
Obermüller, Frank

Working Paper

Explaining electricity forward premiums: Evidence for the
weather uncertainty effect

EWI Working Paper, No. 17/10

Provided in Cooperation with:
Institute of Energy Economics at the University of Cologne (EWI)

Suggested Citation: Obermüller, Frank (2017) : Explaining electricity forward premiums: Evidence for
the weather uncertainty effect, EWI Working Paper, No. 17/10, Institute of Energy Economics at the
University of Cologne (EWI), Köln

This Version is available at:
https://hdl.handle.net/10419/172840

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/172840
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

AUTHORS 

Frank Obermüller 

 

EWI Working Paper, No 17/10 

 

September 2017 

 

 

 

 

Institute of Energy Economics at the University of Cologne (EWI) 

www.ewi.uni-koeln.de 

 

Explaining electricity forward premiums - Evidence for the 

weather uncertainty effect 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CORRESPONDING AUTHOR 

Frank Obermüller 

Institute of Energy Economics at the University of Cologne 

frank.obermueller@hotmail.com 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 1862-3808 

 

 

 

The responsibility for working papers lies solely with the authors. Any views expressed are 

those of the authors and do not necessarily represent those of the EWI. 

Institute of Energy Economics 

at the University of Cologne (EWI) 

 

Alte Wagenfabrik 

Vogelsanger Straße 321a 

50827 Köln 

Germany 

 

Tel.: +49 (0)221 277 29-100 

Fax: +49 (0)221 277 29-400 

www.ewi.uni-koeln.de 



Explaining electricity forward premiums - Evidence for the weather

uncertainty effect

Frank Obermüllera

aInstitute of Energy Economics, University of Cologne, Vogelsanger Strasse 321a, 50827 Cologne, Germany

Abstract

With the increasing share of volatile renewable energies, weather prediction becomes more important to

electricity markets. The weather-driven uncertainty of renewable forecast errors could have price increasing

impacts. This research sets up an analytic model to show that the day-ahead optimal bidding under uncertain

renewable production is below the expected production and thus price increasing. In a second step, the price

increasing effect on forward premiums by specific weather types and their renewable production uncertainty

is proved via empirical methods. Weather types are identified in which renewable production is harder to

predict. The findings connect weather dependent renewable forecast uncertainty to forward premiums and

support the consideration of weather types in price forecasting models.
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1. Introduction

Renewable energies like wind and solar are one major pillar in order to reach CO2-emission targets in the

electricity sector. The production of wind and solar energy is weather dependent and hence volatile. This

volatility induces uncertainty to wholesale electricity prices. In several countries, like Germany, renewable

energies have reached a significant capacity share which increases uncertainty in the electricity markets to

a relevant degree. It is thus highly relevant to have insights how electricity prices are affected by wind and

solar uncertainty.

Most electricity markets are organized as sequential markets, see for instance Cameron and Cramton

(1999) for PJM market or Viehmann (2017) and Knaut and Paschmann (2017b) for Germany. The sequential

market structure allows for risk hedging by selling or buying electricity forward. Risk hedging becomes more

important under a high share of volatile wind and solar production. This weather-dependent wind and solar

production can accurately be predicted to a limited time horizon, e.g. 24 hours. Thus, the relevant markets

are (1) the short-term forward market, in this case the day-ahead market, and (2) the real-time market, also

known as intraday-market. However, planned production and demand in the (day-ahead) forward market

can deviate from the final realization in the real-time market. As a risk-neutral renewable producer, it is

questionable if it is profit optimal to sell the total expected production in the day-ahead forward market.

Under a non-linear convex merit order, strategic underselling could be optimal for producers to avoid re-

buying forward sold quantities. The (forward) production withholding would lead to higher forward market

prices. The specific problem in this paper is to identify if and to what extent wind and solar uncertainty

lead to positive forward price premiums.

This essay examines the research question both theoretical and empirical. The theoretical result is based

on a two-stage profit-maximizing framework under perfect competition. Renewable producers have zero

marginal costs and uncertain production realization. With uncertain production and a convex, quadratic

merit order curve, the optimal first-stage (i.e. forward) production is below the expected production realiza-

tion. The production withholding tends to increase first stage prices and is dependent on the production’s

standard deviation. The empirical evaluation supports the theoretical findings within the German electricity

market. The German market is considered due to its high share of wind and solar production.1 Weather

type definitions of the German Weather Service are applied to determine the forward premium effects. The

weather types are also applied to classify the wind and solar uncertainty. The empirical findings confirm

1Wind and solar production had a share of 18.3% of Germany’s gross electricity production in 2015 (cf. Bundesnetzagentur
(2016)).
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that weather types can be utilized to indicate forward price premiums and to classify production uncertainty.

Thus, it is highly recommended to incorporate wind and solar uncertainty in price forecasting models. The

results suggest that a potential classification is based on weather types.

The conducted research is based on fundamental work of Allaz (1992) as well as Bessembinder and

Lemmon (2002). Allaz (1992) shows analytical that there is a general incentive within a Cournot oligopoly

(with uncertain production) to sell production in forward markets. Bessembinder and Lemmon (2002) derives

similar results for electricity producers under demand uncertainty. They find positive price premiums for

demand uncertainty within their theoretical model and empirical support. Their scope is on a monthly

granularity which was extended by the work of Longstaff and Wang (2004) to day-ahead and real-time

markets. The underlying research extends the theoretical work of Bessembinder and Lemmon (2002) and

the empirical analysis of Longstaff and Wang (2004) by the consideration of production uncertainty of

wind and solar energy. Additionally, the underlying research focuses on perfect competition since today’s

electricity markets have widely reached high supplier diversity.

The major distinction of this research to existing literature is the classification of wind and solar uncer-

tainty by weather types. To the best of my knowledge, the underlying research is the first which applies

weather type classifications to derive insights on forward price premiums and price deviations. Thus, this

research supports electricity market participants by new insights. First, market participants get information

on the general forward premium effects by each weather type, whereas weather types can be predicted ac-

curately several days before realization. Some weather types indicate higher forward premiums than others.

The information of the weather type situation allows for an approximation of the (mean) forward premium

level. Second, the increasing effect on forward premiums by wind and solar uncertainty is quantified. A

reduction in uncertainty would translate to reduced forward premiums. Third, market participants can

incorporate weather types in forecasting models to consider uncertainty and derive a more accurate range

of their price forecasts.

