)Ω0k
ε
t , (21)

wt(η) = ηwt, (22)

9



where rt is the net rate of return on physical capital, δ is the depreciation rate of capital (0 <

δ < 1), and wt is the rental rate on efficiency units of labour. With perfect substitutability of

efficiency units of labour, the wage rate of a η type worker, wt(η), is η times the rental rate

wt (as was asserted above).

2.4 Equilibrium

The model is completed by a description of the macroeconomic equilibrium. Since all annuity

purchases are invested in the capital market we find that:

Kt+1 = Lt

∫ µH

µL

∫ ηH

ηL

Ap
t (µ, η)h(µ, η)dηdµ, (23)

where Ap
t (µ, η) is given in (10) above. Intuitively, equation (23) says that next period’s

aggregate capital stock is equal to total savings in the current period (consisting of private

annuities). By substituting the demand for annuities (10) and the wage equation (22) into

(23) we obtain the fundamental difference equation for the capital intensity:

kt+1 =
1

1 + n

Lt

Nt

[
η̄wt −

∫ µH

µL

Φ

(
µ,

1 + rt+1

µ

)[
wt +

λµwt+1

1 + rt+1

]
hµ(µ)Γ1(µ)dµ

]
, (24)

where Γ1(µ) is the conditional mean of η given µ (see Lemma 1(vi)). In view of (20)–(21) wt

and rt+1 depend on, respectively, kt and kt+1 so (24) is a non-linear implicit function relating

kt+1 to kt and the exogenous variables.

2.5 Parameterization and visualization

In order to visualize the main features of the economy we parameterize the model by se-

lecting plausible values for the structural parameters—see Table 1. We follow Heijdra and

Reijnders (2012) in the parameterization procedure. First, we postulate plausible values for

the intertemporal elasticity of substitution (σ = 0.7), the efficiency parameter of capital

(ε = 0.275), the annual capital depreciation rate (δa = 0.06), the annual growth rate of

the population (na = 0.01) and the target annual steady-state interest rate (r̂a = 0.05).

Using these parameters we can determine the steady-state (annual) capital-output ratio

(K̂/Ŷ = ε/(r̂a + δa) = 2.5). Second, we set the length of each period to be 40 years and

compute the values for n, δ and r̂ (noting that n = (1 + na)
40 − 1, δ = 1 − (1 − δa)

40 and

r̂ = (1 + ra)
40 − 1). Third, we assume that the mandatory retirement age is 65 years so that

λ = 25/40 = 0.625. In the fourth step, we choose ηL = 0.5, ηH = 1.5, µL = 0.05, µH = 0.95,

so that the average health status is µ̄ = 0.5, average working ability is η̄ = 1, and the vari-

ances are σ2
η = 0.0833 and σ2

η = 0.0675. By setting ξ = 4 we ensure that there is a strong
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correlation between health and ability, i.e. cor(µ, η) = 0.300.1 In the fifth step we choose Ω0

such that ŷ = 10 in the initial steady state. This also pins down the steady state values for k̂

and ŵ. In the final step the discount factor β is used as a calibration parameter, i.e. it is set

at the value such that the steady-state version of the fundamental difference equation (24) is

satisfied. To interpret the value of β in Table 1, note that the annual rate of time preference

is ρa = β−1/40 − 1 = 0.0204 (a little over two percent per annum).

Table 1: Structural parameters

σ intertemporal substitution elasticity 0.7000
ε capital efficiency parameter 0.2750
δa annual capital depreciation rate 0.0600
δ capital depreciation factor 0.9158
na population growth rate 0.0100
n population growth factor 0.4889
β time preference parameter c 0.4462
λ mandatory retirement parameter 0.6250
Ω0 scale factor production function c 12.9071
µL survival rate of the unhealthiest 0.0500
µH survival rate of the healthiest 0.9500
ηL lowest working ability 0.5000
ηH highest working ability 1.5000
ξ covariance parameter of the distribution function 4.0000

Note The parameters labelled ‘c’ are calibrated as is explained in the text. The remaining
parameters are postulated a priori. The values for δ and n follow from, respectively, δa and
na, by noting that each model period represents 40 years.

The main features of the steady-state FI equilibrium are reported in column (a) of Table 2.

Consistent with the calibration procedure, output per efficiency unit of labour is equal to ten

(ŷ = 10) whilst the steady-state interest rate is five percent on an annual basis (r̂a = 0.05).

The steady-state capital intensity equals k̂ = 0.395. Ownership of the capital stock is highly

uneven due to the fact that individuals differ in terms of labour productivity. Indeed, as is

noted in the table, the first ability quartile of agents (averaged over all survival rates) owns

1The positive correlation between health and income (or productivity) is mentioned by many authors in
the literature on annuities—see, for example, Walliser (2000), Brunner and Pech (2008), Direr (2010), and
Cremer et al. (2010). Firm empirical evidence on this correlation is, however, hard to come by. In a recent
paper Chetty et al. (2016) employ US data for the period 2001-2014 and find that the gap in life expectancy
between the richest and poorest 1% of individuals was 14.6 years for men and 10.1 years for women. In our
calibration the expected lifetime at birth of the bottom and top 1% individuals (by productivity) are 54.65
and 65.35.
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Table 2: Allocation and welfare

(a) FI (b) AI (c) SAA (d) SAA (e) SAB (f) SAB (g) SAC (g) SAC

θ = 0.010 θ = 0.025 θ = 0.010 θ = 0.025 θ = 0.010 θ = 0.025

ŷ 10.000 9.840 9.776 9.680 9.768 9.668 9.762 9.660

k̂ 0.395 0.373 0.364 0.351 0.363 0.350 0.362 0.349
%Q1 12.34 11.78 10.15 7.73 9.69 6.69 9.15 5.50
%Q2 19.81 19.46 17.14 13.59 16.90 12.98 16.75 12.60
%Q3 28.73 28.84 25.81 21.05 25.92 21.26 26.12 21.66
%Q4 39.12 39.93 36.18 30.11 36.74 31.46 37.22 32.58
%SAS 10.72 27.51 10.74 27.60 10.76 27.67
r̂ 6.04 6.34 6.47 6.66 6.48 6.69 6.50 6.70
r̂a 5.00% 5.11% 5.16% 5.22% 5.16% 5.23% 5.17% 5.24%
ŵ 7.250 7.134 7.087 7.018 7.082 7.010 7.077 7.003

B̂C 0.00% 5.83% 10.03% 17.66% 10.63% 19.33% 10.63% 19.33%
ˆ̄rp 10.18 10.12 9.99 10.12 9.98 10.12 9.96
ˆ̄µp 0.66 0.67 0.70 0.67 0.70 0.67 0.70

ÂS 1.31 1.34 1.39 1.35 1.40 1.35 1.41
ĉy 5.357 5.296 5.270 5.233 5.268 5.228 5.265 5.225
%Q1 15.99 16.03 16.02 15.98 16.06 16.09 16.12 16.20
%Q2 22.10 22.13 22.12 22.10 22.14 22.16 22.16 22.20
%Q3 28.06 28.05 28.05 28.06 28.04 28.04 28.02 27.99
%Q4 33.85 33.79 33.81 33.86 33.75 33.72 33.70 33.61
ĉo 4.087 4.021 3.994 3.954 3.991 3.949 3.988 3.946
%Q1 12.23 10.70 10.72 10.77 10.77 10.93 10.83 11.14
%Q2 19.74 18.78 18.79 18.82 18.82 18.90 18.83 18.95
%Q3 28.75 29.04 29.03 29.02 29.02 28.98 29.00 28.91
%Q4 39.28 41.48 41.46 41.39 41.39 41.18 41.33 41.00

EΛ̂(µL, ηL) 1.014 0.996 0.989 0.978 1.022 1.020 1.026 1.029

EΛ̂(µH , ηL) 1.433 1.471 1.468 1.463 1.260 1.261 1.266 1.276

EΛ̂(µL, ηH) 1.529 1.517 1.513 1.506 1.532 1.527 1.531 1.525

EΛ̂(µH , ηH) 2.143 2.167 2.164 2.161 2.031 2.026 2.030 2.024

Note Here %Qj denotes the share accounted for by skill quartile j (averaged over all survival
rates) of the variable directly above it. %SAS is the share owned by the social annuity system.

EΛ̂(µi, ηj) gives expected utility for an agent with health type µi and skill type ηi. B̂C is the

proportion of the population facing borrowing constraints. ÂS is an indicator for the severity
of adverse selection in the private annuity market.
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12.34% of the capital stock. In contrast, the top ability quartile owns 39.12% of the economy’s

stock of capital.

