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Abstract

We study the term structure of variance (total risk), systematic and

idiosyncratic risk. Consistent with the expectations hypothesis, we find

that, for the entire market, the slope of the term structure of variance

is mainly informative about the path of future variance. Thus, there is

little indication of a time-varying term premium. Turning the focus to

individual stocks, we cannot reject the expectations hypothesis for the

systematic variance, but we strongly reject it for idiosyncratic variance.

Our results are robust to jumps and potential statistical biases.
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I Introduction

Recent studies document the predictive power of the term structure of option-related

variables. For example, Vasquez (2016) and Koijen et al. (2017) document that the spread

between option prices of different maturities predicts future option returns. At the same time,

security exchanges are increasingly disseminating information about the term structure of

option implied volatility and correlation. For instance, the Chicago Board Options Exchange

(CBOE) now publishes information not only about the popular 1-month VIX but also about

the 3-month VIX and the option implied correlation of various maturities. The academic and

professional interest in the term structure of option-related variables raises several questions:

What does the term structure of option prices tell us about future developments? Are there

differences in the term structures of market and stock option prices? In particular, does the

term structure encode information about the future path of the variable of interest or does

it instead reflect variations in a possible term premium?

Understanding whether there is a time-varying term premium is important in many

situations. For asset managers, knowledge about the term premium is essential for strategies

that take positions in the long-term variance and roll over short positions in the short-term

variance. If the term premium varies over time in a predictable fashion, investors could

exploit this. On the other hand, it is important to know whether it is cheaper to hedge

against variance increases by buying a long-term variance swap contract or rolling over

short-term variance swaps. Similar considerations hold for correlation trading strategies.

Understanding the differences in the term structures of systematic and idiosyncratic variance

can help for asset managers decide how to hedge individual stock variance. Answers to the

above questions are also important for risk managers who need an estimate of future variance.

To the extent that there is a time-varying premium in the term structure of variance, the

implied forward variance will be a noisy proxy for the expected future implied variance. Thus,
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a risk manager would need to purge the implied forward variance from the time-varying term

premium.

This paper analyzes the term structures of model-free option implied variance, system-

atic and idiosyncratic stock variance, as well as option implied correlation.1 We formally

derive testable predictions of the expectations hypothesis for each of these term structures.

The expectations hypothesis essentially states that the spread between the current long-term

estimate of these risk measures and the current short-term estimate of risk is mainly infor-

mative about future developments in short-term risk. Our derivation points to a relationship

between the term structure of equity index options prices and that of the option prices on

the underlying equities.

We use a large options dataset to empirically test the expectations hypothesis for each

term structure. Our results suggest that the expectations hypothesis generally cannot be

rejected for the term structures of option implied variance of the market as well as for sys-

tematic stock variance. Thus, there is little indication of a time-varying term premium

associated with these variables. As a consequence, the slope of each term structure is infor-

mative about investors’ expectations of future short-term (systematic) variance. As opposed

to that, we typically detect a negative term premium in the term structure of option implied

idiosyncratic variance. For option implied correlation, the results are indecisive. We typically

cannot formally reject the expectations hypothesis, but the coefficient estimates are far from

those predicted. These results are robust to the presence of jumps in the underlying price

process, as well as potential statistical biases in our tests. We thus conclude that overall the

expectations hypothesis provides a good description of the term structure of market option

prices, but not to the extent that they account for idiosyncratic variance.
1Note that systematic risk, and hence idiosyncratic variance, is not entirely model-free since it partly

depends on a parametric model for beta.
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Our work extends the literature on the term structure of variance and volatility.2 Campa

& Chang (1995) and Della Corte et al. (2011) study the term structure of foreign exchange

variance and volatility, respectively. Mixon (2007) and Johnson (2016) extend these studies

to the term structure of equity index implied variance. Our work is most strongly related

to a study by Heynen et al. (1994), who focus on the term structure of the index and indi-

vidual equity option implied volatility. Taken together, the above studies reach conflicting

conclusions. These range from a rejection of (an implication of) the expectations hypothesis

(Della Corte et al., 2011 and Johnson, 2016) to mixed results (Mixon, 2007) and not being

able to reject the expectations hypothesis for the term structure of variance (Heynen et al.,

1994 and Campa & Chang, 1995). Our study is different in several important aspects. First,

unlike Heynen et al. (1994), Campa & Chang (1995), and Mixon (2007), we study the model-

free option implied variance, which makes our results immune to potential misspecification

of a specific option pricing model used. That is, we avoid performing a joint test of correct

option pricing model specification and the expectations hypothesis. Second, we extend the

work of Mixon (2007) and Johnson (2016), who focus on the market index only. Because

our derivation points to the link between the option implied variance of the index and the

individual equities, we study the term structure of the option implied variance of individual

equities. Third, and most importantly, motivated by partly differential results on the market

and individual stocks, we decompose the term structure of option implied variance into parts

related to systematic and idiosyncratic variance.

Our paper is also related to Feunou et al. (2013) who show that principal components

from the option implied variance term structure have predictive power for bond and equity

returns. Our results indicate that factors capturing the slope of the term structure on the

market level are related to expectations about the future variance and may help rationalize
2Ait-Sahalia et al. (2015) extend the work of Egloff et al. (2010), modelling the term structure of variance

swaps in a continuous time setup. Further papers that model the term structure of variance swap rates include
Andries et al. (2015), Amengual & Xiu (2015), Dew-Becker et al. (2015), and Filipović et al. (2016).
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these findings.

We also add to the literature on the term structure of option implied correlation. Faria &

Kosowski (2016) study the term structure of option implied correlation. However, they make

no attempt to test the expectations hypothesis. Moreover, to the best of our knowledge, we

are the first to study the term structures of systematic and idiosyncratic variance.

Our study carries implications for asset pricing and risk management in general, and the

design of trading strategies in particular. From an asset pricing standpoint, our findings

imply, though do not directly test, that the cross-sectional strategies of Vasquez (2016) and

Koijen et al. (2017) mainly sort on the expected path of the future short-term option implied

volatility, rather than a related term premium. Thus, our results suggest that these studies

capture a risk premium associated with cross-sectional differences in expectations about

future short-term risk. Furthermore, our finding that the implied (systematic) variance

term structure mainly reflects expectations about future short-term variance can be used

for risk management purposes. Finally, the results presented in this study reveal that a

trading strategy that buys the long-term option implied variance and sells the future short-

term option implied variances is not profitable on average at the market level but yields

substantial negative returns when applied for individual stocks.

The remainder of this paper is organized as follows. In Section II, we introduce the data

and the methodology for the estimation of the option implied quantities. In Sections III

and VI, we derive the theoretical relationship between option prices of different maturities

and present our empirical results for variance and correlation, respectively. In Sections IV

and V, we study the term structure of option implied systematic and idiosyncratic variance,

respectively. We conduct additional analyses and test the robustness of our results in Section

VII. Section VIII concludes.
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II Data and Methodology

A Data

We obtain monthly options data for all stocks in the S&P 500 and the corresponding index

from IvyDB OptionMetrics for the sample period between January 1996 and August 2015.3

We use the Volatility Surface that directly provides implied volatilities over standardized

times to maturity for certain levels of delta.4,5 We select out-of-the-money options, namely

puts with deltas larger than −0.5 and calls with deltas smaller than 0.5, using constant

maturities of 1, 3, 6, 9, and 12 months for our analysis. Data on the interest rate come from

the IvyDB zero coupon yield curve file.6 Additionally, we obtain daily return data for the

S&P 500 index and its constituents from the Center for Research in Security Prices (CRSP).

When testing the expectations hypothesis for individual stocks, we require at least 50

monthly observations to include the firm in the sample.7

B Variance, Correlation, and Beta Estimation

We follow the approach developed by Britten-Jones & Neuberger (2000) and Jiang &

Tian (2005) to compute the (annualized) model-free option implied variance:

σ2
j,t,T =

2ert(T−t)

T − t

∫ ∞

0

Mt(T,K)

K2
dK. (1)

3The starting date of our study aligns with the start of the OptionMetrics database in 1996, while options
data were only available up to August 2015 when we started this study, determining the end point of our
sample period.

4IvyDB uses a kernel smoothing algorithm that generates standardized options only “if there exists
enough option price data on that date to accurately interpolate the required values”. For more details we refer
the interested reader to the IvyDB technical document.

5The results are qualitatively similar when directly using “real” options instead of the Volatility Surface.
6IvyDB derives the zero coupon yield from the London Interbank Offered Rates (LIBOR) and settlement

prices of Chicago Mercantile Exchange Eurodollar futures.
7Overall, we are able to include 658 of the constituents of the S&P 500, which vary over time due to

index additions and deletions.
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σ2
j,t,T is the (annualized) option implied variance of asset j for the period starting at time t

and ending at time T . Note that the option implied variance is available at time t. rt is the

risk-free rate and T − t is the time to maturity of the option, denominated as the fraction of

one year. Mt(T,K) is the price of the out-of-the-money option (put or call) with strike K

and time to maturity T − t at time t.

For the empirical implementation, we follow Chang et al. (2012). First, we compute ex-

dividend stock prices. Second, we interpolate implied volatilities on a grid of 1,000 moneyness

levels (K
S
, strike-to-spot), equally spaced between 0.3% and 300%, for any given stock and

trading day. For implied volatilities outside the range of available strike prices, we extrapolate

using the nearest neighbor method (as in Jiang & Tian, 2005 and Chang et al., 2012).8 Using

the interpolated volatilities, we compute Black & Scholes (1973) option prices for calls if

K
S
> 1 and puts if K

S
< 1. Third, we use these prices to numerically compute the above

integral using a trapezoidal rule (Dennis & Mayhew, 2002).

For the computation of the option implied correlation, we follow Driessen et al. (2009),

computing the average pairwise correlation among all N stocks in an index:

ρt,T =
σ2
M,t,T −

∑N
j=1 ω

2
j,tσ

2
j,t,T∑

j,l 6=j ωj,tωl,tσj,t,Tσl,t,T
. (2)

σ2
M,t,T is the (annualized) option implied variance of the market index and ωj,t denotes the

weight of asset j in the market index at time t.

