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Abstract

Researchers and practitioners face many choices when estimating an

asset’s sensitivities toward risk factors, i.e., betas. We study the effect

of different data sampling frequencies, forecast adjustments, and model

combinations for beta estimation. Using the entire U.S. stock universe and

a sample period of more than 50 years, we find that a historical estimator

based on daily return data with an exponential weighting scheme as well

as a shrinkage toward the industry average yield the best predictions

for future beta. Adjustments for asynchronous trading, macroeconomic

conditions, or regression-based combinations, on the other hand, typically

yield very high prediction errors.

JEL classification: G12, G11, G17

Keywords: Beta estimation, forecast combinations, forecast adjustments

∗Contact: hollstein@fmt.uni-hannover.de (F. Hollstein), prokopczuk@fmt.uni-hannover.de (M.
Prokopczuk), and C.Wese-Simen@icmacentre.ac.uk (C. Wese Simen).

†School of Economics and Management, Leibniz University Hannover, Koenigsworther Platz 1, 30167
Hannover, Germany.

‡ICMA Centre, Henley Business School, University of Reading, Reading, RG6 6BA, UK.



I Introduction

Researchers and practitioners need estimates of betas for a wide variety of applications.

Typically, historical data is used to estimate beta. Often the simple historical estimate is

used. Others shrink the estimates toward the average beta of similar stocks. Some condition

their estimates on macroeconomic state variables while others fit some kind of weighting

scheme on the historical data. Finally, some directly combine estimates obtained from dif-

ferent methods. Often, these decisions are made ad hoc without much guidance on how they

impact the resulting estimates. The primary goal of this study is to deliver guidance for

making the optimal choice among these and many more options one faces when estimating

beta.1

More precisely, we study the impact that these choices, e.g., different data sampling

frequencies, estimation windows, forecast adjustments, and forecast combinations, have on

estimates for beta.

We use a large cross-section of stocks and more than 50 years of data to comprehensively

study the estimation of beta. Relative to existing studies, we substantially expand the scope

both in the asset space and in the time dimension. We also illuminate several aspects of

the estimation of beta. We evaluate the predictability for realized beta by computing the

average root mean squared error (RMSE) of all approaches, testing the significance in mean

squared and median squared forecast errors.

We examine several estimation and adjustment approaches. First, we study the impact

of different estimation windows and data sampling frequencies. Regarding the estimation

window, the researcher faces a trade-off between conditionality, i.e., using the most recent

data, and a sufficient sample size that reduces measurement errors when predicting a time-

varying beta using historical data. We find that a historical window of 1 year typically yields

the lowest average prediction errors. Furthermore, consistent with the findings of Hollstein

et al. (2017), we find that the data frequency should be as high as possible, i.e., estimators

based on daily data outperform those based on monthly or quarterly data.
1In this study, we concentrate on market beta. While betas are generally estimated with respect to

various possible state variables, market beta is the most important and we therefore focus our analysis on
it.
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Second, we examine the impact of different weighting schemes. Conceptually, exponen-

tially weighting past observations could deliver a possible solution to the conditionality vs.

sample size trade-off because one can “have it both ways”, place higher weight on more re-

cent observations to get a conditional estimate and use a long historical window to reduce

measurement noise. Indeed, we find that exponentially weighting the observations yields

significantly more precise estimates for beta.

Third, we examine the impact of imposing priors for the beta estimates. The idea behind

this approach is that the beta estimate of a stock should not be too dissimilar to that of

other stocks with similar characteristics. We find that the simple shrinkage adjustments of

Vasicek (1973) and Karolyi (1992) yield improvements for the simple historical estimator

while the more elaborated individuals’ prior model of Cosemans et al. (2016) works consid-

erably less well. With the simple shrinkage, one can tackle the extreme estimates that are

likely associated with high measurement errors.

Fourth, we examine the effect of adjustments for asynchronous trading. Scholes &

Williams (1977) and Dimson (1979) suggest that we can account for asynchronous trad-

ing by including betas with respect to lagged market returns. Arguing that it takes investors

time to process and understand the impact of systematic news on opaque firms, Gilbert

et al. (2014) suggest using quarterly instead of daily data to estimate beta. However, con-

trary to these arguments, we find that the Dimson adjusted beta and, as indicated previously,

estimators based on monthly and quarterly data, yield very high RMSEs.

Fifth, following Shanken (1990) and Ferson & Schadt (1996), we also examine the impact

of conditioning information from macroeconomic state variables for beta estimation and find

that all estimators that build on such information underperform the simple historical model.

Finally, we investigate forecast combinations. We examine simple, regression-based, and

Bayesian combinations. We find that a simple forecast combination of an exponentially

weighted and a prior-based historical estimator yields the lowest average prediction errors

overall. However, more elaborated combination approaches perform considerably worse,

especially if we combine many individual models.

We test the robustness of our results, and find that these are largely similar for forecast

horizons of 1, 3, 6, 12, and 60 months. Our results are also robust to computing hedging
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error ratios or estimators for realized beta that account for infrequent trading. Finally, we

obtain qualitatively similar results for equally and value-weighted RMSEs, for an evaluation

in the time series of individual firms, as well as for an alternative statistical loss function.

Our study contributes to the literature on beta estimation. Buss & Vilkov (2012), Chang

et al. (2012), and Baule et al. (2016) develop option-implied beta estimators. Hollstein &

Prokopczuk (2016) show that the Buss & Vilkov (2012) approach works particularly well

in predicting future betas. While the intrinsically forward-looking nature of option-based

estimators seems to be favorable, the estimators face one important shortcoming. They are

only applicable for a subset of large stocks with active options markets.

More recently, Hollstein et al. (2017) make use of the results of Bollerslev & Zhang

(2003), Barndorff-Nielsen & Shephard (2004), and Andersen et al. (2006) and show that

using high-frequency data, betas can be estimated more precisely for the firms of the S&P

500. However, the same shortcoming as for option-implied estimators applies for estimators

relying on high-frequency data: they are only reliable for the subset of the most liquid stocks.

We complement these studies, first, by examining the whole stock universe available at the

Center for Research in Security Prices (CRSP) and, second, by studying the impact of lower

sampling frequencies, as well as different adjustments and forecast combinations.

Our paper connects to studies on the conditional capital asset pricing model (CCAPM).

Shanken (1990), Ferson & Schadt (1996), Lettau & Ludvigson (2001), and Guo et al. (2017)

condition on macroeconomic variables to obtain time-varying betas. In contrast, Lewellen &

Nagel (2006) use the simple historical estimator based on short windows for the same purpose.

We complement these studies by examining the predictive accuracy of the estimators based

on linear macroeconomic conditioning variables relative to the historical estimator and other

models.

Our paper also adds to the literature on forecast combinations. Bates & Granger (1969),

Clemen (1989), and Timmermann (2006) show that forecast combinations can be beneficial

in many fields of financial forecasting. The authors show that forecast combinations are

especially beneficial when the combined forecasts use data from different sources. We extend

the forecast combinations’ literature in the context of beta estimation.

Lastly, we also connect to the literature on forecast adjustments for beta pioneered by
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Vasicek (1973). The author shrinks beta estimates toward the cross-sectional average beta.

Recent developments turn towards more informative priors, as in Karolyi (1992) and Cose-

mans et al. (2016). We thoroughly examine the performance of prior-based combinations

vis-à-vis single models and other possible forecast combinations.

The remainder of this paper is organized as follows. In Section II, we introduce the

data and the methodology for the estimation of the different models. We present our main

empirical results for estimating beta in Section III. In Section IV, we examine why some

models work while others do not. In Section V, we present additional analyses and test the

robustness of our results. Section VI concludes.

II Data and Methodology

A Data

We obtain daily data on stock returns, prices, and shares outstanding from the Center

for Research in Security Prices (CRSP). We use all stocks traded on the New York Stock

Exchange (NYSE), the American Stock Exchange (AMEX), and the National Association

of Securities Dealers Automated Quotations (NASDAQ). We start our sample period in

January 1963 and end it in December 2015. Our sample period thus starts well after the

cross-section expansion of CRSP in the mid-1962 and spans more than 50 years. We obtain

data on the risk-free (1-month Treasury Bill) rate from Kenneth French’s data library. To

proxy for the market return, we use the CRSP value-weighted index.