Steady-state consumption (per efficiency unit of labour) by the young and surviving old

are given by:

ĉy ≡
Lt

Nt

∫ ηH

ηL

∫ µH

µL

Ĉy (µ, η)h(µ, η)dµdη, (25)

ĉo ≡
1

1 + n

Lt

Nt

[∫ ηH

ηL

∫ µh

µl

µĈo (µ, η)h(µ, η)dµdη

]
. (26)

Inequality due to heterogeneous productivity also shows up in the consumption levels during

youth and old-age. The two lowest-ability quartiles enjoy a modest and declining share of total

consumption over the life-cycle due to the positive correlation between health and ability. The

opposite holds for the two highest-ability quartiles. Finally, Table 2 also reports some welfare

indicators. Not surprisingly we find that expected lifetime utility is lowest for individuals

with low ability and poor health (µL, ηL) and highest for those lucky ones with high ability

and excellent health (µH , ηH).2

In Figure 3 we depict the steady-state profiles for youth consumption, old-age consump-

tion, annuity demand, and expected utility. These profiles have been averaged over η values

and are thus a function of the survival probability only:

Ĉy(µ) ≡

∫ ηH
ηL

Ĉy (µ, η)h(µ, η)dη
∫ ηH
ηL

h(µ, η)dη
= Φ

(
µ,

1 + r̂

µ

)[
1 +

λµ

1 + r̂

]
ŵΓ1(µ), (27)

Ĉo(µ) ≡

∫ ηH
ηL

Ĉo (µ, η)h(µ, η)dη
∫ ηH
ηL

h(µ, η)dη
=

[
1− Φ

(
µ,

1 + r̂

µ

)][
1 + r̂

µ
+ λ

]
ŵΓ1(µ), (28)

Âp(µ) ≡

∫ ηH
ηL

Âp (µ, η)h(µ, η)dη
∫ ηH
ηL

h(µ, η)dη
=

[
1− Φ

(
µ,

1 + r̂

µ

)[
1 +

λµ

1 + r̂

]]
ŵΓ1(µ), (29)

EΛ(µ) ≡

∫ ηH
ηL

EΛ (µ, η)h(µ, η)dη
∫ ηH
ηL

h(µ, η)dη
. (30)

In panel (a) we find that Ĉy(µ) is increasing in µ. This result is the opposite of the findings

reported by Heijdra and Reijnders (2012, p. 321) who assume that all individuals have the

same labour productivity (i.e., σ2
η = 0 in their model). In our model, for a given producti-

vity level η, youth consumption is decreasing in the survival probability (see Figure 2). But

as a result of the positive correlation between η and µ, healthy agents also tend to be we-

althy agents who consume more in youth as a result. Referring to equation (27), the term

Φ
(
µ, 1+r̂

µ

) [
1 + λµ

1+r̂

]
is decreasing in µ but the Γ1(µ) term is increasing in µ (see Lemma

2By scaling steady-state output such that ŷ = 10 for the FI case we avoid the counterintuitive feature noted
by Heijdra and Reijnders (2012, p. 321) that lifetime utility is decreasing in the survival probability.
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1(vi))). Due to the strong correlation between µ and η the latter effect dominates the former,

thus ensuring that Ĉy(µ) is increasing in the survival probability.

As panel (b) shows, the profile for old-age consumption Ĉo(µ) is also increasing in µ.

Again this result is reversed if all agents feature the same labour productivity, as can be easily

verified with the aid of Figure 2. In panel (c) we find that Âp(µ) is increasing in µ. This

result even holds if σ2
η = 0 (so that Γ1(µ) is a constant) because 1− Φ

(
µ, 1+r̂

µ

) [
1 + λµ

1+r̂

]
is

increasing in µ. Finally, as panel (d) illustrates, EΛ̂(µ) is increasing in the survival probability.

Intuitively, for a given productivity level η individual lifetime utility is increasing in µ (people

like surviving into old-age). Furthermore, µ and η are positively correlated thus strengthening

the positive link between utility and health.

3 Informational asymmetry in the private annuity market

In the previous section we have studied the steady state of an economy populated by he-

terogeneous individuals facing longevity risk and differing in terms of their innate labour

productivity. With full information about the health status of individuals, annuity firms can

effectively segment the market for private annuities and offer these insurance products at a

price that is actuarially fair for all individuals. In this section we study the less pristine—and

arguably much more realistic—scenario under which information regarding a person’s health

is not perfectly observable by insure firms. Indeed, from here on we drop Assumption (A0)

and replace it by the following alternative assumptions:

(A3) Health status and productivity are private information of the annuitant. The distribu-

tion of health and productivity types in the population, H(µ, η), is common knowledge.

(A4) Annuitants can buy multiple annuities for different amounts and from different annuity

firms. Individual annuity firms cannot monitor their clients’ wage income or annuity

holdings with other firms.

As is explained by Heijdra and Reijnders (2012, pp. 325–6), in this Asymmetric Informa-

tion case (abbreviated as AI) the market for private annuities is characterized by a pooling

equilibrium. In this equilibrium there is a single pooled annuity rate, r̄pt+1, which applies

to all purchasers of private annuities. Lacking information about an individual’s health and

productivity, the annuity company cannot obtain full information revelation by setting both

price and quantity. As a result, Pauly’s (1974) linear pricing concept is the relevant one.3 A

second feature of the pooling equilibrium is that there typically are unhealthy agents who drop

out of the annuity market altogether and face binding borrowing constraints. Indeed, since

an individual’s human wealth is proportional to his/her labour productivity, and individual

3See also Abel (1986), Walliser (2000), Palmon and Spivak (2007), and Sheshinski (2008) on linear pricing
of annuities.
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Figure 3: Steady-state profiles

(a) Youth consumption (b) Old-age consumption
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(c) Annuity demand (d) Expected utility
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Legend The solid lines depict the steady-state profiles for the full information (FI) case
featuring perfect annuities. The dashed lines visualize the profiles for the asymmetric in-
formation (AI) case in which adverse selection results in a single pooling rate of interest on
annuities, r̄pt+1. In the AI case agents with poor health face binding borrowing constraints
regardless of their productivity in the labour market.
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consumption is decreasing in the survival rate, there may exist a cut-off survival probability,

µbc
t , below which individuals would like to go short on annuities. But this is impossible be-

cause in doing so they would reveal their poor health status and obtain an offer they cannot

possibly accept from annuity firms (more on this below).4

The pooled annuity rate, r̄pt+1, is determined as follows. We assume that the cut-off health

type is µbc
t such that consumers with health type µL ≤ µ < µbc

t purchase no annuities. Net

savers feature a survival probability such that µbc
t ≤ µ ≤ µH and purchase annuities. The

zero-profit condition for the private annuity market is given by:

(1+rt+1)

∫ ηH

ηL

∫ µH

µbc
t

Lt(µ, η)A
p
t (µ, η)dµdη = (1+r̄pt+1)

∫ ηH

ηL

∫ µH

µbc
t

µLt(µ, η)A
p
t (µ, η)dµdη, (31)

where 1+rt+1 is the gross rate of return on physical capital, 1+ r̄pt+1 is the gross rate of return

on private annuities, Lt(µ, η) is the density of type (µ, η) consumers in period t, and Ap
t (µ, η)

is the density of private annuities that is purchased by such agents. The gross returns from

the annuity savings of all annuitants in period t (left-hand side of (31)) are redistributed to

the surviving annuitants in the form of insurance claims in period t + 1 (right-hand side of

(31)). It follows that the pooling rate equals:

1 + r̄pt+1 =
1 + rt+1

µ̄p
t

, (32)

where µ̄p
t denotes the asset-weighted average survival rate of annuity purchasers:

µ̄p
t ≡

∫ µH

µbc
t

µωt(µ)dµ, ωt(µ) ≡

∫ ηH
ηL

Ap
t (µ, η)h(µ, η)dη∫ ηH

ηL

∫ µH

µbc
t

Ap
t (µ, η)h(µ, η)dµdη

. (33)

In view of the fact that the asset-weighted survival rate is such that µbc
t < µ̄p

t < µH < 1, it

follows from (32) that r̄pt+1 exceeds rt+1 so that all net savers will completely annuitize their

wealth. Hence, Yaari’s (1965) classic result also holds in the pooled annuity market.

The pooling rate (32) is demographically unfair because it is based on the asset-weighted

survival rate µ̄p
t rather than on the average survival rate in the population µ̄. The demo-

graphically fair pooling rate is given by:

1 + r̄dft+1 =
1 + rt+1

µ̄
, (34)

and, since µ̄ < µ̄p
t (see Appendix B), it follows readily from the comparison of (32) and (34)

4Villeneuve formulates a partial equilibrium model with heterogeneous survival rates (and identical labour
productivity). He argues that only one insurance market can be active at any time, i.e. either the annuity
market or the life-insurance market is active but not both. If there is no demand for life insurance in the full
information case—as is the case in our model of the closed economy—then adverse selection in the market for
private annuities cannot result in the activation of the life insurance market (2003, p. 534).
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that r̄pt+1 < r̄dft+1. In our numerical exercise we follow Walliser (2000, p. 380) by constructing

an adverse selection index AS t (or ‘load factor’) which shows by how much the asking price

of an annuity insurance company exceeds the demographically fair price:

AS t ≡
1/(1 + r̄pt+1)

1/(1 + r̄dft+1)
=

µ̄p
t

µ̄
. (35)

As a result of adverse selection in the private annuity market, AS t exceeds unity. Furthermore,

the larger is AS t, the more severe is the adverse selection problem.

Under the maintained assumption that µL < µbc
t < µH , there are two types of agents in

the economy. Individuals with a relatively low survival probability (µL ≤ µ < µbc
t ) will face a

binding borrowing constraint, whilst healthier individuals (µbc
t ≤ µ ≤ µH) will be net savers.

It follows that constrained individuals simply consume their endowment incomes in the two

periods:

Cy
t (µ, η) = wt(η), (36)

Co
t+1(µ, η) = λwt+1(η). (37)

For unconstrained individuals the consolidated budget constraint in a pooled annuity market

is given by:

Cy
t (µ, η) +

Co
t+1(µ, η)

1 + r̄pt+1

= wt(η) +
λwt+1(η)

1 + r̄pt+1

, (38)

where r̄pt+1 is the pooling rate of interest. Such consumers choose Cy
t (µ, η) and Co

t+1(µ, η) in

order to maximize expected lifetime utility (2) subject to the budget constraint (38). The

optimal consumption plans and annuity demand are fully characterized by:

Cy
t (µ, η) = Φ

(
µ,

1 + rt+1

µ̄p
t

)[
wt(η) +

λµ̄p
twt+1(η)

1 + rt+1

]
, (39)

µ̄p
tC

o
t+1(µ, η)

1 + rt+1
=

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)][
wt(η) +

λµ̄p
twt+1(η)

1 + rt+1

]
, (40)

Ap
t (µ, η) =

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)]
wt(η)− Φ

(
µ,

1 + rt+1

µ̄p
t

)
λµ̄p

twt+1(η)

1 + rt+1
, (41)

where we have used the expression for the pooled annuity rate as given in (32).