To obtain forward-looking estimates of beta, we use the methodology proposed by Buss &

Vilkov (2012). Hollstein & Prokopczuk (2016) show that the Buss & Vilkov (2012) estimator

predicts future realized beta better than, e.g., the simple historical approach. The approach

essentially consists in mapping historical correlations, obtained from a 12-month time-series

of daily returns, to risk-neutral correlations (ρjl,t,T ) and combining these estimates with the
8The OptionMetrics Volatiltiy Surface contains calls with deltas down to 0.20 and puts with deltas

ranging up to −0.20.
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model-free option implied volatilities.9 A forward-looking estimate for beta of security j is

given by:

βBV
j,t,T =

σj,t,T
∑N

l=1 ωl,tσl,t,Tρjl,t,T
σ2
M,t,T

, (3)

where all variables are as previously defined. The implied volatilities needed for the approach

are obtained as the square-root of the option implied variance extracted from options with

time to expiration matching the forecast horizon.

III The Term Structure of Option Implied Variance

A Derivation of the Term Structure Relation

Let Xt denote the price of an asset at time t. Under no arbitrage, the price should be a

semi-martingale. Under the assumption that the price is an Itô semi-martingale and there

are jumps of finite variation in the price process, the price dynamics can be expressed as

(e.g., Bollerslev & Todorov, 2011):

dXt

Xt

= αtdt+ vtdWt +

∫
R

(ex − 1) µ̃P (dt, dx) . (4)

αt is the drift and vt is the instantaneous volatility process. Wt is a standard Brownian

motion. µ̃P (dt, dx) = µ(dt, dx)−νPt (dx)dt is the compensated jump measure, where µ(dt, dx)

is a counting measure for the jumps and νPt (dx)dt denotes the compensator of the jumps.

The time-t expectation of the quadratic variation of the log price process, Et(QVj,t,t+km),
9The authors use (i) the identity that the implied variance of the market index has to be the same as the

implied variance of the value-weighted portfolio of all index constituents and (ii) a technical condition that
maps physical correlations (ρPjl,t,T ) into risk-neutral correlations, namely ρjl,t,T = ρPjl,t,T − αt,T (1− ρPjl,t,T ).
Combining these two relations and solving for αt,T , the authors recover the implied correlation matrix of a
stock index. For further details, we refer the interested reader to the original article.
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then solves

Et (QVj,t,t+km) =

∫ t+km

t

v2j,τdτ +

∫ t+km

t

∫
R
x2µ (dτ, dx) . (5)

Et(QVj,t,t+km) denotes the time-t expectation of the variance of stock j over k periods, each

of length m (expressed in months), following time t. v2j,τ is the instantaneous variance at

time τ . Without loss of generality, in the following we set t = 0. For discrete time steps, we

have
1

k

k−1∑
i=0

E0

(
QVj,im,(i+1)m

)
= E0 (QVj,0,km) . (6)

Equation (6) reveals that the long-term implied variance is equal to the mean of time-0 ex-

pectations of future short-term implied variances.10 Note that this equation holds under both

the physical and the risk-neutral probability measures. Under the expectations hypothesis,

E0(QVj,im,(i+1)m) is an unbiased predictor of Eim(QVj,im,(i+1)m). Hence, we can test the ex-

pectations hypothesis by substituting E0(QVj,im,(i+1)m) with Eim(QVj,im,(i+1)m) = σ2
j,im,(i+1)m.

Intuitively, Equation (6) implies that an upward-sloping term structure reveals that the

market expects the future short-term implied variance to rise and vice versa. Notice also

that Equation (6) implies a constant and zero term premium if the expectations hypothesis

holds, where the term premium is defined as the return to the strategy that takes a long

position in the long-term implied variance and rolls over short positions in the short-term

implied variance (see also Section III.C).

Since the level of variance may have a unit root or follow a near-unit-root process, we

follow Campa & Chang (1995) and subtract the short-term option implied variance on both

sides of Equation (6). Hence, we test the expectations hypothesis in the term structure of

option implied variance by estimating the following regression model:

1

k

k−1∑
i=0

(
σ2
j,im,(i+1)m − σ2

j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km, (7)

10Note that the term 1
k in Equation (6) reflects the fact that all variances are annualized.
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where aj and bj are the regression intercept and slope, respectively. All other variables are

as previously defined. For example, when testing the expectations hypothesis comparing a

12-month variance contract with 12 successive 1-month contracts, we set k = 12 and m = 1

in Equation (7).11

The regression equation above provides several insights. First, the regression slope bj

is economically interesting since it reveals the share of variation in the slope of the term

structure that relates to future changes in the short-term option implied variance. The

remainder (1 − bj) captures that share of the variation in the slope of the term structure

that is related to the variation in the term premium. Notice that if the term premium is

zero (constant), as predicted by the expectations hypothesis, we expect (1− bj) = 0.

Second, Equation (7) presents two formally testable versions of the expectations hypoth-

esis. The pure version of the expectations hypothesis predicts a zero term premium. We

can formally test the pure expectations hypothesis with the joint null hypothesis aj = 0 and

bj = 1. The general version of the expectations hypothesis instead allows for a non-zero

but constant term premium (Cargill, 1975), i.e., the null hypothesis only states bj = 1. We

test the two hypotheses using a Wald test (for the joint hypothesis) and a t-test (for the

simple hypothesis). For all tests at the market level we use Newey & West (1987) corrected

standard errors with lag length equal to k times m, with m expressed in months.

Finally, to gain power for the tests on the market level, we also perform a joint Wald

test across all maturity specifications of both the pure and general expectations hypothe-

ses. Since the residuals are not independent across maturity specifications, we simulate the

critical values with a block-bootstrap that also preserves the dependence across maturity
11Different from, e.g., Campbell & Shiller (1991), Bekaert & Hodrick (2001), and Della Corte et al. (2008)

we do not use a vector autoregressive (VAR) approach for the expectations hypothesis tests. As noted by
Della Corte et al. (2008), in order to set up a VAR for the short-term and long-term variances, one has to
make additional assumptions on their data-generating processes (dgp). This implies that the VAR approach
is a joint test of the expectations hypothesis and model specification of the dgp. In light of this and the
evidence on explosive paths by Downing & Oliner (2007), we choose not to follow the VAR approach.
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specifications. We sample the residuals with replacement in blocks of 12 observations using

blocks that begin at the same time across each maturity specification. Afterwards, we create

an artificial time-series of the same length as the original one for the expectations hypothesis

test, imposing the joint restrictions implied by the pure expectations hypothesis and com-

pute both test statistics. We repeat this step 1,000 times, thus obtaining the distribution of

the two test statistics.

For tests on individual stocks, we estimate Equation (7) jointly for all stocks in a panel

regression. To perform the inference, we follow the advice of Petersen (2009) and use the

two-way clustering approach of Cameron et al. (2011).12 We cluster the residuals by both

calendar time and firm observations.

B Empirical Results

Table 1 presents summary statistics on option implied variance and correlation for dif-

ferent maturities. In Panel A, we present summary statistics on the market option implied

variance. We find that the term structure is relatively flat on average and increases only

marginally with time to maturity. Since variance is positive by definition, this preliminary

evidence indicates that the average variance term premium is likely small. The 1-month

option implied variance is far more volatile than the 12-month option implied variance with

standard deviations of 0.041 and 0.027, respectively. The fact that short-term variance has

a higher standard deviation, to some extent, indicates that shocks to variance might be

mainly transitory.13 The first-order autocorrelation is higher for longer maturities and both

skewness and kurtosis decrease with maturity.

Figure 1 shows the evolution of 1-month and 12-month option implied variance of the
12If the resulting coefficient covariance matrix is not positive semi-definit, we follow the approach of

Higham (1988).
13A similar pattern across maturities holds for the term structure of interest rates, where shocks cannot

easily be considered transitory. It is thus also possible that there is simply more noise short-term options
prices. However, we find further support for our conclusion, e.g., studying Figure 1.
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S&P 500 over time.14 There is a large peak during the financial crisis for both maturities. We

find that the slope of the term structure, defined as the 12-month minus the 1-month option

implied variance is frequently positive during calm periods, when estimates for the option

implied variance are small. However, the term structure becomes inverted during bad eco-

nomic times, e.g., during recessions, highlighted by the shaded areas. Taken together, these

patterns further strengthen the view that variance shocks are mainly transitory and point

towards the presence of mean-reversion in risk-neutral expectations about future variance.

Panel A of Table 2 reports the results of the test of the expectations hypothesis for the

market. We present the results for different pairs of long and short horizons. Several findings

are worth noting. First, the slope estimates are generally close to the value of 1 predicted

by the expectations hypothesis. For instance, we obtain a slope estimate of 1.042 that is

not significantly different from 1 when analyzing 12 months as the long horizon vs. the 12

consecutive 1-month short horizons. The magnitude of the slope coefficient indicates that the

term structure slope is almost exclusively informative about future short-term changes in the

option implied variance. Similar results emerge for other combinations of maturities. Second,

the intercept is generally of small economic magnitude and not significantly different from

0. Third, we formally test the joint restriction implied by the pure expectations hypothesis,

i.e., a = 0 and b = 1. As the p-value associated with the Wald test shows, we cannot reject

this null hypothesis. Finally, we also cannot reject the expectations hypothesis based on a

joint test across all maturity specifications. We thus conclude that the pure expectations

hypothesis provides a good description of the term structure of the market option implied

variance.15

Turning the focus on individual stocks, Panel B of Table 1 presents some key statistics.
14To enhance the exposition, we plot the longest and the shortest time to maturity only. The variances

of intermediate maturities are generally in between those of the 1-month and 12-month maturities.
15In a recent related study, Johnson (2016) tests an implication of the expectations hypothesis and rejects

it. In Section VII.A, we discuss the relation of his results to ours.
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We obtain the numbers in the table by first averaging over time and then across stocks. We

first note that the average level of option implied variance is substantially higher compared

to that of the market. This indicates that a substantial fraction of the option implied

variance of the stocks consists of idiosyncratic variance. Furthermore, we find that, on

average across stocks, the term structure of the stock option implied variance is downward-

sloping with an average 1-month variance of 0.166 and an average 12-month variance of 0.145.

