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Abstract

It is well known that intraday volatilities and trading volumes exhibit strong seasonal

features. These seasonalities are usually modeled using dummy variables or deterministic

functions. Here, we propose a test for seasonal long memory with a known frequency.

Using this test, we show that deterministic seasonality is an accurate model for the DJIA

index but not for the component stocks. These still exhibit significant and persistent

periodicity after seasonal de-meaning so that more evolved seasonal long memory models

are required to model their behavior.
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1 Introduction

The increasing availability of high frequency data poses new challenges for the analysis of

seasonality in time series. This is because with the increasing frequency of observations,

our datasets contain a higher number of meaningful harmonic oscillations. Harmonic

oscillations are those whose period lengths are a multiple of the period with which the

observations are sampled. For five-minute returns in US stock markets for example,

there are 78 five-minute returns in a trading day. Furthermore, there are 5 trading days

per week so that a weekly cycle would have a period of 5×78. Furthermore, there are

about 21 trading days per month such that the period of a monthly cycle would be

21×78. In contrast to that, for monthly data, we can at most have a yearly cycle with

period 12.

This new prevalence of seasonality requires a careful re-assessment of previous assump-

tions and practices, especially since the explosion in sample sizes that comes with the

availability of high frequency data enables us to specify and estimate models that allow

for more complex dynamics.

One area where this issue is particularly important is the intraday dynamics of volatility

and trading volume in financial markets. For exchange rates this is documented by

Baillie and Bollerslev (1991), Andersen and Bollerslev (1998) and Andersen et al. (2001),

among others. Examples from the literature on stock returns include Andersen and

Bollerslev (1997), Giot (2005) and Rossi and Fantazzini (2014). The major part of this

literature assumes that the seasonality is deterministic. It is common practice to remove

deterministic seasonality with seasonal dummy regression or by fitting trigonometric

functions. Afterwards, the residuals are assumed to be free from seasonality.

However, in recent years parametric seasonal long memory models for intraday volatility

have been proposed by Bordignon et al. (2007) and Rossi and Fantazzini (2014). These

treat the seasonal effects as a stochastic process. In contrast to deterministic cycles

stochastic seasonal components might change over time. This is why it is important to

carefully examine the nature of seasonality.

In the context of seasonally integrated processes, the effect of seasonal demeaning

has been studied by Abeysinghe (1991), Abeysinghe (1994), Franses et al. (1995) and

da Silva Lopes (1999). They point out that regressing (first-differenced) time series on

seasonal dummies might produce spuriously high R2 if the seasonality originates from a

seasonal unit root and refer to this phenomenon as spurious deterministic seasonality.

Similar to the seasonal unit root case, ignoring seasonal or periodic long memory, of

course, results in misspecified models.

In this paper, we therefore investigate the question whether the seasonality in intraday

trading volume and realized volatility is accurately modeled by deterministic dummies
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or whether it exhibits seasonal long memory. To do so, we propose a modified version

of the G-test that was developed by Leschinski and Sibbertsen (2014) in the context

of model specification in a GARMA framework. Here, we take a different perspective,

since we are interested in testing rather then model specification. We therefore suggest

a semiparametric test for seasonal long memory with a specific periodicity that is robust

to the presence of short memory effects. The aim of the test is to assess the presence

of seasonal long memory without specifying a model. Hence, we do not assume any

parametric structure, e.g. that the seasonal long memory in the series is generated by a

GARMA process.

The analysis is carried out for the example of the stocks that are components of the Dow

Jones Industrial Average (DJIA) index and the index itself. We find for both the trading

volume and the volatility that the majority of the components of the DJIA exhibits

seasonal long memory, whereas the index does not. This shows that it is necessary to

carefully analyze the nature of the seasonality in the series at hand, before specifying a

parametric model.

The following Section 2 summarizes and discusses the existing seasonal long memory

models. Afterwards, in Section 3, we introduce our testing procedure. Its finite sample

performance is analyzed with help of a Monte Carlo simulation in Section 4. The results

of the empirical analysis are presented in Section 5, before Section 6 concludes.

2 Modeling seasonality

Irrespective of its nature, seasonality can be defined as systematic but not necessarily

regular behavior that is characterized by spectral peaks at seasonal frequencies and

their harmonics (cf. Hylleberg (1992)). Regular periodic patterns can be classified as

deterministic seasonality that cause (bounded) peaks in the periodogram. Stochastic

cyclical behavior, in contrast, leads to spectral peaks that can be unbounded in the case

of seasonal long memory. In general, seasonal data is said to have a period S ∈ N that

is inferred from the sampling frequency, i.e it gives the number of observations per unit

of time (e.g. year or day) so that data which are S observations apart are similar (Box

et al. (2013)). In a perfectly deterministic cycle this implies xt = xt−S , i.e. deterministic

periodic patterns repeat themselves exactly and can be perfectly forecasted.

It is common to seasonally adjust data by assuming deterministic cyclical patterns and

removing them. For example in macroeconomics, a common procedure for seasonal

adjustment is the X − 11 ARIMA and its more advanced versions of the U.S. Census

Bureau that uses moving averages in order to adjust trends and seasonal behavior in

data such as inflation or unemployment rates.