The optimal consumption choices of different types of consumers are illustrated in Fi-

gure 4. Just as for the FI case we only illustrate the choices made by the four extreme

types, unhealthy and healthy lowest-skilled (µL, ηL) and (µH , ηL), and unhealthy and he-

althy highest-skilled (µL, ηH) and (µH , ηH). In view of (38) the location of an individual’s

lifetime budget constraint only depends on the person’s productivity level, so that LBC(ηL)

and LBC(ηH) are parallel. As before the income endowment line is given by IEL, so that
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the two relevant endowment points are given by, respectively, points EL and EH . The con-

sumption Euler equation for unconstrained consumers operating in a pooled annuity market

is given by:

U ′(Cy
t (µ, η))

βU ′(Co
t+1 (µ, η))

= µ
(
1 + r̄pt+1

)
=

µ

µ̄p
t

(1 + rt+1), (42)

where we have used (32) to get from the first to the second equality. Using the CRRA felicity

function stated in (3), we easily find that the Euler equation is a straight line from the origin

with a slope that depends positively on µ. In Figure 4 we have drawn the Euler equations

as MRSC(µH) and MRSC(µL). Since MRSC(µH) lies to the left of IEL, points B and D

denote the optimal (unconstrained) consumption points for, respectively, the lowest-skilled

and highest-skilled consumers. In contrast, since MRSC(µL) lies to the right of IEL, points

A and C are infeasible as they would involve going short on annuities. It follows that all

lowest-health individuals face borrowing constraints. Furthermore, the Euler equation (42)

that coincides with the IEL, MRSC(µbc
t ), determines the cut-off health type µbc

t :

µbc
t =

µ̄p
tU

′(wt(η))

(1 + rt+1)βU ′(λwt+1(η))
. (43)

Unconstrained consumers are located in the area ELBDEH whilst constrained individuals are

bunched on the line segment ELEH . It is worth noting that µbc
t depends on the current and

future capital intensity in the economy via factor prices. Given the specification of preferences

and technology, however, µbc
t does not depend on η itself.

In the presence of binding borrowing constraints, the capital accumulation identity (23)

is augmented to:

Kt+1 = Lt

∫ ηH

ηL

∫ µH

µbc
t

Ap
t (µ, η)h(µ, η)dηdµ. (44)

By substituting the demand for annuities (41) into (44) we obtain the fundamental difference

equation for the capital intensity:

kt+1 =
1

1 + n

Lt

Nt

[∫ µH

µbc
t

[
wt − Φ

(
µ,

1 + rt+1

µ̄p
t

)[
wt +

λµ̄p
twt+1

1 + rt+1

]]
hµ(µ)Γ1(µ)dµ

]
, (45)

where Γ1(µ) is the conditional mean of η (defined in Lemma 1(vi) above), and the factor

prices follow from (20)–(21).

The main features of the steady-state AI equilibrium are reported in column (b) of Table

2. As a result of asymmetric information in the annuity market, output per efficiency unit

of labour drops by 1.60% (ŷ = 9.840) whilst the steady-state capital intensity falls by 5.71%

(k̂ = 0.373). The decrease in the capital intensity causes the annual interest rate to rise by
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Figure 4: Consumption-saving choices under asymmetric information
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Legend LBC(ηj) is the lifetime budget constraint for an individual with productivity ηj . IEL
is the income endowment line and agents are located on the line segment ELEH . MRSC(µi)
is the consumption Euler equation for an individual with survival rate µi facing a pooled
annuity rate of interest r̄pt+1. For individuals with µbc

t ≤ µ ≤ µH optimal consumption is
located at the intersection of MRSC(µi) and LBC(ηj). All other individuals face borrowing
constraints and consume along ELEH .
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12 basis points (r̂a = 5.11%) and the wage rate to fall by 1.60%. So despite the fact that only

5.83% of young individuals face binding borrowing constraints (see B̂C), the macroeconomic

effects of information asymmetry are far from trivial in size. The adverse selection index,

as defined in (35) above, equals ÂS = 1.31 and the asset-weighted average survival rate of

annuitants equals ˆ̄µp = 0.66. Finally, as the welfare indicators at the bottom of Table 2 reveal,

under asymmetric information unhealthy individuals are worse off while their healthy cohort

members are better off than under the FI case. The information asymmetry redistributes

resources from unhealthy to healthy agents.

In Figure 3 we depict with dashed lines the steady-state profiles for youth consumption,

old-age consumption, annuity demand, and expected utility. Just as for the FI case these

profiles have been averaged over η:

Ĉy(µ) =

[
1− IAI(µ) + IAI(µ)Φ

(
µ,

1 + r̂

ˆ̄µp

)[
1 +

λˆ̄µp

1 + r̂

]]
ŵΓ1(µ), (46)

Ĉo(µ) =

[
[1− IAI(µ)]λ+ IAI(µ)

[
1− Φ

(
µ,

1 + r̂

ˆ̄µp

)][
1 + r̂

ˆ̄µp
+ λ

]]
ŵΓ1(µ), (47)

Âp(µ) = IAI(µ)

[
1− Φ

(
µ,

1 + r̂

ˆ̄µp

)[
1 +

λˆ̄µp

1 + r̂

]]
ŵΓ1(µ), (48)

where IAI(µ) = 0 for µL ≤ µ < µ̂bc and IAI(µ) = 1 for µ̂bc ≤ µ ≤ µH . In panel (a) we

find that youth consumption Ĉy(µ) is increasing in µ. Interestingly, for µ close to µ̂bc youth

consumption is higher under AI than for the FI case. Young individuals facing borrowing

constraints are unable to smooth consumption in the AI case and just consume their endo-

wment income. Net savers featuring a survival probability close to µ̂bc purchase virtually no

annuities at all as the pooling rate is unattractive to them—see panel (c). For higher levels

of µ annuity demands are higher and saving for old-age increases. In panel (b) we show that

the healthiest agents consume more during old-age under AI compared to FI. In panel (d)

we find that the healthiest individuals are actually better off under AI than under FI. The

information asymmetry benefits such individuals.

4 Public annuities to the rescue?

In the adverse selection economy studied in the previous section relatively unhealthy annuit-

ants face a disadvantageous pooling rate of interest on their annuities. In essence such indi-

viduals are subsiding their healthy cohort members through the annuity market. Following

Abel (1987) we now extend our model by introducing a fully-funded mandatory social secu-

rity system that is run by the government.5 Such a system is immune to adverse selection

5There is one important difference in that Abel (1987) restricts attention to the full information (FI) case
in which perfect private annuities are available. In order not to unduly interrupt the flow of the paper, we
present the FI results for our model in Appendix C.
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because all individuals are forced to participate in it—the government possesses the power

to tax. In particular, every individual pays a social security tax θ (such that 0 < θ < 1)

and receives a retirement pension upon surviving into old-age. We assume that the pension

contribution is proportional to wage income. Like the private sector, the government cannot

observe an individual’s health status though it can measure a person’s income. It follows

that the pension contribution can be written as As
t (η) = θwt(η). Total pension contributions

amount to As
t = θη̄wtLt and are invested in the capital market earning a gross rate of return

equal to 1+rt+1. In the next period the returns Rt+1 = (1+rt+1)A
s
t are paid out to surviving

agents. Under this funded pension system redistribution takes place between agents of the

same birth cohort (from those who die to survivors). Hence, social security plays the role of

public annuities. In this section we consider three prototypical types of pension systems. The

difference lies in the method in which the returns are distributed to surviving individuals.

• Pension system A: pension receipts during old-age are proportional to contributions

made during youth.

• Pension system B: pension contributions of η types are distributed during old-age to

surviving η types.

• Pension system C: pension receipts are the same in absolute value for all surviving

agents.

4.1 Pension system A

Under system A pension receipts are given by:

Rs
t+1(η) = ζθwt(η), (49)

where ζ is a parameter to be determined below. The clearing condition for the public annuity

system is given in this case by:

(1 + rt+1)A
s
t =

∫ ηH

ηL

∫ µH

µL

µRs
t+1(η)Lt(µ, η)dµdη. (50)

The left-hand side of this expression is the total amount to be distributed to survivors and

the right-hand side represents total pension payments. By substituting (49) into (50) and

noting that wt(η) = ηwt and Lt(µ, η) = Lth(µ, η) we find the balanced-budget solution for ζ:

ζ = ζA
1 + rt+1

µ̄
, ζA ≡

η̄µ̄

cov (η, µ) + η̄µ̄
, (51)

where µ̄ is the average survival rate of the population and ζA is a constant (featuring 0 <

ζA < 1 because cov (η, µ) is positive). It follows from (51) that under pension system A
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the rate of return on social annuities falls short of the actuarially fair social annuity yield,

(1 + rt+1)/µ̄, because health and productivity are positively correlated. Intuitively, the high

contributors (featuring a high η) tend to live longer than average.