The remainder of this paper is structured as follows: Section 2 provides the fundamental theoretical

and empirical literature as well as background information on the weather types. The theoretical analysis

and findings are stated in Section 3. It covers the analytical model settings and assumptions as well as the

theoretical finding of optimal production underselling under uncertainty. The empirical analysis is presented

in Section 4. This section is the core of the paper. It contains the data, the empirical model setup and the

results of the hypothesis tests. Section 5 concludes the present research.
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2. Background

This section provides the background for the subsequent analysis. First, the literature regarding the

theory is outlined. Then, previous work on the empirical background is briefly discussed. Afterwards,

weather type classifications and their utilizations are presented. Within this work, forward premiums are

defined as the price difference between the forward market and the real-time market, which corresponds to

the definitions of Bessembinder and Lemmon (2002) or Douglas and Popova (2008).

2.1. Theoretical model

Fundamental analytic work on pricing and behavior in forward markets is given by Allaz (1992) (general)

and Bessembinder and Lemmon (2002) (for electricity markets). Allaz (1992) sets up a two-stage Cournot

oligopoly model with a homogeneous product. He considers uncertainty of the second stage price realization.

He derives his results of forward trading incentives under the assumption of oligopolistic behavior as well as

a linear inverse demand function and a linear cost function. As it is shown by Knaut and Obermüller (2016)

as well as Bessembinder and Lemmon (2002), a non-linear (convex) cost function is an essential prerequisite

such that uncertainty leads to forward premiums. Hence, this research assumes a convex quadratic linear

cost function (called merit order). The inverse demand function is inelastic as widely assumed in short-run

electricity market models. Additionally, the underlying research extends the model of Allaz (1992) to perfect

competition and shows that the results still hold true.

Bessembinder and Lemmon (2002) analyzes a similar two-stage model as to Allaz (1992) (forward and

spot market). They show analytical and empirical evidence of the demand uncertainty effect to forward

premiums. However, their focus is demand uncertainty on a monthly basis. The present research focuses

on weather-dependent wind and solar production uncertainty in the short-run (day-ahead to realization).

Additionally, this research focuses on perfect competition because the number of actors in electricity markets

has rapidly increased since the liberalization (cf. Jamasb and Pollitt (2005) or Joskow and others (2008)).

The work of Bessembinder and Lemmon (2002) is widely accepted and the model is extended in sveral

ways, e.g. to consider gas storages (Douglas and Popova (2008), Bloys van Treslong and Huisman (2010))

or capacity restrictions (Cartea and Villaplana, 2008).

The underlying theoretical model is oriented on the basic work of Ito and Reguant (2016) and Knaut and

Obermüller (2016). Ito and Reguant (2016) find evidence for price premiums under imperfect competition

(i.e. strategic behavior) and restricted entry of arbitrage (or speculators). They set up a two-stage model

and assume perfect foresight, i.e. no uncertainty. In contrast to their model assumptions, this research

accounts for uncertainty under perfect competition. Evidence for price premiums is shown. Thus, this work
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complements the results of Ito and Reguant (2016) by the finding that uncertainty has influences on price

premiums as well.

The work of Knaut and Obermüller (2016) was conducted parallel to Ito and Reguant (2016) with a sim-

ilar analytical two-stage strategic bidding model. They focus on renewable producers which have in general

zero marginal costs but uncertainty about their production realization. They find theoretical evidence for

the incentive of strategic production withholding on the forward market to increase prices. Additionally,

they find that under a linear merit order function uncertainty has no influence on the strategic bidding. Pro-

duction uncertainty (e.g. of renewable producers) becomes relevant with a higher order merit order function.

Bessembinder and Lemmon (2002) come to similar findings within their theoretical framework.

The present analytical model extends the model of Knaut and Obermüller (2016) by (1) perfect com-

petition and (2) a convex quadratic merit order function. Under this model setting, uncertainty becomes a

relevant price driver for profit maximization. Based on that, theoretical insights on optimal bidding under

uncertainty are derived in Section 3.

2.2. Empirical evaluation

Herein before mentioned theory will be supported by empirical evidence of forward premiums. This is

in line with several papers which estimate risk premiums empirically. Similar to the theoretical model of

Bessembinder and Lemmon (2002), Longstaff and Wang (2004) empirically analyzed forward premiums in

the day-ahead and real-time market of PJM. They find empirical evidence for forward premiums dependent

on demand uncertainty. Additionally, they show that the forward premium might deviate by hour and

season and could also be negative. Similar findings are confirmed by Paraschiv et al. (2015) for the German

electricity market. Focus of Paraschiv et al. (2015) is on the time-varying structure of forward premiums

(hourly, weekday/weekend, season). They find that risk premiums are higher during weekdays and in winter.

In contrast to Paraschiv et al. (2015), the underlying research does not aim to identify or quantify hourly

forward premiums. The underlying research focuses on the uncertainty classification by weather types and

their effect on forward premiums.

Bunn and Chen (2013) provides an overview of different explanation approaches for drivers of forward

premiums. They do not consider weather types. They state that results are to some extent ambiguous since

they are strongly related on the underlying markets, competition, as well as spatial and temporal resolution.

An extensive overview of further literature on risk premiums is given by Ito and Reguant (2016) and Furió

and Meneu (2010). However, forward premiums are not fully explained by existing research. Recent work

of Paschmann (2017) explains forward premiums to some extent by restricted possibility of trading in the
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real-time market instead of purely rely on hedging incentives and the merit order convexity. This indicates

the necessity of further research in the field of forward premiums. Most research is focused on demand

uncertainty. The present work extends the classical approaches to consider renewable (i.e. wind and solar)

production uncertainty. The renewable production uncertainty becomes more relevant under the proceeding

energy transition towards volatile renewable energies. Thus, it is highly relevant to consider the effects of

weather-dependent uncertainty. This work incorporates weather type classifications which are described

subsequently.

Throughout this paper, the focus lies on ex-post forward premiums. Ex-post forward premiums rely on

observed price differences whereas ex-ante forward premiums are based estimated price realization. For a

detailed discussion on ex-post and ex-ante forward premiums see Furió and Meneu (2010).