B Estimation Methodology

Historical Beta We consider historical beta estimates (HIST) following, e.g., Fama

& MacBeth (1973), regressing an asset’s excess return on the market excess return:

rj,τ − rf,τ = αj,t + βHIST
j,t (rM,τ − rf,τ ) + εj,τ , (1)
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where βHIST
j,t denotes the estimate for the historical beta of asset j at time t. We use data

from time t− k to t, observed at discrete intervals τ , where k is the length of the estimation

window. rj,τ is the return on asset j, rM,τ denotes the return of the market portfolio, and

rf,τ is the risk-free rate, all observed at time τ .

EWMA Beta We also examine a weighted version of the historical estimator with

an exponentially weighted moving average structure. To be precise, we estimate Equation

(1) with weighted least squares (WLS) using the weights exp(−|t−τ |h)∑t−1
τ=1 exp(−|t−τ |h)

with h = log(2)
ι

. ι

characterizes the horizon, to which the half-life of the weights converges for large samples.

We try two alternatives for ι: (i) one third and (ii) two thirds of the number of observations

of the (initial) estimation window.2

Shrinkage Estimators Following Vasicek (1973), we obtain a posterior belief of beta

by combining the historical estimate (βHIST
j,t ) with a prior (bj,t) in the following way:

βShr
j,t =

s2
bj,t

σ2
βHIST
j,t

+ s2
bj,t

βHIST
j,t +

σ2
βHIST
j,t

σ2
βHIST
j,t

+ s2
bj,t

bj,t. (2)

σ2
βHIST
j,t

and s2
bj,t

are the variances of the historical estimate and the prior, respectively. Hence,

the degree of shrinkage depends on the relative precisions of the historical estimate and the

prior. We use as priors (i) the cross-sectional average beta (Vasicek, 1973) (βV), (ii) the cross-

sectional average beta of firms in the same Global Industry Classification Standard (GICS)

industry sector (Karolyi, 1992) (βK), and (iii) the fundamentals-based prior of Cosemans

et al. (2016) (βI).3

Dimson Beta Following Dimson (1979) and Lewellen & Nagel (2006), we estimate a

beta that ought to account for potential infrequent trading effects. If stocks trade less fre-

quently than the market index, stock prices adjust gradually to new information. Therefore,
2We try both a rolling window estimation using the same window as for HIST and an expanding window.

To reduce the computational burden, we limit the maximum amount of daily returns used to 10 years.
3Cosemans et al. (2016) use the firms’ size, book-to-market ratio, operating leverage, financial leverage,

momentum, and industry classification, as well as the default yield spread to estimate the prior. For further
information, we refer the interested reader to the original article. We obtain the balance sheet data necessary
to compute the key ratios from Compustat.
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Dimson (1979) adds lagged market returns in the regression:

rj,τ − rf,τ = αj,t + β
(0)
j,t (rM,τ − rf,τ ) + β

(1)
j,t (rM,τ−1 − rf,τ−1) (3)

+β
(2)
j,t

(
N∑
n=2

rM,τ−n − rf,τ−n

)
+ εj,τ .

We incorporate N = 1 up to N = 5 lagged returns. In the case N = 1, the term associated

with β(2)
j,t drops. The estimator for beta is then βDim(N)

j,t =
∑min(2,N)

i=0 β
(i)
j,t , where min(·) is the

minimum operator.

Macro Beta We follow Shanken (1990) and Ferson & Schadt (1996) in assuming that

βMac
j,t is a linear function of state variable(s):

βMac
j,t = b0,j +B′jzt. (4)

We define zt as the vector of deviations of the state variables from their average up to time

t, so that b0,j can be interpreted as the average beta while the elements in the matrix Bj

determine the sensitivity of beta to the state variable(s). We estimate the parameters for

Equation (4) using the time series of past (quarterly) macroeconomic variables and estimates

for historical beta as on the left-hand side. We use a rolling estimation window of 20

quarters.4

We use the variables examined by Goyal & Welch (2008). The dataset is available from

Amit Goyal’s webpage. Specifically, we examine the book-to-market ratio of the Dow Jones

Industrial Average (bm), the consumption–wealth–income ratio (Lettau & Ludvigson, 2001,

cay), the default yield spread (dfy), the dividend–price (dp) and earnings–price (ep) ratios

of the S&P 500, the investment–capital ratio (ic), inflation (inf), the long-term government

bond yield (lty), and Treasury Bill rates (tbl).5 We also use the 1-month macroeconomic

uncertainty (unc) of Jurado et al. (2015) from Sydney Ludvigson’s webpage and the unem-

ployment rate (une) from the Federal Reserve Economic Database.

We follow Goyal & Welch (2008) and also estimate a “kitchen-sink” (all) regression using
4We also try an expanding window and find that the results are qualitatively similar, while the prediction

errors for the expanding window are typically slightly higher.
5For further description of the construction of the variables, we refer to Goyal & Welch (2008).
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all these variables. In a recent study, Guo et al. (2017) find that the earnings–price ratio,

inflation, and the unemployment rate are the best predictors for the beta of the value pre-

mium. The authors cannot reject the null hypothesis of a linear relationship of the state

variables and beta, which supports our choice of a simple linear function.

Forecast Combinations Bates & Granger (1969) note that the combination of esti-

mation techniques may prove worthwhile, especially when the estimates combined exploit (at

least partially) different information sets. To investigate whether combinations are worth-

while for estimating beta, we try several approaches. The first is a simple equally weighted

combination of different estimates. However, while such a simple ad hoc combination is easy

to implement, the procedure might not provide the optimal result.

Second, we estimate weights by performing multivariate regressions for each stock.6 We

employ an expanding window to make use of a maximum length of history to be able to

estimate the parameters with greater precision.7 The regression equation takes the following

form:

βR
j,τ = aj,t +

M∑
m=1

b
(m)
j,t β

(m)
j,τ + εj,τ . (5)

β
(m)
j,τ is the beta estimate for asset j of approach m at time τ . We combine the estimates

of M different models. βR
j,τ denotes the corresponding realized beta of that asset. At every

point in time the estimation moves forward, one additional observation is added to each of

these vectors. After obtaining the time-t regression coefficients, we adjust the beta estimates,

using the following equation:

βC
j,t = âj,t +

M∑
m=1

b̂
(m)
j,t β

(m)
j,t . (6)

βC
j,t is the combined beta forecast for asset j at time t and âj,t, b̂

(m)
j,t are the respective

6We use the first 100 months as our initial training sample. At each point in time t, we use estimates of
beta up to t− k, since realized beta with a k-month window is only available up to the period t− k until t
at time t.

7We also try a rolling window approach. The results indicate that the expanding window approach
indeed yields superior results.
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regression coefficients, i.e. weights.8

We also consider the Bayesian shrinkage approach proposed by Diebold & Pauly (1990).

This approach shrinks regression coefficients towards a prior of equal weights for each forecast

and an intercept of zero. To obtain βshr
j,t , we use Equations (5) and (6) with the empirical

Bayes estimator.

Bayesian Model Averaging Finally, we examine optimal forecast combinations using

Bayesian model averaging. The basic idea of this approach is that there are k = 1, ..., K

different possible ways to combine M different forecasts. The models differ in the subset

of predictors used. Under the uninformative prior specification of Fernandez et al. (2001),

assuming all variables are equally likely to enter the model, and that the likelihood that a

variable enters the model is independent of that of another variable, the optimal combinations

are (Stock & Watson, 2006):

βBMA
j,t =

K∑
k=1

ωkβ
(k)
j,t , (7)

where β(k)
j,t is the OLS combination (as of Equation (6)) of forecast models for one possible

way k to combine the M forecasts. The weights ωk are:

ωk =
a(g)

1
2
Pk [1 + g−1SSRU

k /SSR
R]−

1
2
dfR∑K

i=1 a(g)
1
2
Pi [1 + g−1SSRU

i /SSR
R]−

1
2
dfR

. (8)

Essentially, we first estimate a restricted forecasting model as in Equation (5) with OLS using

only the variables that ought to be included in each model.9 From this, we get the sum of

squared residuals (SSRR). Second, we estimate a forecasting model as of Equation (5) for

each of the K possible combinations of predictors and get the forecast β(k)
j,t and the sum of

squared residuals (SSRU
k ). Pk is the number of parameters in the kth regression combination,

dfR is the number of the degrees of freedom of the restricted model, and a(g) = g/(1 + g)

with g = 1/min(T,M2) following Fernandez et al. (2001). T is the number of time periods

8Note that now the β(k)
j,t have a t-subscript. This is because we only use the current beta estimates

instead of the vector of all previous beta estimates.
9When empirically implementing the approach, specifiying variables that are included in each model can

substantially reduce the computational effort.