Another basic procedure that is applied in a wide range of scenarios is to use seasonal
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dummies in a linear regression framework

Xt = β0 +

S−1∑
s=1

βsDs,t + Zt, (1)

where Ds,t are indicator variables that take the value 1 for t = s + S (q− 1) with q =

1, ...,bT/S c, where b·c denotes the greatest integer smaller than the argument and Zt are

the regression residuals. The dummies account for cycles like calender effects (e.g. day

of the week) or intradaily cycles and in a purely deterministic framework the regression

residuals Zt are assumed to be free from seasonality.

Slowly varying seasonality is captured with the flexible Fourier form which is a linear

combination of sines and cosines. Here, the original data is regressed on sines and cosines

that depend on the seasonal frequencies ωs = 2πs
S , such that

Xt =

bS/2c∑
s=1

(as cos(ωs t) + bs sin(ωs t)) + Zt,

(cf. Andersen and Bollerslev (1997), Andersen and Bollerslev (1998), Martens et al.

(2002), Deo et al. (2006)). It is also conceivable to fit a combination of slowly varying

seasonality and basic seasonal dummies. Hereby it is possible to model intraday cycles

with more flexibility and account for announcements through dummies at the same time

(Andersen and Bollerslev (1998)).

Although these deterministic models are still popular, they do not always provide a

suitable model fit. Therefore, stochastic time series models are proposed. The basic

model is a seasonal version of the popular ARIMA model. Seasonal fractionally dif-

ferenced models (SARFIMA) were introduced by Porter-Hudak (1990) and generalized

and extended by Ray (1993). A model of order (p,d0,q)× (P,dS ,Q) is given by,

φ(L)Φ(LS )(1−L)d0
(
1−LS

)dS Xt = θ(L)Θ(LS )εt, (2)

where L is the lag-operator defined as LXt = Xt−1, |dS |, |d0| <
1
2 are the seasonal and non-

seasonal fractional orders of integration and εt is defined as white noise for the rest

of the chapter. As in the deterministic setting, the parameter S determines the pe-

riod length of the seasonal cycle and the seasonal frequencies are given by ωs = 2πs
S for

s = 1, ...,bS/2c. The seasonal fractional difference operator is defined in analogy to its

non-seasonal counterpart by a binomial expansion such that
(
1−LS

)dS
=

∑∞
k=0

(
dS
k

)
(−LS )k.

Furthermore, φ(L) = 1−φ1L−φ2L2− ...−φpLp and θ(L) = 1−θ1L−θ2L2− ...−θqLq are poly-

nomials of degree p and q in the backshift operator L. The polynomials Φ(LS ) of degree

P and Θ(LS ) of degree Q are defined analogously and they describe the seasonal short
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run dynamics. Hence, SARFIMA models offer a certain flexibility, but by construction

such series share the same memory parameter dS at all seasonal frequencies ωs. This

can be relaxed if several periods S j are allowed. The flexible ARFISMA model - an

alternative but similar version - was introduced by Hassler (1994).

The Gegenbauer ARMA (GARMA) process was introduced by Gray et al. (1989) and

it generates one spectral peak at one specific frequency. Woodward et al. (1998) and

Giraitis and Leipus (1995) generalize this model and allow for several spectral peaks by

introducing the k-factor GARMA process

φ(L)Xt = Πk
j=1

(
1−2cosω jL + L2

)−d j
θ(L)εt, (3)

where
(
1−2u jL + L2

)−d j
with u j = cosω j is the generating function of the Gegenbauer

polynomial defined as
∑∞

T=0 C(d j)
T (u j)LT with C(d j)

T (u j) =
∑bT/2c

k=0
(−1)k(2u j)T−2kΓ(d j−k+T )

k!(T−2k)!Γ(d j)
and

ω j ∈ [0,π] is some cyclical frequency. The cyclical frequencies ω j are not necessarily equal

to seasonal frequencies ωs as in the SARFIMA model and each ω j has an individual

memory parameter d j so that there may be peaks of different magnitude in the spectrum.

This translates, for example, to a two-day cycle with memory parameter d1 and a daily

cycle with memory parameter d2 (d1 , d2). Due to the Gegenbauer polynomial the

requirements on the memory parameter(s) for stationarity and invertibility depend on

ω j: for 0 < ω j < π this is |d j| ∈
1
2 , whereas for λ = {0,π}, |d j| ∈

1
4 is required. Note that the

model is not fractionally integrated in a narrow sense, because integration is related to

the fractional differencing operator (1− L)d, but a GARMA model is constructed with

a Gegenbauer filter instead. However, the Gegenbauer filter
(
1−2cosωL + L2

)d
is equal

to (1− L)2d for ω = 0 and (1 + L)2d for ω = π so that the squared fractional differencing

operator is a special case. This is also the reason for frequency-depending stationarity

and invertibility requirements discussed above.

Both, the k-factor Gegenbauer model and the rigid SARFIMA model generate spectral

poles at one or more frequencies ω that are of the form

f (ω+λ) ∼C|λ|−2dω as λ→ 0, (4)

where C is a positive and finite constant.

Since there is no reason why seasonality should be purely deterministic or purely stochas-

tic, both sources can be considered in one model at the same time. For example Gil-

Alana (2005) and Caporale et al. (2012), among others, construct a model with determin-

istic seasonal means and stochastic seasonal long memory captured with a SARFIMA

model, i.e. the regression residuals in (1) are replaced with some version of (2).