2.3. Weather classification

This research incorporates weather-dependent volatile wind and solar energies on forward premium

effects. An increase in zero marginal costs renewable production has in general a price dampening effect.

This effect is widely known as merit order effect and analyzed for instance in Kiesel and Paraschiv (2017),

Sensfuß et al. (2008) or Hirth (2013). Besides the classical long-term merit order effect, short-term deviations

have influences on real-time prices (compared to day-ahead forward prices). Positive production deviations,

i.e. more production than estimated day-ahead, lead to a decrease in real-time prices. This price decreasing

effect is shown exemplarily in Figure 1 for the German electricity market.
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Figure 1: Forecasts and realizations for (a) electricity prices, (b) wind production and (c) solar production in Germany from
08. Aug. 2014 to 11. Aug. 2014. It shows wind and solar production forecasts and realizations in comparison to price forecasts
and realizations. Realized wind production at 12:00h, 09. Aug. (center of the plot), is 16 GW and thus almost twice as high as
forecasted. A simultaneous price drop to -25 EUR/MWh in intraday-prices can be observed.

The figure shows price forecasts and realizations (upper graph) in comparison to wind and solar produc-

tion forecasts and realizations (two lower graphs). A remarkable drop in real-time prices can be observed at

12:00am on 09.08.2014 (horizontal center of the plot). The underestimated production realization of wind

energy and to some extent solar energy seem to be a driver for the extensive price drop from +20 EUR/MWh

down to -25 EUR/MWh.

For the underlying empirical analysis (Section 4), it is necessary to capture the uncertainty of wind and

solar production, e.g. by clustering situations of similar uncertainty. This clustering is performed based

on weather types. Other research which applies weather type classifications are for instance Lange and

Waldl (2001) or Couto et al. (2015) for wind as well as Chen et al. (2011) or Shi et al. (2012) for solar.

None of those research works focuses on forward price premiums. Couto et al. (2015) propose a weather

clustering approach to identify and characterize weather types with high wind power ramps (i.e. strong

increase in hourly wind differences). They propose that large scale weather types are a suitable clustering

possibility for wind ramps. Lange and Waldl (2001) shows that the wind prediction error differ with respect
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to weather types. Their research is limited to two wind sites for two weather types. The applied weather

type classification within this present research considers 40 different weather types to account for Germany’s

wind and solar prediction errors (or uncertainty). Chen et al. (2011) shows that an artificial neural network

(ANN) to predict PV power production performs better if a weather type separation is applied before.

They categorize as to three weather types (sunny, cloudy, rainy). Similar, Shi et al. (2012) shows that the

PV power forecasting precision depends strongly on the weather type and can be improved by selection of

the adequate estimation model. They differentiate between four classes (sunny, cloudy, foggy, rainy). The

aforementioned research is limited to either wind or solar prediction errors. In contrast to that research,

the underlying work applies weather type classifications to derive information about both wind and solar

production uncertainty.

The weather types within the present research are clustered based on the 40 objective Weather Type

Classifications of the German Weather Service (cf. Bissolli and Dittmann (2001)). A similar number of

weather types (29) is used in James (2007) by a clustering of ERA40 re-analysis data. However, the focus of

James (2007) is on the comparison between his weather type classifications and the traditional classification

of Gerstengarbe et al. (2010) (which reaches back to the 1950s).

3. Theory

The theoretical findings are based on an analytical model similar to Ito and Reguant (2016), Knaut

and Obermüller (2016), and Zhang et al. (2015). The model setup consists of two stages. Stage 1 is the

day-ahead forward market. Stage 2 is the real-time market (or intraday market). Three groups of players

interact with each other, renewable producers r, conventional producers c and the consumers:

• The renewable producers r have zero marginal costs of production. In stage 1, they face uncertainty

of their final electricity production in stage 2. In stage 2, the uncertainty for the renewable producers

resolves. The renewable players form an oligopoly. They compete in order to maximize profits with

respect to production (similar to the Cournot competition). However, the focus is on a competitive

outcome, which corresponds to the solution for which the number of renewable producers N tends

to infinity. All renewable players are assumed to be symmetric. Note that this assumption is a

simplification and can be relaxed similar to Knaut and Obermüller (2016).

• The conventional producers c act perfectly competitive. They have positive marginal costs (> 0) and do

not deviate from bidding their marginal costs. An underbidding of their marginal costs would lead to

losses whenever the electricity price is below marginal costs and production was sold. An overbidding
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is prohibited by the German Monopolies Commission which controls and inspects significant bidding

behavior above marginal costs (Bundeskartellamt, 2011).

• The consumers have an electricity demand D. The demand is assumed to be inelastic in the short-

run. This is a typical assumption for stylized short-run electricity market models (cf. Ito and Reguant

(2016)).2

• All players are assumed to be risk-neutral.

The marginal cost function MC (or supply function) is assumed to be quadratic, i.e. convex and strictly

monotonic increasing: MC(q) = aq2 + bq + c. In some analytic electricity market models, a linear marginal

costs function is assumed as simplification (a = 0). This is a strong simplification. As shown by Knaut and

Obermüller (2016), under a linear merit order function, only the first momentum (expected production) has

an impact on optimal bids. Under a quadratic (convex) merit order, the first and the second momentum

(standard deviation) have an impact on optimal bids. The standard deviation can be interpreted as a

measure of uncertainty. In order to capture the uncertainty effects, a more realistic quadratic merit order

is used. An empirical evaluation of the order of the merit order function can be found in Appendix A. It

indicates that the German merit order function can be estimated by a linear to quadratic function.

The first stage bid of the renewable producer i is denoted as qir1. For each renewable producer i,

the combined first stage and second stage bids have to be equal to the total realized production Qir:

qir1 + qir2 = Qir The realized production Qir of player i in stage 2 is uncertain in stage 1 with a probability

density function f(Qir). The uncertainty resolves in stage 2.

The aggregated first and second stage bids as well as the aggregated production of all renewable producers

are denoted as following: qr1 =
∑

i qir1, qr2 =
∑

i qir2, Qr =
∑

i Qir.