8



in the estimation window.

C Evaluation Methodology

Realized Beta To evaluate predictions for beta, we follow Andersen et al. (2006) and

use the realized beta (RB). We use daily (log-)returns during the prediction window t until

T to estimate:10

βR
j,t =

∑T
τ=t+1 rj,τrM,τ∑T
τ=t+1 r

2
M,τ

, (9)

where rj,τ and rM,τ refer to the return of asset j and the market return at time τ , respectively.

Root Mean Squared Error (RMSE) To examine the out-of-sample forecast accu-

racy of the different approaches, we perform the analysis using the RMSE, a loss function

commonly applied in the literature:11

RMSEj =

√√√√1

o

o∑
t=1

(βR
j,t − βj,t)2, (10)

where o is the number of out-of-sample observations. βRj,t is the realized beta in the period

ranging from t to T , and βj,t denotes an estimate for beta. We rely on the RMSE criterion

since it is robust to the presence of (mean zero) noise in the evaluation proxy while other

commonly employed loss functions are not (Patton, 2011). We test for significance in RMSE

differences using the modified Diebold–Mariano test proposed by Harvey et al. (1997). For

the cross-sectional evaluation, we use Newey & West (1987) standard errors with 4 lags.

To test for significance in root median squared error (RMedSE) differences, we employ the
10Note that the formula for realized beta makes use of the expanded formula for the variance, neglecting

the drift term. Andersen et al. (2006) note that the effect of the drift term vanishes as the sampling frequency
is reduced, which effectively “annihilates” the mean. However, the average daily excess-return of the CRSP
value-weighted index amounts to only 2.37 basis points. Thus, it is unlikely that this simplification induces
a material bias.

11In Section V.G, we also examine the Mean Absolute Error (MAE) loss function as an alternative, and
obtain largely similar results as for the RMSE.
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non-parametric Wilcoxon signed rank test.12 In general, the results for the RMedSE and

its significance are similar to those for the RMSE. Hence, when discussing our results, we

mainly focus on the RMSE results.

III Estimating Beta

A Optimal Window Length and Sampling Frequency

We start the main analysis looking for the optimal sampling frequency and window length

for the simple historical estimator. Throughout our main empirical analysis, we follow Chang

et al. (2012) and Hollstein & Prokopczuk (2016) and focus on a prediction horizon for realized

beta of 6 months. For the historical estimator, we consider windows of 1, 3, 6, 12, 24, 36,

and 60 months when using daily data. Additionally, we consider the historical estimator

based on monthly data (HISTmon) using windows of 12, 36, and 60 months, as well as an

estimator based on quarterly data using the returns over the previous 10 years.13

In Table 1, we present summary statistics on these estimators. Several properties of the

estimators are worth mentioning. First, the value-weighed average beta, which should be

equal to 1 when examining a complete market, is close to that value for most approaches.

Values below 1 provide some indication that stocks are traded infrequently or that opacity

hinders market participants from fully understanding the impact of systematic news during

the chosen return interval. Values above 1 indicate that an estimator overestimates the

systematic risk on average. Interestingly, while the value-weighted average of daily estimators

with short windows is close to 1, it is clearly below 1 for estimators that use very long

historical windows. For the 60-month estimator, the value-weighted average is 0.93. On the

other hand, when using monthly or quarterly data with a long window, the value-weighted

average is close to 1 again.
12Strictly speaking, the Wilcoxon signed rank test incorporates the joint null hypothesis of zero median

in the loss differentials as well as a symmetric distribution. We stick to this test instead of an alternative
only testing on zero median, like the simple sign test, since the Wilcoxon signed rank test turns out to be
more powerful in many applications (Conover, 1999).

13The subscript of the HIST estimators denotes the return frequency. This is left blank for daily data. We
use the subscript “mon” for monthly and “q” for quarterly data. The superscript of the estimators indicates
the period included in the estimation window (expressed in months).

10



Second, we examine the average cross-sectional standard deviation of the approaches.

A high standard deviation might be an indication of high measurement errors, whereas a

very low standard deviation might indicate that an approach fails to sufficiently capture the

heterogeneity in the estimates. Naturally, the average cross-sectional standard deviation is

larger and the quantiles are wider for shorter estimation windows. Thus, the short-window

historical estimators likely suffer from high measurement errors.

Third, we examine the average value-weighted correlation among the estimates. We find

that the correlations are far from perfect even though we use exactly the same estimator, but

change the historical window size and sampling frequency, for all approaches. For example,

the correlation of the historical estimator based on daily data and a 1-month historical

window with that using a 60-month window is as low as 0.39. Additionally, even when using

the same data window, the correlation of the 60-month historical estimator based on daily

data with that based on monthly data is only 0.73.

To find the optimal combination of window length and sampling frequency, in Table 2

we present the average out-of-sample prediction errors of different historical estimators. We

detect the typical trade-off between conditionality and sample size. On the one hand, beta

changes over time. Hence, an estimate based on a short historical window delivers a more

timely conditional estimate. On the other, estimates based on a small sample are prone to

measurement error. Starting with daily data, we find that the average value-weighted RMSE

is highest for the 1-month horizon. It falls gradually up to the 12-month horizon and begins

to rise again for longer estimation windows. The average RMSE of the 12-month historical

estimator (HIST12) is significantly lower than that of the 1-month horizon 59% of the time,

compared to the 3-month horizon estimator 42% of the time, and relative to the 60-month

estimator 29% of the time.

Additionally, we find that low-frequency estimators, i.e., those based on monthly and

quarterly data, yield very high average RMSEs, which are each significantly higher than

that of HIST12 about 80% of the time. This result is also in line with the finding of Hollstein

et al. (2017), who examine the stocks of the S&P 500 and show that estimators based on

higher-frequency data outperform those based on lower-frequency data. It thus seems that

estimators based on higher-frequency data are generally preferable whenever reliable data
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are available.

Overall, the historical estimator using a 12-month window yields the most accurate pre-

dictions. In the following sections, we therefore concentrate on the 12-month estimation

window, indicate HIST12 simply by HIST, and examine if we can further improve the pre-

dictive accuracy by imposing different adjustments on the estimator.

B Different Weighting Schemes

In the previous section, we analyzed the conditionality vs. sample size trade-off by

searching for an optimal window that balances both arguments. However, it may also be

possible to resolve this trade-off in an alternative manner. While, thus far, we weight all

observations equally, independently of whether the returns occur 11 months or 1 week before

the date of the estimation, one could also impose an exponentially decaying weighting scheme.

This way, we can use a large sample to estimate the parameters precisely and, at the same

time, give a higher weight to more recent observations that likely carry better information on

the current conditional beta. We use two different half-lives for the exponential weighting,

one that has a higher level of conditionality, where the half-life corresponds to 84 trading days

(indicated by the additional subscript “s” for “short”) and one where it is 168 trading days.14

Additionally, we use each of the two ιs together with an expanding window (HISTewma,s,ex

and HISTewma,ex), where we have an even larger sample size that might further increase the

precision of the estimates.15

In Table 1, we present summary statistics for the exponentially weighted historical es-

timator.16 We find that the overall properties of HISTewma and HISTewma,ex are similar to

those of HIST12 and the correlation is high with the 12-month historical estimator employing

equal weights. Thus, we expect that the differences might not be very large.

We present the results on prediction errors when using an exponential weighting scheme
14We compute this as 12 (months) times 21 (average daily return observations per month) times 1

3 in the
former and 2

3 in the latter case.
15One might wonder how much of the weight is assigned to observations more than 1 year past, when

using an expanding window. For ι = 84, this is roughly 12% and for ι = 168, about 35% of the weight is
placed on observations further back.

