Hu, Luojia; Kaestner, Robert; Mazumder, Bhashkar; Miller, Sarah; Wong, Ashley

Working Paper
The effect of the patient protection and affordable care act medicaid expansions on financial wellbeing

Working Paper, No. 2016-10

Provided in Cooperation with:
Federal Reserve Bank of Chicago

Suggested Citation: Hu, Luojia; Kaestner, Robert; Mazumder, Bhashkar; Miller, Sarah; Wong, Ashley (2016) : The effect of the patient protection and affordable care act medicaid expansions on financial wellbeing, Working Paper, No. 2016-10, Federal Reserve Bank of Chicago, Chicago, IL

This Version is available at:
http://hdl.handle.net/10419/172926

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The Effect of the Patient Protection and Affordable Care Act Medicaid Expansions on Financial Wellbeing

Luojia Hu, Robert Kaestner, Bhashkar Mazumder, Sarah Miller, and Ashley Wong

September 2016

WP 2016-10
The Effect of the Patient Protection and Affordable Care Act Medicaid Expansions on Financial Wellbeing

Luojia Hu
lu@frbchi.org

Robert Kaestner (corresponding author)
kaestner@uic.edu

Bhashkar Mazumder
bhash.mazumder@gmail.com

Sarah Miller
mille@umich.edu

Ashley Wong
ashley.wong816@gmail.com

a Federal Reserve Bank of Chicago
230 S La Salle St, Chicago, IL 60604

b University of Illinois
815 W. Van Buren St. Suite 525
Chicago, IL 60607 MC-191

C University of Michigan
701 Tappan Ave, Ann Arbor, MI 48109

Abstract: We examine the effect of the Medicaid expansions under the 2010 Patient Protection and Affordable Care Act (ACA) on consumer, financial outcomes using data from a major credit reporting agency for a large, national sample of adults. We employ the synthetic control method to compare individuals living in states that expanded Medicaid to those that did not. We find that the Medicaid expansions significantly reduced the number of unpaid bills and the amount of debt sent to third-party collection agencies among those residing in zip codes with the highest share of low-income, uninsured individuals. Our estimates imply a reduction in collection balances of between $600 to $1,000 among those who gain Medicaid coverage due to the ACA. Our findings suggest that the ACA Medicaid expansions had important financial impacts beyond health care use.

Keywords: health insurance; consumer finance, public policy
JEL Codes: I12, I18, H42

This work was supported by the National Institutes of Health [1R01HD081129-01]. The views expressed here do not represent the views of the Federal Reserve Bank of Chicago or the Federal Reserve System.
The Effect of the Patient Protection and Affordable Care Act Medicaid Expansions on Financial Wellbeing

Highlights

• We evaluated the effect of expanding Medicaid under the Affordable Care Act (ACA) on low-income adults’ financial wellbeing.
• Results indicate that the ACA Medicaid expansions are associated with a decrease of between $51 and $85 in the amount of unpaid balances in collections among people living in zip codes that are most likely affected by the expansions.
• This finding implies that among those likely to have obtained Medicaid coverage, the amount of unpaid balances in collections decreased by between $600 and $1,000.
• The improved financial wellbeing of those who gained Medicaid coverage is an important consequence of the ACA and is likely to have salutary effects on low-income adults’ access to credit and material wellbeing.
1. Introduction

In 2010, President Barack Obama signed the Patient Protection and Affordable Care Act (ACA) into law, which included a provision to expand Medicaid eligibility to low-income adults, many of whom were previously ineligible. A major motivation for this expansion was to provide financial security to individuals if they experience a sudden deterioration in their health and cannot afford to pay for their medical expenses.

Indeed, the financial consequences of not having health insurance can be severe for individuals who become seriously ill or injured. According to data from the 2012 Medical Expenditure Panel Survey (MEPS), the annual cost of inpatient care for a person aged 18 to 64 who was hospitalized was approximately $15,000, and the annual cost of all types of care for that person was $25,000. Studies using survey data suggest that the uninsured often have difficulty paying medical expenses, become delinquent on their medical and non-medical bills, and are more likely to be contacted by collection agencies.\(^1\) Dobkin et al. (2015) find that uninsured individuals who become hospitalized experience a host of financial setbacks over the next four years including reduced access to credit, a 170% increase in unpaid medical bills, and a more than doubling in the likelihood of filing for bankruptcy.

These statistics highlight how the Medicaid expansions under the ACA could play an important role in providing low-income individuals with financial protection by improving their ability to pay their medical expenses. Additionally, expanded health care coverage may also have indirect effects on financial wellbeing. Access to health insurance has the potential to improve access to credit markets, increase savings, and facilitate consumption of other goods and services. These other channels can potentially have salutary effects on the wellbeing of low-income individuals.\(^2\)

\(^1\) Cunningham (2008) reported that 34% of those without medical insurance had trouble paying their medical bills, and among this group, 62% had been contacted by a collection agency. Doty et al. (2008) found that 62% of persons that had trouble paying medical bills reported having more than $2,000 of outstanding medical bills, while 20% reported having more than $8,000 in outstanding medical bills. Finkelstein et al. (2012) reported that approximately 60% of participants in the control group of the Oregon Health Insurance Experiment currently owe money for a medical expense, and 36% indicated that they borrowed money or skipped other bills to pay for medical.

\(^2\) Doty et al. (2008) found that among the uninsured who were paying off medical bills, 47% stated that they had exhausted their savings and 40% reported that they had foregone other necessities such as food, heat, or rent in order
Despite the potentially important role that publicly provided health insurance plays in the financial wellbeing of low-income individuals, only two studies have evaluated the role of Medicaid on consumer financial wellbeing. Gross and Notowidigdo (2011) examined the Medicaid eligibility expansions in the 1990s, which were mostly for children. They found that increasing Medicaid eligibility by 10 percentage points reduced personal bankruptcy by about 8%. The Oregon Health Insurance Experiment (Baicker et al., 2013; Finkelstein et al., 2012) found that Medicaid coverage of low-income adults in Oregon reduced the likelihood of borrowing money or skipping bills to pay for medical care by 44% and reduced the probability of having a medical collection by 23%. Other studies have evaluated the effects of other types of health insurance coverage on financial outcomes and have also documented substantial improvements in financial wellbeing (Barcellos and Jacobson, 2015; Mazumder and Miller forthcoming; Dobkin et al., 2015).

We extend this literature by evaluating the effect of the expansion of Medicaid under the ACA to low-income adults on consumer financial wellbeing. Although originally intended to apply to all states, in 2012 the U.S. Supreme Court decision in the *National Federation of Independent Business v. Sebelius* case made the Medicaid expansions optional for states. As of the end of 2015, 29 states and the District of Columbia had chosen to expand Medicaid coverage (at least in some form) and 21 states had opted not to expand Medicaid coverage. Rates of health insurance coverage have improved substantially more in the states that offer expanded Medicaid coverage than in those that do not (Black and Cohen 2015; Kaestner et al., 2016; Sommers 2014; Wherry and Miller 2016), and total Medicaid enrollment in these states increased by 12.3 million between 2013 and 2015 (Centers for Medicare & Medicaid Services, 2015). We exploit the variation in Medicaid eligibility and coverage induced by these state-level policy choices to estimate the effect of the Medicaid expansions on individual financial outcomes. We utilize the synthetic to pay medical bills. Leininger et al. (2010) reported that SCHIP expansions were associated with increased consumption and savings. In contrast, Gruber and Yelowitz (1996) found that savings and asset accumulation were reduced as Medicaid eligibility expanded in late 1980s and early 1990s.

3 Louisiana and Montana will begin Medicaid expansion in 2016. As we discuss below, in our analysis we drop some states that expanded during 2014 or 2015. In some specifications we also focus on a narrower sample of states who had not experienced a significant expansion of Medicaid prior to 2014.
control approach (Abadie et al., 2010) to address concerns about the potential non-randomness of states’ decisions to expand Medicaid.

As far as we are aware, ours is the first national study that evaluates how public health insurance coverage for non-elderly adults affects financial wellbeing. We use data from a large, nationally-representative sample of credit reports, the Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP) dataset to conduct our analysis. The CCP data contain timely information on a random sample of the credit reports of approximately 38 million adults in the United States each quarter (covering about 17% of the adult population) and provide many indicators of financial wellbeing. We focus on several measures of debt and delinquency that potentially could be affected within the two-year period since the expansion of Medicaid in 2014. Specifically, we examine credit score, total debt, total debt past due, credit card debt, credit card debt past due, the number of non-medical bills sent to collections, and the total non-medical balance outstanding in collections.

Our main finding is that Medicaid expansions that began in 2014 significantly reduced the number of unpaid non-medical bills and the amount of non-medical debt sent to third-party collection agencies among people living in zip codes that are most likely affected by the expansions. Our baseline intention-to-treat (ITT) estimates indicate that the Medicaid expansions are associated with a decrease in the amount of unpaid balances in collections of between $51 and $85. This effect is an average over the entire sample and includes many individuals who did not obtain Medicaid insurance coverage through the expansion. Rescaling this estimate based on the fraction of the target population who were likely to have obtained insurance coverage yields estimates of the effect of obtaining Medicaid (i.e., treatment on the treated) of between $600 and $1,000.
2. Framework for the Analysis

Conceptual Framework

Medicaid provides health insurance coverage at no, or very low, cost to the enrollee. Given the low income of individuals who became eligible for Medicaid through the ACA (<138% of federal poverty), even relatively minor, unexpected medical expenses can represent a substantial fraction of their total income, and more serious illness may be catastrophic financially for them. Consequently, we hypothesize that the financial protection provided by Medicaid for low-income individuals should largely eliminate most of their significant medical expenses, as well as reduce delinquencies and other indicators of financial distress that are the focus of our study.

While the Medicaid expansion should decrease the amount of unpaid medical bills and delinquencies, the effects of gaining Medicaid eligibility on debt and borrowing are theoretically ambiguous. The financial protection afforded by Medicaid coverage should reduce the need for low-income individuals to borrow to smooth consumption when medical issues arise. Thus, Medicaid has the potential to decrease a person’s borrowing and total debt. Alternatively, Medicaid may reduce the need for individuals to save for precautionary reasons, which may increase consumption and borrowing. In this case, the Medicaid expansions would be associated with increases in total debt for low-income individuals. In sum, the effect of the Medicaid expansions on measures of debt are ambiguous and an empirical question.