Each renewable player i = 1, . . . , N maximizes her profit function Πir under consideration of the bids of

the other (N − 1) symmetric renewable players which results in

Πir(qir1, qir2) = p1 (qir1, (N − 1)qjr1) qir1 + p2 (qir1, (N − 1)qjr1, qir2, (N − 1)qjr2) qir2. (1)

Within this model setup, the following proposition holds.

Proposition 1. Under above assumptions, the optimal amount of sold renewable production in the first

2Short-run inelastic demand is a simplifying assumption for the theoretical analysis. For the German day-ahead market,
Knaut and Paulus (2017) shows a demand elasticity of maximum −0.13 in certain hours. Due to recent developments of
(battery) storages and demand side management, this effect is expected to grow.
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stage is

q∗

r1 = D +
1

2

b

a
−

√
√
√
√

[((

D +
1

2

b

a

)

− µ

)2

+ σ2

]

. (2)

Proof. At this point, a brief outline of the approach is given. The detailed proof can be found in Appendix
B. The profit equation for one producer i is maximized. After taking the first derivative, setting it equal to
zero and substituting the integrals of the distribution functions by the expectation and standard deviation,
the necessary optimality conditions are derived. Then, the symmetry assumptions of the N firms are applied
to derive the joint equilibrium solution.

Equation (2) shows the competitive first stage renewables’ bid. It corresponds with the expected outcome

under perfect information.

Corollary 1. Without uncertainty, the optimal first stage bid of all renewable players is q∗

r1 = µ.

Proof. Without uncertainty, the production in the second stage is identic to the expected production in
stage 1. Thus, no standard deviation exists. Set σ = 0 in the Equation (2). The remaining optimal bid
becomes q∗

r1 = µ.

In the proof of Proposition 1, two production withholding effects can be encountered. First, the potential

oligopolistic behavior and second the withholding due to production uncertainty. Since the focus lies on the

perfect competition case, the oligopolistic production withholding cancels out while the number of producers

tend to infinity for the perfect competition case. However, Equation (B.10) in the Appendix Appendix B

shows that production uncertainty leads to production withholding also for the oligopoly case. This can

be found by the uncertainty-driven standard deviation σ which influences optimal oligopolistic first stage

production bids. Thus, the findings can easily be transferred to oligopolies (which is not covered within this

research).

The optimal first stage bid q∗

ir1 of Equation (2) is dependent on σ. With higher standard deviation, the

optimal bid is decreasing as stated in Proposition 2.

Proposition 2. Under above assumptions, an increased uncertainty decreases the optimal production bid
for renewable producers in the first stage.

Proof. Take the first derivative of Equation (2) with respect to σ:

∂

∂σ
qr1 = −σ

(((

D +
1

2

b

a

)

− µ

)2

+ σ2

)
−1/2

︸ ︷︷ ︸
>0

< 0 , for σ 6= 0 (3)

which is strictly negative or equal to 0. It becomes zero if and only if σ = 0, i.e. no uncertainty exists. Since
the first derivative is negative, the function is decreasing in σ.

Figure 2 visualizes the result of Proposition 2 with typical numbers inserted. The figure shows that the

increase in uncertainty (i.e. increasing σ) diminishes the optimal first stage bid. The slope of the curve is
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Figure 2: Impact on an increasing uncertainty via σ on the optimal first stage renewable bid q∗

r1
relative to the expected

outcome E[qr1]. The parameter to derive the figure were the aforementioned equations with D = 70, µ = 40, a = 0.01, b = 0.

dependent on the merit order parametrization as well as the demand intersection and expected renewables’

production.

The rationale for Proposition 2 is the following: The representative renewables supplier aggregates price-

taking behavior of many, small renewables suppliers. Each of these suppliers does not expect that her

quantity choice will affect the second period price. However, each renewable producer knows that if she

produces relative little energy in stage 2, also all other renewables producers will produce little as well

(assuming perfect correlation, for simplicity). Thus, she knows that whenever she is overselling (i.e., more

than the expected production), she will have to buy missing quantities at a higher intraday price. Vice versa

when underselling with lower intraday prices. Under a non-linear convex merit order, an overselling (i.e.

selling more day-ahead than intraday produced) is more expensive than an underselling.

The behavior of conventional producers differ from the renewable producers behavior: The production

ability of a conventional producer is independent of the market situation, i.e. without weather-dependence

and correlation effects. Whenever the intraday market price is above her marginal costs, she will want

to extend her production by one additional (marginal) unit if remaining production capacity is available.

Whenever the intraday market price is below her marginal costs and she has sold production forward for at

least her marginal costs, she is willing to demand one additional (marginal) unit electricity from the intraday

market to fulfill her delivery responsibilities with lower costs. In all other situations (prices below marginal

costs in both markets; or sold day-ahead above marginal costs and intraday-price is between marginal costs

and day-ahead price), she has no incentive to deviate.

Note that the aforementioned behavior for renewable producers would not occur with a linear merit

order. With a linear merit order, positive and negative price deviations would compensate each other.
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This compensation requires that the merit order in the forward market and in the real-time market are

identic. Knaut and Obermüller (2016) shows, that a steeper real-time market merit order would result in

a stronger shift towards selling more production in the first stage (under a competitive oligopoly). Knaut

and Paschmann (2017b) shows that a steeper real-time merit order can occur due to inflexible production

capabilities. Overall, an optimal bid under uncertainty is below the expected production to avoid cost-intense

re-buying of sold but non-realized production.

The quantity deviation in the first stage expected production (based on Proposition 1) translates to a

price deviation effect. The theoretical result is stated in Proposition 3.

Proposition 3. Under the above assumptions and the optimal derived first stage quantity q∗

r1, the corre-
sponding first stage equilibrium price is

p∗

1 = a((D − µ)2 + σ2) + b(D − µ) + c. (4)

This optimal first stage wholesale price exceeds the price of trading the expected production (without uncer-
tainty) solely by the term aσ2.

Proof. Under the above assumptions, plug in the optimal quantity to the marginal costs function. Thus,
p∗

1 = MC(D − q∗

r1) = D2a − 2Daµ + Db + aµ2 + aσ2 − bµ + c = a((D − µ)2 + σ2) + b(D − µ) + c. Without
uncertainty, the variance σ2 in the optimal quantity equals 0. The price delta with and without uncertainty
is aσ2 (which is positive). Thus, uncertainty increases the first stage prices.