16To enhance the exposition, we only present the summary statistics for the estimator with ι = 168.
Those with a shorter half-life of the weights (ι = 84) are qualitatively similar.
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in Table 3. We find that, independently of the specification, the exponential weighting

reduces the average value-weighted RMSE. We obtain the lowest average value-weighted

RMSE for HISTewma,ex. The value-weighted RMSE is significantly lower for HISTewma,ex

compared to HIST 52% of the time. Thus, the exponential weighting, especially combined

with an expanding estimation window, can materially reduce prediction errors in beta.

C Imposing Priors

Another way to correct for potential measurement errors is to shrink potentially noisy

estimates toward an informative prior. Estimates that have higher standard errors are thus

shrunk more heavily toward their prior than estimates with lower standard errors. We use

three different shrinkage estimators, HISTV, HISTK, and HISTI.

Summary statistics of these estimators are presented in Table 1. Naturally, we find that

the distributions of HISTV and HISTK are more narrow than that of the unadjusted 12-month

historical estimator; also, quite naturally, since HISTV and HISTK are directly derived from

HIST12 and (almost) perfectly cross-sectionally correlated with it. On the other hand, the

value-weighted average is, with 0.97, slightly below 1 because HISTV and HISTK shrink

the beta estimates toward an equally weighted average, which is typically below 1.17 When

imposing the fundamentals-based prior in HISTI, things look quite different. First, the

approach requires accounting data that is not as widely available as stock data. Because

of this, and because we need an initial window to estimate the parameters, we have far

fewer observations for HISTI compared to the simple historical approaches. Furthermore,

the value-weighted average of HISTI is far below 1 with 0.87. While this low average could

be due to wider availability of accounting data for low-beta stocks, it does deliver some

indication that the approach is biased on average. The correlations of HISTI with other

approaches are moderate, e.g., the average cross-sectional correlation of HISTI with HIST12

is 0.77.
17We also try HISTV and HISTK shrinking the beta estimates toward a value-weighted average. We find

that in that case the value-weighted averages are closer to 1. The overall performance of the two estimators
is qualitatively similar and generally even slightly better when shrinking towards the value-weighted average.
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We present the prediction errors of the different prior-adjusted betas in Table 4.18 We find

that both HISTV and HISTK yield lower average value-weighted RMSEs compared to HIST.

The differences are significant 21% of the time. HISTK, which shrinks the beta estimates

toward the average of the same industry, is slightly better than the less informative HISTV,

which shrinks estimates toward the overall average beta. The picture looks quite different in

the case of the individuals-based prior estimator, HISTI. The average value-weighted RMSE

is substantially higher even compared to HIST. The differences are especially strong in the

median. HISTI yields a higher root median squared error practically all the time. Thus,

overall HISTI performs poorly. This finding is consistent with recent evidence in Dittmar &

Lundblad (2017), who find that market betas are only weakly related to stock characteristics.

D Asynchronicity Adjustments

A possible concern when estimating betas is that some stocks might be traded less fre-

quently than the market portfolio. If the stock price reacts days after the arrival of systematic

news, the usual historical beta estimator will be biased downward. The usual approach to

handle this is the Dimson (1979) adjustment, which sums up betas with respect to the

current and lagged market return(s).

We present summary statistics for Dimson-betas with 1, 3, and 5 lags in Table 1. We

find that the overall value-weighted average beta is similar to that of HIST12. Hence, neither

of the estimators appears to be systematically biased. We find that the standard deviation

as well as the quantile range rise the more lags we use. Additionally, the correlations with

HIST12 fall with an increasing number of lags. The average value-weighted cross-sectional

correlation between between HIST12 and Dim(5) is 0.74. Thus, adding betas with respect to

lagged market returns materially affects the properties of the historical estimator.

We present the results for prediction errors when using up to 5 lags in Table 5. We find

that the asynchronicity-adjustment does not improve the beta estimates on average. The

more lags we use, the higher the average value-weighted RMSE. Those of Dim(1) and Dim(5)

18Note that the average RMSE for HIST is different from that of Table 2 because both the sample period
and stock universe differ slightly. We only include stock–month observations, for which all approaches in
the table yield an estimate. The number of firm–month observations reduces because we need an in-sample
period to first estimate the prior for HISTI and because many firms lack accounting data.
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are significantly higher than those of HIST 35% and 73% of the time, respectively. Hence,

there is very little evidence to warrant a Dimson adjustment.19

E Macroeconomic Conditioning Information

If beta changes over the business cycle, one could make use of information on macroe-

conomic state variables to obtain better estimates for conditional betas. Thus, we examine

the predictions of several potential state variables.

To enhance the exposition, in Table 1, we only present the summary statistics on one

of the betas combined with macroeconomic state variables, Betacay (Lettau & Ludvigson,

2001). The results of the other estimators are qualitatively similar. Since we first need

initial data to estimate Equation (4), we have fewer overall observations. We find that the

value-weighted average beta is quite low with 0.91, which indicates that the the approach

may suffer from a systematic downward-bias. The cross-sectional standard deviation and

quantile range of Betacay are neither very large nor very small and correlations to other

approaches are rather low on average.

In Table 6, we present the prediction error results for different macroeconomic condition-

ing variables. Because information on some of these is issued only on a quarterly basis, we

sample the betas at the end of each quarter instead of at the end of each month.20 We find

that all of the estimators based on macroeconomic conditioning variables substantially and

significantly underperform HIST. The performance of the “kitchen-sink” approach Betaall is

especially poor. Thus, it appears to be much more favorable to broadly follow Lewellen &

Nagel (2006), who use a (short) historical 12-month window to estimate conditional betas

instead of using macroeconomic conditioning variables as in, e.g., Lettau & Ludvigson (2001)

or Guo et al. (2017).
19Since we evaluate the predictions using realized beta without an adjustment for infrequent trading in

the measurement of this quantity, we might fail to capture infrequent trading effects ex post. We account for
this possibility in Section V.E and show that even under an evaluation that accounts for potential infrequent
trading, the Dimson-adjusted estimator still falls short of the simple historical estimator.

20The results when sampling monthly for all variables that are available at that frequency are qualitatively
similar.
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F Forecast Combinations

Finally, we examine whether one can improve upon HIST by combining different esti-

mates. We use two different sets of models to be combined: (i) only the estimators that

performed best during the previous sections, HISTewma,ex and HISTK (Best), and (ii) a much

larger subset of the different possible adjustments (All). For the latter, we combine HIST,

HISTewma,ex, HISTK, HISTI, Dim(5), and Betacay.21 For both model sets, we use four combi-

nation possibilities: (i) a simple combination, (ii) a model-based combination as of Equation

(6), (iii) a model-based combination as in (ii) with the shrinkage approach of Diebold &

Pauly (1990), and (iv) Bayesian model averaging.

Table A1 of the online appendix presents summary statistics on these combinations. We

find that the properties of Bestsim are overall very similar to those of HIST and the average

value-weighted cross-sectional correlation is 0.99. For the model-based combinations, we

typically have far fewer observations. This is because we first need observations for each of

the models we combine. Additionally, we need an initial window to perform the estimation

of the weights. This further reduces the number of observations available when combining

many models in All. Overall, we find that the value-weighted average, especially of the

model combinations, is far below 1, which indicates that these combinations yield a bias on

average.

We present the prediction error results in Table 7. We find that the simple combination

Bestsim yields a significantly lower average value-weighted RMSE compared to HIST 48% of

the time. The model-based combinations BestC, Bestshr, and BestBMA perform similarly to

HIST, while the Bayesian approaches perform slightly better than the non-Bayesian com-

bination BestC. When combining all approaches, independently of whether they work or

not individually, only the simple combination Allsim performs better than HIST, but not as

well as the simple combination of the best models. The model-based combinations of all

approaches work clearly less well. These underperform HIST more than 50% of the time.

Additionally, as in the case of just combining the best 2 models, we find that the Bayesian
21We choose to only use a subset of all adjustments in the paper, since using too many highly correlated

approaches creates problems of multicollinearity and yields extreme weights for the OLS-based combinations.
Our overall conclusions are not sensitive to different choices of the models from the respective subsets.

16



combinations perform better than AllC.

Thus, it appears worthwhile to combine estimators, but one should concentrate on those

models that “work” individually and simple equally weighted combinations typically yield

lower prediction errors than more elaborated regression-based combinations even when these

use a Bayesian approach.