Gil-Alana (2005) also suggests a test for seasonality and the seasonal order of integration
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dS in this combined parametric setting. However, this approach has the drawback

that the performance of the test depends on the correct specification of the model. In

contrast, our test introduced in the next Section 3 circumvents this problem with its

semiparametric approach.

3 Testing for Seasonal Long Memory

A seasonal long memory process Xt with period S and seasonal memory parameter dω
has a pole at frequency ω = 2π/S . In its neighborhood, the spectral density is thus

given by (4). We are interested in testing the hypothesis that the process does not have

seasonal long memory versus the alternative that it has. Thus, our hypotheses are given

by

H0 : dω = 0 and H1 : dω > 0.

Of course seasonal behavior could also be induced by deterministic patterns. We there-

fore consider the seasonally demeaned series Zt from (1). It was shown by Ooms and

Hassler (1997) that seasonal de-meaning introduces zeros in the periodogram at all

Fourier frequencies that coincide with seasonal frequencies, so that j′T = jS , where

j′ = 1, ...,bS/2c. However, all other periodogram ordinates remain unaffected (cf. also

Arteche (2002)).

Define the periodogram of Zt by

I(λ) = (2πT )−1

∣∣∣∣∣∣∣
T∑

t=1

Zte−iλt

∣∣∣∣∣∣∣
2

, with λ ∈ [−π,π] .

The periodogram is usually computed at the Fourier frequencies λ j = 2π j/T , for j = 1, ...,n
and n = bT/2c.
A semiparametric test for seasonal long memory with period S is obtained by employing

a modified version of the G∗ test that was suggested by Leschinski and Sibbertsen (2014)

in the context of model selection in GARMA models. Their procedure tests for seasonal

long memory using the test statistic

G∗Z = max
j

 I(λ j)

f̂Z(λ j)

− logn,

where f̂Z(λ) is a consistent estimate of the spectral density under the null hypothesis.

To adapt this to our setting, i.e. a simple test for seasonal long memory with a known
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period S , we construct a local version of G∗Z, that only considers m Fourier frequencies

to the left and the right of the frequency of interest ω. The bandwidth m has to satisfy

the usual condition 1/m + m/T → 0 as T →∞. Thus, the test statistic is given by

G = max
j∈[0,m]

 I(ω±λ j)

f̂Z(ω±λ j)

− log(2m). (5)

For the implementation of this test statistic we require an estimate f̂Z(λ) of the spectral

density that is consistent under the null hypothesis. This is usually done with kernel-

smoothed versions of the periodogram. However, this has the disadvantage that a single

large periodogram ordinate I(λ j) has a significant impact on the spectral density estimate

in the neighborhood of λ j. To avoid this effect, Leschinski and Sibbertsen (2014) adopt

the logspline spectral density estimate originally proposed by Cogburn et al. (1974),

who showed that this estimator is asymptotically equivalent to a kernel spectral density

estimate. A maximum likelihood version of this estimator based on regression splines

was proposed by Kooperberg et al. (1995).

Following their notation, define Ah = [(h−1)π/HT ,hπ/HT ) as a subinterval of [0,π], for

1 ≤ h < HT and set AHT = π, where the number (HT ) of subintervals (Ah) is determined

according to HT = b1 + T cc, with 0 < c < 1/2. Furthermore, let g denote a cubic spline

function defined on [0,π]. That means it is a polynomial of degree three on each subin-

terval Ah, it is two times continuously differentiable on [0,π], and it can be expressed in

terms of Basis-splines as

g(λ,β) = β1B1(λ) + ...+βW BW(λ),

where the Bw denote the basis functions, with 1 ≤ w ≤ 4HT −3(HT −1) = W.

The basis for the application of splines in spectral density estimation is the observation

that the normalized periodogram ordinates I(λ j)/ fZ(λ j) = Q j are approximately expo-

nentially distributed with mean one. For the logarithm of I(λ j) follows that log I(λ j) =

ϕ(λ j)+q j, where q j is the log of the exponential variable Q j and ϕ(λ j) is the log-spectral

density. This linearization allows to apply a spline function g(λ,β) to estimate ϕ(λ).
The spectral density estimate f̂Z(λ) = exp(g(λ, β̂)) is then obtained after reversing the

log-transformation.

To estimate β = (β1, ...,βW)′, we apply the approach suggested by Leschinski and Sib-

bertsen (2014) and estimate the spectral density fZ(λ) via the OLS estimator

β̂OLS =argmin
β

n∑
j=−n

[
log(I(λ j)) +η−g(λ j,β)

]2
, (6)
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where η denotes the Euler-Mascheroni constant. Since this OLS estimator has a closed

form solution, this approach does not require numerical optimization and is much faster

to compute than the ML estimator of Kooperberg et al. (1995).

In direct analogy to Leschinski and Sibbertsen (2014), we then have for the test statistic

in (5) that for any z̃ ∈R

lim
T→∞

P(G > z̃) = 1− exp(−exp(−z̃))

under the null hypothesis and under the alternative

lim
T→∞

P (G < c̃) = 0

for any c̃ <∞.

Note that our test is constructed such that it detects seasonal long memory while being

robust to the potential presence of seasonal short-run dynamics. Thus, non-rejection of

the null hypothesis does not imply the absence of stochastic seasonality.