Research Design

To study the effect of Medicaid on consumer, financial wellbeing, we use variation in Medicaid eligibility and coverage stemming from the expansion of Medicaid under the ACA, which targeted non-elderly adults with incomes below 138% of the Federal Poverty Level (FPL). The fact that not all states expanded Medicaid, as originally put forth in the ACA, provides plausibly exogenous variation in health insurance coverage among low-income adults that can be used to identify estimates of the effect of Medicaid eligibility on consumer financial wellbeing.
There is a large literature that examined the effect of prior Medicaid expansions and almost all of the studies used a difference-in-differences (DiD) research design. The implementation of the DiD method is straightforward and consists of a comparison of changes in outcomes before and after the expansion of Medicaid for individuals in states that did and did not expand Medicaid. Individuals living in states that expanded Medicaid are the treatment group and those in states that did not expand Medicaid are the comparison group. The key assumption underlying the validity of the DiD approach is that, in the absence of the ACA Medicaid expansions, changes in the financial indicators of wellbeing would be the same for persons in states that did and did not expand Medicaid. This assumption is often referred to as the “parallel trends” assumption.

The parallel trends assumption is often difficult to maintain in practice as preliminary analyses of our data indicated. The failure of the parallel trends assumption is perhaps unsurprising given that the DiD approach assumes that all non-expanding states (e.g., Texas and Florida), provide a good comparison for states that did expand Medicaid (e.g., Illinois and California). Therefore, instead of the usual DiD approach, we implement the synthetic control method of Abadie et al. (2010), which uses a matching procedure to create a synthetic comparison (control) group composed of a weighted average of observations from states that did not expand Medicaid. The Abadie et al. (2010) approach is in the same spirit of DiD because the estimate of the effect of Medicaid on consumer financial outcomes is obtained by taking the difference in means between treated states and a weighted average of non-treated states (i.e., synthetic control), but only in the post-intervention period of 2014 and 2015. The Abadie et al. (2010) approach assumes that pre-intervention differences between treatment and control groups are zero. Indeed, the approach’s objective is to select a comparison group in such a way as to minimize the pre-intervention differences in means between the treatment group and the control group.

The key to the Abadie et al. (2010) approach is the selection of the weights that are used to construct the synthetic control group, or counterfactual outcome. Following Abadie et al. (2010), we

4 We find evidence that year effects for some outcomes differed between treated and untreated states prior to the ACA Medicaid expansions.
choose weights that minimize the differences between the pre-Medicaid expansion mean values of the
dependent variable and covariates of the treatment and control groups. The argument underlying this
approach is that if the pre-expansion means are equal between treated and untreated states, then the post-
Medicaid expansion difference between the groups is likely to represent a valid estimate of the effect of
the Medicaid expansion. An advantage of the Abadie et al. (2010) approach is that the closeness of the
match can be assessed easily (e.g., graphically), and the weight for each potential comparison state is
provided.5

There are a variety of ways to select weights that are used to construct the synthetic comparison
group and it is not obvious that there is one correct method. Therefore, we use two approaches. Our first
approach minimizes the difference between the pre-expansion values of the dependent variable and
covariates of treated and untreated states for each pre-expansion year. As an alternative, we also minimize
the difference between the average value of the dependent variable during the pre-expansion period, the
2013 value of the dependent variable, and each pre-expansion value of the covariates.6

Once the weights are selected and the synthetic comparison group is constructed, the estimates of
the effect of Medicaid on financial wellbeing are derived by taking the post-2014 (Medicaid expansion)
mean difference between the outcome in the treatment group (combined into one unit) and in the synthetic
comparison group. Inferences for these estimates are derived from permutation tests (randomization
inference). These tests consist of performing the analysis 1,000 times, but each time using randomly-
selected states to form the treatment group. For the actual treatment group and each of these 1,000
“random” estimates, we calculate the pre- and post-reform mean squared prediction error (MSPE), or the
average of the squared differences between the financial outcomes in the treatment group and its synthetic
counterpart. We then assess this gap for the states in the treatment group relative to the placebo estimates
by obtaining a \(p \)-value from the entire distribution of the ratios of post/pre-reform MSPE, an approach

5 Only states with positive weights are used to construct the synthetic comparison group.
6 See Kaul et al. (2015) for an analysis of the potential consequences of different approaches; matching on each pre-
period value of the dependent variable reduces the influence of covariates. In our analysis, the method of choosing
weights does not materially affect estimates.
that is similar to the one used by Abadie et al. (2010). This method captures the probability of obtaining estimates as large as the actual treatment group’s while minimizing the influence of placebo estimates from analyses that have poorly matched treatment and synthetic control units.

We identify individuals who are more likely to have been treated due to the Medicaid expansion based on their age and location. However, this targeting is still imperfect. Therefore, our estimates are intention-to-treat (ITT) effects. ITT estimates are useful and provide policy- and theory-relevant evidence of the effect of a state’s expansion of Medicaid on the financial wellbeing of the low-income inhabitants. However, we also provide estimates of the effect of Medicaid coverage on individual financial wellbeing (i.e., treatment on treated) by rescaling the ITT estimates using published estimates of the proportion of individuals in our sample likely to have gained Medicaid coverage.

3. Data

Consumer Credit Panel/Equifax

We use information from the Federal Reserve Bank of New York Consumer Credit Panel/Equifax (CCP) data to measure the financial outcomes of the population between the ages of 19-64. The CCP is a quarterly database containing data from one (Equifax) of the three major credit bureaus. Credit bureaus maintain records for all individuals who apply for credit. The data we use cover all adults with a social security number who have ever applied for any type of credit. We use the nationally representative 5% sample of the CCP data. Our age restriction is designed to ensure that our sample is representative of the adult population below age 65. The resulting sample consists of about 8 million records per quarter.

For our analysis, we use all quarters of data from 2010 through 2015, giving us four years of data prior to the Medicaid expansion and two years of data post-expansion. The CCP contains no socioeconomic information and the only demographic information is birth year. However, there is detailed geographic information including zip code of residence. We utilize the information on age and

7 Only about 8% of individuals between the ages of 20 and 64 have no credit report; this fraction is higher (29%) for those living in low-income Census tracts (Brevoort et al., 2015). Although low-income adults often use informal credit such as payday loans (Agrawal et al., 2009), most individuals have had some interaction with credit markets. For example, the Oregon Medicaid Experiment matched 68.5% of adults earning under the FPL to a credit report.
geography in order to focus on individuals in the income ranges targeted by the Medicaid expansions, namely 138% or less of the FPL. Specifically, we used estimates from the 2008-2012 American Community Survey (ACS) of the share of a zip code adult population under age 65 who are both uninsured and have an income less than 138% of the FPL to select the sample.\(^8\) We selected individuals living in the quartile of zip codes with the highest shares of people that were both uninsured and had income less than 138% of the FPL. We refer to this sample as the “most treated.” This includes about 8,100 zip codes covering all states. On average, 17% of persons in these zip codes were uninsured and had incomes less than 138% of the FPL. In our CCP sample, there are approximately 1.8 million individual records in the top quartile of zip code per quarter. The unit of observation for our analysis is state-by-quarter.

In some analyses, we stratify the sample by age in order to evaluate heterogeneous effects of the Medicaid expansions by age. Young individuals are less likely to experience a serious illness, so they may be less likely to be affected by the Medicaid expansions. However, young individuals are also more likely to be uninsured, and therefore might experience larger effects of the Medicaid expansion. Analyzing the data separately by age allows us to document any differential effects due to age. Thus, we divided the sample into three age groups: 19 to 32, 33 to 44, and 45 to 64.

The CCP database consists of over 600 potential indicators of financial wellbeing based on the various forms of debt and account line information (e.g., credit cards, mortgages, auto loans, etc.). We examine several broad measures of debt. These include: credit score, the total amount of debt (excluding mortgage debt), total amount of debt (excluding mortgage debt) at least 30 days past due, total amount of credit card debt, credit card debt at least 30 days past due, the number of new non-medical collections in

\(^8\) See http://www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/. The American Community Survey provides small area (i.e., zip codes) estimates of uninsured in the five-year data file. We used the 2008-2012 file. The ACS includes an indicator of whether a person is below 138% of FPL and provides health insurance information. For this analysis we are forced to use the 18-64 age range in order to obtain ACS estimates at the zip code level.
the last 12 months, and the total balance of non-medical collections. Previous studies, notably the Oregon Health Insurance Experiment (Baicker et al., 2013; Finkelstein et al., 2012) highlighted how access to insurance had a relatively quick effect in reducing unpaid medical balances reported to third-party collection agencies within a year of the reform. Dobkin et al. (2015) also showed that non-medical collections increased significantly in the first year after a hospitalization, and Barcellos and Jacobson (2015) also found relatively rapid responses of collection balances to insurance coverage. There is less evidence that other financial indicators will respond within two years, although Dobkin et al. (2015) reported that credit card balances and credit limits decreased significantly within one year of hospitalization for both insured and uninsured persons while Mazumder and Miller (2016) found reductions in credit market delinquencies and bankruptcies one year following the expansion of coverage through the Massachusetts health care reform. Although the CCP is supposed to exclude information on medical collections, given the difficulty in classifying collections, there is a possibility that our collections variable includes some medical collections.

In addition to information on financial outcomes from the CCP, we use data on state demographic and socioeconomic characteristics, which are used to match treatment and control states. To capture changing economic conditions at the state level during the pre-reform period from 2010 to 2013, we use annual state poverty rate from the Small Area Income and Poverty Estimates (SAIPE) produced by the U.S. Census Bureau, annual state unemployment rate from the U.S. Bureau of Labor Statistics, and annual state 25th and 75th percentile of the log wage distribution for adults 19-64, calculated using the March Current Population Survey (CPS). We also construct a measure of Medicaid eligibility using the 2010 March CPS sample to capture the share of adults 19-64 that would be eligible for Medicaid in each state and year. Additionally, we aggregate zip code level demographics data to the state level to capture

9 For total amount of debt (past due), we excluded amounts from first mortgage trades, home equity installment trades, and home equity revolving trades. Total (credit card) debt at least 30 days past due excludes trades currently in bankruptcy and includes trades currently 30 days past due, 60 days past due, 90 days past due, 120 days past due or collections, and severe derogatory.