G Which is the Best Approach?

Thus far, we examine which of the approaches yields an improvement relative to HIST.

However, it is probably of high practical interest which of the adjustments and combinations

overall yields the lowest prediction errors. We present the results for the models HISTewma,ex,

HISTK, an approach that directly imposes the industry-based prior on the EWMA Beta,

HISTK
ewma,ex, and the simple combination of the 2 best models, Bestsim in Table 8.22

We find that individually, HISTewma,ex yields a significantly lower value-weighted RMSE

compared to HISTK 21% of the time. Directly applying the prior suggested by Karolyi

(1992) yields a small further improvement for HISTewma,ex. However, the simple combination

Bestsim yields the overall lowest average value-weighted RMSE. While the differences in

RMSE between Bestsim and HISTewma,ex as well as HISTK
ewma,ex are only rarely significant,

Bestsim significantly outperforms HIST 46% of the time.

IV Why do the Adjustments “Work”?

Given that some of the adjustments and combinations improve the predictability for beta

while others yield substantially higher prediction errors, one may wonder what the reason

for these different results is. We try to address this by performing a decomposition of the

mean squared errors (MSE). To do so, we follow Mincer & Zarnowitz (1969) and decompose
22One might wonder why the prediction errors of Table 8 are partially higher than those in Tables 4

and 7 for the same models. As already indicated in footnote 18, for each table, we use only firm–month
observations that are available for all the approaches presented. This yields a substantial reduction of
firm–month observations in the two earlier tables.
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the MSE in the following fashion:

MSEj = (β̄R
j − β̄j)2︸ ︷︷ ︸

bias

+ (1− bj)2σ2(βj)︸ ︷︷ ︸
inefficiency

+ (1− ρ2
j)σ

2(βR
j )︸ ︷︷ ︸

random error

. (11)

bj is the slope coefficient of the regression βR
j = aj + bjβj + εj and ρ2

j is the coefficient of

determination of this regression. A bias indicates that the prediction is, on average, different

from the realization. Inefficiency represents a tendency of an estimator to systematically

yield positive forecast errors for low values and negative forecast errors for high values or

vice versa. The remaining random forecast errors are unrelated to the predictions and

realizations.

We present the results of the MSE decomposition for different adjustments that “work”

and for others that “do not work” in Table 9. We find that the best approaches, HISTewma,ex,

HISTK, HISTK
ewma,ex, and Bestsim, yield improvements in all 3 dimensions. They slightly

reduce the bias relative to HIST from 0.4% to 0.3%, they reduce the inefficiency of HIST by

up to one third, and they also slightly reduce the random error. Hence, these adjustments

create betas that are more accurate on average, for low and high beta stocks, and they reduce

random measurement errors.

On the other hand, the reasons for why other models do not work are diverse. HISTI

exhibits a substantial bias of 2.4%. Additionally, both the inefficiency and the random error

increase relative to HIST. The estimators Dim(1), Dim(3), and Dim(5), on the other hand, do

not strongly increase the bias, but both the inefficiency and the random error increase with

increasing number of lags. Hence, the Dimson adjustment appears to systematically increase

the forecast errors for high and low beta stocks. The beta augmented by macroeconomic

conditioning variables, Betacay, also strongly increases the inefficiency relative to HIST and

yields one of the highest overall random errors among all approaches.

Regarding the combinations of the two best individual models, we find that the regression-

based combination BestC slightly reduces the inefficiency relative to HIST, but increases the

random error. BestBMA, on the other hand, slightly reduces the bias and random error,

but yields a marginally larger inefficiency. Finally, when combining more models, among

them also models from which the adjustments “do not work” individually, creates very large
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random errors. Thereby, AllBMA is superior to AllC, mainly because the inefficiency is not

as high. However, both the inefficiency and the random measurement error of AllBMA and

AllC are dramatically higher than that of HIST.

V Additional Analyses and Robustness

A Different Horizons

In this section, we examine the results for different forecast horizons of 1, 3, 12, and

60 months. Table 10 presents these results. To enhance the exposition, we only report the

results on the best models and an estimation horizon of 12 months. The results for the

remaining specifications are qualitatively similar as those for the 6-month forecast horizon.23

We start the analysis by examining 1-month forecasts. We present these results in Panel

A of Table 10. We find that for all approaches, the average value-weighted RMSE is higher

than for the 6-month horizon. This is most likely due to higher measurement errors in

the estimator for realized beta which suffers from a reduced evaluation window.24 We find

that the adjustments that “work” for the 6-month horizon also yield lower average value-

weighted RMSEs than the simple historical model. Similar to the 6-month horizon, the

simple combination Bestsim yields the lowest overall average value-weighted RMSE.

The results for the 3-month horizon are presented in Panel B of Table 10. With the longer

evaluation horizon, for all approaches the average value-weighted RMSEs are substantially

lower than for the 1-month horizon. All other results are qualitatively similar to the 1- and

6-month horizons.

Panel C of Table 10 presents the results for the 12-month forecast horizon. We find

that for all approaches, the average value-weighted RMSEs are lower than for the 6-month

horizon. This pattern indicates that 12-month betas are slightly more predictable than betas

of shorter horizons. All adjustments that perform better than the simple historical model for

the 6-month horizon continue to do so for the 12-month horizon. However, the best approach
23For the 1- and 3-month horizons, the 12-month historical window also turns out optimal, for the 12- and

60-month forecast horizons, longer historical horizons yield slightly lower average value-weighted RMSEs.
24However, as indicated previously, the RMSE criterion is still a robust evaluation criterion if the sampling

error is zero on average (Patton, 2011).
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is the direct shrinkage adjustment HISTK
ewma,ex and not the simple combination Bestsim that

works best for shorter horizons. HISTK
ewma,ex often yields significantly lower prediction errors

than HIST, HISTK, and Bestsim, both in RMSE and especially in RmedSE.

Finally, we present the results for the 60-month forecast horizon, relevant for very long-

term investors, in Panel D of Table 10. We find that the average value-weighted RMSEs for

all approaches are slightly higher than for the 12-month horizon. Thus, it appears that time-

variation in beta renders 60-month betas slightly harder to predict than 12-month betas.

However, the average value-weighted RMSEs are still slightly lower than for the 6-month

horizon. Apart from that, the results for the 60-month horizon are qualitatively similar to

those for the 12-month horizon. Overall, HISTK
ewma,ex yields the lowest average value-weighted

RMSE.

B Hedging Errors

The RMSE results show that the approaches HISTewma,ex, HISTK, HISTK
ewma,ex, and

Bestsim yield the best results, while, e.g., Dim(5) performs very poorly. To account for

the possibility that our ex-post realized betas are measured with error, we follow Liu et al.

(2017) and examine the out-of-sample hedging errors of our main approaches. If realized beta

estimates are biased, we may falsely conclude that an approach is superior simply because

it is biased in a similar fashion. We compute the hedging error for each stock as

hj,t,T = (rj,t,T − rf,t,T )− βj,t(rM,t,T − rf,t,T ). (12)

rj,t,T is the return of stock j between t and T . rf,t,T and rM,t,T are the risk-free rate and

the return on the market portfolio over the same horizon. We use 1-month returns. βt is

the estimate for beta, using data up to time t. Liu et al. (2017) show that under certain

assumptions the hedging error variance ratio var(hj,t,T )

var(rM,t,T−rf,t,T )
is approximately equal to the

mean squared error relative to the true realized beta plus a term that is unrelated to the

beta estimation, i.e., constant across all estimation approaches. We follow Liu et al. (2017)

and estimate the variances using rolling 5-year windows to account for the possibility that

the variances in the numerator and denominator change over time. We report the average
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ratio over time.

We present the results in Table A2 of the online appendix. These results are consistent

with our previous results relying on the RMSE and realized beta computations. We find that

HISTewma,ex, HISTK, HISTK
ewma,ex, as well as Bestsim yield significantly lower mean average

hedging error ratios than HIST. Dim(5) yields a substantially and significantly higher mean

average hedging error ratio than HIST. HISTK
ewma,ex achieves the lowest mean average hedging

error ratio. Thus, our main results appear to be robust to the specification of realized beta.