A similar relation results when value-weighting the stocks. This clear pattern in the option

implied variance across maturities delivers some indication of a negative term premium. The

remaining patterns regarding standard deviations, persistence, skewness, and kurtosis across

maturities are similar to those of the market index.

Panel B of Table 2 presents our tests of the expectations hypothesis for individual stocks.16

These deliver an interesting pattern. For the 12 months vs. 1 month maturity specification,

we find a statistically significant positive intercept coefficient of 0.012 and a slope coefficient of

0.909 that is not significantly different from one. The Wald test rejects the pure expectations

hypothesis in the term structure of individual stock variance but not the general expectations

hypothesis. For long overall horizons, we obtain similar results. We are typically able to

reject the pure but not the general expectations hypothesis. On the other hand, for short

horizons of especially 6 and 3 months, we can strongly reject both the general and the pure

expectation hypothesis.

Taken together, although we are not able to reject the expectations hypothesis for the

market option-implied variance, Panels A and B of Table 2 indicate that there is in general a

decreasing pattern in the slope estimates of the term structure of option implied variance with

respect to the time to maturity. To our knowledge, this pattern has not been documented

in the previous literature, presenting a new stylized fact in options markets.
16Note that for our main results, we restrict both the intercept and slope coefficients to be the same across

all stocks. We relax this assumption in Section VII.C.
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A natural question to ask is: does the expectations hypothesis work for some stocks and

not others? If so, one possibility is that the firms for which the expectations hypothesis

is rejected are small firms with illiquid options. Indeed, when testing the expectations

hypothesis separately for each stock, we find that it can only be rejected for part of the stocks

while we cannot reject for others. Stocks for which we reject the expectations hypothesis

are typically small firms relative to the average firm in our sample, have low options trading

volumes, and have high average variances. We present these results in Table 3. For example,

for the 12 months vs. 1 month maturity specification, the average 1-month and 12-month

option implied variances are 0.19 and 0.16 for stocks for which we reject the pure expectations

hypothesis and 0.16 and 0.14 for stocks for which we cannot reject the pure expectations

hypothesis, respectively. Furthermore, the average weight in the market index for stocks

for which we reject the pure expectations hypothesis is 0.13% while that for the remaining

stocks is 0.22% on average. Finally, the average daily options volume is 4,412 for stocks for

which we reject and 6,117 for the stocks for which we cannot reject the pure expectations

hypothesis.

One possible interpretation of these results could be that in the term structure of op-

tion prices expectations evolve more consistently for large firms and firms with more liquid

options. On the other hand, given that the expectations hypothesis cannot be rejected for

the market option-implied variance, it could be that the expectations hypothesis holds for

systematic but not for idiosyncratic risk. Thus, the firms for which we are able to reject the

expectations hypothesis might simply carry more idiosyncratic risk. In the following sections,

we therefore test the expectations hypothesis separately for the systematic and idiosyncratic

parts of the variance.
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C Variance Term Premia

We also examine the return on a strategy that takes a long position in the long-term

option implied variance and rolls over short positions in the short-term option implied vari-

ance.17 We compute these returns as

σ2
j,0,km − 1

k

∑k−1
i=0 σ

2
j,im,(i+1)m

σ2
j,0,km

, (8)

where all variables are as previously defined. The results of Section III indicate that the

variance term premia should be close to zero on average.

We present the results on the variance term premia in Table 4. For example, buying the

12-month option implied variance and rolling over 12 1-month contracts yields an average

annualized return of 1.1%. However, this point estimate is not significantly different from

zero. Neither do we obtain a significant average return for any of the other maturity spec-

ifications. Hence, on average, there seems to be no variance term premium on the market

level.

For the variance term premia of the individual stocks, presented in Panel B of Table 4,

the picture looks quite differently. On average across all stocks, the variance term premia

are economically and statistically clearly significantly negative. For example when buying

a 12-month variance swap contract and rolling over 12 consecutive 1-month contracts, one

realizes an average return of −17%.
17Note that, in practice, this payoff can be achieved by buying a long-term variance swap and shorting

consecutive short-term variance swaps. The payoffs of the floating leg on the long and short positions offset
one another.
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IV The Term Structure of Systematic Risk

A Derivation of the Term Structure Relation

Bringing together the results of the option implied variance of the market and the indi-

vidual stocks, in this section we study the term structure of systematic risk. We find that we

cannot reject the expectations hypothesis for the market variance but in part for the variance

of individual stocks. A potential explanation for these findings is a differential pattern in the

evolution of option implied systematic and idiosyncratic risk. Thus, in this and Section (V),

we decompose the variance term structure into its systematic and idiosyncratic components.

While the terms “systematic risk” and “beta” are often used interchangeably, in the fol-

lowing we use the term “systematic risk” to denote the systematic part of the total variance

(β2
j,t,Tσ

2
M,t,T ) while beta relates to the standard definition, i.e., the expected covariance of

an asset’s excess return with that of the market over the expected variance of the market

excess return. During our sample period, on average, systematic risk accounts for roughly

40% of the total variance of individual stocks.18 Leading theoretical models predict that the

exposure to systematic risk is priced.19 Hence, it might be that the expectations hypothesis

holds only for systematic risk, while investors pay less attention to the term structure of

idiosyncratic risk.

We assume that asset returns are generated by a single index model of the form

rj,t,T = αj,t,T + βj,t,T rM,t,T + εj,t,T , (9)

where rj,t,T and rM,t,T denote the excess returns of stock j and the market for the period t
18For example, for the 1-month horizon, the firm-level average total variance is 0.166 and the average

systematic variance (β2
j,t,Tσ

2
M,t,T ) amounts to 0.064, which corresponds to a share of 38.7%. For the 12-

month horizon, the average option implied variance is 0.145. The systematic part, on average amounts to
0.063, which means that it accounts for 43.2% of the total variance.

19Although, recent empirical evidence partly suggests otherwise (e.g., Ang et al., 2006; Herskovic et al.,
2016; and Schürhoff & Ziegler, 2016), which is why we also examine idiosyncratic risk in the next section.
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until T , respectively. εj,t,T is the idiosyncratic return component.

In Section A1 of the appendix, we derive the term structure equation systematic risk

under the return generating process of Equation (9) and obtain the following result:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
+ ∆βσ + ∆βr + ∆ε = E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(10)

∆βσ, ∆βr, and ∆ε are defined in Section A1 of the appendix.

For testing the expectations hypothesis, we proceed analogously to the case of the option

implied variance and subtract the short-term estimate for systematic risk on both sides of

Equation (10), and set up a regression similar to that of Equation (7). While it is hard to

directly set up a trading strategy on beta, an investment strategy on the systematic risk of

a firm is realizable much easier. An investor simply needs to compute the forward-looking

beta of a stock and trade β2 shares in the variance of the market index.

B Empirical Results

Table 5 shows the results of expectations hypothesis tests in the term structure of system-

atic risk for individual stocks.20 As was the case for the total variance of individual stocks,

we detect an intercept coefficient that is positive and significantly different from zero in many

cases. We are thus able to reject the pure expectations hypothesis which states that both the

intercept should be zero and the slope coefficient should be equal to one at least marginally

for all maturity specifications but one. However, the slope coefficients for all horizons are

typically close to one, and we are not able to reject the general expectations hypothesis for

individual stocks’ systematic risk for any of the maturity specifications. Thus, given that

we are able to reject the general expectations hypothesis for the total variance of individual
20Note that the results of this section are not entirely model-free since the option implied beta of Buss &

Vilkov (2012) depends on a parametric model.
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stocks especially for short horizons, but not for systematic risk, it appears worthwhile to

have another look at the term structure of idiosyncratic variance.

V The Term Structure of Idiosyncratic Variance

A Derivation of the Term Structure Relation

In the previous sections, we find that the the term structure of option implied variance

is downward-sloping on average while the term structure of the market option implied vari-

ance is rather flat. Furthermore, we cannot reject the general expectations hypothesis for

systematic risk while the expectations hypothesis does not overall obtain similar support

in the term structure of total stock variance. These stylized facts may be indicative of a

downward-sloping term structure of option implied idiosyncratic variance. Thus, in this

section, we study the term structure of idiosyncratic variance. We obtain the idiosyncratic

variance for all stocks and maturities by solving Equation (A1) of the appendix for the id-

iosyncratic variance E0

(
σ2
ε,t,T

)
.21 We then test the expectations hypothesis for idiosyncratic

variance as

1

k

k−1∑
i=0

(
σ2
ε,j,im,(i+1)m − σ2

ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km, (11)

where σ2
ε,j,im,(i+1)m denotes the estimate for the option implied idiosyncratic variance.22 All

other variables are as previously defined.
21As described in Section A1, we proxy the expected squared market return by the market variance and

obtain estimates for the variance of beta and the covariance of beta with the market variance using the full
sample estimate.

22Note that the decomposition of the total stock variance term structure into a systematic and an id-
iosyncratic part is not entirely exhaustive. We neglect the parts ∆βσ and ∆βr of Equation (10) that are
difficult to interpret.
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B Empirical Results

We find that the slope coefficients for the expectations hypothesis tests on systematic

risk are typically larger than those for the expectations hypothesis tests on the total stock

variance. Thus, given these patterns and the finding that the option implied variance term

structure of individual stocks is typically downward-sloping, we expect the slope coefficients

to be below 1.

We present the results of the expectations hypothesis tests in the term structure of

idiosyncratic variance in Table 6. Consistent with our previous results, and as expected, we

find that the slope coefficient is clearly below 1 for all maturity combinations. For example,

for the 12 months vs. 1 month maturity specification, the slope coefficient is 0.737. For

other maturity specifications, the slope coefficients are typically even lower. We are able

to strongly reject both the general and the pure expectations hypothesis for all maturity

combinations.

Thus, overall we find that the expectations hypothesis cannot be rejected for the market

as well as the systematic risk of individual stocks. However, we can strongly reject the

expectations hypothesis for idiosyncratic variance.