Just as in the adverse selection economy studied in the previous section individuals can

buy private annuities in the pooled annuity market but some agents will face borrowing

constraint. Constrained individuals simply consume their endowment incomes in the two

periods:

Cy
t (µ, η) = (1− θ)wt(η), (52)

Co
t+1(µ, η) = λwt+1(η) +Rs

t+1(η). (53)

For unconstrained individuals the consolidated budget constraint in the presence of a pooled

annuity market is given by:

Cy
t (µ, η) +

Co
t+1(µ, η)

1 + r̄pt+1

= (1− θ)wt(η) +
λwt+1(η) +Rs

t+1(η)

1 + r̄pt+1

, (54)

where r̄pt+1 is the pooling rate of interest. The pension system reduces current wage income

but increases future income. Consumers choose Cy
t (µ, η) and Co

t+1(µ, η) in order to maximize

expected lifetime utility (2) subject to the budget constraint (54). The optimal consumption

plans and annuity demands are fully characterized by:

Cy
t (µ, η) = Φ

(
µ,

1 + rt+1

µ̄p
t

)[
(1− θ)wt(η) + θζAwt(η)

µ̄p
t

µ̄
+

λµ̄p
twt+1(η)

1 + rt+1

]
, (55)

µ̄p
tC

o
t+1(µ, η)

1 + rt+1
=

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)] [
(1− θ)wt(η) + θζAwt(η)

µ̄p
t

µ̄

+
λµ̄p

twt+1(η)

1 + rt+1

]
, (56)

Ap
t (µ, η) =

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)]
(1− θ)wt(η)

− Φ

(
µ,

1 + rt+1

µ̄p
t

)[
θζAwt(η)

µ̄p
t

µ̄
+

λµ̄p
twt+1(η)

1 + rt+1

]
, (57)

where we have used the expression for the pooled annuity rate as given in (32). The social

annuity system affects an individual’s human wealth at birth (the term in square brackets on

the right-hand side of (55)) but it is not a priori clear in which direction. Indeed, the effective

pension contribution rate is:

θnt ≡ θ

(
1− ζA

µ̄p
t

µ̄

)
. (58)

On the one hand, with a positive correlation between health and ability ζA is such that
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Figure 5: Consumption-saving choices under pension system A
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Legend LBC(ηj) is the lifetime budget constraint for an individual with productivity ηj . IEL
is the income endowment line and agents are located on the line segment ELEH . MRSC(µi)
is the consumption Euler equation for an individual with survival rate µi facing a pooled
annuity rate of interest r̄pt+1. For individuals with µbc

t ≤ µ ≤ µH optimal consumption is
located at the intersection of MRSC(µi) and LBC(ηj). All other individuals face borrowing
constraints and consume along ELEH . The dashed lines visualize the corresponding schedules
for the AI case. Factor prices are held the same for SA and AI to facilitate the comparison.

0 < ζA < 1. On the other hand, the survival rate of private annuitants exceeds the population-

wide average survival rate, i.e. µ̄p
t /µ̄ > 1. It thus follows that θnt is ambiguous in sign. In this

paper we focus on the case for which θnt is negative so that, ceteris paribus factor prices and

the pooled survival rate, human wealth is increased as a result of the public pension system.6

The optimal consumption choices can be explained with the aid of Figure 5. To facilitate

the comparison with the AI case we keep factor prices and the pooled survival rate at the

levels for that case. Hence the diagram shows the partial equilibrium effects on individual

choices of the introduction of a pension system. The dashed lines correspond to the AI

case. As a result of the public pension system the lifetime budget constraints shift outward

(because θnt < 0), more so the higher is η. The income endowment line rotates in a counter-

clockwise fashion. Unconstrained individuals increase consumption during youth and old-age.

6In the numerical simulations ζA = 0.9569 and µ̄ = 0.5. Hence the effective pension contribution is negative
for any µ̄p

t exceeding µ̄/ζA = 0.5225. This condition is easily satisfied. See also Figure 9(c) for an illustration
of effective contribution rates under the different pension systems.
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In contrast, constrained individuals are forced to consume less during youth. Such agents are

bunched along the line segment ELEH . Just as for the AI case there is a single cut-off value

for the survival probability below which agents are facing borrowing constraints:

µbc
t =

µ̄p
tU

′((1− θ)wt(η))

(1 + rt+1)βU ′
(
λwt+1(η) + θζA

1+rt+1

µ̄ wt(η)
) . (59)

Because wages and pension receipts are proportional to η and the felicity function is homot-

hetic, it follows from (59) that µbc
t does not depend on η. As is clear from the diagram, the

introduction of public pensions will increase the population fraction of people facing borrowing

constraints.

In order to glean the general equilibrium effects of introducing a public pension system

we must formulate the capital accumulation identity. Since public and private annuities are

invested in the capital markets, the accumulation equation takes the following format:

Kt+1 = Lt

[
As

t +

∫ ηH

ηL

∫ µH

µbc
t

Ap
t (µ, η)h(µ, η)dηdµ

]
. (60)

By substituting the demand for annuities (57) into (60) we obtain the fundamental difference

equation for the capital intensity:

kt+1 =
1

1 + n

Lt

Nt

[
θη̄wt +

∫ µH

µbc
t

(
(1− θ)wt − Φ

(
µ,

1 + rt+1

µ̄p
t

)

·

[
(1− θ)wt + θζAwt

µ̄p
t

µ̄
+

λµ̄p
twt+1

1 + rt+1

])
hµ(µ)Γ1(µ)dµ

]
, (61)

where Γ1(µ) is the conditional mean of η (defined in Lemma 1(vi) above), and the factor

prices follow from (20)–(21).

The main features of the steady-state equilibrium with pension system A (labeled SA)

are reported in columns (c)-(d) of Table 2. In column (c) the contribution rate equals θ =

0.010 which means that the system is relatively small as the income replacement rate during

retirement, ξSA ≡ θζA(1+ r̂)/[(1−λ)µ̄], is only about 0.3812. In column (d) the contribution

rate equals θ = 0.025 which results in a large pension system, i.e. ξSA = 0.9776. Comparing

columns (b) and (d) we find that output per efficiency unit of labour drops by 1.62% (ŷ =

9.680) whilst the steady-state capital intensity falls by 5.76% (k̂ = 0.351). As a result of the

decrease in the capital intensity, the annual interest rate rises by 11 basis points (r̂a = 5.22%)

whilst the wage rate falls by 1.6%. The proportion of constrained individual rises from 5.83%

to 17.66%. The adverse selection index, as defined in (35) above, increases to ÂS = 1.39 and

the asset-weighted average survival rate of annuitants rises to ˆ̄µp = 0.70. Despite the fact

that the rate of return on capital increases, the return on private annuities decreases slightly
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because the pooled survival rate ˆ̄µp increases by more. Finally, as the welfare indicators at

the bottom of Table 2 reveal, under pension system A all individuals are worse off compared

to the AI case. The pension system crowds out capital and exacerbates the adverse selection

problem in the market for private annuities.

In Figure 6 we use solid lines to depict the profiles for youth and old-age consumption,

annuity demand, and utility (averaged over η) for the SA case. These are given by:

Ĉy(µ)

ŵ
=

[
1− ISA(µ) + ISA(µ)Φ

(
µ,

1 + r̂

ˆ̄µp

)[
1− θ + θζA

ˆ̄µp

µ̄
+

λˆ̄µp

1 + r̂

]]
Γ1(µ), (62)

Ĉo(µ)

ŵ
= [1− ISA(µ)]

[
λ+ θζA

1 + r̂

µ̄

]
Γ1(µ) + ISA(µ)

[
1− Φ

(
µ,

1 + r̂

ˆ̄µp

)]

·

[(
1− θ + θζA

ˆ̄µp

µ̄

)
1 + r̂

ˆ̄µp
+ λ

]
Γ1(µ), (63)

Âp(µ)

ŵ
= ISA(µ)

[
1− θ − Φ

(
µ,

1 + r̂

ˆ̄µp

)[
1− θ + θζA

ˆ̄µp

µ̄
+

λˆ̄µp

1 + r̂

]]
Γ1(µ), (64)

where ISA(µ) = 0 for µL ≤ µ < µ̂bc and IAI(µ) = 1 for µ̂bc ≤ µ ≤ µH . The dashed lines in

Figure 6 correspond to the profiles for the AI case. Youth consumption, annuity demand, and

lifetime utility are all lower under SA than under AI. Old-age consumption is higher under

AI for most borrowing constrained individuals.

4.2 Pension system B

Under pension system B the government uses information on a person’s wage income to

deduce that individual’s innate ability. It uses its knowledge of η by setting pension receipts

according to the following rule:

Rs
t+1(η) = ζ(η)θwt(η), (65)

where ζ(η) is a function to be determined below. For each ability level η, the budget constraint

for the public pension system is given by:

(1 + rt+1)θwt(η)

∫ µH

µL

Lt(µ, η)dµ =

∫ µH

µL

µRs
t+1(η)Lt(µ, η)dµ. (66)

The left-hand side of this expression is the total amount to be distributed to type η survivors

whilst the right-hand side represents total pension payments to such individuals. Under

this system public annuities are such that longevity risk is shared among individuals of the

same productivity type. By substituting (65) into (66) and noting that wt(η) = ηwt and
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Figure 6: Steady-state profiles under pension system A

(a) Youth consumption (b) Old-age consumption
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(c) Annuity demand (d) Expected utility
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Legend The solid lines depict the steady-state profiles under pension system A (SA), and the
dashed lines visualize the profiles for the asymmetric information (AI) case without pensions.
In both cases adverse selection results in a single pooling rate of interest on annuities, r̄pt+1,
and agents with poor health face binding borrowing constraints. The SA case has been drawn
for a large system featuring θ = 0.025.
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Lt(µ, η) = Lth(µ, η) we find the balanced-budget solution for ζ(η):

ζ(η) = ζB(η)
1 + rt+1

µ̄
, ζB(η) ≡

µ̄

µ̄+ ξσ2
µ(η − η̄)

. (67)

For relatively productive individuals (featuring η > η̄) the rate of return on social annuities

falls short of the actuarially fair social annuity yield, (1 + rt+1)/µ̄, because such people tend

to have a relatively high survival rate. In contrast, for relatively unproductive individuals

(with η < η̄) the rate of return on social annuities is better than the actuarially fair social

annuity yield because such people tend to have a relatively low survival rate.