C Equally Weighted Results

Thus far, we present primarily value-weighted results. We regard this as the most relevant

case, since for investment decisions the stocks provide investment opportunities relative to

their total market capitalizations. However, small stocks make up a very large fraction of

the total number of stocks, and thus, it is also interesting to examine to what extent the

adjustments are beneficial for these. Therefore, in this section, we examine the robustness

of our main findings when weighting all stocks equally.

We present the equally weighted prediction error results in Table A3 of the online ap-

pendix.25 We find that all the average RMSEs are higher for all approaches than for the

value-weighted examination. Thus, it seems to be considerably more difficult to estimate

the betas for small stocks than it is for large stocks. Apart from that, the adjustment

approaches that work best when value-weighting also significantly outperform HIST when

weighting equally. Typically, the difference in the equally weighted RMSE is significant con-

siderably more often than that in the value-weighted RMSE. Thus, the adjustments appear

to be even more beneficial for small stocks compared to large stocks. Overall, HISTK
ewma,ex

yields the lowest average RMSE.
25One might wonder whether the asynchronicity adjustment performs better for small stocks. However,

we find that the Dimson beta estimators are even more clearly inferior compared to HIST when weighting all
stocks equally. The average RMSE is significantly higher than that of HIST nearly all the time, independent
of the number of lags used.
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D Firm-Level Evaluation

In the main part of this paper we evaluate the forecasts cross-sectionally. However, it

may also be of interest to see how the adjustment approaches perform for different stocks

separately in the time series. To perform this analysis, in order to assess the statistical

significance and to prevent stocks which are only available over short intervals during our

sample period from biasing our results, we use only stocks with more than 100 observations.

Essentially, this approach implies that we potentially lose information from stocks available

for a shorter sample period.

We present the results in Table A4 of the online appendix. These are qualitatively

similar as those for the cross-sectional evaluation. The best adjustments also yield lower

value-weighted average RMSEs compared to HIST. Bestsim yields the overall lowest value-

weighted average RMSE.

E Dimson Evaluation

To further test the robustness of our main results to infrequent trading effects, in this

section we present the results when evaluating estimates with respect to Dimson realized

beta. We estimate the realized beta as the sum of the realized beta as of Equation (9) with

0 up to 5 lags.26,27

We present the results in Table A5 of the online appendix. First, we find that the

average value-weighted RMSEs are higher for all approaches. Thus, it seems to be very

hard to predict future Dimson realized betas. This is most likely due to higher measurement

error caused by adding betas with respect to lagged market returns. Second, we find the

same patterns as when using realized beta without lags. The best approaches also yield

improvements over HIST under the Dimson realized beta. Finally, we find that Dim(5) yields

a higher average value-weighted RMSE than HIST even under the Dimson realized beta

evaluation. However, the difference is considerably smaller and significant less frequent than
26E.g., for 1 lag, in the numerator we multiply rj,τ by rM,τ−1 instead of rM,τ , etc.
27Using the ex post historical Dimson estimator of Equation (4) instead yields results that are qualitatively

similar.
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under the regular realized beta.28

F Monthly Evaluation

In the previous section, we account for infrequent trading effects by evaluating the fore-

casts with a Dimson realized beta. However, as we show in Section IV, the Dimson estimators

yield a substantial increase in both the inefficiency and the random error compared to HIST.

Therefore, in this section, we examine an alternative possibility to account for asynchronous

trading in realized beta: the use of monthly data. We estimate the realized beta using

monthly data over a 5-year horizon. Since this approach mixes a change in the data fre-

quency and estimation window, it is probably most suitable to compare the results to those

in Panel D of Table 10.

Table A6 of the online appendix presents the results. These are very similar to those

when using daily returns for realized beta. For the monthly evaluation, the average value-

weighted RMSEs of all approaches are larger than for daily evaluation over 60 months. This

indicates that realized beta with monthly data is also difficult to predict, likely because it is

more prone to measurement errors than realized beta with daily data. Additionally, we find

that HISTK
ewma,ex yields the lowest overall average value-weighted RMSE. Finally, Dim(5) still

yields a substantially and often significantly higher average value-weighted RMSE compared

to HIST and even more so compared to HISTK
ewma,ex. Hence, in general, estimators that

do not account for infrequent trading appear to be superior to those that use a Dimson

adjustment.
28Untabulated results reveal that, e.g., when we use 3 lags only both for the estimation (Dim(3)) and the

realized beta, Dim(3) also yields a slightly higher average value-weighted RMSE than HIST. Interestingly,
contrary to what one might expect, for all numbers of lags, HIST is even more strongly favorable when
weighting all stocks equally. Thus, the Dimson adjustment seems to work even less well for the stocks it was
initially designed for.
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G Mean Absolute Error

Finally, we examine the robustness of our results to the loss function employed. As an

alternative to the RMSE, in this section, we use the mean absolute error (MAE):

MAE =
1

o

o∑
t=1

| βRj,t − βj,t |, (13)

where all variables are as previously defined. The MAE penalizes all forecast errors in the

same way. Hence large forecast errors are less influential under the MAE than under the

RMSE. We present the results in Table A7 of the online appendix. These are very similar to

those using the RMSE. The best models under the RMSE also yield improvements over HIST

under the MAE, the differences are significant for similar shares of the time, and HISTK
ewma,ex

and Bestsim yield the lowest value-weighted average MAE.

VI Conclusion

We examine the effects of different historical windows, sampling frequencies, and various

forecast adjustments on beta estimation. We find that using daily data over a 12-month

horizon generally yields lower prediction errors than alternative historical windows and es-

timators based on low-frequency data. Furthermore, exponential weighting schemes, simple

shrinkage adjustments toward a prior, as well as simple combinations yield improvements.

On the other hand, an adjustment for asynchronous trading, conditioning beta on the

deviations of macroeconomic state variables from their historical averages, and regression-

based as well as Bayesian model averaging combinations typically yield high prediction errors.
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Table 3: Prediction Errors – Different Weighting Schemes

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewma,s HISTewma,s,ex HISTewma HISTewma,ex

avg. RMSE 0.327 0.319 0.311 0.318 0.310

HIST 0.007 0.016 0.008 0.017
(0.13) (0.30) (0.13) (0.52)

HISTewma,s 0.005 0.009 0.001 0.009
(0.24) (0.44) (-0.02) (0.14)

HISTewma,s,ex -0.004 -0.009 -0.008 0.001
(-0.07) (-0.85) (-0.32) (-0.02)

HISTewma 0.002 -0.003 0.006 0.009
(0.23) (-0.35) (0.59) (0.19)

HISTewma,ex -0.010 -0.015 -0.006 -0.012
(-0.68) (-0.63) (-0.34) (-0.67)
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Table 4: Prediction Errors – Imposing Priors

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTV HISTK HISTI

avg. RMSE 0.302 0.292 0.292 0.353

HIST 0.010 0.010 -0.051
(0.21) (0.21) (-0.30)

HISTV -0.005 0.000 -0.060
(-0.14) (0.03) (-0.40)

HISTK -0.005 0.000 -0.060
(-0.18) (-0.11) (-0.41)

HISTI 0.115 0.120 0.120
(0.97) (0.98) (0.99)
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Table 5: Prediction Errors – Asynchronicity

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST Dim(1) Dim(2) Dim(3) Dim(4) Dim(5)

avg. RMSE 0.327 0.358 0.374 0.398 0.420 0.443

HIST -0.031 -0.048 -0.071 -0.094 -0.116
(-0.35) (-0.46) (-0.56) (-0.65) (-0.73)

Dim(1) 0.048 -0.017 -0.040 -0.062 -0.085
(0.86) (-0.22) (-0.45) (-0.62) (-0.72)

Dim(2) 0.072 0.023 -0.024 -0.046 -0.068
(0.93) (0.95) (-0.43) (-0.55) (-0.65)

Dim(3) 0.098 0.050 0.026 -0.022 -0.045
(0.96) (0.99) (0.96) (-0.38) (-0.53)

Dim(4) 0.121 0.073 0.050 0.023 -0.023
(0.97) (1.00) (0.99) (0.95) (-0.38)

Dim(5) 0.146 0.097 0.074 0.048 0.024
(0.98) (1.00) (0.99) (0.98) (0.95)
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Table 7: Prediction Errors – Combinations

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.
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M
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avg. RMSE 0.346 0.325 0.352 0.349 0.343 0.331 0.543 0.501 0.503