C Idiosyncratic Variance Term Premia

In the recent years, there has been an extensive literature that studies strategies on

idiosyncratic volatility (e.g., Ang et al., 2006, 2009; Fu, 2009; Bekaert et al., 2012). Typically,

the authors find that stocks with high past idiosyncratic volatility underperform those stocks

with low past idiosyncratic volatility. As opposed to that, in this section, we examine the

average term premia on idiosyncratic variance. Instead of sorting the stocks on their past

idiosyncratic variance, the strategy considered here takes a long position in the long-term

option implied idiosyncratic variance and rolls over short positions in the short-term option
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implied idiosyncratic variance of the same stock. We compute these returns as

σ2
ε,j,0,km − 1

k

∑k−1
i=0 σ

2
ε,j,im,(i+1)m

σ2
ε,j,0,km

. (12)

All variables are as previously defined.

We present the results in Table 7. Consistent with the results of the previous subsec-

tion, we find that the average idiosyncratic variance term premia are typically negative and

significantly different from zero. Hence, buying a long-term position in idiosyncratic stock

variance is typically cheaper than rolling over short-term positions. Thus, there is a negative

term premium in the term structure of option implied idiosyncratic variance. Compared to

the average total variance term premia for individual stocks, the idiosyncratic variance term

premia are even clearly larger in magnitude. Thus, it seems that it is mostly the idiosyncratic

part of the stock variance that drives the negative average payoffs.

VI The Term Structure of Option Implied Correlation

A Derivation of the Term Structure Relation

In order to link the evidence on the term structure of the option implied variance of the

market and the individual stocks, we study the term structure of option implied correlation.

Using the fact that the index is a value-weighted portfolio of its constituents, Equation (6)

implies:

1

k

k−1∑
i=0

E0

(
N∑
j=1

ω2
j,imQVj,im,(i+1)m +

∑
j,l 6=j

ωj,imωl,im
√
QV j,im,(i+1)m

√
QV l,im,(i+1)mρim,(i+1)m

)

=E0

(
N∑
j=1

ω2
j,0QVj,0,km +

∑
j,l 6=j

ωj,0ωl,0
√
QV j,0,km

√
QV l,0,kmρ0,km

)
.

(13)
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N is the number of stocks in the index and ωj,im is the market capitalization weight of stock

j in the index at time im. ρim,(i+1)m denotes the average correlation of all stocks in the index

between times im and (i+ 1)m, following the definition of Driessen et al. (2009). In Section

A2 of the appendix, we show that Equation (13) implies the following relation between the

long-term and short-term expectations about the future option implied correlation:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)
+ ∆QV + ∆pq = E0 (ρ0,km) . (14)

Equation (14) provides several interesting insights. First, it shows that the long-term correla-

tion is informative about (i) the (weighted) expectation about future short-term correlations,

(ii) the spread between the average long-term and rolled short-term implied variance of in-

dividual equities (∆QV ), and (iii) the spread between the long-term and rolled short-term

covariances of the option implied correlation with the weighted cross-sum of option implied

volatilities (∆pq). The expression makes it clear that, contrary to what one might intuitively

expect, changes in the term structure of the implied correlations need not be linked to the

future path of the implied correlation.

Notice, however, that if the expectations hypothesis holds for individual equities, the

second part on the left hand side of Equation (14) is relatively small.23 Since Section III.B

shows that in some instances we can reject the expectations hypothesis while in others we

cannot, it remains an empirical question whether the long-term implied correlation mainly

reflects information about the weighted future short-term implied correlation.

We formally test the expectations hypothesis in the term structure of the option implied

correlation by running the regression:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq = a+ b (ρ0,km − ρ0,m) + νkm. (15)

23Note that the weights are also potentially time-varying. Thus, changes in long-term implied correlation
could also be linked to changes in the index weights.
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with q∗t,T =
∑

j,l 6=j ωj,tωl,t (σj,t,Tσl,t,T + Covt (σj,t,T , σl,t,T )). ∆̂QV and ∆̂pq are defined in Sec-

tion A2 of the appendix.

B Empirical Results

To begin with, Panel C of Table 1 presents summary statistics on the option implied

correlation for different maturities. We find that, on average, the term structure of the

option implied correlation slopes upward. The average over a 1-month horizon amounts to

0.418, which rises monotonically to 0.490 for the 12-month horizon. Hence, it seems that

participants in the options market expect (i) the correlations to rise in the long run and/or

(ii) a negative term premium. As is the case for option implied variance, we find the long-

horizon option implied correlation estimates to be more persistent and less volatile, but only

slightly less skewed and the kurtosis is close to 3 for all maturities.

Figure 2 presents the time series of option implied correlation for maturities of 1 and 12

months. We find that the term structure is in general upward-sloping; however, consistent

with recent evidence in Faria & Kosowski (2016), we also find that the term structure of

implied correlation flattens during times of economic distress.

Table 8 presents the results for expectations hypothesis tests.24 Again, we test both the

pure expectations hypothesis, which predicts aj = 0 and bj = 1 and the general expectations

hypothesis, that only requires bj = 1. For the 12 months vs. 1 month horizon, we obtain a

slope estimate of 0.626 and an intercept estimate of 0.035. We cannot reject the null of the

pure expectations hypothesis. For the remaining horizons, we find that the slope estimates

are also generally below 1, with values between 0.47 and 0.70. For all horizons, we can

neither reject the pure nor the general expectations hypothesis. However, one should notice

24One may wonder about the effect of the multiplicative term
q∗im,(i+1)m

q∗0,km
in Equation (15). For example,

the average of the 1-month q∗ is 0.115, while that of the 12-month q∗ is 0.107. The average of fraction
when using the q∗ observed at the same time only is 1.04. Hence, on average, the short-term option implied
correlation is multiplied by a factor slightly above 1.
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that the standard errors are relatively large. Thus, our failure to reject might also be driven

by a lack of power in the statistical test. To further address the potential lack-of-power

issue, we also run a joint test across all maturity specifications. The test shows that we

can neither reject the pure nor the general expectations hypothesis in the term structure of

option implied correlation.

VII Additional Analyses

A Forward Unbiasedness

Equation (7) is not the only implication of the expectations hypothesis. The forward-

unbiasedness hypothesis, that can also be derived as an implication of Equation (6), states

that current forward rates of implied variance should predict future spot rates of implied

variance as (Johnson, 2016):25

σ2
j,m,km − σ2

j,0,m = aj + bj
(
f 2
j,0,m,km − σ2

j,0,m

)
+ νj,km. (16)

The forward variance implied by the term structure is obtained as f 2
j,0,m,km = σ2

j,0,km +

1
k−1

(
σ2
j,0,km − σ2

j,0,m

)
. As before, the pure expectations hypothesis predicts aj = 0 and

bj = 1, while the general expectations hypothesis only states bj = 1. To thoroughly assess

its validity, in this section, we also examine the forward unbiasedness implication of the

expectations hypothesis.

We present the results in Table 9.26,27 In Panel A, we present the results for the option

implied variance of the market. Overall, the results for the forward unbiasedness formulation
25We make use of the expectations hypothesis to substitute En(QVj,n,km) = σ2

j,n,km for E0(QVj,n,km).
26Note that we only present the results for option implied variance and not correlation, systematic risk,

and idiosyncratic variance. In principle, a forward formulation can also be derived for these term structures.
However, in the derivations, the forward correlation and beta contain information that becomes known after
t only. Hence, with an unobservable forward rate, the forward unbiasedness hypothesis is not testable.

27Note that for this analysis, we additionally use the 2-month option-implied variance contract.
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of the expectations hypothesis are qualitatively similar to those in Section III. For most of

the maturity specifications, we cannot reject the expectations hypothesis. The expectations

hypothesis receives the strongest empirical support for long forward horizons of 9 and 6

months. On the other hand, the slope coefficients for the shortest forward horizons is lower.

For the 3 months vs. 1 month horizon (2 months forward horizon), we even reject the

expectations hypothesis in its pure form at 5% and the general form at 10%. For all other

horizons as well as with the joint test, we cannot reject the expectations hypothesis.

Using the aforementioned setup, Johnson (2016) rejects the expectations hypothesis for

the market index. There are two core differences between our approach and that of Johnson

(2016). First, the author uses daily observations, which induces a substantial amount of

overlap, likely introducing an overlapping-observations bias in the analysis. We use monthly

observations, which substantially reduces the overlap and makes a bias less likely. On the

other hand, moving from daily to monthly observations reduces the sample size and most

likely also the statistical power of the test. However, our sample period covers almost 20

years and thus involves 236 monthly observations. Additionally, we address this issue with

our joint test that pooles observations across maturities. Hence, it is unlikely that our

expectations hypothesis tests lack power. Second, Johnson (2016) concentrates on short

horizons. While our results of the expectations hypothesis tests are also weaker for short

horizons, these results are ultimately consistent with Johnson (2016).

In Panel B of Table 9, we present the results for the forward unbiasedness hypothesis

for individual stocks. We can reject both the pure and the general forward unbiasedness

hypothesis at least weakly for every horizon. Since we find that we cannot reject the expec-

tations hypothesis for the systematic part of the total stock variance, but strongly reject the

expectations hypothesis for the idiosyncratic part, it seems that the forward unbiasedness

test loads more strongly on the idiosyncratic part of the stock variance than the test in

Section III.B.
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Panel C of Table 9 presents the results for the forward unbiasedness hypothesis for option

implied idiosyncratic variance. Consistent with our previous results, we find that we can

strongly reject both the pure and the general expectations for every maturity specification.

B The Role of Jumps

Du & Kapadia (2013) show that the Britten-Jones & Neuberger (2000) approach is not

robust to the presence of jumps in the underlying price process. Hence, jumps in the price

processes might affect the results of our expectations hypothesis tests. To account for this,

we repeat our main tests using the option implied variance following Bakshi et al. (2003),

which Du & Kapadia (2013) show to be empirically robust to jumps. The alternative option

implied variance can be computed as:

QUAD =

∫ ∞

S

2
(
1− ln

[
K
S

])
K2

C(T,K)dK (17)

+

∫
S

0

2
(
1 + ln

[
S
K

])
K2

P (T,K)dK,

CUBIC =

∫ ∞

S

6 ln
[
K
S

]
− 3

(
ln
[
K
S

])2
K2

C(T,K)dK (18)

+

∫
S

0

6 ln
[
S
K

]
+ 3

(
ln
[
S
K

])2
K2

P (T,K)dK,

QUART =
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S

12
(
ln
[
K
S

])2 − 4
(
ln
[
K
S

])3
K2

C(T,K)dK (19)

+

∫
S

0

12
(
ln
[
S
K

])2
+ 4

(
ln
[
S
K

])3
K2

P (T,K)dK.