10 We obtain the Medicaid eligibility thresholds from the 2010-2013 Kaiser Family Foundation’s annual reports on Medicaid eligibility rules. (See http://kff.org/medicaid/report/annual-updates-on-eligibility-rules-enrollment-and/)
the population characteristics in the top quartile of uninsured-low-income quartile zip codes. Specifically, we use the 2012, five-year ACS estimates of the following: share of zip code non-elderly adult population Hispanic; share of zip code non-elderly adult population Black; and share of zip code non-elderly adult population with a high school diploma or less.¹¹

Finally, because the CCP data allow us to follow the same adult over time, we can examine the potential for endogenous migration patterns by fixing a person’s state and zip code of residence at the 2013 location, which is immediately prior to the Medicaid expansion. Results are largely unchanged when we restrict the sample in this way- and we verify that our estimates are not sensitive to the year in which we assign state and zip code of residence (see Appendix Table 3). Moreover, recent evidence specific to Medicaid (Schwartz and Sommers, 2014) suggests that there is no evidence that low-income individuals moved in response to past Medicaid expansions. Similarly, evidence on whether low-income persons moved for AFDC/TANF benefits also suggest little migration (Kaestner et al., 2003).

Assigning States to Treatment and Control Groups

As a result of the U.S. Supreme Court ruling on Medicaid (National Federation of Independent Business v. Sebelius), states were given the option of expanding Medicaid to cover all adults with incomes less than or equal to 138% of the FPL beginning in 2014. As of the end of 2015, 29 states and the District of Columbia had expanded Medicaid (in some form) while 21 states had not. For our analysis, however, the classification of treatment and control states differs from this simple distinction. First, since we define the treatment period as the eight quarters spanning from 2014:Q1 through 2015:Q4, we dropped four states (Alaska, New Hampshire, Pennsylvania, and Indiana) from the analysis because they expanded after the beginning of the treatment period.¹² Recall that the synthetic control approach requires

¹¹ These calculations use 18-64 year old persons because these estimates are available from the ACS at the zip code level.

¹² Although Michigan did not expand in the beginning of 2014 we do not drop them since their expansion started by 2014:Q2. The classification error in the case of Michigan is likely to be small.
constructing a comparison group by matching on common, pre-policy outcomes, which necessitates a sharp temporal distinction between the treatment and control groups.

Second, Delaware, Massachusetts, New York, Vermont, and Washington D.C. fully expanded Medicaid to parents and childless adults prior to 2014; we place them in the control group since they were effectively untreated in 2014 and 2015 and did not change status. Third, there were seven states that expanded Medicaid under the ACA (Arizona, California, Connecticut, Hawaii, Iowa, Minnesota, and Washington) and two states (Maine and Wisconsin) that did not opt to expand under the ACA that had partially expanded Medicaid to the low-income adult population in some significant way prior to 2014.13 These nine states that were “prior expanders” pose the largest challenge for classification. To address this issue, we consider two samples: (1) a broad sample where we include these nine states (seven in the treatment group and 2 in the control group) and (2) a narrow sample that drops these nine states from the analysis.

Thus, for our broad sample we have 21 states in the treatment group, 26 states in the control group, and 4 states excluded. In our narrow sample, we have 14 states in the treatment group, 24 states in the control group, and 9 states excluded. Appendix Table A1 shows how we classify the states.

4. Results

Selecting Weights

The synthetic control approach first requires the selection of weights to construct the comparison group. The weights are chosen to minimize differences in pre-2014 outcomes and covariates between states that did and did not expand Medicaid. We use two approaches for matching on pre-2014 values: we

13 We base this classification on Garrett and Kaestner (2015). It is worth noting that an additional six states that expanded Medicaid under the ACA (Colorado, Illinois, Maryland, New Jersey, Oregon, and Rhode Island) and one state (Tennessee) that did not expand under the ACA also had partial Medicaid expansions but their pre-2014 expansions were sufficiently minor in importance to be reasonably ignored. There is considerable variation in these earlier state expansions in terms of coverage (e.g., parents and/or childless adults), benefits (e.g., outpatient only) and generosity (income eligibility). More detailed information can be found in Heberlein et al., 2011 and Heberlein et. al. 2012.
match on each pre-2014 value of the dependent variable and covariates, and we match on the pre-2014 average and 2013 values of the dependent variable, and each pre-2014 value of covariates.14

Table 1 presents the results of the matching procedure for one dependent variable: total collection balance in past 12 months.15 We show the means for treated states, means for control states (unweighted), and means for the synthetic control states selected using the two matching procedures. The most notable result is the close match between the pre-period (2014) means of the total collection balance between the treated states and the synthetic control states. In contrast, the pre-2014 means for the treated and control states (unweighted) are considerably different. The close tracking of the pre-2014 means between the treated states and the synthetic control states bolsters the case for the credibility of the research design and the interpretation of estimates from it as causal.

Estimates of the Effect of Medicaid Expansions on Consumer Financial Wellbeing

Figure 1 shows the time series for all six indicators of financial wellbeing for our broad sample of states where we match on all pre-2014 values of the dependent variable and covariates. Figure 2 presents similar time series for the narrow sample of states. As can be seen in Figure 1, the pre-2014 time trends in the financial indicators are virtually identical for the treated and synthetic control groups. This graphical evidence strongly supports the validity of the synthetic control research design. Similarly, Figure 2 shows very similar pre-2014 trends in financial indicators between the treatment and control groups. Both figures, however, show that at least through the end of 2015, there appears to be little or no effect of the Medicaid expansions on most indicators of financial wellbeing. The exceptions are the two outcomes related to bills reported to third-party collection agencies: there was a clear decline in the number of bills sent to collections, as well as a decrease in the amount of balances in collections in the treated states.

Table 2 presents point estimates and p-values of the post-2014 differences in outcomes between treatment and control groups corresponding to Figures 1 and 2 (columns 2 and 5). For each outcome, we

14 We also estimated models using (1) only the average pre-treatment dependent variable along with covariates and (2) only using the 2013 lagged value of the dependent variable along with covariates and obtained similar results.

15 In Appendix Table 1, we provide the weights for each potential control state that were used to construct the synthetic control states for all six dependent variables used in the analysis. Many states get zero weights.
also show the pre-reform means for the treated states in each of our two samples (columns 1 and 4), along with estimates based on our alternative matching procedure for constructing the synthetic control group (columns 5 and 6). We begin the discussion of results with credit score (row 1), which is a summary measure of credit-worthiness that largely governs an individual’s access to credit. We find little evidence that the Medicaid expansion affected credit scores of those living in the most treated zip codes within the expansion states. The coefficient estimates are all small relative to the sample mean, and only marginally significant at the 10 percent level in one of four specifications. The lack of effect on this outcome is not necessarily surprising, as credit scores use several years of credit history and may therefore be slow to change.

Row 2 presents the results for total debt excluding mortgage liabilities. Recall, that the effect of the Medicaid expansion on debt is theoretically ambiguous. None of the estimates in row 2 are statistically significant and all are small relative to the mean or standard deviation. It is important to note that the mean value of total debt masks considerable variation between those individuals who are likely to be affected by the Medicaid expansions and those who are not. Those who are likely affected by the Medicaid expansion have debt levels that are likely to be considerably lower than average. For example, for those living in the most treated zip codes (top quartile of zip codes ranked by un-insurance and income less than 138% of the FPL), the pre-2014 mean of total debt is about $11,000 (column 1 of Table 2). The corresponding figure for those living in the least treated zip codes is significantly higher at approximately $17,000 (column 1 of Table 4). However, even this $6,000 difference likely underestimates the difference between those likely and unlikely to be affected by the Medicaid expansions because there are both high- and low-income individuals in both samples. These differences imply that simply comparing the coefficient to the pre-Medicaid expansion mean may not be an accurate approach to assessing the magnitude of the effects. In addition, we may have less power to detect significant changes for some debt measures because the group affected by the Medicaid expansion has a relatively smaller impact on the average total debt.
Table 2 also presents the results for total debt past due (row 3). Estimates of the post-2014 difference between the treated and synthetic control states are all positive, small relative to the mean, and not statistically significant. While some estimates are sizable (25%) relative to the standard deviation, it is important to note that for the group likely affected by Medicaid, the mean and standard deviation are expected to be considerably above the mean because income and past due debt are negatively correlated. Again, it is instructive to compare the pre-2014 mean of individuals living in different zip codes. The pre-2014 mean of total debt past due for individuals in the most treated zip code is $1,459, whereas the corresponding figure for individuals in the least treated zip codes is $1,144, or 22% more (see Tables 2 and 4). Moreover, the $1,144 value is a much lower (50%) fraction of total debt than is the $1,449. As discussed earlier, the heterogeneity in the amount of debt and past due debt by income level implies that for measures of delinquent debt, we will have relatively more statistical power. Nevertheless, estimates of the effect of the Medicaid expansions on amount past due are not close to being statistically significant.

We also examine the effect of the Medicaid expansions on total credit card debt in Table 2. The estimates of the post-2014 difference with respect to credit card debt (row 4) are all negative, and approximately the same magnitude (-$2 to -$22), but statistically insignificant. Relative to the 2013 mean of approximately $2,800, the estimates are small. The estimates of the effects of the Medicaid expansions on credit card debt past due (row 5) are also negative and not statistically significant, and range from -$7 to -$59. For this outcome, individuals in the most treated zip codes have a lower pre-2014 mean amount of credit card debt past due than individuals in the least treated zip codes (see Table 4). This suggests that both the total amount of credit card debt and amount of credit card debt past due rise with average income.

The last two outcomes in Table 2 relate to non-medical bills that are past due and sent to third-party collection agencies: the number of collections and the total amount of collections. The estimated effects on the number of non-medical collections (row 6) are all negative and range from -0.018 to -0.048. In two of four cases, they are statistically significant at the 5% level. Similarly, estimates of the effect of the Medicaid expansions on the amount of collections (row 7) are also all negative and in three out of four
cases statistically significant at the 1%, 5% or 10% level-. The point estimates range from -$51 to -$85. The estimates are also slightly larger (more negative) for the narrow sample, where states had virtually no prior Medicaid expansion than the estimates obtained when including the additional 10 states that had some partial expansion. This finding is what would be expected if inclusion of the 10 states with prior expansions in the treatment group resulted in attenuated estimates because of the smaller treatment effects in those states.

The significant decreases in the number of collections and collection balance post-2014 is consistent with the expectation that expanded Medicaid coverage would reduce the debt burden of those who obtain coverage. Dobkin et al. (2015) found that hospitalization among the uninsured led to increased collection balances for both medical and non-medical bills, although the effects were larger for medical collections. As previously noted, while our measure of collections is ostensibly for non-medical debt, there is a non-trivial likelihood that it includes at least some medical debt because of the difficulty of classifying the type of debt.