Individuals facing a binding borrowing constraint consume according to (52)–(53) with

Rs
t+1(η) as stated in (65) and (67). For unconstrained individuals the optimal consumption

plans and annuity demands are fully characterized by:

Cy
t (µ, η) = Φ

(
µ,

1 + rt+1

µ̄p
t

)[
(1− θ)wt + θζB(η)wt

µ̄p
t

µ̄
+

λµ̄p
twt+1

1 + rt+1

]
η, (68)

µ̄p
tC

o
t+1(µ, η)

1 + rt+1
=

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)][
(1− θ)wt + θζB(η)wt

µ̄p
t

µ̄

+
λµ̄p

twt+1

1 + rt+1

]
η, (69)

Ap
t (µ, η) =

[
1− Φ

(
µ,

1 + rt+1

µ̄p
t

)]
(1− θ)ηwt

− Φ

(
µ,

1 + rt+1

µ̄p
t

)[
θζB(η)wt

µ̄p
t

µ̄
+

λµ̄p
twt+1

1 + rt+1

]
η, (70)

where we have substituted wt(η) = ηwt and used the expression for the pooled annuity rate

as given in (32).

The optimal consumption choices can be explained with the aid of Figure 7. Just as before

we focus on the four extreme types. For purposes of reference the dashed lines in the diagram

represent the AI case (without pensions) whilst the thin dotted lines represent the SA case.

We keep factor prices constant at their AI levels. Under pension system B the IEL pivots

around some point C on the old IEL line for the SA case. Intuitively this is because system B

incorporates explicit redistribution from high-ability to low-ability individuals and, as a result

of the positive correlation between ability and health, implicit redistribution from healthy

to unhealthy individuals. With asymmetric information in the private annuity market the

pooling equilibrium causes a redistribution of resources from unhealthy to healthy individuals,

i.e. from people who tend to be poor to individuals who tend to be rich. Pension system A

does nothing to redress this phenomenon. In contrast, under system B the high-skilled get a

lower return on social annuities than the low-skilled do, so there is some redistribution from

healthy to unhealthy individuals via that channel.
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Figure 7: Consumption-saving choices under pension system B
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Legend LBC(ηj) is the lifetime budget constraint for an individual with productivity ηj . IEL
is the income endowment line and agents are located on the line segment ELEH . MRSC(µi) is
the consumption Euler equation for an individual with survival rate µi facing a pooled annuity
rate of interest r̄pt+1. The dashed and dotted lines visualize the corresponding schedules for
the AI and SA cases respectively. Factor prices are held the same for SB and AI to facilitate
the comparison. An individual with productivity ηj faces borrowing constraints if µ < µbc

t (ηj)
and is unconstrained otherwise.
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As is marked in the diagram, lowest-ability types experience borrowing constraint for

µ < µbc
t (ηL) whilst highest-ability individuals experience such constraints for µ < µbc

t (ηH),

where µbc
t (ηH) < µbc

t (ηL). Mathematically, an individual with productivity η experiences a

binding borrowing constraint if his/her survival probability falls short of µbc
t (η):

µbc
t (η) =

µ̄p
tU

′((1− θ)ηwt)

(1 + rt+1)βU ′
(
ληwt+1 + θηζB(η)

1+rt+1

µ̄ wt

) (71)

Despite the fact that the felicity function is homothetic and wages are proportional to η, µbc
t

depends on η because productivity features nonlinearly in ζB(η).

In Figure 8 we illustrate the relationship between ability η and the critical survival rate

µbc
t (η). The thin solid line represents the AI case for which µ̂bc = 0.1028 and 5.83% of agents

are constrained. The dashed line depicts the situation for the SA case (with θ = 0.025) for

which µ̂bc = 0.2090 and 17.66% of agents are constrained. Finally, the thick solid line in Figure

8 illustrates the SB case. As is predicted by the theory there is a downward sloping relationship

between η and µ̂bc. For the lowest-ability types the cut-off value equals 0.2590 whereas it is

equal to 0.1902 for the highest-ability individuals. So by engaging in redistribution from

high-ability to low-ability individuals the policy maker worsens the incidence of borrowing

constraints to the latter types.

In Figure 9 we compare some features of pension systems A and B. Panel (a) depicts

the fair-rates shares ζA (a constant) and ζB(η) (downward sloping because of redistribution).

Panel (b) shows that pensions receipts are increasing in ability for both systems. In panel

(c) we depict the effective pension contribution rate θnt (η). Under system A this is a negative

constant, but under system B the effective rate is increasing in ability:

θnt (η) ≡ θ

(
1− ζB(η)

µ̄p
t

µ̄

)
. (72)

For our parameterization θnt (η) remains negative for all ability levels, although barely so for

the highest-ability types.

Under pension system B the capital accumulation identity is given by:

Kt+1 = Lt

[
As

t +

∫ ηH

ηL

∫ µH

µbc
t (η)

Ap
t (µ, η)h(µ, η)dηdµ

]
, (73)

where µbc
t (η) is determined in (71) and is illustrated in Figure 8. By substituting the demand

for annuities (70) into (73) we obtain the fundamental difference equation for the capital

intensity:

kt+1 =
1

1 + n

Lt

Nt

[
θη̄wt +

∫ ηH

ηL

∫ µH

µbc
t (η)

(
(1− θ)wt − Φ

(
µ,

1 + rt+1

µ̄p
t

)
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Figure 8: Ability and borrowing constraints
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Legend Under pension systems B and C the critical level of the survival rate below which
borrowing constraints become active, µbc

t (η), depends negatively on the individual’s producti-
vity η. In Figure 7 the income endowment points no longer lie along a ray from the origin.
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Figure 9: Comparing pension systems
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(c) Effective pension contribution rate
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Legend The fair-rate share ζi(η) measures the individual’s gross yield on social annuities
under pension system i expressed as a share of the actuarially fair yield, (1 + r̄pt+1)/µ̄. A
negative value for the effective pension contribution rate θnt (η) implies that the pension system
makes individuals wealthier in a partial equilibrium sense.
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·
[
(1− θ)wt + θζB(η)wt

µ̄p
t

µ̄
+

λµ̄p
twt+1

1 + rt+1

])
ηh(µ, η)dµdη

]
. (74)

The main features of the steady-state equilibrium with a small and large pension system B

(labeled SB) are reported in, respectively, columns (e) and (f) of Table 2. We focus attention

at the large pension system featuring θ = 0.025. Comparing columns (b) and (f) we find

that output per efficiency unit of labour drops by 1.74% (ŷ = 9.668) whilst the steady-state

capital intensity falls by 6.19% (k̂ = 0.350). As a result of the decrease in the capital intensity,

the annual interest rate rises by 12 basis points (r̂a = 5.23%) whilst the wage rate falls by

1.74%. The proportion of constrained individual rises from 5.83% to 19.33%. The adverse

selection index, as defined in (35) above, increases to ÂS = 1.40, the asset-weighted average

survival rate of annuitants rises to ˆ̄µp = 0.70, and the return on private annuities decreases

slightly to ˆ̄rp = 9.98. Finally, as the welfare indicators at the bottom of Table 2 reveal,

under pension system B poor-health individuals are better off compared to the AI case as a

result of the redistributionary feature of system B. The opposite holds for the healthy agents.

Even though the policy maker cannot observe an individual’s health status, by including a

redistributionary component in the public pension system, the unhealthiest in society are

aided somewhat.

In Figure 10 we present the η-averaged profiles for consumption during youth and old-age,

annuity demand, and lifetime utility. These profiles are defined as:

Ĉy(µ)

ŵ
= (1− θ)

∫ ηH

ηL

[1− ISB(µ, η)]
ηh(µ, η)

hµ(µ)
dη

+

(
1− θ +

λˆ̄µp

1 + r̂

)∫ ηH

ηL

Φ

(
µ,

1 + r̂

ˆ̄µp

)
ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη

+ θ
ˆ̄µp

µ̄

∫ ηH

ηL

Φ

(
µ,

1 + r̂

ˆ̄µp

)
ζB(η)ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη, (75)

Ĉo(µ)

ŵ
=

∫ ηH

ηL

(
λ+ θζB(η)

1 + r̂

µ̄

)
[1− ISB(µ, η)]

ηh(µ, η)

hµ(µ)
dη

+

(
(1− θ)

1 + r̂

ˆ̄µp
+ λ

)∫ ηH

ηL

[
1− Φ

(
µ,

1 + r̂

ˆ̄µp

)]
ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη

+ θ
1 + r̂

µ̄

∫ ηH

ηL

[
1− Φ

(
µ,

1 + r̂

ˆ̄µp

)]
ζB(η)ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη, (76)

Âp(µ)

ŵ
= (1− θ)

∫ ηH

ηL

ISB(µ, η)
ηh(µ, η)

hµ(µ)
dη

−

(
1− θ +

λˆ̄µp

1 + r̂

)∫ ηH

ηL

Φ

(
µ,

1 + r̂

ˆ̄µp

)
ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη

− θ
ˆ̄µp

µ̄

∫ ηH

ηL

Φ

(
µ,

1 + r̂

ˆ̄µp

)
ζB(η)ISB(µ, η)

ηh(µ, η)

hµ(µ)
dη, (77)
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where ISB(µ, η) = 0 if Âp(µ, η) < 0 and ISB(µ, η) = 1 if Âp(µ, η) ≥ 0.7 The profiles for SB

and SA (in Figure 6) are very similar.