µj,t,T = ert(T−t) − 1− ert(T−t)

2
QUAD− ert(T−t)

6
CUBIC− ert(T−t)

24
QUART, (20)

σ2
j,t,T = ert(T−t)QUAD− µ2

j,t,T , (21)
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where all variables are as previously defined. We implement the variance computation along

the lines outlined in Section II.B.

We present the results for the expectations hypothesis tests using the jump-robust option

implied variance in Tables 10–13. In Table 10, we present the results for option implied

variance. For the market, these are qualitatively similar as before. For individual stocks,

presented in Panel B of Table 10, with the jump-robust variance estimates we are able to

reject the general expectations hypothesis also for long horizons. Thus, once we account

for jumps, the expectations hypothesis receives only little empirical support anymore in the

term structure of individual stock option implied variance.

For systematic and idiosyncratic risk, presented in Tables 11 and 12, we obtain largely

similar results as before. In the case of systematic risk, we can reject the pure expecta-

tions hypothesis, but we are typically not able to reject the genera expectations hypothesis.

For idiosyncratic variance, we are able to reject both the general and pure versions of the

expectations hypothesis in each case.

Table 13 presents the results for option implied correlation. With the jump-robust option

implied variance, the slope coefficients of the expectations hypothesis regression are even

further from one than with the standard measure. For all but two maturity specifications

we are able to marginally reject the general expectations hypothesis. Thus, overall the

expectations hypothesis also receives only little support in the term structure of option

implied correlation.

C Firm-Specific Intercept Coefficients

Note that estimating just one intercept coefficient in a panel regression essentially restricts

the intercept coefficient for all stocks to be the same. However, in reality, some stocks might

have positive average term premia while others have zero or negative average term premia.
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In this section, we test the robustness of our main results to this restriction. To do so, we

set up a panel regression with firm-fixed intercept coefficients. The Wald test then tests the

joint hypothesis that the slope coefficient is equal to one and all intercept coefficients are

equal to zero.

We present these results in Tables A1–A3. Overall, these results are largely similar

as those without allowing for firm-specific intercepts. We find that in all term structures

only part of the stocks have intercept coefficients that are significantly different from zero.

However, in every instance, the joint Wald test yields a strongly significant rejection of that

the “expanded” pure expectations hypothesis, which states that it holds jointly for all stocks.

D Finite Sample Bias

We account for possible finite sample bias in the expectations hypothesis tests, as dis-

cussed in the literature, e.g., by Bekaert et al. (1997). We address this issue in two steps.

First, we study the bias in coefficient estimates. Subsequently, we use a bootstrap approach

to infer critical values for the test statistics, avoiding reliance on asymptotic results that may

not be valid in finite samples.

To correct the bias in coefficient estimates, we first estimate the regression model of

Equation (7). We use the parameter estimates and the time series of residuals to conduct

a block-bootstrap of the dependent variable, sampling with replacement from the residuals

to create the same number of observations as in the initial regression model.28 We run the

expectations hypothesis regression of Equation (7) on the simulated data. We repeat this

procedure 1,000 times. In a final step, we obtain the finite sample bias as the difference

between the original coefficient estimate and the average of coefficients across the 1,000

28We follow Hall et al. (1995) using a block length of n
1
3 , where n is the total sample size. We use

overlapping blocks (Lahiri, 1999).
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simulations.29

Second, using the bias-corrected coefficients, we obtain the series of residuals and ex-

amine the finite sample properties of the t- and Wald tests. We sample the residuals with

replacement and obtain the time series of the dependent variable under the null hypothesis

of a = 0 and b = 1. We run the regression of Equation (7) and save the values of the test

statistics. Again, we repeat this step 1,000 times, thus obtaining the distribution for each

of the test statistics. Finally, from the percentiles of the simulated distribution of the test

statistics, we obtain the p-values for our expectations hypothesis tests.

We present the empirical results in Table A4 of the Online Appendix.30 The results

suggest that our main conclusions are robust to potential finite sample bias. The bias in

coefficient estimates is negligible throughout. For example, for the option implied variance of

the market, the maximum (absolute) bias in the slope coefficient is −0.24 percentage points,

which is far too low to overturn our results on the expectations hypothesis. Turning the

focus to finite sample distributions of the test statistics, we also find that the results with

the simulated critical values are qualitatively similar to those relying on asymptotic critical

values for the test statistics. Hence, it is very unlikely that our main results are significantly

affected by finite sample distortions.

E Errors-In-Variables

Finally, we examine the robustness of our results to potential errors-in-variables con-

cerns. To do that, we follow the instrument variable approach of Christensen & Prabhala

(1998). First, we regress the right-hand-side variables on their observation one period before.
29Efron & Tibshirani (1986) and Kosowski et al. (2006) show that, typically, the bootstrap results are

not sensitive for repetitions larger than 500–1,000. Therefore, we choose 1,000 simulations to limit the
computational effort.

30To limit the number of tables, we only report the results for option implied variance. The results on
systematic risk and idiosyncratic variance for Sections VII.D and VII.E are qualitatively similar. These
results are available upon request.
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Subsequently, we replace the right-hand-side variables with their fitted values and run the

expectations hypothesis regressions. In the presence of measurement errors in the indepen-

dent variable, there is a downward attenuation bias in the slope coefficient. Hence, we expect

the regression slopes to rise once we use the instrumental variables.

We present the results in Table A5 of the Online Appendix. Consistent with our expec-

tation, we find that the slope coefficients rise in general. Our conclusions, however, remain

unchanged.

VIII Conclusion

This study analyzes the relationship between option prices of different maturities. Using

model-free option implied estimates for variance, we find evidence in support of the expec-

tations hypothesis for the S&P 500. Hence, the term structure slope is mainly informative

about future changes in the option implied variance. Second, we test the expectations hy-

pothesis in the term structure of the model-free option implied variance of individual stocks.

We find that the expectations hypothesis results are mixed, although in many instances we

reject both the pure and the general expectations hypothesis.

Motivated by the differential results for the market and individual stocks, we further

decompose the variance term structure, separately studying systematic and idiosyncratic

risk. We obtain differential results. Consistent with the results for the market, we cannot

reject the general expectations hypothesis for systematic risk while we strongly reject the

expectations hypothesis for idiosyncratic risk. Thus, our results suggest that systematic risk

evolves consistently over time while there are large and time-varying negative term premia

for idiosyncratic risk. Buying long-term market or systematic risk contracts on average yields

similar results as rolling over short-term contracts, while for idiosyncratic variance contracts

rolling over short-term contracts is considerably more expensive.
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Finally, for option implied correlation, the expectations hypothesis gains limited support.

We are not able to consistently reject the expectations hypothesis, but the point estimates

of our regressions are relatively far from those predicted.
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Technical Appendix: Derivations

A1 Systematic Risk and Beta

It is straightforward to show that the return generating process of Equation (9) implies:31

E0 (V art,T (αj + βjrM + εj)) =E0 (βj,t,T )2 E0

(
σ2
M,t,T

)
+ V ar0(βj,t,T )E0

(
σ2
M,t,T

)
+ Cov0

(
β2
j,t,T , r

2
M,t,T

)
+ E0

(
σ2
ε,t,T

)
.

(A1)

Et,T (·), V art,T (·), and Covt,T (·) are the conditional time-t expectations, variance, and co-

variance operators for the period t until T , respectively. To empirically implement the

expectations hypothesis test, we proxy the expected squared market return by the market

variance. Finally, we obtain estimates for the time-t variance of beta and covariance of beta

with the market variance using the full sample estimate.

Inserting the relation of Equation (A1) into Equation (6), we get

1
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)]
= E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
+ V ar0(βj,0,km)E0

(
σ2
M,0,km

)
+ Cov0(β

2
j,0,km, r

2
M,0,km) + E0

(
σ2
ε,0,km

)
.

(A2)

31We assume continuous time, that αj,t,T is constant for each period, and that εj,t,T is
independent of βj,t,T rM,t,T . Using E0 (V art,T (αj + βjrM + εj)) = E0 (V art,T (βjrM + εj)) =

E0

(
Et,T ((βjrM + εj)

2
)− Et,T ((βjrM + εj))

2
)
and accounting for the fact that the squared expectation part

is negligible for a continuous time process, one can easily derive Equation (A1).
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Collecting terms on the left hand side of the equality sign, we obtain:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
− V ar0(βj,0,km)E0

(
σ2
M,0,km

)
+

1

k

k−1∑
i=0

[
V ar0(βj,im,(i+1)m)E0

(
σ2
M,im,(i+1)m

)]
− Cov0(β2

j,0,km, r
2
M,0,km)

+
1

k

k−1∑
i=0

[
Cov0(β

2
j,im,(i+1)m, r

2
M,im,(i+1)m)

]
− E0

(
σ2
ε,0,km

)
+

1

k

k−1∑
i=0

[
E0

(
σ2
ε,im,(i+1)m

)]
= E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(A3)

Defining ∆βσ = 1
k

∑k−1
i=0

[
V ar0(βj,im,(i+1)m)E0

(
σ2
M,im,(i+1)m

)]
−V ar0(βj,0,km)E0

(
σ2
M,0,km

)
,

∆βr = 1
k

∑k−1
i=0

[
Cov0(β

2
j,im,(i+1)m, r

2
M,im,(i+1)m)

]
− Cov0(β

2
j,0,km, r

2
M,0,km), and

∆ε = 1
k

∑k−1
i=0

[
E0

(
σ2
ε,im,(i+1)m

)]
− E0

(
σ2
ε,0,km

)
, we obtain:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
+ ∆βσ + ∆βr + ∆ε = E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(A4)

A2 Option Implied Correlation

Re-arranging Equation (13), we obtain:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)