The estimates described above capture the overall change in financial outcomes among the entire adult population living in our target zip codes. However, only a fraction of these individuals actually obtained health insurance coverage through the ACA Medicaid expansions. Using ACS data, we estimate that in our most treated zip codes, approximately 17% of individuals were uninsured and had incomes below 138% of the FLP. If we assume that half of this group gained coverage as a result of the Medicaid expansions and scaled our estimates of the effect of the Medicaid expansions on collection balances by this value, the implied treatment-on-treated (TOT) estimates range between -$600 and -$1,000.16 This is a rough approximation of TOT estimates and relatively small changes in the share of the sample that is assumed to be affected by the Medicaid expansions will alter implied TOT estimates significantly. In addition, while the 2013 mean of the total collection balance is approximately $350, it obscures the fact that for the group of low-income individuals likely affected by the Medicaid expansion, the mean could

16 The 8.5 percentage point increase in Medicaid is consistent with evidence from published studies and is very close to the estimate in Wherry and Miller (2016) who focused on the population with incomes of 138% FPL or lower.
be much higher as the number and amount of collections is strongly related to income. For example, the total collection balance is more than twice as large for individuals in the low-income zip codes ($346) as for those in the high income zip codes ($146). In the Oregon study (Finkelstein et. al. 2012), the mean amount of total non-medical collections was $2,740. Thus, a TOT estimate of between -$600 and -$1000 is plausible and consistent with some previous evidence.

We also consider a second TOT calculation for uninsured individuals who are likely to face serious illness requiring hospitalization or emergency room admission. Here we used the National Health Interview Survey (NHIS) from 2010 through 2013 and found that 22% of adults under the age of 65 who were uninsured with household incomes under 138% of the FPL had experienced either a hospitalization or an ER visit. If we further rescale our earlier TOT estimates to apply to just individuals who had such an experience (3.74%), the effects of gaining Medicaid rise to between $1,364 and $2,272. This TOT estimate is the effect of acquiring health care insurance for those with a serious medical incident and assumes that individuals without a serious medical incident experienced no beneficial financial effects due to acquiring coverage. Overall, our estimates in Table 2 suggest that the Medicaid expansions substantially improved the financial wellbeing of those who gained coverage by reducing the number of collections and amount of debt in third-party collections.

We also conducted analyses on samples stratified by age to examine whether the effects of the Medicaid expansions differed by age group. There may be differences in income, health, and/or preferences that may affect both the probability of obtaining Medicaid and household finances. Panel A of Table 3 presents estimates of the effect of Medicaid on the six financial indicators for each of three age groups: a) 19-32 year olds, b) 33-44 year olds, and c) 45-64 year olds using our broad sample; Panel B presents estimates for our narrow sample. Figures 3-5 present graphical evidence corresponding to

17 For the two measures of collection, the pre-2014 means of individuals in the most treated zip codes is 2.4 times greater than the analogous mean for individuals living in the least treated zip codes.
estimates in Panel A.18 The pre-2014 trends (and levels) for the outcomes are virtually the same for the treated and synthetic control states in nearly every case.

In Table 3, across both panels, we find fairly consistent evidence that the Medicaid expansions decreased the number of collections and the total amount of debt in third-party collection across all age groups. For the two older age groups, the effects are unambiguous. For those aged 33 to 44, estimates of the effect of the Medicaid expansions on the number of collections range from -0.058 to -0.073 and are significant at the 1% and 5% level. The effect on balances in collections for this age group ranges from -$84 to -$112. For the oldest age group, those between the ages of 45 and 64, the estimates are highly consistent across the two samples. The effect on the number of collections is between -0.019 and -0.038 and the effect on collection balances is between -$20 and -$56. For those ages 19 to 32, the effects are more varied and are only statistically significant for the narrow sample. Estimates of the effect on the number of collections range from -0.006 to -0.043. The effect on collection balances is between -$49 and -$89 for the youngest age group. As with the full sample, none of the estimates pertaining to the other four outcomes is statistically significant.

\textit{Tests of Validity of Research Design}

Although the consistent similarity of the pre-2014 trends for treated and synthetic control states in all of our figures provide substantial evidence of a valid research design, we conducted two additional analyses to further bolster the credibility of our approach.19 First, we conducted analyses using a sample of individuals living in what we consider the least treated zip codes, those in the lowest quartile of zip codes ranked according to the proportion of individuals who are both uninsured and have incomes below 138\% of FPL. According to the ACS, only about 2\% of individuals in the least treated zip codes would be expected to have been eligible for the Medicaid expansions. Therefore, we expect this group to be much less affected by the Medicaid expansions overall.

18 We present the corresponding figures for Panel B in the Appendix (Figures 3-5).
19 The close match of pre-trends between the treatment and synthetic control groups is found for alternative methods of selecting weights, which provides additional support for the validity of the research design (see, for example, Appendix Figures 1 and 2).
Figure 6 shows the time series patterns of outcomes for treated and synthetic control states (selected for this sample). During the treatment period, the Medicaid expansions had little effect on the four non-collections outcomes. We also find evidence of reductions in the number of collections and in collection balances for the least treated zip codes, but the differences between the treatment and synthetic control groups are not nearly as large as those in Figure 1.20 We expect the effect to be small because relatively few individuals are affected, although those who are affected are likely to have a relatively large influence on the mean of total collections because of the strong association between income and third-party collections. Estimates in Table 4, which have the same format as in Table 2, are consistent with the graphical evidence. The estimates on the number of collections are much lower, ranging from -0.015 to -0.021, -. Similarly, the effects on collection balances are also much lower than they were when estimated with the highest treatment group, ranging from -$14 to -$24. The fact that estimates are significantly lower in the areas less likely to be treated provides further validation of the synthetic control research design.

The second assessment of our research design consisted of analyses using a sample of individuals over age 65 living in the most treated zip codes. Almost all of these individuals are covered by Medicare and should not be affected by the Medicaid expansions, which explicitly target those under age 65. The Medicaid eligibility rules for those over 65 (dual eligible) were not altered by the ACA. Table 5 provides estimates for those over age 65. Figure 7 presents the graphical evidence corresponding to Table 5 estimates. These charts show that the synthetic control approach is plausibly valid. None of the estimates in Table 5 are statistically significant, economically meaningful or consistent across samples. In particular, our point estimates on the number of collections and on collection balances are very close to zero. These results also provide validation of the synthetic control research design.

\textit{Estimates of the Effect of Medicaid on the Distribution of Outcomes}

In addition to evaluating the impact of Medicaid eligibility on the mean of financial outcomes, we also examine how the ACA Medicaid expansions affected the distribution of these outcomes. This

20 It is also important to take into account the different scales for the y-axis between Figure 1 and Figure 6.
analysis can be suggestive of underlying mechanisms. For example, if we find that the ACA expansions prevented collections of small amounts among a large group of individuals, this would suggest that Medicaid coverage improves financial outcomes through widespread and diffuse income effects. Alternatively, if we find an impact on large collections concentrated among a small number of individuals, this would suggest that Medicaid mostly improves financial outcomes by protecting individuals who experience very large medical expenses from significant health shocks.

To examine how Medicaid affects delinquencies of different sizes, we created four binary variables for each of our delinquency outcomes (total amount past due, total credit card debt past due, and total collections). For total amount past due, we created binary variables indicating whether the individual had $0 past due, $1-5,000 past due, $5,001-10,000 past due and more than $10,000 past due. For credit card debt past due and total amount in collections, we used lower thresholds as the amounts are generally much smaller than total amount past due (see Table 2). We created variables indicating $0 in collections or credit card delinquency respectively, $1-1,000 in collections or credit card delinquency, $1,001-$2,000 in collections or credit card delinquency, and more than $2,000 in collections or credit card delinquency.

Figure 8 presents our results graphically. Consistent with our analysis of average delinquency, we find no effect of the Medicaid expansions on the probability an individual has a total balance past due or a total credit card amount past due of any range (Panels A and B). For collections, we find that the reform had little effect on the probability that an individual experienced a small amount of collections totaling $2000 or less. However, we find that the reform had a large and significant effect on the probability that an individual had over $2000 in collections (Panel C). Our point estimates indicate that individuals in the most treated zip codes in Medicaid expansions states experienced a reduction in the probability of having a large amount in collection by between 0.6 and 0.8 percentage points. This represents a reduction in the probability of having a large amount in collections of over 15 percent. Scaling this effect by the fraction

21 We selected thresholds based on the distribution of the outcomes using data from 2010-2013. For example, for total debt past due, $4000 is the median for people with balance past due and $10,000 is the 75th percentile. For credit card debt past due, $2000 is the median for people with credit card balance and $6,000 is the 75th percentile.
of individuals in the relevant zip codes expected to have gained Medicaid (0.085) suggests that gaining Medicaid coverage reduces the probability of having a large collection by between 7 and 9 percentage points. Additionally, we observe some suggestive evidence that the probability that an individual had $0 in collections increased, although this is only statistically significant in one of four specifications.

Conclusion

The financial protection provided by health insurance is arguably its most important function. This is particularly true in the case of Medicaid because of the relatively high prevalence of disease among low-income individuals and the substantial financial burden that illness imposes on those who become seriously ill or injured. Indeed, a major justification for the Patient Protection and Affordable Care Act (ACA) of 2010 was to provide such financial protection. In this study, we examined whether the recent expansion of Medicaid to individuals aged 19-64 as part of the ACA affected the financial wellbeing of persons living in low-income zip codes. Ours is the first national study of the effect of expanding Medicaid to these individuals on several measures of financial wellbeing.

We used high-quality data from a large panel of credit reports from the Federal Reserve Bank of New York Consumer Credit Panel/Equifax. To obtain estimates of the effect of the Medicaid expansions on financial wellbeing, we employed the synthetic control approach of Abadie et al. (2010). We provide evidenced that the approach was likely valid, so estimates of the effect of the Medicaid expansion are plausibly interpreted as causal.

Results indicated that the Medicaid expansions significantly reduced the amount of debt in third-party collection among individuals living in the top quartile of zip codes ranked by the proportion of poor and uninsured persons. Intention-to-treat (ITT) estimates indicated that the 2014 Medicaid expansions were associated with a reduction in the amount of collections of between $51 and $85, with a mean (simple average) estimate of $69. These reduced form estimates imply a treatment-on-treated (TOT) effect of between -$600 and $1,000 under the reasonable assumption that half of the low-income (<138% FPL) and uninsured individuals in our sample acquired Medicaid coverage. For other measures of debt
and debt past due, we did not find any evidence that the ACA Medicaid expansions had any effect, although it would be useful to revisit these estimates as more years of post-expansion data become available.