Note that Equation (4) is the risk neutral equilibrium result. Thus, arbitrage behavior should not lead

to converging day-ahead and intraday-prices. Proposition 3 shows the price increasing effect of uncertain

production. Figure 3 visualizes the findings.

Q

dC
dq

p
DD−E[qr]

p ∗ = [p]

(a) Optimal first stage bid and price with perfect foresight.

Q

dC
dq

p
DD−E[qr] D− q ∗r

[p]

p ∗

f(qr)

(b) Optimal first stage bid and price under uncertainty.

Figure 3: Optimal day-ahead wholesale price and residual demand under (a) perfect foresight and (b) uncertainty. D is
the demand, qr the renewable production, f(qr) a normal distribution of renewable production, p the price, dC/dq the first
derivative of the cost function (i.e. the merit order). The parameter to derive the figure were D = 70, µ = 40, σ = 30, a = 0.01,
b = 0, c = 20. Note that neither the normal distribution nor the standard deviation of σ = 30 are realistic; they are chosen to
simplify the illustration.

The uncertainty reduces the optimal first stage bid. This increases the residual demand and thus prices.
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The profit optimal day-ahead price deviates from the expected day-ahead price. The plotted distribution in

this figure is a normal distribution. However, the theoretical proof has no specific assumptions according to

the distribution function.

The subsequent section gives empirical evidence of this price increasing effect in the German electricity

markets (day-ahead to intraday). The uncertainty is measured via standard deviations within weather types.

4. Empirical evidence

This section examines the empirical evidence for the provided theoretical results of Section 3. More

precisely, two hypothesis are validated:

• Hypothesis A: The mean level of the forward premiums can be categorized by weather types.

• Hypothesis B: An increased wind and solar production uncertainty leads to an increase in forward

premiums.

Hypothesis A allows an ex-ante indication for higher forward premium levels in electricity markets. Si-

multaneously, Hypothesis A motivates the classification of uncertainty with respect to weather types. This

classification is utilized in Hypothesis B. Both hypotheses are evaluated via regression models. The analy-

sis focuses on the German/Austrian electricity market due to its comparable high share of wind and solar

energy. Both electricity markets are organized as a fully coupled bidding zone.

In the subsequent, the underlying data is described firstly. Then, the effect of weather types on the mean

forward premiums is tested (Hypothesis A). Afterwards, the motivation for the uncertainty classification by

weather types is given which uses the standard deviation as uncertainty measure.3 Finally, empirical tests

are performed to verify the impact of higher uncertainty on forward premium increases (Hypothesis B).

4.1. Data

Four different sources provide the data for the empirical analysis. First, wind and solar forecast and

realization data is derived from the EEX Transparency platform. Second, price data (day-ahead and intra-

day) is obtained from EPEX Spot. The ENTSO-E Transparency platform provides the load data. Fourth,

the weather type classification dataset is derived from the German Weather Service (DWD). Detailed de-

scription can be found subsequently. An overview is given in Table 1. Descriptive numbers are listed in

Appendix C. The analyzed timespan covers July 2015 to December 2016.

3As to the theory section, the standard deviation is the relevant measure. Thus, the subsequent analysis focuses on the
standard deviation as the indicator for forecast uncertainty. Other indicators like the Root Mean Squared Error (RMSE) or
the Mean Absolute Error (MAE) would be possible as well but include similar information. Hence, they are redundant and
the focus on the standard deviation is preferred.
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Data Source Used Resolution

Wind and Solar Production EEX Transparency Hourly

Day-ahead and Intraday Prices EPEX Spot Hourly

Load ENTSO-e Hourly

Weather Type Classifications DWD Daily

Table 1: Overview of applied data. Regional focus is the joint German/Austrian bidding zone. The timespan covers July 2015
to December 2016.

4.1.1. Wind and solar production data

The wind and solar production data is published by the EEX Transparency platform (EEX Transparency,

2017). The focus lies on the provided wind and solar data for Germany and Austria due to the same bidding

zone. The production data is provided by the Transmission System Operators (TSOs). The data has a

quarter-hourly resolution, which is aggregated within this analysis to hourly mean values for comparison

reasons. In the remaining paper, the forecast error is applied which is defined as realization − prediction

according to Morales et al. (2013). For wind and solar production, the forecast error is normalized by the

monthly installed capacity (realization − prediction)/InstalledCapacity. This accounts for the fact of con-

tinuously increasing capacity and ensures comparability over time. The capacity data source is the German

regulator Bundesnetzagentur (www.Bundesnetzagentur.de). For the ease of readability, the forecast error

is denoted with ∆ throughout this paper. The (normalized) wind forecast error in hour h, for instance, is

given by ∆Windh.

The reported data by the TSOs is not based on exact metering for each production utility. They use

extrapolations from specific metered utilities in combination with weather data; see for instance 50Hertz

(2017), Amprion (2017), Tennet (2017), TransnetBW (2017) and APG (2017). The TSOs are responsible

for grid stability and coordinate the market participation for a certain share of wind and solar production

(especially household production). Additionally, they closely collaborate with weather forecasting institutes.

Thus, the TSOs’ forecasts and extrapolated realizations are the best available wind and solar production

data for Germany. Nevertheless, minor biases could exist.

4.1.2. Price data

The price data is published by the EPEX Spot (EPEX SPOT, 2017). The data contains the day-ahead

electricity price and the intraday electricity price. The day-ahead price can be considered as the price

forecast. Additionally, the day-ahead price determines the reference point for short-run price deviations

of the expected information. The price covers the joint bidding zone of the German/Austrian electricity
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market.

The intraday price data is the volume weighted average price of the last three hours, which is called ID3

at EPEX Spot. The ID3-price allows to compare the day-ahead price to the final intraday price level. The

average price is taken since the last accepted intraday price in the continuous intraday market might be

biased due to market overreactions, open positions before gate closure and irrational trader decisions. Thus,

the last bid is not necessarily a valid indicator for the fundamental price level of the intraday market. The

following analysis focuses on the ID3-price. The ID3-price index is available since July 2015 which restricts

the total dataset time-span.