−
E0

(∑N
j=1 ω

2
j,0QVj,0,km

)
− 1

k

∑k−1
i=0

(
E0

(∑N
j=1 ω

2
j,imQVj,im,(i+1)m

))
E0 (q0,km)

−
Cov0 (ρ0,km, q0,km)− 1

k

∑k−1
i=0

(
Cov0

(
ρim,(i+1)m, qim,(i+1)m

))
E0 (q0,km)

= E0 (ρ0,km) ,

(A5)

with qt,T =
∑

j,l 6=j ωj,tωl,t
√
QV j,t,T

√
QV l,t,T and E0 (qt,T ) =

∑
j,l 6=j E0 (ωj,t)E0 (ωl,t)(

E0

(√
QV j,t,T

)
E0

(√
QV l,t,T

)
+ Cov0

(√
QV j,t,T ,

√
QV l,t,T

))
.32 Defining

∆QV = −E0(
∑N

j=1 ω
2
j,0QVj,0,km)− 1

k

∑k−1
i=0 (E0(

∑N
j=1 ω

2
j,imQVj,im,(i+1)m))

E0(q0,km)

32We assume that the weights are independent of the quadratic variations.
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and ∆pq = −Cov0(ρ0,km,q0,km)− 1
k

∑k−1
i=0 (Cov0(ρim,(i+1)m,qim,(i+1)m))
E0(q0,km)

, Equation A5 reads:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)
+ ∆QV + ∆pq = E0 (ρ0,km) . (A6)

We formally test the expectations hypothesis in the term structure of the option implied

correlation by running the regression:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+

1
k

∑k−1
i=0

(∑N
j=1 ω

2
j,imσ

2
j,im,(i+1)m

)
−
∑N

j=1 ω
2
j,0σ

2
j,0,km

q∗0,km

+

1
k

∑k−1
i=0

(
Covim(ρim,(i+1)m, q

∗
im,(i+1)m)

)
− Cov0

(
ρ0,km, q

∗
0,km

)
q∗0,km

= a+ b (ρ0,km − ρ0,m) + νkm,

(A7)

with q∗t,T =
∑

j,l 6=j ωj,tωl,t (σj,t,Tσl,t,T + Covt (σj,t,T , σl,t,T )).

Defining ∆̂QV =
1
k

∑k−1
i=0 (

∑N
j=1 ω

2
j,imσ

2
j,im,(i+1)m)−

∑N
j=1 ω

2
j,0σ

2
j,0,km

q∗0,km
and

∆̂pq =
1
k

∑k−1
i=0 (Covim(ρim,(i+1)m,q

∗
im,(i+1)m

))−Cov0(ρ0,km,q∗0,km)
q∗0,km

, we obtain the equation presented in

the main text:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq = a+ b (ρ0,km − ρ0,m) + νkm. (A8)
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Table 1: Summary Statistics

This table presents summary statistics on the (annualized) option implied variance of the market (Panel A)

and individual stocks (Panel B) of different maturities, as well as summary statistics on the option implied

correlation (Panel C). We report the results for maturities of 1, 3, 6, 9, and 12 months. Mean and Median

are the overall average and median of the estimates over the entire sample period. Std. and AR(1) present

further summary statistics on the (average) standard deviations and first-order autocorrelations, while Skew

and Kurt denote the (average) skewness and kurtosis, respectively. For individual stocks, we present cross-

sectional averages of the firms’ time-series statistics. In case of Meanvw, we present the time-series average

of the value-weighted cross-sectional average.

Panel A. Market Option Implied Variance

Horizon Mean Median Std. AR(1) Skew Kurt

1 month 0.046 0.035 0.041 0.789 3.27 17.8
3 months 0.047 0.039 0.035 0.842 2.69 13.0
6 months 0.048 0.041 0.030 0.878 2.29 10.4
9 months 0.049 0.042 0.028 0.894 2.11 9.30
12 months 0.049 0.044 0.027 0.903 2.00 8.76

Panel B. Stock Option Implied Variance

Horizon Mean Meanvw Median Std. AR(1) Skew Kurt

1 month 0.166 0.116 0.097 0.153 0.772 2.64 13.9
3 months 0.156 0.112 0.093 0.132 0.856 2.43 12.3
6 months 0.149 0.110 0.092 0.118 0.882 2.26 11.1
9 months 0.147 0.109 0.093 0.111 0.889 2.13 10.1
12 months 0.145 0.109 0.094 0.103 0.898 2.06 9.78

Panel C. Option Implied Correlation

Horizon Mean Median Std. AR(1) Skew Kurt

1 month 0.418 0.403 0.138 0.744 0.49 3.05
3 months 0.447 0.449 0.128 0.814 0.32 3.73
6 months 0.476 0.480 0.123 0.886 0.03 3.06
9 months 0.487 0.500 0.123 0.912 0.01 2.86
12 months 0.490 0.493 0.120 0.915 0.03 2.85
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Table 2: Expectations Hypothesis Test: Option Implied Variance

This table reports the results of the expectations hypothesis tests for the model-free option implied variance.

In Panel A, we present the results for the S&P 500 market index and Panel B shows the aggregated results for

the individual stocks included in the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
=

aj+bj

(
σ2
j,0,km − σ2

j,0,m

)
+νj,km. In each column, the first number denotes the long horizon (k times m) and

the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while the

general expectations hypothesis requires only the latter. We test the individual hypotheses with t-tests and

the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors (s.e.) with

km lags. We also present the results of a joint test of the expectations hypothesis along with bootstrapped

p-values. In Panel B, we present the results of a panel regression using the two-way clustered standard errors

of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
(s.e.) (0.004) (0.003) (0.002) (0.004) (0.003) (0.003) (0.002) (0.002)
Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
(s.e.) (0.139) (0.208) (0.347) (0.123) (0.179) (0.142) (0.179) (0.230)

adj. R2 0.38 0.26 0.13 0.32 0.20 0.24 0.15 0.10
Wald 0.63 0.53 0.75 0.53 0.43 1.99 1.21 3.15
p-value [0.73] [0.77] [0.69] [0.77] [0.81] [0.37] [0.55] [0.21]

Joint Pure General

Wald 22.1 6.23
p-value [0.59] [0.54]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗∗ 0.006∗ 0.002 0.012∗∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

(s.e.) (0.005) (0.003) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003)
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

(s.e.) (0.069) (0.088) (0.110) (0.078) (0.089) (0.078) (0.060) (0.065)
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald [0.02]∗∗ [0.18] [0.07]∗ [0.02]∗∗ [0.09]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 3: Stock Characteristics

This table reports the average stock characteristics separately for stocks for which we can reject the pure

expectations hypothesis in the term structure of option implied variance and for those for which we cannot

reject the pure expectations hypothesis. We present the results for different maturity combinations. In

each column, the first number denotes the long horizon (k times m) and the second number denotes the

short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)). IVst and IVlt denote the

average option implied variance for the respective short and long horizons. Weight is the average market

capitalization share of the stocks relative to the total market share of stocks in our sample and Volume is

the average daily options volume of the stocks in the respective groups.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

rej. Stocks IVst 0.19 0.17 0.16 0.19 0.18 0.17 0.17 0.16
IVlt 0.16 0.16 0.15 0.16 0.17 0.15 0.16 0.15

Weight 0.0013 0.0015 0.0013 0.0012 0.0013 0.0012 0.0011 0.0014
V olume 4412 4700 3589 3780 4200 3081 3150 3399

non-rej. Stocks IVst 0.16 0.15 0.14 0.16 0.15 0.16 0.15 0.18
IVlt 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.17

Weight 0.0022 0.0020 0.0020 0.0021 0.0020 0.0022 0.0021 0.0024
V olume 6117 5551 5887 6164 5611 6863 6212 8069
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Table 4: Variance Term Premia

This table reports the average returns to a strategy that takes a long position in the long-term option implied

variance and rolls over short positions in the short-term option implied variance. In Panel A, we present the

results for the S&P 500 market index and Panel B shows the aggregated results for the individual stocks

included in the S&P 500. The return is
σ2
j,0,km− 1

k

∑k−1
i=0 σ

2
j,im,(i+1)m

σ2
j,0,km

. In each column, the first number denotes

the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we

have km = 12 and m = 1 month(s)). In parentheses, we present Newey & West (1987) standard errors (s.e.)

with km lags. We also present the results of a joint test of that the returns of all maturity specifications

are jointly zero along with bootstrapped p-values.In Panel B, we present the results of a panel regression

on a constant using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. 0.011 0.001 −0.011 0.010 0.003 0.016 0.012 0.004
(s.e.) (0.093) (0.072) (0.043) (0.077) (0.055) (0.058) (0.033) (0.030)

Joint

Wald 1.08
p-value [0.95]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. −0.177∗∗∗ −0.099∗∗∗ −0.049∗∗∗ −0.162∗∗∗ −0.082∗∗∗ −0.138∗∗∗ −0.053∗∗∗ −0.090∗∗∗

(s.e.) (0.032) (0.024) (0.018) (0.028) (0.021) (0.023) (0.014) (0.015)
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Table 5: Expectations Hypothesis Test: Systematic Risk

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and

m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the slope b

is one while the general expectations hypothesis requires only the latter. We test the individual hypotheses

with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression approach using

the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗ 0.007∗ 0.002 0.012∗∗ 0.006∗ 0.011∗∗∗ 0.005∗∗ 0.007∗∗

(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.002) (0.003)
Slope 1.149 1.286 0.914 1.109 1.120 0.916 0.917 0.741
(s.e.) (0.164) (0.228) (0.372) (0.164) (0.228) (0.171) (0.212) (0.237)

adj. R2 0.20 0.13 0.03 0.18 0.09 0.13 0.06 0.07
Wald [0.01]∗∗∗ [0.02]∗∗ [0.67] [0.01]∗∗ [0.08]∗ [0.03]∗∗ [0.09]∗ [0.07]∗
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Table 6: Expectations Hypothesis Test: Idiosyncratic Variance

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means

we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is

zero and that the slope b is one while the general expectations hypothesis requires only the latter. We test

the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel

regression approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.008∗∗∗ 0.005∗∗ 0.002 0.008∗∗∗ 0.004∗∗ 0.006∗∗∗ 0.002∗∗ 0.004∗∗