4.3 Pension system C

The final case we consider is pension system C under which the government engages in more

extreme redistribution from the rich to the poor (than under system B) by providing every

surviving individual with the same pension payment:

Rs
t+1(η) = R̄s

t+1, (78)

where R̄s
t+1 is to be determined below. The clearing condition for the public pension system

is given in this case by:

(1 + rt+1)θη̄wtLt = Lt

∫ µH

µL

∫ ηH

ηL

µR̄s
t+1h(µ, η)dηdµ, (79)

so that R̄s
t+1 is given by:

R̄s
t+1 = θη̄wt

1 + rt+1

µ̄
. (80)

Expressing the pension receipt in terms of the contribution made during youth we find for a

person of type η that Rs
t+1(η) = ζ(η)θwt(η) where ζ(η) is given by:

ζ(η) = ζC(η)
1 + rt+1

µ̄
, ζC(η) ≡

η̄

η
. (81)

See Figure 9 for features of pension system C. It follows from (81) that for individuals with

above-average productivity, η > η̄, the rate of return on social annuities falls short of the

actuarially fair social annuity yield, (1 + rt+1)/µ̄. In contrast, below-average individuals

get a better-than actuarially fair rate on the pension contributions. Intuitively these results

follow from the fact that the pension system redistributes resources from productive to less

productive agents.

Qualitatively system C is very similar to system B (in that both feature redistribution for

healthy to unhealthy agents) and the key expressions characterizing system C can be obtained

by replacing ζB(η) with ζC(η) in equations (68)–(77). The main features of system C are the

following. First, the comparison of columns (b) and (g) in Table 2 reveals that output and

wages fall by 1.83% (ŷ = 9.660) and the capital intensity drops by 6.49% (k̂ = 0.349). Out of

7Using Figure 7 the indicator function ISB(µ, η) can be characterized a bit further. For µL ≤ µ < µ̂bc(ηH)
all individuals are constrained, i.e. ISB(µ, η) = 0 for all η ∈ [ηL, ηH ]. Similarly, for µ̂bc(ηL) ≤ µ < µH all
individuals are unconstrained, i.e. ISB(µ, η) = 1 for all η ∈ [ηL, ηH ]. Finally, for µ̂bc(ηH) ≤ µ ≤ µ̂bc(ηL) we
define the critical level of η at which borrowing constraints cease to bind, i.e. η̂bc(µ) is the inverse function of
µ̂bc(η) in that domain. Then ISB(µ, η) = 0 for ηL ≤ η < η̂bc(µ) and ISB(µ, η) = 1 for η̂bc(µ) ≤ η ≤ ηH .
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Figure 10: Steady-state profiles under pension system B

(a) Youth consumption (b) Old-age consumption
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(c) Annuity demand (d) Expected utility
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Legend The solid lines depict the steady-state profiles under pension system B (SB), and the
dashed lines visualize the profiles for the asymmetric information (AI) case without pensions.
In both cases adverse selection results in a single pooling rate of interest on annuities, r̄pt+1,
and agents with poor health face binding borrowing constraints. The SB case has been drawn
for a large system featuring θ = 0.025.
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the three pension systems considered, system C features the largest macroeconomic effects.

Redistribution is macroeconomically costly. Second, from Figure 9 it is clear that pension

system C indeed features the highest degree of redistribution from healthy to unhealthy

individuals. Indeed, as can be observed in panel (c) the effective contribution rate θnt (η)

becomes positive for the most healthy individuals. Such individuals experience the pension

system as a tax burden. Third, as is shown in Figure 8 low-ability types are affected most

severely by borrowing constraints under pension system C. Finally, the individual η-averaged

profiles for consumption, annuity demands, and utility are depicted in Figure 11. These

profiles are very similar to the ones we found for system B.

5 Privatizing social security

The key message of the previous section is loud and clear. The mandatory funded pension

systems that we have studied are immune to adverse selection by design but they exacerbate

the adverse selection problem in the market for private annuities, increase the fraction of

borrowing-constrained (‘over-annuitized’) individuals in the population, and lead to long-run

crowding out of capital and substantial output losses. This begs the following question: is

it better to privatize social security altogether and to allow individuals to insure against

longevity risk in the private annuity market even though this market is not perfect? Referring

to Table 2 we find that abolishing the large pension system A (featuring θ = 0.025) would

increase output by 1.65% in the long run. In addition, it would increase steady-state welfare

of all corner types in the economy, cf. the information contained in columns (d) and (b). At

least in the long run, privatization is a ‘win-win’ scenario.

Of course, comparing steady states gives only part of the answer. What matters is whether

or not is possible to abolish the funded pension system in a Pareto improving manner, i.e. is it

a ‘win-win’ scenario to all generations? To answer this question we now study the transitional

dynamic effects of abolishing pension system A. The economy is in the steady state for the SA

system with θ = 0.025 and the capital intensity is equal to k̂SA = 0.351. At shock-time t = 0,

the pension system is abolished so that young individuals do not pay the pension contribution

anymore, i.e. wage income from t = 0 onward equals wt(η) and pensions receipts from period

t = 1 onward are equal to zero, Rs
t (η) = 0. Of course the old survivors at the time of the

shock receive the pension they saved for, i.e. Rs
0(η) > 0.

Figure 12 depicts some of the key features of the transition process. Panel (a) shows that

the capital intensity is predetermined at impact but thereafter rises monotonically to settle

at the new steady-state level associated with the AI equilibrium, k̂AI = 0.373. Panel (b) show

the percentage change in youth-consumption for healthy and unhealthy individuals with the

lowest skill level. Interestingly, the healthy individuals decrease their consumption whilst the

unhealthy increase it. The response of the latter group of people is easy to understand: these
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Figure 11: Steady-state profiles under pension system C

(a) Youth consumption (b) Old-age consumption

Ĉy(µ) Ĉo(µ)
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(c) Annuity demand (d) Expected utility

Âp(µ) EΛ̂(µ)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Legend The solid lines depict the steady-state profiles under pension system C (SC), and the
dashed lines visualize the profiles for the asymmetric information (AI) case without pensions.
In both cases adverse selection results in a single pooling rate of interest on annuities, r̄pt+1,
and agents with poor health face binding borrowing constraints. The SC case has been drawn
for a large system featuring θ = 0.025.
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individuals were facing severe borrowing constraints in the SA system (and will continue to

do so to a lesser degree in the AI equilibrium). Because the pension system is abolished

(and θ = 0) they can increase their consumption during youth and reduce the degree of

overannuitization. Note that in panel (c) the overannuitization faced by the unhealthy is

illustrated by the dramatic fall in old-age consumption for period t = 1 (when the surviving

shock-time young are old) and beyond. Finally, in panel (d) we show that there is a strong

increase in the demand for private annuities by the healthy agents.8 There is virtually no

transitional dynamics in µbc
t which falls from µ̂bc = 0.2090 to µbc

0 = 0.1026 and thereafter

settles at µ̂bc = 0.1025. It follows that all agents featuring µ < 0.1025 face borrowing

constraints during youth no matter when they are born.

In Figure 13 we illustrate the effects on lifetime welfare for the four corner types in the

economy, i.e. (µL, ηL), (µL, ηH), (µH , ηL), and (µH , ηH). Regardless of when they are born

and irrespective of their productivity level, the unhealthiest individuals are better off as a

result of the pension abolishment. Expected lifetime utility rises over time so for all corner

types the gain is higher the later they are born. Interestingly, healthy agents born at the

time of the shock are worse off than they would have been under the SA system. Privatizing

social security is not a ‘win-win’ scenario to all generations.

6 Conclusion

In our paper we have developed an overlapping generations model which features adverse se-

lection in the private annuity market and endogenously determined borrowing constraints in

the capital market. Consumers are assumed to be heterogeneous in two dimensions—working

ability and health status—which in the absence of perfect information leads to adverse se-

lection in the private annuity market. Furthermore, they are restricted from borrowing against

their anticipated future wage income due to the borrowing constraints. We demonstrate nu-

merically that the informational asymmetry matters quantitatively in that, compared to the

world with perfect information, it causes first-order reductions in output per efficiency unit

of labour and the capital intensity . Starting from the benchmark model with adverse se-

lection we introduce a fully-funded social security system and study its impact on capital

accumulation and individual welfare under three different pension benefit rules.

We find that the social security system affects both capital accumulation and the propor-

tion of individuals that are facing borrowing constraints. Capital crowding out increases and

borrowing constraints become more prevalent the larger is the pension system. Intuitively

a social security system causes more consumers to be over-annuitized and to face borrowing

constraints. They cannot undo the effects of social security by transacting in their private

accounts because any attempt to go short on annuities (demanding life-insured loans) would

8Since youth-consumption, private annuity demand, and old-age consumption are linear in η for both SA
and AI systems, it follows that the information in panels (b)-(d) is the same for all values of η.

37



Figure 12: Abolishing pension system A

(a) Capital intensity (b) Youth consumption
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Legend At time t = 0 pension system A with a contribution rate of θ = 0.025 is abolished
permanently. The system is initially in the steady state featuring a capital intensity k̂SA =
0.351. Panel (a): over time the economy converges monotonically to the steady-state for the
AI case with k̂AI = 0.373. Panels (b)-(c) show the percentage change in, respectively, youth
and old-age consumption for an individual of type (µi, ηL). Panel (d) depicts the percentage
change in annuity demand of a person of type (µH , ηL). See also Table 2.
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Figure 13: Lifetime utility of corner types

(a) Unhealthy and low productivity (b) Unhealthy and high productivity
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Legend The solid lines depict the steady-state lifetime utility levels attained by the different
corner types under pension system A (SA) with θ = 0.025. The abolishment of the pension
system occurs at time t = 0 and affects lifetime utility of different types over time. Unhealthy
agents benefit from the policy initiative no matter when they are born. Healthy individuals
born at the time of the shock are worse off as a result of it.
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reveal their health status to the insurance companies in a world with asymmetric information.