The test is applied at the first seasonal frequency ω = 2π/S . In theory one could also

consider the harmonics ωs = 2πs/S , for s = 2, ...,bS/2c. However, the periodogram ordi-

nates are proportional to the fraction of the process variance that can be explained by

a sinusoidal cycle of the respective frequency. Since by the nature of the Fourier series,

cycles with frequencies that are a multiple of this frequency improve the approximation

to a non-sinusoidal seasonality, these will not have an effect if the seasonality is indeed

of a sinusoidal form. Without additional knowledge about the seasonal properties of the

process at hand, it is therefore not clear whether the inclusion of harmonic frequencies

will improve or diminish the performance of the test.

- 8 -



4 Monte Carlo

In order to analyze the finite sample performance of our G-test in (5) we conduct a

Monte Carlo experiment with 1,000 replications. We use a 1-factor GARMA model as

data generating process

Xt =

(
1−2cos

(
2π
13

)
+ L2

)−d

ut, (7)

where ut = φut−1 +εt is an AR(1)-process. We consider φ = 0 for the white noise case with

zero mean and unit variance, and φ = 0.4 in order to examine the influence of short-run

dynamics. Based on our empirical application in Section 5 we choose ω = 2π
13 , which

implies a period of S = 13, and we consider memory parameters in the stationary area,

d = {0, 0.1, 0.2, 0.3, 0.4}. For d = 0 the process is non-seasonal so that the corresponding

simulation results display empirical sizes. Our G-test requires two bandwidth choices.

First, for the periodogram m = b1 + T δc is the number of Fourier frequencies that are

considered. Second, in addition to m, a bandwidth that determines the number of knots

in the spline-based estimation of the spectral density HT = b1 + T cc is necessary.

All results are displayed in Table 1. Size and power results both improve with increasing

sample size T for all parameter constellations. The size results are already satisfying in

small samples and very robust to bandwidth choices and short run dynamics.

The power results depend on the memory parameter d and improve with higher orders

of integration. This is intuitive because low seasonal persistence, e.g. d = 0.1, is more

difficult to detect than higher persistence. However, in large samples the power is

already good for d = 0.2, and for d = 0.4 results are even satisfying in small samples. The

bandwidth parameter c influences the performance such that lower values of c improve

results significantly. For example, for d = 0.2 and T = 2,500 power is more than twice as

high for the lowest value of c than for its highest value. For larger samples the choice of

c becomes less important. We find a similar influence of δ. Smaller values lead to much

higher power results for low seasonal persistence (about 20 percentage points), but for

higher seasonal persistence the influence of δ shrinks. Short-run dynamics of medium

size cause no systematic distortions in the results. On the contrary, there are only small

and random deviations compared to the white noise case. The semiparametric approach

of the test therefore successfully mitigates the impact of short run dynamics.

Overall, our G-test statistic has very good finite sample properties independent of short-

run dynamics. One should only be careful with the choice of m and HT because choosing

the bandwidths too large might lead to biased parameter estimates which results in lower

power of the test. We therefore recommend to choose low bandwidth parameters.
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c 0.1 0.15 0.2 0.25