While these results show that the ACA Medicaid expansions had important financial impacts outside of health care use, they are also consistent with recent work documenting that much of the incidence of these financial effects falls on third parties, as much as the uninsured themselves (Finkelstein et al., 2015; Garthwaite et al., 2015). Given that the ACA Medicaid expansions decreased unpaid bills, the financial benefits of the ACA expansions extend, at least partially, to organizations that extend credit to low-income uninsured individuals, as these creditors are less likely to be adversely impacted by bad debt. As a result, it may be easier to obtain credit or increase borrowing among those individuals who gained coverage through the ACA Medicaid expansions, which may improve their material wellbeing in the future.
References

Table 1
Comparison of Pre-2014 Means for Treated States and Synthetic Control States
Dependent Variable is Total Collection Balance; 21 Treatment States, 26 Potential Controls

<table>
<thead>
<tr>
<th></th>
<th>(1) Treated States</th>
<th>(2) Control States</th>
<th>(3) Synthetic Control States Match on All Lagged Y and X’s</th>
<th>(4) Match on Average Y, Y in 2013, and All Lagged X’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Simulated Medicaid Eligibility</td>
<td>0.084</td>
<td>0.065</td>
<td>0.085</td>
<td>0.089</td>
</tr>
<tr>
<td>State Unemployment Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.093</td>
<td>0.084</td>
<td>0.090</td>
<td>0.093</td>
</tr>
<tr>
<td>2011</td>
<td>0.086</td>
<td>0.078</td>
<td>0.083</td>
<td>0.086</td>
</tr>
<tr>
<td>2012</td>
<td>0.078</td>
<td>0.069</td>
<td>0.076</td>
<td>0.078</td>
</tr>
<tr>
<td>2013</td>
<td>0.071</td>
<td>0.063</td>
<td>0.069</td>
<td>0.070</td>
</tr>
<tr>
<td>State Poverty Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.145</td>
<td>0.156</td>
<td>0.146</td>
<td>0.147</td>
</tr>
<tr>
<td>2011</td>
<td>0.151</td>
<td>0.160</td>
<td>0.151</td>
<td>0.150</td>
</tr>
<tr>
<td>2012</td>
<td>0.150</td>
<td>0.160</td>
<td>0.152</td>
<td>0.151</td>
</tr>
<tr>
<td>2013</td>
<td>0.149</td>
<td>0.159</td>
<td>0.151</td>
<td>0.151</td>
</tr>
<tr>
<td>State 25th Percentile of Log Wage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>9.70</td>
<td>9.71</td>
<td>9.75</td>
<td>9.78</td>
</tr>
<tr>
<td>2011</td>
<td>9.75</td>
<td>9.74</td>
<td>9.74</td>
<td>9.76</td>
</tr>
<tr>
<td>2012</td>
<td>9.76</td>
<td>9.76</td>
<td>9.74</td>
<td>9.77</td>
</tr>
<tr>
<td>2013</td>
<td>9.81</td>
<td>9.81</td>
<td>9.82</td>
<td>9.84</td>
</tr>
<tr>
<td>State 75th Percentile of Log Wage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>10.92</td>
<td>10.86</td>
<td>10.91</td>
<td>10.94</td>
</tr>
<tr>
<td>2011</td>
<td>10.94</td>
<td>10.88</td>
<td>10.92</td>
<td>10.95</td>
</tr>
<tr>
<td>2012</td>
<td>10.96</td>
<td>10.90</td>
<td>10.94</td>
<td>10.96</td>
</tr>
<tr>
<td>2013</td>
<td>10.97</td>
<td>10.92</td>
<td>10.95</td>
<td>10.97</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>26.1%</td>
<td>13.1%</td>
<td>19.1%</td>
<td>15.8%</td>
</tr>
<tr>
<td>% Black</td>
<td>15.5%</td>
<td>18.0%</td>
<td>19.3%</td>
<td>17.1%</td>
</tr>
<tr>
<td>% HS Degree or Less</td>
<td>28.7%</td>
<td>27.0%</td>
<td>29.2%</td>
<td>28.2%</td>
</tr>
<tr>
<td>% Uninsured and < 138% FPL</td>
<td>15.3%</td>
<td>16.5%</td>
<td>15.2%</td>
<td>16.3%</td>
</tr>
<tr>
<td>Average Total Collection Balance</td>
<td>346.38</td>
<td>370.05</td>
<td>336.90</td>
<td></td>
</tr>
<tr>
<td>Total collection balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010Q1</td>
<td>318.63</td>
<td>338.83</td>
<td>316.34</td>
<td></td>
</tr>
<tr>
<td>2010Q2</td>
<td>337.70</td>
<td>350.65</td>
<td>335.04</td>
<td></td>
</tr>
<tr>
<td>2010Q3</td>
<td>334.04</td>
<td>345.10</td>
<td>326.34</td>
<td></td>
</tr>
<tr>
<td>2010Q4</td>
<td>325.67</td>
<td>354.93</td>
<td>330.93</td>
<td></td>
</tr>
<tr>
<td>2011Q1</td>
<td>315.31</td>
<td>346.16</td>
<td>320.36</td>
<td></td>
</tr>
<tr>
<td>2011Q2</td>
<td>330.97</td>
<td>354.63</td>
<td>318.78</td>
<td></td>
</tr>
<tr>
<td>2011Q3</td>
<td>330.84</td>
<td>352.81</td>
<td>318.91</td>
<td></td>
</tr>
<tr>
<td>2011Q4</td>
<td>339.07</td>
<td>363.75</td>
<td>337.92</td>
<td></td>
</tr>
<tr>
<td>2012Q1</td>
<td>361.66</td>
<td>369.75</td>
<td>356.78</td>
<td></td>
</tr>
<tr>
<td>2012Q2</td>
<td>374.67</td>
<td>382.07</td>
<td>374.13</td>
<td></td>
</tr>
<tr>
<td>2012Q3</td>
<td>383.33</td>
<td>375.48</td>
<td>377.49</td>
<td></td>
</tr>
<tr>
<td>2012Q4</td>
<td>385.22</td>
<td>402.86</td>
<td>385.73</td>
<td></td>
</tr>
<tr>
<td>2013Q1</td>
<td>374.52</td>
<td>410.26</td>
<td>384.55</td>
<td>372.51</td>
</tr>
<tr>
<td>2013Q2</td>
<td>366.99</td>
<td>390.92</td>
<td>360.99</td>
<td>350.21</td>
</tr>
<tr>
<td>2013Q3</td>
<td>325.85</td>
<td>385.21</td>
<td>333.97</td>
<td>337.50</td>
</tr>
<tr>
<td>2013Q4</td>
<td>337.64</td>
<td>397.44</td>
<td>365.77</td>
<td>358.59</td>
</tr>
</tbody>
</table>
Table 2 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states for non-elderly adults in the most treated zip codes. Columns (1)-(3) present the results for broad sample with 21 treatment states and 26 potential control states. Columns (4)-(6) presents the results for the narrow sample with 14 treatment states and 24 potential control states. For each expansionary definition, we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the treated states and their synthetic counterpart using the two different weighting methods used to construct the synthetic control group. In all results, AK, IN, NH, and PA are dropped.

Significance levels: *=10%, **=5%, ***=1%.
Table 3
Synthetic Control Estimates of the Effect of Medicaid on Indicators of Financial Wellbeing for Most Treated Zip Codes by Age Group

A. 21 Treatment States, 26 Potential Control States

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Ages 19-32</th>
<th>Ages 33-44</th>
<th>Ages 45-64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)</td>
<td>Weights: Match on All Values of Dep. Variable</td>
<td>Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)</td>
</tr>
<tr>
<td>Credit Score</td>
<td>614 (18)</td>
<td>4 (0.33)</td>
<td>635 (19)</td>
</tr>
<tr>
<td>Total Balance</td>
<td>9,183 (2,718)</td>
<td>-73 (0.99)</td>
<td>11,654 (1,993)</td>
</tr>
<tr>
<td>Total Balance Past Due</td>
<td>1,136 (378)</td>
<td>44 (0.67)</td>
<td>1,706 (449)</td>
</tr>
<tr>
<td>Total Credit Card Balance</td>
<td>951 (468)</td>
<td>-65 (0.51)</td>
<td>2,594 (1,326)</td>
</tr>
<tr>
<td>Total Credit Card Balance Past Due</td>
<td>291 (145)</td>
<td>-3 (0.92)</td>
<td>657 (338)</td>
</tr>
<tr>
<td>Number of Collections</td>
<td>0.588 (0.224)</td>
<td>-0.006 (0.33)</td>
<td>0.597 (0.229)</td>
</tr>
<tr>
<td>Total Collection Balance</td>
<td>388 (167)</td>
<td>-49 (0.26)</td>
<td>400 (159)</td>
</tr>
</tbody>
</table>
B. 14 Treatment States, 24 Potential Control States

Post-2014 Difference in Means Between Treatment States minus Synthetic Control

Ages 19-32	**Ages 33-44**	**Ages 45-64**
Outcome | **Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)** | **Weights: Match on All Values of Dep. Variable** | **Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)** | **Weights: Match on All Values of Dep. Variable** | **Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)** | **Weights: Match on All Values of Dep. Variable**
---|---|---|---|---|---|---
Credit Score | 610 (12) | -0.5* (0.10) | 628 (13) | (0.24) | 673 (15) | (0.55)
Total Balance | 9,187 (1,550) | -160 (0.15) | 11,688 (2,174) | (0.46) | 11,400 (3,711) | (0.76)
Total Balance Past Due | 1,203 (302) | 17 (0.84) | 1,747 (333) | (0.31) | 1,339 (306) | (0.72)
Total Credit Card Balance | 890 (205) | 9 (0.81) | 2,324 (463) | (0.96) | 3,518 (664) | (0.79)
Total Credit Card Balance Past Due | 282 (107) | 0 (0.84) | 638 (263) | (0.81) | 1,035 (407) | (0.90)
Number of Collections | 0.671 (0.181) | -0.043* (0.06) | 0.675 (0.181) | (0.00) | 0.442 (0.128) | (0.05)
Total Collection Balance | 440 (153) | -89* (0.06) | 449 (139) | (0.04) | 303 (123) | (0.04)

Table 3 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states by age group for the most treated zip codes. Panel A reports the results for the broad sample and panel B reports the results for the narrow sample. For each age group (ages 19-32: columns (1)-(2); ages 33-44: columns (3)-(4), ages 45-64: columns (5)-(6)), we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the treated states and their synthetic counterpart. In addition to AK, IN, NH, and PA, DC and MA are dropped from all age results due to not having enough observations for many credit categories. HI is additionally dropped from ages 19-32 results. Significance levels: * = 10%, ** = 5%, *** = 1%.
Table 4 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states for non-elderly adults in the least treated zip codes. Columns (1)-(3) presents the results for broad sample with 21 treatment states and 26 potential control states. Columns (4)-(6) presents the results for the narrow sample with 14 treatment states and 24 potential control states. For each expansionary definition, we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the treated states and their synthetic counterpart using the two different weighting methods used to construct the synthetic control group. In all results, AK, IN, NH, and PA are dropped.