(s.e.) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001)
Slope 0.737∗∗∗ 0.724∗∗∗ 0.651∗∗∗ 0.696∗∗∗ 0.629∗∗∗ 0.601∗∗∗ 0.455∗∗∗ 0.548∗∗∗

(s.e.) (0.060) (0.088) (0.103) (0.069) (0.083) (0.078) (0.091) (0.076)
adj. R2 0.23 0.15 0.09 0.18 0.09 0.15 0.04 0.12
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗

Table 7: Idiosyncratic Variance Term Premia

This table reports the average returns to a strategy that takes a long position in the long-term option

implied idiosyncratic variance and rolls over short positions in the short-term option implied idiosyncratic

variance. We show the aggregated results for the individual stocks included in the S&P 500. The return

is
σ2
ε,j,0,km− 1

k

∑k−1
i=0 σ

2
ε,j,im,(i+1)m

σ2
ε,j,0,km

. In each column, the first number denotes the long horizon (k times m) and

the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

We present the results of a panel regression on a constant using the two-way clustered standard errors of

Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. −0.376∗∗∗ −0.252∗∗∗ −0.126∗∗∗ −0.337∗ −0.465∗ −0.320∗∗∗ −0.187∗∗∗ −0.102
(s.e.) (0.080) (0.053) (0.039) (0.178) (0.258) (0.054) (0.037) (0.152)
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Table 8: Expectations Hypothesis Test: Option Implied Correlation

This table reports the results of the expectations hypothesis tests for the option implied correlation of the

stocks of the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq =

a+ b (ρ0,km − ρ0,m) + νkm. In each column, the first number denotes the long horizon (k times m) and the

second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while the

general expectations hypothesis requires only the latter. We test the individual hypotheses with t-tests and

the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors (s.e.) with

km lags. We also present the results of a joint test of the expectations hypothesis along with bootstrapped

p-values. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.035 0.027 0.008 0.043 0.035 0.024 0.011 0.019
(s.e.) (0.048) (0.034) (0.019) (0.039) (0.025) (0.027) (0.014) (0.018)
Slope 0.626 0.504 0.704 0.631 0.470 0.689 0.673 0.499
(s.e.) (0.292) (0.385) (0.571) (0.273) (0.369) (0.218) (0.349) (0.323)

adj. R2 0.04 0.02 0.01 0.04 0.01 0.05 0.03 0.02
Wald 1.65 1.68 0.37 2.00 2.66 2.08 1.05 2.51
p-value [0.44] [0.43] [0.83] [0.37] [0.26] [0.35] [0.59] [0.28]

Joint Pure General

Wald 35.2 30.0
p-value [0.91] [0.22]
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Table 9: Expectations Hypothesis Test: Forward Unbiasedness

This table reports the results of the expectations hypothesis tests for the model-free option implied variance.

In Panel A, we present the results for the S&P 500 market index and Panel B shows the aggregated results

for the individual stocks included in the S&P 500. The regression equation is σ2
j,m,km − σ2

j,0,m = aj +

bj

(
f2j,0,m,km − σ2

j,0,m

)
+ νj,km, with f2j,0,m,km = σ2

j,0,km + 1
k−1

(
σ2
j,0,km − σ2

j,0,m

)
. In each column, the first

number denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g.,

12,3 means we have km = 12 and m = 3 month(s)). The pure expectations hypothesis posits that the

constant a is zero and that the slope b is one while the general expectations hypothesis requires only the

latter. We test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests

employ Newey & West (1987) standard errors (s.e.) with km lags. We also present the results of a joint

test of the expectations hypothesis along with bootstrapped p-values.In Panel B, we present the results of a

panel regression on a constant using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗,

and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. −0.001 −0.003 −0.005 −0.001 −0.003 −0.002 0.000
(s.e.) (0.002) (0.004) (0.006) (0.003) (0.005) (0.003) (0.002)
Slope 1.003 1.198 1.389 0.945 1.051 0.862 0.582∗

(s.e.) (0.112) (0.347) (0.767) (0.135) (0.375) (0.179) (0.223)
adj. R2 0.36 0.13 0.07 0.27 0.07 0.15 0.10
Wald 0.34 0.75 0.66 0.51 0.37 1.21 9.00∗∗

p-value [0.85] [0.69] [0.72] [0.78] [0.83] [0.55] [0.01]

Joint Pure General

Wald 14.8 5.49
p-value [0.77] [0.67]
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Table 9: Expectations Hypothesis Test: Option Implied Variance – Forward Unbiasedness (continued)

Panel B. Stocks

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. 0.002 0.004 0.007 0.003 0.008 0.007 0.004
(s.e.) (0.003) (0.005) (0.007) (0.004) (0.006) (0.005) (0.003)
Slope 0.787∗∗∗ 0.751∗∗ 0.493∗∗∗ 0.785∗∗∗ 0.768∗∗ 0.640∗∗∗ 0.588∗∗∗

(s.e.) (0.054) (0.110) (0.083) (0.052) (0.102) (0.060) (0.058)
adj. R2 0.26 0.11 0.05 0.22 0.08 0.11 0.18
Wald [0.00]∗∗∗ [0.07]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.05]∗ [0.00]∗∗∗ [0.00]∗∗∗

Panel C. Idiosyncratic Variance

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. 0.001 0.004 0.009∗∗ 0.002 0.009∗∗∗ 0.005∗∗ 0.005∗∗∗

(s.e.) (0.002) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002)
Slope 0.672∗∗∗ 0.647∗∗∗ 0.402∗∗∗ 0.667∗∗∗ 0.566∗∗∗ 0.466∗∗∗ 0.590∗∗∗

(s.e.) (0.053) (0.101) (0.079) (0.059) (0.095) (0.086) (0.057)
adj. R2 0.19 0.09 0.05 0.13 0.05 0.04 0.18
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 10: Expectations Hypothesis Test: Option Implied Variance – The Role
of Jumps

This table reports the results of the expectations hypothesis tests for the model-free option implied variance.

In Panel A, we present the results for the S&P 500 market index and Panel B shows the aggregated results for

the individual stocks included in the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
=

aj+bj

(
σ2
j,0,km − σ2

j,0,m

)
+νj,km. In each column, the first number denotes the long horizon (k times m) and

the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while the

general expectations hypothesis requires only the latter. We test the individual hypotheses with t-tests and

the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors (s.e.) with

km lags. We also present the results of a joint test of the expectations hypothesis along with bootstrapped

p-values. In Panel B, we present the results of a panel regression on a constant using the two-way clustered

standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level,

respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.005 −0.003 −0.001 −0.004 −0.002 −0.003 −0.001 −0.001
(s.e.) (0.005) (0.004) (0.002) (0.004) (0.003) (0.003) (0.002) (0.002)
Slope 0.973 0.947 0.880 0.931 0.887 0.844 0.834 0.706
(s.e.) (0.184) (0.261) (0.402) (0.151) (0.210) (0.145) (0.188) (0.253)

adj. R2 0.30 0.19 0.06 0.26 0.15 0.20 0.12 0.08
Wald 1.06 0.78 0.59 1.23 0.96 2.93 1.64 4.39
p-value [0.59] [0.68] [0.75] [0.54] [0.62] [0.23] [0.44] [0.11]

Joint Pure General

Wald 56.5 13.8
p-value [0.50] [0.42]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.009∗ 0.005 0.002 0.009∗ 0.004 0.007 0.003 0.004
(s.e.) (0.005) (0.004) (0.003) (0.005) (0.004) (0.004) (0.003) (0.003)
Slope 0.872∗∗ 0.801∗∗∗ 0.610∗∗∗ 0.879∗ 0.737∗∗∗ 0.698∗∗∗ 0.545∗∗∗ 0.598∗∗∗

(s.e.) (0.054) (0.060) (0.074) (0.067) (0.086) (0.092) (0.095) (0.052)
adj. R2 0.37 0.26 0.14 0.30 0.18 0.22 0.11 0.18
Wald [0.03]∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.06]∗ [0.01]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 11: Expectations Hypothesis Test: Systematic Risk – The Role of Jumps

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and

m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the slope b

is one while the general expectations hypothesis requires only the latter. We test the individual hypotheses

with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression approach using

the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.010 0.007 0.004 0.010 0.006 0.010 0.006 0.006
(s.e.) (0.009) (0.007) (0.005) (0.009) (0.006) (0.008) (0.005) (0.006)
Slope 1.044 0.947 0.367∗∗∗ 1.086 1.009 0.837 0.632 0.606∗

(s.e.) (0.136) (0.176) (0.221) (0.152) (0.199) (0.218) (0.272) (0.201)
adj. R2 0.20 0.11 0.03 0.18 0.10 0.11 0.04 0.05
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 12: Expectations Hypothesis Test: Idiosyncratic Variance – The Role of
Jumps

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means

we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is

zero and that the slope b is one while the general expectations hypothesis requires only the latter. We test

the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel

regression approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.008∗∗∗ 0.005∗∗ 0.002 0.008∗∗∗ 0.005∗∗ 0.006∗∗ 0.003∗∗ 0.003∗

(s.e.) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.001) (0.002)
Slope 0.747∗∗∗ 0.710∗∗∗ 0.580∗∗∗ 0.716∗∗∗ 0.684∗∗∗ 0.583∗∗∗ 0.474∗∗∗ 0.511∗∗∗

(s.e.) (0.054) (0.059) (0.063) (0.063) (0.057) (0.067) (0.052) (0.081)
adj. R2 0.28 0.20 0.13 0.21 0.15 0.14 0.08 0.12
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 13: Expectations Hypothesis Test: Option Implied Correlation – The
Role of Jumps

This table reports the results of the expectations hypothesis tests for the option implied correlation of the

stocks of the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq =

a+ b (ρ0,km − ρ0,m) + νkm. In each column, the first number denotes the long horizon (k times m) and the

second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while the

general expectations hypothesis requires only the latter. We test the individual hypotheses with t-tests and

the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors (s.e.) with

km lags. We also present the results of a joint test of the expectations hypothesis along with bootstrapped

p-values. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.040 0.036 0.015 0.043 0.039 0.021 0.011 0.014
(s.e.) (0.051) (0.037) (0.021) (0.040) (0.027) (0.028) (0.015) (0.018)
Slope 0.425∗ 0.215∗ 0.100 0.495∗ 0.296∗ 0.603∗ 0.583 0.463∗

(s.e.) (0.297) (0.401) (0.575) (0.276) (0.376) (0.223) (0.365) (0.307)
adj. R2 0.02 0.00 0.00 0.03 0.00 0.04 0.02 0.01
Wald 4.08 3.87 2.49 3.34 3.78 3.23 1.34 3.84
p-value [0.13] [0.14] [0.29] [0.19] [0.15] [0.20] [0.51] [0.15]

Joint Pure General

Wald 116.3 21.9
p-value [0.34] [0.29]
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Table A1: Expectations Hypothesis Test: Option Implied Variance –
Firm-Fixed Effects

This table reports the results of the expectations hypothesis tests for the model-free option implied variance.