HIST 0.021 -0.006 -0.002 0.003 0.016 -0.196 -0.155 -0.156
(0.48) (-0.13) (-0.04) (0.08) (0.24) (-0.64) (-0.56) (-0.58)

Bestsim -0.013 -0.027 -0.023 -0.018 -0.005 -0.217 -0.176 -0.177
(-0.62) (-0.40) (-0.33) (-0.52) (-0.15) (-0.68) (-0.63) (-0.63)

BestC 0.009 0.021 0.003 0.009 0.021 -0.191 -0.149 -0.151
(0.23) (0.61) (0.32) (0.14) (0.35) (-0.69) (-0.58) (-0.59)

Bestshr 0.002 0.015 -0.006 0.006 0.018 -0.194 -0.153 -0.154
(0.01) (0.55) (-0.73) (0.09) (0.24) (-0.68) (-0.59) (-0.59)

BestBMA -0.005 0.008 -0.013 -0.007 0.013 -0.199 -0.158 -0.159
(-0.23) (0.48) (-0.32) (-0.12) (0.21) (-0.66) (-0.57) (-0.59)

Allsim 0.003 0.016 -0.006 0.001 0.008 -0.212 -0.171 -0.172
(-0.03) (0.43) (-0.27) (-0.07) (0.10) (-0.69) (-0.64) (-0.62)

AllC 0.121 0.134 0.112 0.118 0.125 0.118 0.041 0.040
(1.00) (1.00) (1.00) (1.00) (1.00) (0.99) (0.51) (0.16)

Allshr 0.088 0.101 0.079 0.086 0.093 0.085 -0.033 -0.001
(1.00) (1.00) (1.00) (1.00) (1.00) (0.97) (-1.00) (0.02)

AllBMA 0.084 0.097 0.076 0.082 0.089 0.081 -0.037 -0.004
(0.99) (0.98) (0.97) (0.98) (1.00) (0.93) (-0.73) (0.08)
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Table 8: Prediction Errors – Best Models

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average value-weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.364 0.345 0.353 0.344 0.343

HIST 0.018 0.011 0.020 0.020
(0.57) (0.18) (0.59) (0.46)

HISTewma,ex -0.011 -0.008 0.001 0.002
(-0.70) (-0.21) (0.01) (0.06)

HISTK -0.006 0.005 0.009 0.010
(-0.24) (0.29) (0.36) (0.52)

HISTK
ewma,ex -0.013 -0.002 -0.007 0.000

(-0.79) (-0.64) (-0.50) (-0.03)
Bestsim -0.012 -0.002 -0.007 0.001

(-0.64) (-0.18) (-0.65) (0.23)
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Table 9: Forecast Error Decomposition

This table presents the decomposition of mean squared forecast errors. We measure the realized beta with

daily returns over the horizon of 6 months. We decompose the MSE for all approaches into a bias, inefficiency,

and a random error part. We perform the decomposition for each stock and weight the results by the stocks’

average market capitalizations.

Panel A. Adjustments that “Work”

Bias Inefficiency Random Error

HIST 0.004 0.015 0.105
HISTewma,ex 0.003 0.011 0.098
HISTK 0.003 0.012 0.100
HISTK

ewma,ex 0.003 0.011 0.098
Bestsim 0.003 0.010 0.097

Panel B. Adjustments that “do not Work”

Bias Inefficiency Random Error

HISTI 0.024 0.018 0.136
Dim(1) 0.004 0.025 0.120
Dim(3) 0.005 0.044 0.138
Dim(5) 0.005 0.078 0.151
Betacay 0.004 0.050 0.162
BestC 0.004 0.013 0.112
BestBMA 0.003 0.016 0.102
AllC 0.004 0.139 0.168
AllBMA 0.004 0.107 0.152

36



Table 10: Prediction Errors – Different Horizons

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns

over the horizons of 1 month (Panel A), 3 Months (Panel B), 12 Months (Panel C), and 60 Months (Panel

D). The first row reports the average value-weighted RMSE over our sample period. We indicate the lowest

average RMSE with italic font. The remainders of the panels report the differences in prediction errors. The

upper triangular matrices report the average differences in RMSE and the lower triangular matrices report

the average differences in RMedSE. We report the error loss differential between the model [name in row]

and the model [name in column]. The absolute values of the numbers in parentheses indicate the share of

time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the difference is significant

40% of the time). We test the significance using the modified Diebold–Mariano and the Wilcoxon signed

rank tests for the upper and lower triangular matrix, respectively. The sign of the number in parentheses

indicates the direction of the significant differences.

Panel A. 1-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.612 0.599 0.602 0.598 0.597

HIST 0.014 0.011 0.014 0.016
(0.46) (0.23) (0.47) (0.42)

HISTewma,ex -0.009 -0.003 0.001 0.002
(-0.65) (-0.09) (-0.01) (0.09)

HISTK -0.007 0.002 0.004 0.005
(-0.32) (0.15) (0.14) (0.24)

HISTK
ewma,ex -0.010 -0.001 -0.003 0.001

(-0.73) (-0.35) (-0.26) (0.06)
Bestsim -0.011 -0.002 -0.004 -0.001

(-0.58) (-0.15) (-0.40) (0.04)

Panel B. 3-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.425 0.408 0.413 0.407 0.406

HIST 0.017 0.012 0.018 0.019
(0.55) (0.21) (0.56) (0.48)

HISTewma,ex -0.010 -0.005 0.001 0.002
(-0.69) (-0.14) (-0.00) (0.08)

HISTK -0.007 0.004 0.006 0.007
(-0.29) (0.25) (0.26) (0.41)

HISTK
ewma,ex -0.012 -0.002 -0.006 0.001

(-0.79) (-0.55) (-0.45) (0.02)
Bestsim -0.012 -0.002 -0.006 0.000

(-0.64) (-0.17) (-0.62) (0.11)
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Table 10: Prediction Errors – Different Horizons (continued)

Panel C. 12-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.332 0.315 0.326 0.313 0.314

HIST 0.018 0.006 0.020 0.018
(0.58) (0.10) (0.59) (0.43)

HISTewma,ex -0.010 -0.011 0.002 0.001
(-0.66) (-0.28) (0.06) (0.05)

HISTK -0.003 0.007 0.013 0.012
(-0.17) (0.36) (0.45) (0.57)

HISTK
ewma,ex -0.014 -0.003 -0.010 -0.002

(-0.80) (-0.79) (-0.57) (-0.09)
Bestsim -0.012 -0.001 -0.008 0.002

(-0.61) (-0.13) (-0.72) (0.32)

Panel D. 60-Month Forecast Horizon

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.341 0.327 0.341 0.323 0.329

HIST 0.014 0.000 0.019 0.013
(0.43) (0.02) (0.54) (0.31)

HISTewma,ex -0.009 -0.014 0.005 -0.001
(-0.49) (-0.35) (0.28) (-0.03)

HISTK -0.002 0.007 0.018 0.013
(-0.13) (0.22) (0.55) (0.63)

HISTK
ewma,ex -0.014 -0.006 -0.013 -0.006

(-0.71) (-0.97) (-0.50) (-0.35)
Bestsim -0.010 -0.001 -0.009 0.004

(-0.50) (-0.16) (-0.56) (0.41)
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Table A1: Summary Statistics – Combinations

This table presents value-weighted summary statistics for our main estimators as well as value-weighted

averages of firm-level correlations. Nobs indicates the total number of firm–month observations for which we

have estimates. Meanvw is the overall value-weighted average of the estimates over the entire sample period.

Std. dev. presents the average cross-sectional standard deviation. q0.05 and q0.95 indicate the averages of

the cross-sectional 5% and 95% quantiles, respectively. The sample period runs from January 1963 until

December 2015.
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HIST 3,354,313 0.99 0.63 -0.05 1.89 0.99 0.85 0.84 0.94 0.95 0.63 0.68 0.67
Bestsim 3,277,719 0.98 0.54 0.05 1.73 * 0.89 0.87 0.96 0.97 0.67 0.71 0.71
BestC 2,226,506 0.86 0.55 0.04 1.70 * 0.95 0.89 0.92 0.72 0.75 0.71
Bestshr 2,226,506 0.86 0.57 0.04 1.70 * 0.86 0.91 0.71 0.74 0.71
BestBMA 2,226,506 0.88 0.58 0.00 1.74 * 0.94 0.66 0.69 0.72
Allsim 1,396,958 0.85 0.43 0.23 1.62 * 0.68 0.73 0.71
AllC 988,922 0.77 0.79 -0.23 1.99 * 0.96 0.72
Allshr 988,922 0.77 0.72 -0.09 1.89 * 0.72
AllBMA 863,603 0.82 0.81 -0.19 1.98 *

Table A2: Hedging Errors

This table presents the ratio of hedging error variances to the market variance for different approaches. For

each stock, estimator, and month, we obtain the hedging error over the next month as hi,t = Rj,t−βj,tRM,t.