Significance levels: * = 10%, ** = 5%, *** = 1%.
Table 5
Synthetic Control Estimates of the Effect of Medicaid on Indicators of Financial Wellbeing for Elderly in Most Treated Zip Codes, Ages 65 and Over

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre-Reform Mean of Treated States (s.d. in parentheses)</th>
<th>Weights: Match on All Values of Dep. Variable</th>
<th>Weights: Match on Avg Value of Dep. Variable</th>
<th>Pre-Reform Mean of Treated States (s.d. in parentheses)</th>
<th>Weights: Match on All Values of Dep. Variable</th>
<th>Weights: Match on Avg Value of Dep. Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Score</td>
<td>739 (15)</td>
<td>1 (0.49)</td>
<td>0</td>
<td>734 (14)</td>
<td>-0 (0.62)</td>
<td>1 (0.73)</td>
</tr>
<tr>
<td>Total Balance</td>
<td>5,381 (1,055)</td>
<td>1 (0.90)</td>
<td>89 (0.70)</td>
<td>5,339 (704)</td>
<td>-144 (0.79)</td>
<td>119 (0.76)</td>
</tr>
<tr>
<td>Total Balance Past Due</td>
<td>675 (477)</td>
<td>-47 (0.12)</td>
<td>-31 (0.25)</td>
<td>594 (157)</td>
<td>44 (0.36)</td>
<td>60 (0.18)</td>
</tr>
<tr>
<td>Total Credit Card Balance</td>
<td>2,483 (600)</td>
<td>-41 (0.33)</td>
<td>-33 (0.72)</td>
<td>2,349 (453)</td>
<td>8 (0.96)</td>
<td>10 (1.00)</td>
</tr>
<tr>
<td>Total Credit Card Balance Past Due</td>
<td>1,208 (1,940)</td>
<td>-188 (0.29)</td>
<td>-95 (0.55)</td>
<td>782 (383)</td>
<td>3 (0.78)</td>
<td>-11 (0.90)</td>
</tr>
<tr>
<td>Number of Collections</td>
<td>0.140 (0.061)</td>
<td>0.003 (0.32)</td>
<td>0.008 (0.62)</td>
<td>0.163 (0.056)</td>
<td>-0.001 (0.93)</td>
<td>-0.003 (0.98)</td>
</tr>
<tr>
<td>Total Collection Balance</td>
<td>85 (43)</td>
<td>-13 (0.27)</td>
<td>-1 (0.87)</td>
<td>95 (40)</td>
<td>-12 (0.13)</td>
<td>-5 (0.86)</td>
</tr>
</tbody>
</table>

Table 5 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states for elderly adults in the most treated zip codes. Columns (1)-(3) presents the results for broad sample with 21 treatment states and 26 potential control states. Columns (4)-(6) presents the results for the narrow sample with 14 treatment states and 24 potential control states. For each expansionary definition, we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the treated states and their synthetic counterpart using the two different weighting methods used to construct the synthetic control group. In additional to AK, IN, NH, and PA, DC and MA are dropped due to not having enough observations. Significance levels: *=10%, **=5%, ***=1%.
Table 6
Synthetic Control Estimates of the Effect of Medicaid on Indicators of Delinquencies by Size

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre-Reform Mean Outcome of Treated States (s.d. in parentheses)</th>
<th>Weights: Match on All Values of Dep. Variable</th>
<th>Weights: Match on Average Value of Dep. Variable</th>
<th>Post-2014 Difference in Means Between Treatment States minus Synthetic Control</th>
<th>Weights: Match on Average Value of Dep. Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 total Debt Past Due</td>
<td>0.816 (0.028)</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.812 (0.027)</td>
<td>-0.001 (0.90)</td>
</tr>
<tr>
<td>$1-5000$ Total Debt Past Due</td>
<td>0.108 (0.020)</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.113 (0.018)</td>
<td>-0.002 (0.56)</td>
</tr>
<tr>
<td>$5001-10000$ Total Debt Past Due</td>
<td>0.033 (0.009)</td>
<td>0.001</td>
<td>-0.000</td>
<td>0.032 (0.005)</td>
<td>0.000 (0.51)</td>
</tr>
<tr>
<td>$10000+$ total Debt Past Due</td>
<td>0.043 (0.010)</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.043 (0.008)</td>
<td>0.001 (0.53)</td>
</tr>
<tr>
<td>0 Collections</td>
<td>0.758 (0.064)</td>
<td>0.003</td>
<td>0.004</td>
<td>0.735 (0.047)</td>
<td>0.008 (0.21)</td>
</tr>
<tr>
<td>$1-1000$ Collections</td>
<td>0.162 (0.043)</td>
<td>0.001</td>
<td>0.000</td>
<td>0.177 (0.029)</td>
<td>0.001 (0.68)</td>
</tr>
<tr>
<td>$1001-2000$ Collections</td>
<td>0.042 (0.013)</td>
<td>0.001</td>
<td>0.002</td>
<td>0.045 (0.011)</td>
<td>-0.003* (0.08)</td>
</tr>
<tr>
<td>$2000+$ Collections</td>
<td>0.038 (0.013)</td>
<td>-0.008**</td>
<td>-0.006**</td>
<td>0.042 (0.012)</td>
<td>-0.008** (0.02)</td>
</tr>
<tr>
<td>0 Credit Card Balance Past Due</td>
<td>0.824 (0.048)</td>
<td>0.005</td>
<td>0.003</td>
<td>0.834 (0.041)</td>
<td>0.000 (0.95)</td>
</tr>
<tr>
<td>$1-1000$ Credit Card Balance Past Due</td>
<td>0.031 (0.010)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.033 (0.009)</td>
<td>0.000 (0.65)</td>
</tr>
<tr>
<td>$1001-2000$ Credit Card Balance Past Due</td>
<td>0.035 (0.012)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.036 (0.010)</td>
<td>-0.001 (0.11)</td>
</tr>
<tr>
<td>$2000+$ Credit Card Balance Past Due</td>
<td>0.080 (0.048)</td>
<td>-0.007</td>
<td>-0.004</td>
<td>0.069 (0.010)</td>
<td>-0.001 (0.11)</td>
</tr>
</tbody>
</table>
Table 6 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states for non-elderly adults in the most treated zip codes. Columns (1)-(3) present the results for broad sample with 21 treatment states and 26 potential control states. Columns (4)-(6) presents the results for the narrow sample with 14 treatment states and 24 potential control states. For each expansionary definition, we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the treated states and their synthetic counterpart using the two different weighting methods used to construct the synthetic control group. In all results, AK, IN, NH, and PA are dropped.

Significance levels: *=10%, **=5%, ***=1%.
Figure 1. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States
Figure 2. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Most Treated Zip Codes, Using 14 Treated States, 24 Potential Control States
Figure 3. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 19 to 32 in Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States

DC, MA and HI are dropped (not enough observations for many credit categories).
Figure 4. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 33 to 44 in Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States
DC and MA are dropped (not enough observations for many credit categories).
Figure 5. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 45-64 in Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States

DC and MA are dropped (not enough observations for many credit categories).
Figure 6. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Non-elderly in Least Treated Zip Codes Using 21 Treated States, 26 Potential Control States
Most Treated Zip Codes, Ages 65 and Over
21 Treatment States, 26 Potential Controls

Figure 7. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Elderly in Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States
DC and MA are dropped (not enough observations for many credit categories).
Figure 8a. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Total Balance Past Due Distribution Using 21 Treated States, 26 Potential Control States
Figure 8b. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Credit Card Balance Past Due Distribution Using 21 Treated States, 26 Potential Control States
Figure 8c. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Total Collection Balance Distribution Using 21 Treated States, 26 Potential Control States
Appendix: Additional Tables and Figures

Appendix Table 1
Classification of Treatment and Control States

A. Did not expand under ACA as of 12/31/15 (21 states)

Limited or no expansion pre-2014 (19 states)

- AL, FL, GA, ID, KS, LA, MS, MO, MT, NE, NC, OK, SC, SD, TN, TX, UT, VA, WY

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Control</td>
</tr>
</tbody>
</table>

Partial expansion pre-2014 (2 states)

- ME, WI

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Excluded</td>
</tr>
</tbody>
</table>

B. Did Expand under ACA as of 12/31/15 (30 states)

Limited or no expansion pre-2014 (14 states)

- AR, CO, IL, KY, MD, MI, NJ, NV, NM, ND, OH, OR, RI, WV

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Treatment</td>
</tr>
</tbody>
</table>

Partial expansion pre-2014 (7 states)

- AZ, CA, CT, HI, IA, MN, WA

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Excluded</td>
</tr>
</tbody>
</table>

Fully expanded pre-2014 (5 states)

- DE, DC, MA, NY, VT

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Control</td>
</tr>
</tbody>
</table>

Expanded between 2014:Q2 and 2015:Q4 (4 states)

- AK, IN, NH, PA

<table>
<thead>
<tr>
<th>Broad sample:</th>
<th>Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow sample:</td>
<td>Excluded</td>
</tr>
</tbody>
</table>
Appendix Table 2

State Weights for Synthetic Control for Each Dependent Variable
A. Weights Selected by Matching on Each Pre-2014 Value of Dependent Variable and Covariates