In Panel A, we present the results for the S&P 500 market index and Panel B shows the aggregated results for

the individual stocks included in the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
=

aj+bj

(
σ2
j,0,km − σ2

j,0,m

)
+νj,km. In each column, the first number denotes the long horizon (k times m) and

the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while the

general expectations hypothesis requires only the latter. We test the individual hypotheses with t-tests and

the joint hypothesis with a Wald test. All tests employ a panel regression approach, allowing for firm-specific

intercept estimates and using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively. [share] denotes the percentage share of

stocks for which the intercept is significantly different from zero at the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014 0.007 0.002 0.014 0.006 0.011 0.004 0.006
(s.e.) (0.008) (0.006) (0.005) (0.008) (0.005) (0.007) (0.004) (0.005)
[share] [0.52] [0.34] [0.19] [0.49] [0.27] [0.44] [0.18] [0.30]
Slope 0.948 0.939 0.798∗ 0.917 0.883 0.783∗∗∗ 0.670∗∗∗ 0.638∗∗∗

(s.e.) (0.070) (0.087) (0.110) (0.080) (0.089) (0.081) (0.060) (0.068)
adj. R2 0.36 0.22 0.12 0.30 0.17 0.24 0.11 0.18
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A2: Expectations Hypothesis Test: Systematic Risk – Firm-Fixed Effects

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and

m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the slope b

is one while the general expectations hypothesis requires only the latter. We test the individual hypotheses

with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression approach, allow-

ing for firm-specific intercept estimates and using the two-way clustered standard errors of Cameron et al.

(2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively. [share] denotes the

percentage share of stocks for which the intercept is significantly different from zero at the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014 0.007 0.003 0.013 0.007 0.013 0.006 0.008
(s.e.) (0.008) (0.006) (0.005) (0.008) (0.006) (0.007) (0.004) (0.005)
[share] [0.48] [0.38] [0.24] [0.46] [0.31] [0.45] [0.31] [0.37]
Slope 1.191 1.353 1.029 1.143 1.175 0.948 0.963 0.759
(s.e.) (0.164) (0.229) (0.376) (0.165) (0.229) (0.172) (0.215) (0.237)

adj. R2 0.23 0.15 0.04 0.20 0.11 0.15 0.07 0.07
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A3: Expectations Hypothesis Test: Idiosyncratic Variance – Firm-Fixed
Effects

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means

we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is

zero and that the slope b is one while the general expectations hypothesis requires only the latter. We test

the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel

regression approach, allowing for firm-specific intercept estimates and using the two-way clustered standard

errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

[share] denotes the percentage share of stocks for which the intercept is significantly different from zero at

the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.010 0.006 0.002 0.009 0.005 0.008 0.003 0.005
(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.003) (0.003)
[share] [0.54] [0.39] [0.21] [0.53] [0.33] [0.49] [0.23] [0.36]
Slope 0.782∗∗∗ 0.768∗∗∗ 0.701∗∗∗ 0.741∗∗∗ 0.676∗∗∗ 0.641∗∗∗ 0.516∗∗∗ 0.586∗∗∗

(s.e.) (0.058) (0.084) (0.100) (0.069) (0.081) (0.081) (0.092) (0.080)
adj. R2 0.25 0.16 0.10 0.20 0.10 0.16 0.05 0.13
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A4: Finite Sample Bias: Option Implied Variance

This table reports the results accounting for the potential finite sample bias in expectations hypothesis tests.

In Panels A and B, we show the results for the bias in coefficient estimates. We obtain the bias-corrected

coefficient estimates by conducting an block-bootstrap of the dependent variable. We run 1,000 repetitions

and report the simulated coefficients with supplement (sim) and report the bias in percentage points. For

individual stocks, we report the median bias as well as the 10% and 90% quantiles (q0.1 and q0.9). In Panels

C and D, we report the results for expectations hypothesis tests with a bootstrapped distribution of the test

statistics. We use the bias-corrected coefficient estimates and simulate the dependent variable under the null

of a = 0 and b = 1. We repeat this step 1,000 times and obtain distributions of the t- and Wald statistics. The

regression equation is 1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km. In each column,

the first number denotes the long horizon (k times m) and the second number denotes the short horizon

(m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that

the constant a is zero and that the slope b is one while the general expectations hypothesis requires only the

latter. We test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. We also

present the results of a joint test of the expectations hypothesis along with bootstrapped p-values. ∗, ∗∗,

and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Coefficient Bias – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
Const. (sim) −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
bias (in pp) 0.003 0.003 0.001 0.005 −0.002 0.001 −0.003 0.006

Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
Slope (sim) 1.040 1.059 1.198 0.979 0.961 0.871 0.860 0.747
bias (in pp) 0.146 0.152 −0.063 0.171 0.235 0.141 0.191 −0.236
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Table A4: Finite Sample Bias: Option Implied Variance (continued)

Panel B. Coefficient Bias – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012 0.006 0.002 0.012 0.005 0.009 0.003 0.005
Const. (sim) 0.012 0.006 0.002 0.012 0.005 0.009 0.003 0.005
bias (in pp) −0.004 0.000 −0.004 −0.005 −0.003 −0.003 −0.005 0.003

Slope 0.909 0.890 0.751 0.881 0.838 0.754 0.640 0.620
Slope (sim) 0.909 0.890 0.750 0.881 0.839 0.754 0.640 0.621
bias (in pp) −0.027 −0.007 0.026 −0.005 −0.011 0.015 −0.063 −0.020

Panel C. Finite Sample Distributions – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
p-value [0.724] [0.740] [0.719] [0.741] [0.755] [0.746] [0.741] [0.718]
Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
p-value [0.849] [0.856] [0.709] [0.911] [0.894] [0.485] [0.554] [0.270]
adj. R2 0.38 0.26 0.13 0.32 0.20 0.24 0.15 0.10
Wald 0.63 0.53 0.75 0.53 0.43 1.99 1.21 3.15
p-value [0.91] [0.92] [0.88] [0.91] [0.93] [0.67] [0.75] [0.30]

Joint Pure General

Wald 22.1 6.23
p-value [0.59] [0.54]

Panel D. Finite Sample Distributions – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗ 0.006∗ 0.002 0.012∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

p-value [0.010] [0.098] [0.490] [0.011] [0.072] [0.010] [0.141] [0.068]
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

p-value [0.213] [0.266] [0.048] [0.180] [0.094] [0.001] [0.001] [0.000]
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald 7.39∗∗ 3.39 5.19 8.25∗∗ 4.88 14.4∗∗∗ 36.4∗∗∗ 35.2∗∗∗

p-value [0.04] [0.24] [0.12] [0.03] [0.11] [0.00] [0.00] [0.00]

5



Table A5: Errors-In-Variables: Option Implied Variance

This table reports the results accounting for errors-in-variables in expectations hypothesis tests. We replace

the independent variable with the fitted value of a regression on its first lag. The regression equation is
1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
M,0,km − σ2

M,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that the constant a

is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We test

the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ Newey

& West (1987) standard errors (s.e.) with 4 lags. For the market and each stock, we average the coefficient

estimates, standard errors, and p-values across sub-samples. We also present the results of a joint test of

the expectations hypothesis along with bootstrapped p-values.In Panel B, we present the results of a panel

regression on a constant using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Option Implied Variance – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.004 −0.003 −0.002 −0.003 −0.002 −0.003 −0.001 −0.002
(s.e.) (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) (0.001) (0.001)
Slope 1.284 1.209 1.576 1.266 1.152 1.216 0.933 1.564
(s.e.) (0.270) (0.337) (0.579) (0.227) (0.261) (0.193) (0.220) (0.350)

adj. R2 0.23 0.17 0.11 0.20 0.14 0.16 0.08 0.12
Wald 1.90 0.95 1.62 2.41 0.96 2.68 0.66 4.30
p-value [0.39] [0.62] [0.44] [0.30] [0.62] [0.26] [0.72] [0.12]

Joint Pure General

Wald 33.0 18.4
p-value [0.47] [0.25]

Panel B. Option Implied Variance – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗∗ 0.006∗ 0.002 0.012∗∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

(s.e.) (0.005) (0.003) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003)
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

(s.e.) (0.069) (0.088) (0.110) (0.078) (0.089) (0.078) (0.060) (0.065)
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald [0.02]∗∗ [0.18] [0.07]∗ [0.02]∗∗ [0.09]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗

6


	Introduction
	Data and Methodology
	Data
	Variance, Correlation, and Beta Estimation

	The Term Structure of Option Implied Variance
	Derivation of the Term Structure Relation
	Empirical Results
	Variance Term Premia

	The Term Structure of Systematic Risk
	Derivation of the Term Structure Relation
	Empirical Results

	The Term Structure of Idiosyncratic Variance
	Derivation of the Term Structure Relation
	Empirical Results
	Idiosyncratic Variance Term Premia

	The Term Structure of Option Implied Correlation
	Derivation of the Term Structure Relation
	Empirical Results

	Additional Analyses
	Forward Unbiasedness
	The Role of Jumps
	Firm-Specific Intercept Coefficients
	Finite Sample Bias
	Errors-In-Variables

	Conclusion
	Systematic Risk and Beta
	Option Implied Correlation