φ d T/δ 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

0

0

250 0.06 0.06 0.05 0.07 0.06 0.06 0.09 0.07 0.07 0.08 0.07 0.06

500 0.08 0.07 0.06 0.07 0.07 0.05 0.06 0.06 0.07 0.07 0.08 0.06

1000 0.05 0.04 0.05 0.06 0.06 0.06 0.05 0.06 0.04 0.08 0.07 0.05

2500 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.04 0.06 0.06 0.05

0.1

250 0.10 0.11 0.08 0.12 0.09 0.09 0.13 0.12 0.09 0.14 0.10 0.08

500 0.17 0.13 0.09 0.14 0.11 0.09 0.16 0.11 0.10 0.13 0.11 0.09

1000 0.24 0.16 0.12 0.22 0.16 0.11 0.22 0.16 0.14 0.14 0.10 0.08

2500 0.35 0.24 0.18 0.35 0.26 0.16 0.31 0.21 0.15 0.15 0.10 0.09

0.2

250 0.33 0.24 0.23 0.32 0.29 0.23 0.29 0.27 0.23 0.33 0.25 0.22

500 0.48 0.41 0.30 0.51 0.40 0.35 0.49 0.42 0.36 0.41 0.36 0.27

1000 0.68 0.56 0.54 0.71 0.60 0.50 0.66 0.59 0.50 0.48 0.38 0.34

2500 0.92 0.85 0.78 0.91 0.82 0.73 0.84 0.76 0.64 0.43 0.36 0.28

0.3

250 0.62 0.56 0.47 0.60 0.55 0.50 0.58 0.53 0.51 0.59 0.55 0.51

500 0.83 0.78 0.71 0.84 0.79 0.73 0.81 0.78 0.70 0.70 0.69 0.63

1000 0.97 0.93 0.91 0.96 0.94 0.92 0.96 0.94 0.88 0.82 0.76 0.71

2500 1.00 1.00 0.99 1.00 1.00 0.99 1.00 0.99 0.98 0.83 0.76 0.72

0.4

250 0.84 0.80 0.76 0.83 0.81 0.75 0.83 0.82 0.76 0.85 0.77 0.76

500 0.97 0.96 0.94 0.97 0.96 0.94 0.97 0.95 0.93 0.95 0.91 0.89

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.95 0.94

2500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.95

0.4

0

250 0.06 0.07 0.05 0.06 0.07 0.06 0.09 0.07 0.06 0.09 0.08 0.08

500 0.07 0.07 0.04 0.06 0.06 0.05 0.07 0.06 0.07 0.06 0.08 0.06

1000 0.05 0.06 0.05 0.04 0.05 0.04 0.06 0.05 0.04 0.06 0.07 0.06

2500 0.05 0.05 0.05 0.05 0.07 0.07 0.06 0.06 0.06 0.05 0.07 0.06

0.1

250 0.12 0.09 0.08 0.10 0.11 0.08 0.11 0.12 0.09 0.12 0.08 0.09

500 0.14 0.11 0.08 0.15 0.12 0.10 0.16 0.12 0.09 0.15 0.11 0.09

1000 0.20 0.18 0.11 0.22 0.13 0.12 0.21 0.17 0.11 0.14 0.09 0.09

2500 0.33 0.24 0.17 0.33 0.24 0.15 0.26 0.21 0.15 0.14 0.11 0.08

0.2

250 0.27 0.26 0.22 0.33 0.26 0.19 0.31 0.25 0.22 0.29 0.25 0.24

500 0.46 0.38 0.33 0.51 0.42 0.34 0.47 0.39 0.33 0.38 0.32 0.28

1000 0.66 0.58 0.48 0.67 0.60 0.50 0.65 0.61 0.50 0.43 0.37 0.29

2500 0.89 0.84 0.75 0.92 0.85 0.74 0.83 0.71 0.66 0.45 0.33 0.29

0.3

250 0.58 0.53 0.47 0.59 0.53 0.48 0.59 0.53 0.51 0.59 0.52 0.51

500 0.82 0.78 0.73 0.83 0.78 0.74 0.81 0.75 0.70 0.71 0.67 0.64

1000 0.96 0.91 0.90 0.97 0.94 0.91 0.95 0.93 0.89 0.81 0.76 0.70

2500 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.98 0.83 0.78 0.68

0.4

250 0.80 0.77 0.75 0.83 0.80 0.75 0.82 0.82 0.77 0.81 0.80 0.78

500 0.97 0.96 0.94 0.97 0.96 0.93 0.97 0.95 0.94 0.93 0.91 0.87

1000 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.97 0.96 0.93

2500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.95

Table 1: Rejection frequency of our G-test statistic for a nominal significance level of α = 0.05
and the DGP given in (7).
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5 Empirical analysis of Dow Jones stocks

We analyze the intraday log-realized volatility and the log-trading volume of the 30

Dow Jones Industrial Average (DJIA) stocks and the index itself. To do so, we use

five-minute data and aggregate them to half-hourly observations for the time span from

January 2011 to December 2015 which makes about 16,300 observations for each stock.

They are all traded on the New York Stock Exchange and on the Nasdaq stock market,

during the trading hours from 09:30 to 16:00 local time. Consequently, we obtain 13

half-hourly observations per day so that our period is S = 13 for a daily cycle and the

seasonal frequency of interest is ω = 2π
13 = 0.48.

Let ri,t be the ith return in the tth 30-minute interval so that realized volatilities are

calculated via σ̂2
t =

∑6
i=1 r2

i,t for each half-hour interval t = 1, ...,T . For trading volume,

we proceed analogously, i.e. we sum six five-minute observations up in order to obtain

half-hourly volumes. Finally, we take the logarithm of both series. As customary, we

add 0.001 to the volatility series before applying the logarithm to avoid infinite values

in case of constant prices (cf. for example Lu and Perron (2010) and Xu and Perron

(2014). The transformed series are approximately Gaussian in contrast to the original

series that are usually right-skewed (cf. Andersen et al. (2003), among others) and they

exhibit less outliers which is desirable from a data analytic point of view.

Average return

Time

R
et

ur
n

10:30 11:30 12:30 13:30 14:30 15:30

−
0.

00
05

94
0.

00
01

98
0.

00
06

68

Average RV

Time

R
V

10:30 11:30 12:30 13:30 14:30 15:30

2.
58

e−
06

3.
25

e−
05

6.
5e

−
05

Average trading volume

Time

V
ol

um
e

10:30 11:30 12:30 13:30 14:30 15:30

11
10

00
31

50
00

0
69

40
00

0

Figure 1: Intraday averaged return, realized volatility and trading volume for all stocks. The
bold lines indicate the overall average.
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Figure 2: Autocorrelation functions for logarithms of realized volatility and logarithms of
trading volume of the index (left panel) and Chevron (right panel).

As expected, the intraday average return is almost constant for all stocks and slightly

positive, see Figure 1. Only overnight returns have a higher variance. We also find the

typical time of the day phenomena. Market opening and closing times are characterized

by higher market activity that leads to higher trading volume and volatility than at

lunch time which causes a pronounced U-shape in intraday trading volume. For realized

volatility we find an inverse J-shape instead of an U-shape. Hence, on average volatility

does not increase much at the end of trading days. As discussed in the introduction,

these results are well known in the literature, cf. Wood et al. (1985) for early evidence

of these phenomena and Bordignon et al. (2008) and Bollerslev et al. (2016) for more

recent analyses.