The welfare effects of social security depend both on the pension recipient’s type and on

the specific form of the pension benefit rule. Provided the rule incorporates some implicit or

explicit redistribution from healthy to unhealthy individuals, the latter group will actually

benefit from the existence of the social security system in the steady state. In contrast,

if pension benefits are proportional to an individual’s contributions during youth and the

proportionality factor is the same for everybody then the pension system makes everybody

worse off in the long run.

A comparison of steady-state equilibria is not a guarantee that the privatization of social

security is Pareto improving for all generations. For example, the simulations have shown

that the abolition of a public pension system featuring a proportional benefit rule will harm

shock-time healthy individuals. Even though all other generations and types are better off as

a result, the privatization does not constitute a ‘win-win’ scenario.

In this paper we have intentionally ignored the role of an intentional bequest motive and

its effect on capital accumulation. Of course, the intention to leave bequests to one’s offspring

does affect an individual’s attitude toward private annuities. Indeed, with an operative be-

quest motive, the rational individual will no longer fully annuitize his/her assets. Despite the

high return on private annuities the individual will put aside a certain amount of unannuitized

savings to pass on to their offspring upon death. In future work we intend to generalize the

heterogeneous-agent model developed here by including an intentional bequest motive and to

study the effects of social security with this extended framework.
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Appendix A

In this appendix we show some important results regarding the bivariate uniform distribution

for µ and η that is employed in this paper (see equation (1) for the density function). First

we show how to derive it by using the Farly-Morgenstern Family approach. In doing so we

impose that the marginal distribution of µ (denoted by hµ(µ)) is uniform in the interval

[µL, µH ] whilst the one for η (denoted by hη(η)) is uniform in the interval [ηL, ηH ]. It follows

that:

hµ(µ) =

{
1/(µH − µL) for µL ≤ µ ≤ µH

0 otherwise,
(A.1)
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and:

hη(η) =

{
1/(ηH − ηL) for ηL ≤ η ≤ ηH

0 otherwise.
(A.2)

For future reference we define the unconditional means as:

µ̄ ≡

∫ µH

µL

µhµ (µ) dµ =
µL + µH

2
, η̄ ≡

∫ ηH

ηL

ηhη (η) dη =
ηL + ηH

2
. (A.3)

Next we define the corresponding cumulative distribution functions as:

Hµ(µ) ≡

∫ µ

µL

hµ(s)ds =
µ− µL

µH − µL

, Hη(η) ≡

∫ η

ηL

hη(s)ds =
η − ηL
ηH − ηL

. (A.4)

Rice (2007, pp. 77-78) shows that for any parameter α such that |α| < 1 a bivariate distri-

bution H(µ, η) possessing uniform marginal distributions is obtained by computing:

H(µ, η) = Hµ(µ)Hη(η)
[
1 + α [1−Hµ(µ)] [1−Hη(η)]

]
. (A.5)

Because limµ→µH
Hµ(µ) = 1 and limη→ηH Hη(η) = 1 we find that the marginal distributions

resulting from (A.5) are H(µH , η) = Hη(η) and H(µ, ηH) = Hµ(µ).

By using the expression from (A.4) in (A.5) we find that:

H(µ, η) =
(µ− µL)(η − ηL)

(µH − µL)(ηH − ηL)

[
1 + α

(µH − µ)(ηH − η)

(µH − µL)(ηH − ηL)

]
. (A.6)

It follows from (A.6) that the density function, h(µ, η), is given by:

h(µ, η) ≡
∂2H(µ, η)

∂µ∂η
=

1 + ξ(µ− µ̄)(η − η̄)

(µH − µL)(ηH − ηL)
, (A.7)

where we have used the fact that 2µ̄ = µL + µH , 2η̄ ≡ ηL + ηH , and define the parameter:

ξ ≡
4α

(µH − µL)(ηH − ηL)
. (A.8)

The distribution function (A.6) can thus be written as:

H(µ, η) =
(µ− µL)(η − ηL)

(µH − µL)(ηH − ηL)

[
1 +

ξ

4
(µH − µ)(ηH − η)

]
. (A.9)

Second, we compute some locational parameters for the bivariate uniform distribution.
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The unconditional means are stated in (A.3). For the unconditional variances we find:

σ2
µ ≡ var (µ) ≡ E [µ− µ̄]2 =

∫ µH

µL

µ2hµ (µ) dµ− µ̄2 =
(µH − µL)

2

12
, (A.10)

σ2
η ≡ var (η) ≡ E [η − η̄]2 =

∫ ηH

ηL

η2hη (η) dη − η̄2 =
(ηH − ηL)

2

12
. (A.11)

The following lemma is useful.

Lemma A.1 The following density functions can be derived:

Γ1 (µ) ≡

∫ ηH
ηL

ηh (η, µ) dη
∫ ηH
ηL

h (η, µ) dη
= η̄ + ξσ2

η(µ− µ̄),

Γ2 (η) ≡

∫ µH

µL
µh (η, µ) dµ

∫ µH

µL
h (η, µ) dµ

= µ̄+ ξσ2
µ(η − η̄).

Proof The derivation of proceeds as follows.

Γ1 (µ) ≡

∫ ηH
ηL

ηh (η, µ) dη

hµ (µ)

=
1

ηH − ηL

∫ ηH

ηL

[
[1− ξ(µ− µ̄)η̄]η + ξ(µ− µ̄)η2

]
dη

=
1

ηH − ηL

[
[1− ξ(µ− µ̄)η̄]

η2H − η2L
2

+ ξ(µ− µ̄)
η3H − η3L

3

]
. (A.12)

Note that for χ = η or χ = µ we can write:

χ2
H − χ2

L = (χH − χL) (χH + χL) = 2χ̄ (χH − χL) ,

χ3
H − χ3

L = (χH − χL)
(
χ2
H + χLχH + χ2

L

)
= (χH − χL)

[
(2χ̄)2 − χLχH

]
, (A.13)

χ̄2 − χLχH =
(χH − χL)

2

4
.

Using these results for χ = η, the term in square brackets on the right-hand side of (A.12)

can be simplified to:

[·] = [1− ξ(µ− µ̄)η̄]η̄ (ηH − ηL) + ξ(µ− µ̄)
(ηH − ηL)

[
(2η̄)2 − ηLηH

]

3

= (ηH − ηL)

[
[1− ξ(µ− µ̄)η̄]η̄ +

ξ(µ− µ̄)
[
4η̄2 − ηLηH

]

3

]

= (ηH − ηL)

[
η̄ +

ξ(µ− µ̄)
[
η̄2 − ηLηH

]

3

]
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= (ηH − ηL)

[
η̄ +

ξ(µ− µ̄) (ηH − ηL)
2

12

]
. (A.14)

By using (A.14) and noting the definition of σ2
η in (A.12) we obtain the result to be proved.

The derivation for Γ2 proceeds along similar lines. �
After some straightforward but tedious manipulations we find:

E (µη) =

∫ µH

µL

µηh(µ, η)dµ

=

∫ µH

µL

µ
η̄ + ξσ2

η(µ− µ̄)

µH − µL

dµ

=
1

µH − µL

[
(η̄ − ξσ2

ηµ̄)
µ2
H − µ2

L

2
+ ξσ2

η

µ3
H − µ3

L

3

]

= (η̄ − ξσ2
ηµ̄)µ̄+ ξσ2

η

(2µ̄)2 − µHµL

3

= µ̄η̄ + ξσ2
η

µ̄2 − µHµL

3

= µ̄η̄ + ξσ2
µσ

2
η, (A.15)

where we have used the results from (A.13) for χ = µ. Hence, the covariance between η and

µ is given by:

cov (µ, η) ≡ E (µη)− µ̄η̄ = ξσ2
µσ

2
η, (A.16)

and the correlation coefficient between η and µ is:

cor (µ, η) ≡
cov (µ, η)√
var (µ) var (η)

= ξσµση. (A.17)

If ξ = 0 then µ and η are uncorrelated.

Appendix B

In the presence of binding borrowing constraints, µL < µbc
t < µH , we define the average

survival rate of annuitants by:

µ̄an
t ≡

∫ µH

µbc
t

µhµ(µ)dµ
∫ µH

µbc
t

hµ(µ)dµ
.

In this appendix we prove that µ̄p
t > µ̄an

t > µ̄ and AS t > 1. The proof of µ̄an
t > µ̄ is obvious.

To show that µ̄p
t > µ̄an

t is less trivial. The proof for this result proceeds along the lines of

Heijdra and Reijnders (2012, fn. 7). Individual annuity demand can be written in a separable

44



form as:

Ap
t (µ, η) ≡ Ap

t (µ)η,

with:

Ap
t (µ) ≡ 1− Φ

(
µ,

1 + rt+1

µ̄p
t

)[
wt +

λµ̄p
twt+1

1 + rt+1

]
.

Since ∂Φ(·)/∂µ < 0 it follows readily that ∂Ap
t (µ)/∂µ > 0. The expression for the pooling

rate can be rewritten as:

µ̄p
t

∫ µH

µbc
t

Zt(µ)hµ(µ)dµ =

∫ µH

µbc
t

Zt(µ)µhµ(µ)dµ,

where Zt(µ) is defined as follows:

Zt(µ) ≡ Ap
t (µ)Γ1(µ).