<table>
<thead>
<tr>
<th>State</th>
<th>Credit Score</th>
<th>Total Debt Balance</th>
<th>Total Balance Past Due</th>
<th>Total Credit Card Balance Past Due</th>
<th>Number of Collections</th>
<th>Total Collection Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>District Of Columbia</td>
<td>0.032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.009</td>
<td>0.028 0.015</td>
</tr>
<tr>
<td>Florida</td>
<td>0.184</td>
<td>0.157</td>
<td>0.175</td>
<td>0.169</td>
<td>0.156</td>
<td>0</td>
</tr>
<tr>
<td>Georgia</td>
<td>0</td>
<td>0</td>
<td>0.138</td>
<td>0.032</td>
<td>0.271</td>
<td>0.127 0.207</td>
</tr>
<tr>
<td>Idaho</td>
<td>0</td>
<td>0</td>
<td>0.018</td>
<td>0.061</td>
<td>0.027</td>
<td>0.077 0.054</td>
</tr>
<tr>
<td>Kansas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maine</td>
<td>0.011</td>
<td>0.064</td>
<td>0</td>
<td>0.124</td>
<td>0.02</td>
<td>0.049 0</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0.01</td>
<td>0.014</td>
<td>0</td>
<td>0.034</td>
<td>0.09</td>
<td>0.19 0.16</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missouri</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Montana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.147</td>
<td>0</td>
</tr>
<tr>
<td>Nebraska</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>0.238</td>
<td>0.148</td>
<td>0.277</td>
<td>0.263</td>
<td>0.225</td>
<td>0.143 0.123</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0.121</td>
<td>0.271</td>
<td>0</td>
<td>0.079</td>
<td>0</td>
<td>0.12 0.057</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>South Dakota</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tennessee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Utah</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>Vermont</td>
<td>0</td>
<td>0.025</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Virginia</td>
<td>0.109</td>
<td>0.243</td>
<td>0.104</td>
<td>0.088</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>0.294</td>
<td>0.077</td>
<td>0.143</td>
<td>0.113</td>
<td>0</td>
<td>0.245 0.253</td>
</tr>
<tr>
<td>Wyoming</td>
<td>0</td>
<td>0</td>
<td>0.145</td>
<td>0.023</td>
<td>0.056</td>
<td>0</td>
</tr>
</tbody>
</table>

45
<table>
<thead>
<tr>
<th>State</th>
<th>Credit Score</th>
<th>Total Debt Balance</th>
<th>Total Balance Past Due</th>
<th>Total Credit Balance Past Due</th>
<th>Number of Collections</th>
<th>Total Collection Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>District Of Columbia</td>
<td>0.029</td>
<td>0.01</td>
<td>0.015</td>
<td>0</td>
<td>0.003</td>
<td>0.039</td>
</tr>
<tr>
<td>Florida</td>
<td>0.044</td>
<td>0.04</td>
<td>0.275</td>
<td>0.379</td>
<td>0.287</td>
<td>0</td>
</tr>
<tr>
<td>Georgia</td>
<td>0.076</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.004</td>
<td>0.011</td>
</tr>
<tr>
<td>Idaho</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kansas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Louisiana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.141</td>
<td>0.091</td>
<td>0.143</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>0.016</td>
<td>0.006</td>
<td>0.07</td>
<td>0.054</td>
<td>0.153</td>
<td>0.227</td>
</tr>
<tr>
<td>Mississippi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missouri</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Montana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nebraska</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New York</td>
<td>0.228</td>
<td>0.144</td>
<td>0.11</td>
<td>0.13</td>
<td>0.173</td>
<td>0</td>
</tr>
<tr>
<td>North Carolina</td>
<td>0.133</td>
<td>0.36</td>
<td>0.097</td>
<td>0.075</td>
<td>0.057</td>
<td>0.307</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0.008</td>
<td>0.055</td>
<td>0</td>
<td>0</td>
<td>0.042</td>
</tr>
<tr>
<td>South Dakota</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tennessee</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Texas</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Utah</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.021</td>
</tr>
<tr>
<td>Vermont</td>
<td>0</td>
<td>0.032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Virginia</td>
<td>0.112</td>
<td>0.282</td>
<td>0.168</td>
<td>0.182</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>0.361</td>
<td>0.109</td>
<td>0.21</td>
<td>0.039</td>
<td>0.232</td>
<td>0.069</td>
</tr>
<tr>
<td>Wyoming</td>
<td>0</td>
<td>0.009</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.092</td>
</tr>
</tbody>
</table>
Appendix Table 3
Alternative Zip Code Assignment: Zip Code Fixed at Quarter 1, 2013 Value

<table>
<thead>
<tr>
<th>Outcome</th>
<th>21 Treatment States, 26 Potential Control States</th>
<th>14 Treatment States, 24 Potential Control States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Pre-Reform Mean Outcome of Treated States</td>
<td>(s.d. in parentheses)</td>
<td>Weights: Match on All Values of Dep. Variable</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>Weights: Match on Average Value of Dep. Variable</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>Pre-Reform Mean Outcome of Treated States</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(s.d. in parentheses)</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>Weights: Match on Average Value of Dep. Variable</td>
</tr>
<tr>
<td>Credit Score</td>
<td>651</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(0.90)</td>
</tr>
<tr>
<td></td>
<td>-0</td>
<td>(0.98)</td>
</tr>
<tr>
<td></td>
<td>645</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>(0.80)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.86)</td>
<td>0</td>
</tr>
<tr>
<td>Total Balance</td>
<td>11,294</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(2,070)</td>
<td>(0.99)</td>
</tr>
<tr>
<td></td>
<td>-132</td>
<td>(0.86)</td>
</tr>
<tr>
<td></td>
<td>11,327</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>(2,406)</td>
<td>(0.83)</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>-80</td>
</tr>
<tr>
<td></td>
<td>(0.91)</td>
<td>0</td>
</tr>
<tr>
<td>Total Balance Past Due</td>
<td>1,527</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>(375)</td>
<td>(0.65)</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>(0.53)</td>
</tr>
<tr>
<td></td>
<td>1,494</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(266)</td>
<td>(0.69)</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credit Card Balance</td>
<td>2,891</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(1,273)</td>
<td>(0.84)</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>(0.49)</td>
</tr>
<tr>
<td></td>
<td>2,603</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>(460)</td>
<td>(0.88)</td>
</tr>
<tr>
<td></td>
<td>-15</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
<td>0</td>
</tr>
<tr>
<td>Total Credit Card Balance Past Due</td>
<td>1,035</td>
<td>-154</td>
</tr>
<tr>
<td></td>
<td>(1,412)</td>
<td>(0.31)</td>
</tr>
<tr>
<td></td>
<td>-26</td>
<td>(0.98)</td>
</tr>
<tr>
<td></td>
<td>730</td>
<td>(287)</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
<td>(0.83)</td>
</tr>
<tr>
<td></td>
<td>-14</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
<td>0</td>
</tr>
<tr>
<td>Number of Collections</td>
<td>0.509</td>
<td>-0.043**</td>
</tr>
<tr>
<td></td>
<td>(0.183)</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>0.575</td>
<td>(0.146)</td>
</tr>
<tr>
<td></td>
<td>-0.047**</td>
<td>(0.04)</td>
</tr>
<tr>
<td></td>
<td>-0.039</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Total Collection Balance</td>
<td>349</td>
<td>-71**</td>
</tr>
<tr>
<td></td>
<td>(130)</td>
<td>-55</td>
</tr>
<tr>
<td></td>
<td>385</td>
<td>(125)</td>
</tr>
<tr>
<td></td>
<td>-72**</td>
<td>(125)</td>
</tr>
<tr>
<td></td>
<td>-64</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Appendix Table 3 reports the estimates of the post-2014 differences in financial indicators between treated and synthetic control states for non-elderly adults in the most treated zip codes. In this analysis, zip code is fixed for an individual at its 2013 Q1 value. Columns (1)-(3) present the results for broad sample with 21 treatment states and 26 potential control states. Columns (4)-(6) presents the results for the narrow sample with 14 treatment states and 24 potential control states. For each expansionary definition, we present the 2010-2013 pre-reform mean outcome for the treated states and the average quarterly difference between the
treated states and their synthetic counterpart using the two different weighting methods used to construct the synthetic control group. In all results, AK, IN, NH, and PA are dropped.
Significance levels: *=10%, **=5%, ***=1%.
Appendix Figure 1. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing Using Alternative Weights (Match on Pre-Reform Average Lagged Outcome and 2013 Lagged Outcome) for Nonelderly in Most Treated Zip Codes Using 21 Treated States, 26 Potential Control States
Appendix Figure 2. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing Using Alternative Weights (Match on Pre-Reform Average Lagged Outcome and 2013 Lagged Outcome) for Nonelderly in Most Treated Zip Codes Using 14 Treated States, 24 Potential Control States
Appendix Figure 3. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 19 to 32 in Most Treated Zip Codes Using 14 Treated States, 24 Potential Control States
Appendix Figure 4. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 33 to 44 in Most Treated Zip Codes Using 14 Treated States, 24 Potential Control States
Most Treated Zip Codes, Ages 45-64
14 Treatment States, 24 Potential Controls

Appendix Figure 5. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Ages 45 to 64 in Most Treated Zip Codes Using 14 Treated States, 24 Potential Control States
Appendix Figure 6. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Non-elderly in Least Treated Zip Codes Using 14 Treated States, 24 Potential Control States

Least Treated Zip Codes, Ages 19-64
14 Treated States, 24 Potential Controls

- Total Balance
- Total Balance Past Due
- Total Credit Card Balance
- Total Credit Card Balance Past Due
- Number of Collections
- Total Collection Balance

treated

synthetic
Appendix Figure 7. Synthetic Control Estimates of Effect of Medicaid Expansions on Indicators of Financial Wellbeing for Elderly in Most Treated Zip Codes Using 14 Treated States, 24 Potential Control States
Working Paper Series

A series of research studies on regional economic issues relating to the Seventh Federal Reserve District, and on financial and economic topics.