Since we are interested in seasonal patterns, we take a look at the autocorrelation func-

tion (ACF) (Figure 2) and the periodogram (Figures 3 and 4). The left side of all

three figures displays the index, i.e. the average behavior, and the right side displays

a single constituent of the index (Chevron). Clear cyclical behavior can be seen from

the solid lines in all four graphs in Figure 2 which are the ACFs of original data. The

same characteristic is also present in the periodograms in the upper panels of Figures

3 and 4 where we find peaks at seasonal frequencies. This observations holds equally

for realized volatility and trading volume of both the index and Chrevron. In order to
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Figure 3: Periodogram of original data, and after dummy regression and filtering at zero
frequency for logarithms of realized volatility of the index (left panel) and of Chevron (right
panel).
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Figure 4: Periodogram of original data, and after dummy regression and filtering at zero
frequency for logarithms of trading volume of the index (left panel) and of Chevron (right
panel).
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.DJI Dow Jones Index KO Coca-Cola

AAPL.O Apple MCD McDonald’s

AXP American Express MMM 3M

BA Boeing MRK Merck

CAT Caterpillar MSFT.O Microsoft

CSCO.O Cisco NKE Nike

CVX Chevron PFE Pfizer

DD E.I. du Pont de Nemours & Company PG Procter & Gamble

DIS Disney TRV Travelers Companies Inc

GE General Electric UNH UnitedHealth

GS Goldman Sachs UTX United Technologies

HD Home Depot V Visa

IBM IBM VZ Verizon

INTC.O Intel WMT Wal-Mart

JNJ Johnson & Johnson XOM Exxon Mobil

JPM JPMorgan Chase

Table 2: List of rics and corresponding companies.

assess the influence of seasonal means we remove them with help of the dummy regres-

sion from (1). Again, the ACFs of all four seasonally demeaned series considered in

Figure 2 show a similar behavior, that is the dashed lines decay slowly at a hyperbolic

rate. The corresponding periodograms are omitted for reasons of space but they all

have a clear singularity at zero frequency. Hence, both volatility and trading volume

series exhibit long memory. Therefore, we estimate the order of integration with the

local Whittle estimator (cf. Kuensch (1987), Robinson (1995)) or more specifically with

the exact local Whittle estimator (Shimotsu et al. (2005)) because trading volume is

known to be nonstationary in some cases. After that we filter the seasonally demeaned

series with their respective memory estimates. The dotted lines in Figure 2 display the

ACFs of these series. For the index there are only very few significant autocorrelations

left. This is similar for Chevron, but when taking a closer look we find more significant

autocorrelations especially at seasonal lags. The lower panels of Figures 3 and 4 show

the periodograms of demeaned and differenced data. These are already close to being

constant like the periodogram of a white noise process. However, one can conjecture

small peaks at the seasonal frequencies, e.g. 0.48. This is more pronounced for Chevron

than for the index - especially for the realized volatilities in Figure 3.

In order to examine the question whether the cyclical behavior in the data is already

sufficiently accounted for by removing deterministic seasonality with seasonal dummies

we apply our test for no seasonal long memory to the individual stock data and the

index.1

1We find that the flexible Fourier form does not have a significant influence on the elimination of
seasonality because seasonal dummies already eliminate all deterministic periodicity.