We estimate the ratio of the hedging error variance to the market variance. To account for the possibility

that the variances in the numerator and denominator change over time, we estimate the variances using

rolling 5-year windows and use the average ratio over time. We present the mean hedging error ratios across

all stocks. Additionally, we report differences to of the mean to those of HIST (Diff). The lowest mean

average hedging error ratio is indicated by italic font. *, **, and *** indicate significance at the 10%, 5%,

and 1% level, respectively.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5)

Mean 13.810 13.801 13.795 13.787 13.790 13.902
Diff 0.0000 -0.0097*** -0.0156*** -0.0239*** -0.0204*** 0.0915***
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Table A3: Prediction Errors – Equally Weighted

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the average equally weighted RMSE over our sample period.

We indicate the lowest average RMSE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in RMedSE. We report the error loss differential between

the model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.604 0.588 0.582 0.575 0.577

HIST 0.016 0.022 0.029 0.027
(0.59) (0.55) (0.86) (0.78)

HISTewma,ex -0.011 0.006 0.013 0.011
(-0.70) (0.14) (0.90) (0.59)

HISTK -0.006 0.005 0.007 0.005
(-0.24) (0.29) (0.35) (0.37)

HISTK
ewma,ex -0.013 -0.002 -0.007 -0.002

(-0.79) (-0.64) (-0.50) (-0.25)
Bestsim -0.012 -0.002 -0.007 0.001

(-0.64) (-0.18) (-0.65) (0.23)
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Table A4: Prediction Errors – Firm-Level Evaluation

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns over

the horizon of 6 months. The first row reports the value-weighted average RMSE. We indicate the lowest

average RMSE with italic font. The remainder of the table reports the differences in prediction errors.

The upper triangular matrix reports the average differences in RMSE, averaged over all stocks. Similarly,

the lower triangular matrix reports the average differences in RMedSE. We report the error loss differential

between the model [name in row] and the model [name in column]. The absolute values of the numbers in

parentheses indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates

that the difference is significant for firms representing 40% of the average total market capitalization). We

test the significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper

and lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of

the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.382 0.363 0.369 0.362 0.360

HIST 0.019 0.013 0.020 0.022
(0.25) (0.04) (0.26) (0.19)

HISTewma,ex -0.013 -0.006 0.001 0.003
(-0.12) (-0.08) (0.09) (0.00)

HISTK -0.010 0.002 0.007 0.009
(-0.01) (0.02) (0.10) (0.20)

HISTK
ewma,ex -0.013 -0.001 -0.003 0.002

(-0.13) (-0.02) (-0.03) (-0.02)
Bestsim -0.016 -0.003 -0.005 -0.002

(-0.08) (-0.00) (-0.07) (0.00)
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Table A5: Prediction Errors – Dimson Evaluation

This table presents the out-of-sample prediction errors. We measure the realized beta using the Dimson

approach and 5 lags with daily returns over the horizon of 6 months. The first row reports the average

value-weighted RMSE over our sample period. We indicate the lowest average RMSE with italic font. The

remainder of the table reports the differences in prediction errors. The upper triangular matrix reports the

average differences in RMSE and the lower triangular matrix reports the average differences in RMedSE. We

report the error loss differential between the model [name in row] and the model [name in column]. The

absolute values of the numbers in parentheses indicate the share of time periods for which the difference

is significant at 5% (e.g., 0.4 indicates that the difference is significant 40% of the time). We test the

significance using the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign of the number in parentheses indicates the direction of the

significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5)

avg. RMSE 0.669 0.659 0.666 0.659 0.660 0.686

HIST 0.010 0.002 0.010 0.009 -0.017
(0.35) (0.05) (0.34) (0.25) (-0.13)

HISTewma,ex -0.006 -0.007 0.000 0.000 -0.027
(-0.38) (-0.23) (-0.01) (-0.05) (-0.21)

HISTK 0.000 0.006 0.007 0.007 -0.020
(-0.06) (0.26) (0.28) (0.40) (-0.16)

HISTK
ewma,ex -0.008 -0.002 -0.008 -0.001 -0.027

(-0.50) (-0.42) (-0.38) (-0.08) (-0.20)
Bestsim -0.005 0.001 -0.006 0.002 -0.027

(-0.34) (0.00) (-0.45) (0.20) (-0.20)
Dim(5) -0.003 0.004 -0.003 0.005 0.003

(0.06) (0.12) (0.06) (0.13) (0.10)
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Table A6: Prediction Errors – Monthly Evaluation

This table presents the out-of-sample prediction errors. We measure the realized beta with monthly returns

over the horizon of 60 months. The first row reports the average value-weighted RMSE over our sample

period. We indicate the lowest average RMSE with italic font. The remainder of the table reports the

differences in prediction errors. The upper triangular matrix reports the average differences in RMSE and

the lower triangular matrix reports the average differences in RMedSE. We report the error loss differential

between the model [name in row] and the model [name in column]. The absolute values of the numbers in

parentheses indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates

that the difference is significant 40% of the time). We test the significance using the modified Diebold–

Mariano and the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The

sign of the number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim Dim(5)

avg. RMSE 0.501 0.491 0.504 0.488 0.494 0.534

HIST 0.011 -0.003 0.013 0.008 -0.032
(0.42) (-0.08) (0.49) (0.27) (-0.23)

HISTewma,ex -0.007 -0.014 0.002 -0.003 -0.043
(-0.30) (-0.38) (0.14) (-0.17) (-0.35)

HISTK -0.002 0.006 0.016 0.011 -0.029
(-0.20) (0.13) (0.54) (0.60) (-0.21)

HISTK
ewma,ex -0.012 -0.005 -0.011 -0.005 -0.045

(-0.52) (-0.81) (-0.41) (-0.37) (-0.36)
Bestsim -0.008 0.000 -0.006 0.005 -0.040

(-0.36) (-0.16) (-0.38) (0.40) (-0.34)
Dim(5) 0.021 0.028 0.023 0.033 0.029

(0.30) (0.39) (0.32) (0.47) (0.41)
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Table A7: Prediction Errors – MAE

This table presents the out-of-sample prediction errors. We measure the realized beta with daily returns

over the horizon of 6 months. The first row reports the average value-weighted MAE over our sample period.

We indicate the lowest average MAE with italic font. The remainder of the table reports the differences

in prediction errors. The upper triangular matrix reports the average differences in RMSE and the lower

triangular matrix reports the average differences in MedAE. We report the error loss differential between the

model [name in row] and the model [name in column]. The absolute values of the numbers in parentheses

indicate the share of time periods for which the difference is significant at 5% (e.g., 0.4 indicates that the

difference is significant 40% of the time). We test the significance using the modified Diebold–Mariano and

the Wilcoxon signed rank tests for the upper and lower triangular matrix, respectively. The sign of the

number in parentheses indicates the direction of the significant differences.

HIST HISTewma,ex HISTK HISTK
ewma,ex Bestsim

avg. RMSE 0.269 0.255 0.261 0.254 0.254

HIST 0.014 0.008 0.015 0.016
(0.70) (0.16) (0.71) (0.52)

HISTewma,ex -0.011 -0.006 0.001 0.001
(-0.71) (-0.37) (0.15) (-0.01)

HISTK -0.006 0.005 0.007 0.007
(-0.25) (0.29) (0.40) (0.63)

HISTK
ewma,ex -0.013 -0.002 -0.007 0.001

(-0.79) (-0.64) (-0.50) (-0.10)
Bestsim -0.012 -0.002 -0.007 0.001

(-0.63) (-0.18) (-0.65) (0.23)
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