EPEX denotes for the intraday prices that the "German and Austrian areas might be disconnected

temporarily due to necessary measures done by responsible TSOs. Hence displayed values might not be

common German/Austrian market data in all cases but isolated German only or isolated Austrian only

market data." (EPEX SPOT, 2017). Other countries cannot participate in the intraday auction. The

disruptive effects of the intraday participant restriction are investigated in Knaut and Paschmann (2017b),

Knaut and Paschmann (2017a) and Paschmann (2017).

In some rare situations, price differences between the day-ahead and intraday market become exceptional

large. This cannot be explained fundamentally by wind, solar or load deviations. Reasons could be for

instance power plant outages or unbalanced portfolios which cause high penalties in the balancing market

and lead to corresponding trader behavior. To avoid biased estimations by not fundamentally driven price

differences, those observations are handled as outliers and dropped from the analysis. An observation is

categorized as an outlier if the price difference exceeds three times its standard deviation. Thus the remaining

data covers 99.7% of the observations. The threshold for price differences has a value of ±37 EUR/MWh

around the average day-ahead price level of 30.30 EUR/MWh in the observation period.

4.1.3. Load data

Corresponding load data for the joint bidding zone of Germany and Austria is derived by ENTSO-E.

Both, a forecast and a realization value are published. The load values do not incorporate exports or imports.

The current market design does not allow foreign production to participate in the intraday market (cf. Knaut

and Paschmann (2017b)). Thus, it is consistent within this analysis to neglect trade in the delta comparison.

In order to derive prices, instead of price differences, the foreign production needs to be considered within

the day ahead market. Since the latter analysis focuses on price deltas, this is not necessary within this

framework.
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4.1.4. Weather type classification data

The weather type classification data is published by the German Weather Service DWD (DWD, 2017).

Current weather types are published daily including forecasts for the next seven days. Detailed informa-

tion as to the classification scheme can be found in Bissolli and Dittmann (2001). The objective weather

type classifications are a daily categorization of the German weather situations. That means each day is

categorized to one weather type. The weather types are defined according to the following criteria:

• Advection type (no prevailing direction, northwest, northeast, southwest, southeast)

• Cyclonality in 950 hPa (cyclonic, anticyclonic)

• Cyclonality in 500 hPa (cyclonic, anticyclonic)

• Humidity of the atmosphere (wet, dry)

Note that 500 hPa and 950 hPa correspond to an approximate height of 5.5 km and 0.5 km above sea level,

respectively. The advection type reflects the majority of horizontal wind directions on the 750 hPa level. An

advection direction is prevailing if it covers at least two thirds of the measured (weighted) wind directions

(cf. Bissolli and Dittmann (2001)).

The above combinations result in 40 possible weather types. Statistics (e.g. frequency) can be found

in the Appendix C.2. Data exists back to 1979. Due to price data availability reasons, the focus of this

research is on the timespan from July 2015 to December 2016.

4.2. Effect of the weather types on the mean forward premium level (Hypothesis A)

This section examines Hypothesis A. The question is answered if and to what extent weather types have

an effect on the mean forward premium levels. This question is analyzed by an effect coding approach which

is one specific type of contrast coding. Here, the analysis provides the difference of each sub-groups’ mean

to the grand mean forward premium. The grand mean is defined as the mean of all observations. A general

overview of contrast coding and effect coding can be found in Davis (2010) and McClendon (1994). The

method dates back to former work of Overall and Spiegel (1969). In a first step, the effect of the weather

types on the mean level of forward premiums is analyzed. In a second step, the criteria to define and

distinguish the weather types (advection direction, cyclonality, humidity) are subject to the effect coding

analysis.
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4.2.1. Forward premium effects by each weather type

The analyzed effect coding model reads as following

ForwardPremiumh = Intercept +
∑

i

βiWeatherTypei,h + ǫh (5)

for each hourly observation h. Here, WeatherTypei,h is a categorical dummy variable with i the weather

type index 1 to 40. The weather types are defined per day and therefore matched to the corresponding hours

h. For each hourly observation h, at most one dummy variable WeatherTypei can be equal to one whereas

all other dummies equal zero. If all dummy variables are equal to zero, the pure intercept is estimated

which represents the grand mean. The ǫh represents the hourly error term, i.e. the difference between the

estimated sub-groups’ mean forward premium and the hourly observations.

The results of the effect coding how the group mean deviates from the grand mean can be found in

Table 2. The overall mean is highly-significant but slightly negative over the observation period with a value

of −0.14 EUR/MWh. This indicates on average lower day-ahead prices than intraday-prices. Based on the

results of the theory section, this seems counterintuitive since positive day-ahead forward prices are expected.

In fact, other forward premium effects could influence the overall forward premium mean. Further effects

are for instance restricted participation which leads to steeper intraday merit order curves and thus higher

intraday-prices (cf. Paschmann (2017)), hourly forward price deviations which could be negative (investigated

by Longstaff and Wang (2004) and Viehmann (2011)), seasonal forward premium effects (Bessembinder and

Lemmon, 2002), scarcity effects (low reserve margins) which could be price influencing (Bunn and Chen,

2013). If other effects outweigh the forward premium effect of production uncertainty, the overall forward

premium can become negative.

The reported values of Table 2 are the deviations of the groups’ mean value to the grand mean. For

instance, the weather type 1 has a 1.02 EUR/MWh higher mean than the grand mean and this deviation

is highly significant for the observations. The absolute mean forward premium of the Weather Type #1 is

thus 0.88 EUR/MWh, derived as the delta of both aforementioned values.