- 14 -



c 0.1 0.15 0.2

RICS\ δ 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

.DJI 0.053 0.138 0.354 0.080 0.200 0.462 0.127 0.300 0.605

AAPL.O 0.031 0.063 0.066 0.031 0.071 0.117 0.020 0.055 0.153

AXP 0.009 0.027 0.074 0.013 0.037 0.098 0.025 0.063 0.156

BA 0.084 0.135 0.421 0.145 0.159 0.456 0.324 0.263 0.591

CAT 0.002 0.009 0.027 0.005 0.018 0.050 0.008 0.019 0.048

CSCO.O 0.310 0.324 0.579 0.339 0.325 0.589 0.400 0.335 0.633

CVX 0.000 0.000 0.001 0.000 0.001 0.003 0.001 0.004 0.009

DD 0.020 0.062 0.222 0.037 0.070 0.239 0.068 0.087 0.250

DIS 0.044 0.143 0.113 0.081 0.224 0.233 0.139 0.314 0.206

GE 0.047 0.163 0.417 0.118 0.328 0.676 0.196 0.420 0.755

GS 0.059 0.178 0.395 0.085 0.227 0.481 0.113 0.262 0.493

HD 0.111 0.296 0.160 0.201 0.467 0.339 0.316 0.626 0.362

IBM 0.008 0.034 0.128 0.014 0.046 0.139 0.026 0.063 0.149

INTC.O 0.490 0.750 0.187 0.623 0.801 0.128 0.607 0.798 0.139

JNJ 0.036 0.123 0.094 0.078 0.220 0.147 0.195 0.424 0.150

JPM 0.077 0.206 0.064 0.116 0.287 0.105 0.109 0.259 0.113

KO 0.000 0.001 0.005 0.001 0.003 0.008 0.001 0.003 0.009

MCD 0.025 0.092 0.334 0.058 0.171 0.461 0.189 0.410 0.411

MMM 0.045 0.077 0.217 0.063 0.084 0.232 0.163 0.155 0.375

MRK 0.119 0.025 0.086 0.214 0.062 0.160 0.388 0.115 0.244

MSFT.O 0.104 0.263 0.606 0.116 0.284 0.619 0.162 0.372 0.708

NKE 0.085 0.246 0.548 0.107 0.280 0.592 0.189 0.416 0.756

PFE 0.006 0.025 0.132 0.019 0.063 0.214 0.050 0.119 0.261

PG 0.035 0.101 0.321 0.061 0.163 0.421 0.108 0.256 0.529

TRV 0.003 0.012 0.049 0.008 0.024 0.077 0.017 0.043 0.103

UNH 0.172 0.210 0.517 0.271 0.254 0.593 0.469 0.382 0.619

UTX 0.021 0.089 0.245 0.047 0.142 0.348 0.063 0.142 0.324

V 0.583 0.653 0.917 0.710 0.705 0.949 0.791 0.734 0.967

VZ 0.002 0.004 0.004 0.003 0.009 0.012 0.006 0.016 0.012

WMT 0.060 0.236 0.224 0.121 0.347 0.228 0.169 0.366 0.234

XOM 0.000 0.001 0.005 0.001 0.003 0.010 0.002 0.004 0.010

Table 3: p-values of the G-test at frequency ω = 2π/13 for logarithms of realized volatility. The
data is seasonally demeaned and long memory at frequency zero has been removed.

Note that the index can be interpreted as the average of individual stock data because

it is calculated as the sum of single stock prices scaled with the so called Dow Divisor,

i.e. the DJIA index is a weighted average of its components.

Tables 3 (realized volatility) and 4 (volume) show p-values of our G-test from equation

(5) for all Dow Jones stocks and the index for the same bandwidth choices as in our

Monte Carlo experiment.

As expected from the graphical investigation we find no significant seasonal long memory

in the volatility of the index at frequency ω = 2π/13 at the 5% level, and for the index’
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c 0.1 0.15 0.2

RICS\ δ 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7

.DJI 0.245 0.571 0.000 0.092 0.240 0.000 0.016 0.040 0.000

AAPL.O 0.000 0.002 0.007 0.006 0.023 0.068 0.026 0.061 0.149

AXP 0.136 0.289 0.402 0.104 0.238 0.417 0.090 0.223 0.513

BA 0.212 0.192 0.190 0.136 0.176 0.161 0.085 0.139 0.163

CAT 0.067 0.180 0.302 0.053 0.140 0.279 0.036 0.090 0.230

CSCO.O 0.181 0.460 0.527 0.157 0.387 0.580 0.124 0.288 0.560

CVX 0.002 0.003 0.010 0.004 0.009 0.025 0.004 0.011 0.028

DD 0.006 0.004 0.008 0.003 0.004 0.008 0.002 0.005 0.013

DIS 0.247 0.377 0.674 0.215 0.398 0.719 0.172 0.413 0.760

GE 0.062 0.147 0.256 0.062 0.151 0.304 0.032 0.082 0.212

GS 0.003 0.007 0.012 0.003 0.008 0.017 0.002 0.006 0.016

HD 0.020 0.043 0.077 0.020 0.046 0.097 0.026 0.069 0.177

IBM 0.298 0.049 0.073 0.222 0.047 0.075 0.186 0.045 0.093

INTC.O 0.015 0.034 0.050 0.014 0.033 0.066 0.006 0.017 0.048

JNJ 0.083 0.127 0.229 0.061 0.117 0.242 0.049 0.129 0.313

JPM 0.005 0.009 0.021 0.005 0.010 0.025 0.003 0.007 0.019

KO 0.181 0.081 0.151 0.158 0.077 0.148 0.129 0.062 0.135

MCD 0.080 0.141 0.130 0.048 0.096 0.127 0.018 0.045 0.110

MMM 0.381 0.293 0.473 0.348 0.290 0.476 0.310 0.281 0.511

MRK 0.004 0.008 0.007 0.002 0.004 0.006 0.001 0.002 0.007

MSFT.O 0.573 0.847 0.777 0.552 0.855 0.859 0.415 0.764 0.866

NKE 0.017 0.017 0.026 0.012 0.018 0.037 0.006 0.018 0.049

PFE 0.006 0.011 0.030 0.009 0.020 0.052 0.007 0.019 0.048

PG 0.018 0.024 0.025 0.009 0.017 0.028 0.002 0.007 0.021

TRV 0.098 0.132 0.300 0.076 0.140 0.321 0.042 0.117 0.281

UNH 0.111 0.165 0.253 0.078 0.142 0.236 0.040 0.104 0.239

UTX 0.168 0.348 0.495 0.147 0.326 0.553 0.079 0.197 0.460

V 0.113 0.144 0.228 0.113 0.144 0.241 0.094 0.125 0.253

VZ 0.007 0.007 0.014 0.007 0.011 0.025 0.005 0.014 0.039

WMT 0.782 0.911 0.739 0.725 0.909 0.719 0.576 0.866 0.729

XOM 0.011 0.022 0.083 0.020 0.047 0.141 0.029 0.078 0.184

Table 4: p-values of the G-test at frequency ω = 2π/13 for logarithms of volume. The data is
seasonally demeaned and long memory at frequency zero has been removed.

volume data the results are only significant for large bandwidths. However, we find

significant seasonal long memory in a large proportion of our single stock data because

we reject the null hypothesis in almost two third of both the volatility and the volume

series. There are a few stocks where we have significant results in both series but most

often we find it in only one of them for the same stock. This suggests that the seasonal

components in volume and volatility might be driven by different factors. Nonetheless,

the results clearly prove that there is stochastic seasonality in the shape of seasonal long

memory in addition to deterministic cycles in individual stock data.
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RICS\ δ 0.5 0.6 0.7 RICS\ δ 0.5 0.6 0.7