Note that Zt(µ) is increasing in µ (because both Ap
t (µ) and Γ1(µ) are) so that cov(Zt(µ), µ) >

0. Define the following average:

Z̄t ≡

∫ µH

µbc
t

Zt(µ)hµ(µ)dµ
∫ µH

µbc
t

hµ(µ)dµ
.

By definition we have:

∫ µH

µbc
t

Zt(µ)hµ(µ)dµ =

∫ µH

µbc
t

Z̄thµ(µ)dµ

∫ µH

µbc
t

Zt(µ)µhµ(µ)dµ =

∫ µH

µbc
t

[
Zt(µ)− Z̄t + Z̄t

]
[µ− µ̄an

t + µ̄an
t ]hµ(µ)dµ

= µ̄an
t

∫ µH

µbc
t

Z̄thµ(µ)dµ+ cov(Zt(µ), µ)

It follows that µ̄p
t can be written as:

µ̄p
t = µ̄an

t +
cov(Zt(µ), µ)∫ µH

µbc
t

Z̄thµ(µ)dµ
> µ̄an

t ,

where the inequality follows from the fact that cov(Zt(µ), µ) > 0. Hence we have established

that µ̄p
t > µ̄an

t > µ̄ and thus AS t > 1. �
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Appendix C

In this appendix we briefly discuss the micro- and macroeconomic effects of public pensions

under perfect information. This was also the subject matter of Abel (1987). In our discussion

we focus the attention on pension system A. We conclude this appendix with a brief evaluation

of the quantitative results for systems B and C.

Under pension system A the income endowment points are given by:

(1− θ)ηwt, ληwt+1 + θζA
1 + rt+1

µ̄
ηwt. (C.1)

For given factor prices the endowments are linear in η. In terms of Figure C.1, the income

endowment line IEL is a ray from the origin and individuals are distributed on the line

segment ELEH . Note that IEL is a counter-clockwise rotation of the income endowment line

without pensions (the dashed line in the figure). The budget constraints of an individual with

characteristics µ and η are given by:

Cy
t (µ, η) +Ap

t (µ, η) = (1− θ)ηwt, (C.2)

Co
t+1(µ, η) = ληwt+1 +

1 + rt+1

µ
Ap

t (µ, η) + θζA
1 + rt+1

µ̄
ηwt, (C.3)

where we have used the expression for the full-information annuity rate of interest from

(4). Under full information there is no sign restriction on annuity demand. Indeed, if an

individual chooses Ap
t (µ, η) < 0 then he/she purchases a life-insured loan (at the actuarially

fair borrowing rate). As a result the lifetime budget constraint of the individual is:

Cy
t (µ, η) +

µCo
t+1(µ, η)

1 + rt+1
=

[
1− θ + θζA

µ

µ̄

]
ηwt +

ληµwt+1

1 + rt+1
. (C.4)

The effective pension contribution rate is defined as:

θnt ≡ θ

(
1− ζA

µ

µ̄

)
T 0 for µ S µ̄

ζA
. (C.5)

Note that θnt gets larger the unhealthier is the individual so that—in stark contrast to the

asymmetric information case—the unhealthiest individuals actually face a positive contribu-

tion rate. The public pension system provides such individuals with a highly disadvantageous

social annuity rate based on the average survival rate in the population (rather than their

own). Under full information, pension system A thus redistributes resources from unhealthy

to healthy individuals.

Optimal consumption (during youth and old age) and private annuity demand are given
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by:

Cy
t (µ, η) = Φ

(
µ,

1 + rt+1

µ

)[[
1− θ + θζA

µ

µ̄

]
wt +

λµwt+1

1 + rt+1

]
η, (C.6)

µCo
t+1(µ, η)

1 + rt+1
=

[
1− Φ

(
µ,

1 + rt+1

µ

)][[
1− θ + θζA

µ

µ̄

]
wt +

λµwt+1

1 + rt+1

]
η, (C.7)

Ap
t (µ, η) = (1− θ)ηwt − Φ

(
µ,

1 + rt+1

µ

)[
(1− θ)wt + θζA

µwt

µ̄
+

λµwt+1

1 + rt+1

]
η.

(C.8)

In Figure C.1 the choices of the four corner types are illustrated. For a pension system

of realistic size, IEL lies to the right of MRSC and all individuals purchase private annuities,

i.e. the nation’s capital stock is not fully owned by the public pension system. For the

lowest-ability individuals consumption occurs at points A (for µL) and B (for µH). For the

highest-ability agents the consumption points are at C (for µL) and D (for µH). Hence, the

introduction of a pension system A of realistic size does not cause the market for life-insured

loans to become active. (For a large pension system, all agents buy life-insured loans and the

national capital stock is owned by the public pension system.)

The fundamental difference equation for the capital intensity is given by:

kt+1 =
1

1 + n

Lt

Nt

[
θη̄wt +

∫ ηH

ηL

∫ µH

µL

Ap
t (µ, η)h(µ, η)dµdη

]
. (C.9)

By substituting (C.8) into (C.9) and simplifying we find:

kt+1 =
1

1 + n

Lt

Nt

[
η̄wt −

∫ µH

µL

[
(1− θ)wt + θζA

µwt

µ̄
+

λµwt+1

1 + rt+1

]

Φ

(
µ,

1 + rt+1

µ

)
hµ(µ)Γ1(µ)dµ

]
, (C.10)

where factor prices follow from (20)–(21).

In column (b) of Table C.1 we report some key features of the steady-state equilibrium un-

der pension system A. Comparing columns (b) and (a) we find that output per efficiency unit

of labour and the wage rate both increase slightly (by 0.28%) whilst the steady-state capital

intensity is increased somewhat (by 1.04%). As a result of the increase in the capital intensity,

the annual interest rate falls by 2 basis points (r̂a = 4.98%). Finally, as the welfare indicators

at the bottom of Table C.1 reveal, under pension system A healthy (unhealthy) individuals

are better (worse) off compared to the FI case. The pension system slightly stimulates capital

accumulation but redistributes resources from unhealthy to healthy individuals.

In columns (c) and (d) of Table C.1 we also report the quantitative results for, respecti-

vely, pension systems B and C. The analytical expressions characterizing these equilibria are
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obtained by replacing ζA in (C.1)–(C.9) by, respectively, ζB(η) and ζC(η) given in (67) and

(81) above. The expression for kt+1 is slightly more complicated because annuity demand is

no longer linear in η under systems B and C:

kt+1 =
1

1 + n

Lt

Nt

[
η̄wt −

∫ ηH

ηL

∫ µH

µL

[
(1− θ)wt + θζi(η)

µwt

µ̄
+

λµwt+1

1 + rt+1

]

Φ

(
µ,

1 + rt+1

µ

)
ηh(µ, η)dµdη

]
, (C.11)

for i ∈ {B,C}. Despite the fact that systems B and C incorporate some (implicit or explicit)

redistribution from healthy to unhealthy individuals, the unhealthy continue to be worse off

under both systems when compared to the FI case without pensions.

Figure C.1: Consumption-saving choices under full information and pension system A

!
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Ct+1(µ,η)
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Ct(µ,η)
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LBC(µL, ηL)
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Legend LBC(µi, ηj) is the lifetime budget constraint for an individual with survival proba-
bility µi and productivity level ηj . The thin lines represent the FI case without pensions. IEL
is the income endowment line and agents are located on the line segment ELEH . MRSC is
the consumption Euler equation under perfect information with actuarially fair annuities at
the individual level. Optimal consumption for individual (µi, ηj) is located at the intersection
of MRSC and LBC(µi, ηj). Provided the pension system is of a realistic size, IEL lies to the
right of MRSC and all individuals purchase private annuities.
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Table C.1: Pensions under full information

(a) FI (b) SAA (c) SAB (d) SAC

θ = 0.025 θ = 0.025 θ = 0.025 θ = 0.025

ŷ 10.000 10.028 10.027 10.025

k̂ 0.395 0.400 0.399 0.399
%Q1 12.34 9.25 8.47 7.55
%Q2 19.81 14.84 14.37 14.07
%Q3 28.73 21.53 21.68 21.99
%Q4 39.12 29.31 30.41 31.31
%SAS 25.06 25.08 25.09
r̂ 6.04 5.99 5.99 5.99
r̂a 5.00% 4.98% 4.98% 4.98%
ŵ 7.250 7.271 7.269 7.268

B̂C 0.00% 0.00% 0.00% 0.00%
ĉy 5.357 5.368 5.367 5.367
%Q1 15.99 15.90 15.98 16.07
%Q2 22.10 22.05 22.10 22.13
%Q3 28.06 28.07 28.06 28.02
%Q4 33.85 33.98 33.86 33.76
ĉo 4.087 4.099 4.099 4.098
%Q1 12.23 12.17 12.26 12.37
%Q2 19.74 19.70 19.77 19.81
%Q3 28.75 28.76 28.75 28.72
%Q4 39.28 39.37 39.22 39.10

EΛ̂(µL, ηL) 1.014 1.002 1.003 1.004

EΛ̂(µH , ηL) 1.433 1.450 1.463 1.484

EΛ̂(µL, ηH) 1.529 1.522 1.521 1.521

EΛ̂(µH , ηH) 2.143 2.153 2.149 2.146

Note Here %Qj denotes the share accounted for by skill quartile j (averaged over all survival
rates) of the variable directly above it. %SAS is the share owned by the social annuity system.
EΛ̂(µi, ηj) gives expected utility for an agent with health type µi and skill type ηi.
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