In total, the mean forward premiums of 22 weather types are significantly different from the grand

mean; among them 14 weather types with a significance level of 1% or below and seven weather types with a

significance level between 1% and 5%. Overall, 14 of the 22 significantly deviating means of the weather types

are positive whereas eight are negative deviating. Some weather types as for instance Weather Type #26

or #33 have remarkable high deviations from the grand mean of −5.07 EUR/MWh or +2.61 EUR/MWh,

respectively. However, there is no weather type criteria such as advection direction, cyclonality or humidity
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Weather Wind direction Cyclonalitity Cyclonalitity Humidity Difference

Type in 950 hPa in 500 hPa to grand mean

Overall mean −0.140***

1 no prevailing direction anticyclonic anticyclonic dry 1.015***

2 northeast anticyclonic anticyclonic dry 0.391

3 southeast anticyclonic anticyclonic dry 1.347**

4 southwest anticyclonic anticyclonic dry 0.802***

5 northwest anticyclonic anticyclonic dry −0.942***

6 no prevailing direction anticyclonic anticyclonic wet 0.664**

9 southwest anticyclonic anticyclonic wet 0.488***

10 northwest anticyclonic anticyclonic wet 0.366**

11 no prevailing direction anticyclonic cyclonic dry 1.461***

12 northeast anticyclonic cyclonic dry 0.207

14 southwest anticyclonic cyclonic dry 0.904***

15 northwest anticyclonic cyclonic dry −0.024

16 no prevailing direction anticyclonic cyclonic wet 2.072*

17 northeast anticyclonic cyclonic wet −3.773***

19 southwest anticyclonic cyclonic wet −0.737**

20 northwest anticyclonic cyclonic wet −0.046

21 no prevailing direction cyclonic anticyclonic dry −0.375

23 southeast cyclonic anticyclonic dry 1.032**

24 southwest cyclonic anticyclonic dry −0.740

25 northwest cyclonic anticyclonic dry 0.413

26 no prevailing direction cyclonic anticyclonic wet −5.076***

27 northeast cyclonic anticyclonic wet 1.182

28 southeast cyclonic anticyclonic wet −1.383***

29 southwest cyclonic anticyclonic wet −1.102***

30 northwest cyclonic anticyclonic wet 1.759**

31 no prevailing direction cyclonic cyclonic dry −0.170

32 northeast cyclonic cyclonic dry −0.256

33 southeast cyclonic cyclonic dry 2.607***

34 southwest cyclonic cyclonic dry 0.419

35 northwest cyclonic cyclonic dry 1.163**

36 no prevailing direction cyclonic cyclonic wet −3.792***

37 northeast cyclonic cyclonic wet −0.312

38 southeast cyclonic cyclonic wet −1.907***

39 southwest cyclonic cyclonic wet 0.718***

40 northwest cyclonic cyclonic wet −0.080

Table 2: Differences of each weather types’ mean to the grand mean estimated by the effect coding approach
F orwardP remiumh = Intercept +

∑

i
βiW eatherT ypei,h + ǫh. Number of observations is 13040 hourly values from July

2015 to December 2016. Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand
mean indicates the difference to a zero mean value. Note that five weather classes are omitted due to too less observations in
the investigated time horizon.
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which has only significant positive or negative mean deviations. Thus, no exact causality can be derived but

trends of the criteria could exists. Dry weather, for instance, seems to have more often a positive significant

effect whereas wet weather seems to have more often a negative significant effect. The independent effects

of the separated weather type criteria are analyzed in the subsequent section.

4.2.2. Foward premium effects by the weather types’ separated criteria

This section puts emphasis on the separated weather type criteria (a) advection direction, (b) cyclonality

(at 950 hPa and 500 hPa) and (c) humidity. The same effect coding approach as in Equation (5) is performed

in which the categorical variables are the clustered weather types’ sub-criteria.

(a) Advection direction Table 3 reports the mean differences of the advection directions to the grand

mean. The separated wind directions have only two significant coefficients: Southwest wind and no prevailing

wind direction. Both coefficients deviate from the grand mean on a 10% significance level. For southwest

wind, the mean forward premium is 0.19 EUR/MWh higher than the grand mean of −0.14 EUR/MWh.

Without a prevailing wind direction, the forward premium mean is 0.25 EUR/MWh lower than the overall

mean. Based on these statistics and the fact that all other wind directions show no significant contribution,

the wind direction indicates limited implications on the mean forward premium.

Advection Difference to grand mean

Grand Mean −0.140***

Northeast 0.108

Northwest −0.116

Southeast 0.105

Southwest 0.191*

No prevailing direction −0.249*

Table 3: Results of the effects coding approach for the weather types’ criteria advection direction for the model
F orwardP remiumh = Intercept +

∑

i
βiAdvectionDirectioni,h + ǫh. The estimated values indicate the difference of the

criterias’ mean value to the grand mean. Number of observations is 13040 hourly values from July 2015 to December 2016.
Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean indicates the
difference to a zero mean value. Note that five weather classes are omitted due to too less observations in the investigated time
horizon.

(b) Cyclonality on 950 hPa Table 4 indicates high relevance of the cyclonality on 950 hPa on the

mean forward premium levels. Anticyclonic weather types increase the mean forward premium by a mean of

0.27 EUR/MWh whereas cyclonic weather types have a decreasing effect of −0.53 EUR/MWh. Both effects

are highly significant at the 1% level.
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Cyclonality on 950 hPa Difference to grand mean

Grand Mean −0.140***

Anticyclonic 0.270***

Cyclonic −0.526***

Table 4: Results of the effects coding approach for the weather types’ criteria cyclonality on 950 hPa for the model
F orwardP remiumh = Intercept +

∑

i
βiCyclonality950hP ai,h + ǫh. The estimated values indicate the difference of the

criterias’ mean value to the grand mean. Number of observations is 13040 hourly values from July 2015 to December 2016.
Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean indicates the
difference to a zero mean value. Note that five weather classes are omitted due to too less observations in the investigated time
horizon.

The cyclonality on 500 hPa (approximately 5.5 km above sea level) has no significant coefficients. There-

fore, the higher level cyclonality cannot be confirmed to have relevant effects on the forward premium. The

corresponding results can be found in Appendix E. As a reason for the non-significance, the relationship

between the forward premium and the near-surface renewable production can be expected. Higher level

weather conditions seem to have reduced impact for the electricity markets.

(c) Humidity The effect of the weather type criteria humidity on the mean forward premium level

is reported in Table 5. Both, Dry and Wet, have a significantly deviating forward premium mean com-

pared to the grand mean. Dry has a 0.25 EUR/MWh higher mean forward premium whereas Wet has a

−0.27 EUR/MWh reduced mean forward premium.

Difference to grand mean

Grand mean -0.140***

Dry 0.254***

Wet -0.271***

Table 5: Results of the effects coding approach for the weather types’ criteria humidity for the model F orwardP remiumh =
Intercept +

∑

i
βiHumidityi,h + ǫh. The estimated values indicate the difference of the criterias’ mean value to the grand

mean. Number of observations is 13040 hourly values from July 2015 to December 2016. Significance levels denoted by * p<.1,
** p<.05, ***p<.01. Significance and estimations of the grand mean indicates the difference to a zero mean value. Note that
five weather classes are omitted due to too less observations in the investigated time horizon.