.DJI KO 0.111 (0.031) 0.072 (0.019) 0.046 (0.012)

AAPL.O 0.147 (0.031) MCD 0.063 (0.031)

AXP 0.120 (0.031) 0.058 (0.019) MMM 0.112 (0.031)

BA MRK 0.056 (0.019)

CAT 0.113 (0.031) 0.059 (0.019) 0.025 (0.012) MSFT.O

CSCO.O NKE

CVX 0.179 (0.031) 0.102 (0.019) 0.086 (0.012) PFE 0.002 (0.031) 0.021 (0.019)

DD 0.038 (0.031) PG 0.114 (0.031)

DIS 0.138 (0.031) TRV 0.163 (0.031) 0.101 (0.019) 0.063 (0.012)

GE 0.101 (0.031) UNH

GS UTX 0.123 (0.031)

HD V

IBM 0.067 (0.031) 0.046 (0.019) VZ 0.146 (0.031) 0.093 (0.019) 0.058 (0.012)

INTC.O WMT

JNJ 0.089 (0.031) XOM 0.149 (0.031) 0.101 (0.019) 0.066 (0.012)

JPM

Table 5: Empty fields indicate no rejection of G-test applied at frequency ω= 2π/13 at the 5%-
level for logarithms of realized volatility. The numbers give estimates of seasonal long memory
at frequency ω and standard errors in brackets.

RICS\ δ 0.5 0.6 0.7 RICS\ δ 0.5 0.6 0.7

.DJI 0.113 (0.031) -0.012 (0.019) -0.125 (0.012) KO

AAPL.O 0.114 (0.031) 0.059 (0.019) 0.063 (0.012) MCD 0.107 (0.031) 0.063 (0.019)

AXP MMM

BA MRK 0.160 (0.031) 0.075 (0.019) 0.042 (0.012)

CAT 0.108 (0.031) MSFT.O

CSCO.O NKE 0.194 (0.031) 0.109 (0.019) 0.069 (0.012)

CVX 0.131 (0.031) 0.087 (0.019) 0.063 (0.012) PFE 0.162 (0.031) 0.084 (0.019) 0.043 (0.012)

DD 0.117 (0.031) 0.065 (0.019) 0.046 (0.012) PG 0.169 (0.031) 0.080 (0.019) 0.059 (0.012)

DIS TRV 0.187 (0.031)

GE 0.099 (0.031) UNH 0.068 (0.031)

GS 0.088 (0.031) 0.074 (0.019) 0.018 (0.012) UTX

HD 0.170 (0.031) 0.071 (0.019) V

IBM 0.107 (0.019) VZ 0.190 (0.031) 0.076 (0.019) 0.061 (0.012)

INTC.O 0.089 (0.031) 0.064 (0.019) 0.036 (0.012) WMT

JNJ XOM 0.124 (0.031) 0.087 (0.019)

JPM 0.173 (0.031) 0.078 (0.019) 0.039 (0.012)

Table 6: Empty fields indicate no rejection of G-test applied at frequency ω = 2π/13 at the
5%-level for logarithms of volume. The numbers give estimates of seasonal long memory at
frequency ω and standard errors in brackets.

Tables 5 (realized volatility) and 6 (volume) display seasonal memory estimates in the

cases where we find seasonal long memory according to our G-test for any choice of c.

The estimates are calculated with the generalized local Whittle estimator of Arteche

and Robinson (2000) at frequency ω = 2π/13 for different bandwidth choices m. They

vary from 0.05 to 0.2 and are significant with only three exceptions. Overall, the volume

series exhibit slightly higher seasonal persistence than volatility. Since our test has
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better power properties for higher seasonal memory parameters, even more seasonal

long memory would be found if the series were more persistent.

All in all it seems to be enough to account for deterministic seasonality in averaged data

like the DJIA index. Thus, aggregation in an index eliminates the stochastic seasonality

present in individual stocks. However, we show that for a large proportion of individual

stock data there is seasonal long memory that has to be considered after removing

deterministic cycles. This is in line with Bordignon et al. (2007) who show that dummy

regression is not sufficient in the context of volatility modeling.

6 Conclusion

In recent years the availability of larger data sets from using intraday data has be-

come important from an econometric perspective, and by now it is established that this

intraday data exhibits a strong seasonal structure that has to be considered.

In this chapter we therefore examine intraday seasonality and show that it is not always

well characterized by deterministic models. To do so we introduce a semiparametric

test for seasonal long memory and prove its good finite sample performance in a Monte

Carlo experiment. Due to its semiparametric nature we do not encounter the problem

of a potentially misspecified model and are robust to short run dynamics.

This procedure is applied to intraday realized volatility and trading volume data of the

DJIA index and its constituents. We find that for the index seasonality is deterministic,

but the inspection of individual stocks indicates that there is seasonal long memory

in both realized volatility and trading volume. Hence, such data is characterized by

”normal” long memory, deterministic cycles and seasonal long memory. In contrast, for

the averaged behavior we only find long memory and deterministic cycles. We therefore

conclude that the nature of intraday seasonality in the index and in individual stock

data is not identical so that they should be treated accordingly.
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