The Urban Density Premium across Establishments
R. Jason Faberman and Matthew Freedman
WP-13-01

Why Do Borrowers Make Mortgage Refinancing Mistakes?
Sumit Agarwal, Richard J. Rosen, and Vincent Yao
WP-13-02

Benjamin Chabot and Charles C. Moul
WP-13-03

Fiscal Consequences of Paying Interest on Reserves
Marco Bassetto and Todd Messer
WP-13-04

Properties of the Vacancy Statistic in the Discrete Circle Covering Problem
Gadi Barlevy and H. N. Nagaraja
WP-13-05

Credit Crunches and Credit Allocation in a Model of Entrepreneurship
Marco Bassetto, Marco Cagetti, and Mariacristina De Nardi
WP-13-06

Financial Incentives and Educational Investment: The Impact of Performance-Based Scholarships on Student Time Use
Lisa Barrow and Cecilia Elena Rouse
WP-13-07

The Global Welfare Impact of China: Trade Integration and Technological Change
Julian di Giovanni, Andrei A. Levchenko, and Jing Zhang
WP-13-08

Structural Change in an Open Economy
Timothy Uy, Kei-Mu Yi, and Jing Zhang
WP-13-09

The Global Labor Market Impact of Emerging Giants: a Quantitative Assessment
Andrei A. Levchenko and Jing Zhang
WP-13-10

Size-Dependent Regulations, Firm Size Distribution, and Reallocation
François Gourio and Nicolas Roys
WP-13-11

Modeling the Evolution of Expectations and Uncertainty in General Equilibrium
Francesco Bianchi and Leonardo Melosi
WP-13-12

Rushing into the American Dream? House Prices, the Timing of Homeownership, and the Adjustment of Consumer Credit
Sumit Agarwal, Luojia Hu, and Xing Huang
WP-13-13
The Earned Income Tax Credit and Food Consumption Patterns
Leslie McGranahan and Diane W. Schanzenbach

Agglomeration in the European automobile supplier industry
Thomas Klier and Dan McMillen

Human Capital and Long-Run Labor Income Risk
Luca Benzoni and Olena Chyruk

The Effects of the Saving and Banking Glut on the U.S. Economy
Alejandro Justiniano, Giorgio E. Primiceri, and Andrea Tambalotti

A Portfolio-Balance Approach to the Nominal Term Structure
Thomas B. King

Gross Migration, Housing and Urban Population Dynamics
Morris A. Davis, Jonas D.M. Fisher, and Marcelo Veracierto

Very Simple Markov-Perfect Industry Dynamics
Jaap H. Abbring, Jeffrey R. Campbell, Jan Tilly, and Nan Yang

Bubbles and Leverage: A Simple and Unified Approach
Robert Barsky and Theodore Bogusz

The scarcity value of Treasury collateral:
Repo market effects of security-specific supply and demand factors
Stefania D'Amico, Roger Fan, and Yuriy Kitsul

Gambling for Dollars: Strategic Hedge Fund Manager Investment
Dan Bernhardt and Ed Nosal

Cash-in-the-Market Pricing in a Model with Money and
Over-the-Counter Financial Markets
Fabrizio Mattesini and Ed Nosal

An Interview with Neil Wallace
David Altig and Ed Nosal

Firm Dynamics and the Minimum Wage: A Putty-Clay Approach
Daniel Aaronson, Eric French, and Isaac Sorkin

Policy Intervention in Debt Renegotiation:
Evidence from the Home Affordable Modification Program
Sumit Agarwal, Gene Amromin, Itzhak Ben-David, Souphala Chomsisengphet,
Tomasz Piskorski, and Amit Seru

Bubbles and Leverage: A Simple and Unified Approach
Robert Barsky and Theodore Bogusz

The scarcity value of Treasury collateral:
Repo market effects of security-specific supply and demand factors
Stefania D'Amico, Roger Fan, and Yuriy Kitsul

Gambling for Dollars: Strategic Hedge Fund Manager Investment
Dan Bernhardt and Ed Nosal

Cash-in-the-Market Pricing in a Model with Money and
Over-the-Counter Financial Markets
Fabrizio Mattesini and Ed Nosal

An Interview with Neil Wallace
David Altig and Ed Nosal

Firm Dynamics and the Minimum Wage: A Putty-Clay Approach
Daniel Aaronson, Eric French, and Isaac Sorkin

Policy Intervention in Debt Renegotiation:
Evidence from the Home Affordable Modification Program
Sumit Agarwal, Gene Amromin, Itzhak Ben-David, Souphala Chomsisengphet,
Tomasz Piskorski, and Amit Seru
Working Paper Series (continued)

The Effects of the Massachusetts Health Reform on Financial Distress
Bhashkar Mazumder and Sarah Miller WP-14-01

Can Intangible Capital Explain Cyclical Movements in the Labor Wedge?
François Gourio and Leena Rudanko WP-14-02

Early Public Banks
William Roberds and François R. Velde WP-14-03

Mandatory Disclosure and Financial Contagion
Fernando Alvarez and Gadi Barlevy WP-14-04

The Stock of External Sovereign Debt: Can We Take the Data at ‘Face Value’?
Daniel A. Dias, Christine Richmond, and Mark L. J. Wright WP-14-05

Interpreting the Pari Passu Clause in Sovereign Bond Contracts:
It’s All Hebrew (and Aramaic) to Me
Mark L. J. Wright WP-14-06

AIG in Hindsight
Robert McDonald and Anna Paulson WP-14-07

On the Structural Interpretation of the Smets-Wouters “Risk Premium” Shock
Jonas D.M. Fisher WP-14-08

Human Capital Risk, Contract Enforcement, and the Macroeconomy
Tom Krebs, Moritz Kuhn, and Mark L. J. Wright WP-14-09

Adverse Selection, Risk Sharing and Business Cycles
Marcelo Veracierto WP-14-10

Core and ‘Crust’: Consumer Prices and the Term Structure of Interest Rates
Andrea Ajello, Luca Benzoni, and Olena Chyruk WP-14-11

The Evolution of Comparative Advantage: Measurement and Implications
Andrei A. Levchenko and Jing Zhang WP-14-12

Saving Europe?: The Unpleasant Arithmetic of Fiscal Austerity in Integrated Economies
Enrique G. Mendoza, Linda L. Tesar, and Jing Zhang WP-14-13

Liquidity Traps and Monetary Policy: Managing a Credit Crunch
Francisco Buera and Juan Pablo Nicolini WP-14-14

Quantitative Easing in Joseph’s Egypt with Keynesian Producers
Jeffrey R. Campbell WP-14-15
Working Paper Series (continued)

Constrained Discretion and Central Bank Transparency
Francesco Bianchi and Leonardo Melosi
WP-14-16

Escaping the Great Recession
Francesco Bianchi and Leonardo Melosi
WP-14-17

More on Middlemen: Equilibrium Entry and Efficiency in Intermediated Markets
Ed Nosal, Yuet-Yee Wong, and Randall Wright
WP-14-18

Preventing Bank Runs
David Andolfatto, Ed Nosal, and Bruno Sultanum
WP-14-19

The Impact of Chicago’s Small High School Initiative
Lisa Barrow, Diane Whitmore Schanzenbach, and Amy Claessens
WP-14-20

Credit Supply and the Housing Boom
Alejandro Justiniano, Giorgio E. Primiceri, and Andrea Tambalotti
WP-14-21

The Effect of Vehicle Fuel Economy Standards on Technology Adoption
Thomas Klier and Joshua Linn
WP-14-22

What Drives Bank Funding Spreads?
Thomas B. King and Kurt F. Lewis
WP-14-23

Inflation Uncertainty and Disagreement in Bond Risk Premia
Stefania D’Amico and Athanasios Orphanides
WP-14-24

Access to Refinancing and Mortgage Interest Rates:
HARPing on the Importance of Competition
Gene Amromin and Caitlin Kearns
WP-14-25

Private Takings
Alessandro Marchesiani and Ed Nosal
WP-14-26

Momentum Trading, Return Chasing, and Predictable Crashes
Benjamin Chabot, Eric Ghysels, and Ravi Jagannathan
WP-14-27

Early Life Environment and Racial Inequality in Education and Earnings in the United States
Kenneth Y. Chay, Jonathan Guryan, and Bhashkar Mazumder
WP-14-28

Poor (Wo)man’s Bootstrap
Bo E. Honoré and Luojia Hu
WP-15-01

Revisiting the Role of Home Production in Life-Cycle Labor Supply
R. Jason Faberman
WP-15-02
Working Paper Series (continued)

Risk Management for Monetary Policy Near the Zero Lower Bound
Charles Evans, Jonas Fisher, François Gourio, and Spencer Krane
WP-15-03

Estimating the Intergenerational Elasticity and Rank Association in the US:
Overcoming the Current Limitations of Tax Data
Bhashkar Mazumder
WP-15-04

External and Public Debt Crises
Cristina Arellano, Andrew Atkeson, and Mark Wright
WP-15-05

The Value and Risk of Human Capital
Luca Benzoni and Olena Chyruk
WP-15-06

Simpler Bootstrap Estimation of the Asymptotic Variance of U-statistic Based Estimators
Bo E. Honoré and Luojia Hu
WP-15-07

Bad Investments and Missed Opportunities?
Postwar Capital Flows to Asia and Latin America
Lee E. Ohanian, Paulina Restrepo-Echavarria, and Mark L. J. Wright
WP-15-08

Backtesting Systemic Risk Measures During Historical Bank Runs
Christian Brownlees, Ben Chabot, Eric Ghysels, and Christopher Kurz
WP-15-09

What Does Anticipated Monetary Policy Do?
Stefania D’Amico and Thomas B. King
WP-15-10

Firm Entry and Macroeconomic Dynamics: A State-level Analysis
François Gourio, Todd Messer, and Michael Siemer
WP-16-01

Measuring Interest Rate Risk in the Life Insurance Sector: the U.S. and the U.K.
Daniel Hartley, Anna Paulson, and Richard J. Rosen
WP-16-02

Allocating Effort and Talent in Professional Labor Markets
Gadi Barlevy and Derek Neal
WP-16-03

The Life Insurance Industry and Systemic Risk: A Bond Market Perspective
Anna Paulson and Richard Rosen
WP-16-04

Forecasting Economic Activity with Mixed Frequency Bayesian VARs
Scott A. Brave, R. Andrew Butters, and Alejandro Justiniano
WP-16-05

Optimal Monetary Policy in an Open Emerging Market Economy
Tara Iyer
WP-16-06

Forward Guidance and Macroeconomic Outcomes Since the Financial Crisis
Jeffrey R. Campbell, Jonas D. M. Fisher, Alejandro Justiniano, and Leonardo Melosi
WP-16-07
Working Paper Series (continued)

Insurance in Human Capital Models with Limited Enforcement
Tom Krebs, Moritz Kuhn, and Mark Wright

Accounting for Central Neighborhood Change, 1980-2010
Nathaniel Baum-Snow and Daniel Hartley

The Effect of the Patient Protection and Affordable Care Act Medicaid Expansions on Financial Wellbeing
Luojia Hu, Robert Kaestner, Bhashkar Mazumder, Sarah Miller, and Ashley Wong