4.2.3. Discussion of the mean deviating effects of weather types on the forward premiums

The above analyses show distinguishable effects of the weather types and its sub-groups to the mean level

of the forward premiums. The analysis of the separated weather type criteria (advection direction, cyclonality

and humidity) allow insights on the weather-related driver of the mean forward premium. Several criteria

could be identified with a significant impact on mean deviations of the forward premium. A general positive
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forward premium effect can be associated with southwest wind, anticyclonic weather patterns on 950 hPa,

or dry weather. In contrast to this, a negative effect on forward premiums is estimated for no prevailing

wind direction, cyclonic weather patterns on 950 hPa, or wet weather. However, even if these effects are

significant, they do not necessarily lead to higher/lower forward premiums in each hour. Based on this

analysis, the impact of weather type criteria on forward premiums can only be used as a rule of thumb.

The dominating effect by a combination of sub-groups is ex-ante not clear (e.g. what is the mean forward

premium effect under positive-expected anticyclonic and negative-expected wet weather?). The detailed

information on each combination (i.e. each weather type) with its criteria is estimated in Table 2. In these

results, the different effects of each weather type on the mean forward premiums become obvious. Several

weather types have significant positive and negative implications to the mean of the forward premiums.

The results can be applied by market participants such as traders to approximate the mean level of forward

premiums additional to typical effects by production deltas. To derive statements for price forecasting,

further investigations are necessary which could require applications in price forecasting models. However,

this is not the scope of this paper and remains for further research.

The different forward premium effects by the weather types motivate the subsequent uncertainty cate-

gorization as basis for the empirical analysis in Section 4.4.

4.3. Weather classifications as a distinction of wind and solar forecast uncertainty

This subsection provides information about the wind and solar uncertainty categorization which is applied

to examine Hypothesis B (forward premium increase by wind and solar uncertainty) in Section 4.4.

4.3.1. Wind and solar production levels are no sufficiently distinguishable indicators for uncertainty

For the subsequent regression analysis, the uncertainty should properly be considered. An intuitive

classification could be the production level of wind and solar power. A classification based on the production

level underlies the assumption of heteroscedastic errors with respect to the production level. However, the

production level classification indicates low differentiation possibility. This is discussed in Appendix D.

Thus, the production level classification seems not to be suitable for an adequate forecast error distinction.

4.3.2. Weather classes have deviating statistical characteristics

A potential classification scheme could be defined on weather types. This is motivated by the afore-

mentioned analysis that weather types have distinguishable effects on forward premiums. Thus, the DWD

objective weather type classifications are analyzed for potential uncertainty categorization. Details as to the

weather type definitions can be found in Table C.8 whereas statistical numbers are listed in Table C.9 in

the Appendix.
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Certain weather types correlate with specific wind and solar forecast situations. As an example, assume

anticyclonic weather constellations which are also known as high-pressure situations. Such high-pressure

situations are more likely to have less clouds. Solar production is thus better predictable compared to

changeable weather types. Therefore, solar production uncertainty should be lower.

Figure 4 compares the 40 objective weather type classifications with respect to the aggregated wind and

solar production deviations. The production deviations are defined as the realized value minus the forecast

normalized by the monthly capacity. The normalization ensures comparability of the forecast errors over the

time horizon. The delta is positive if more electricity is produced than expected. It becomes obvious that
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Figure 4: Aggregated wind and solar forecast errors (realization minus forecast) of each objective weather class. Production
deltas are relative to the monthly installed capacity. Data covers July 2015 to December 2016.

the median, quartiles and outliers might deviate strongly between the individual classes. The distinction

possibility is also true for the standard deviation as one indicator for the spread of the forecast errors.

Additionally, note that weather classes have different frequencies.

4.3.3. Focus on the weather type’s standard deviations

Based on the weather type classifications, the standard deviation can be calculated per weather type

and be used as an indicator for expected uncertainty. Several weather types have a lower standard deviation

than the average whereas some have remarkable higher standard deviations. A higher standard deviation

of wind and solar forecast errors indicates that exact wind and solar production is harder to predict. Figure

5 compares the relative standard deviations of capacity-normalized wind and solar deltas for each weather

type (ascending ordered). The standard deviations per weather type are relative to the grand standard
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deviation, i.e. of all observations. Several weather classes show a relative standard deviation below the
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Figure 5: Relative standard deviations of the wind and solar forecast errors per weather type. The wind and solar forecasts
errors are normalized by the monthly capacity. The standard deviation per weather class is relative to the standard deviation
over all data (which is a forecast error of 2.06 %). Data covers July 2015 to December 2016.

average down to a minimum of 40% (i.e. absolute standard deviation of 0.82% forecast error4). On the other

hand, weather class #35 has an exceptional high standard deviation of approximately 200% compared to

the average. Class #35 defines dry cyclonic northwest wind situations which has an almost average number

of occurrences. Most standard deviations are in the range between 60% and 130%. It is expected, that a

higher uncertainty of the wind and solar production leads to an higher uncertainty of the forward premiums.

This hypothesis is examined and supported in Appendix F. The subsequent analysis goes one step beyond.

The focus is on the increasing forward price level by uncertainty instead of a solely increased (obvious) price

uncertainty.

4.4. Forward price premiums rise with wind and solar production uncertainty (Hypothesis B)

This section examines empirically the Hypothesis B that an increased wind and solar production un-

certainty leads to an increase in forward price premiums. Thus, empirical support is given for the price

increasing effect shown analytical in Section 3. To identify the effects, three OLS regression analyses are

performed denoted by Model B1, Model B2 and Model B3. The dependent variable is the forward price

premium defined as the delta between the day-ahead price to the intraday price. The results allow to detect

4Note that the wind and solar forecast error is the difference between realization and forecast normalized by the monthly
capacity, which results as a percentage.
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the overall forward premium effect. An increase in the forward premium can result by either an increased

day-ahead price, a decreased intraday price or both effects simultaneously. The analysis is not suitable to

determine which effect influences the forward premium. A discussion of this is provided in the latter.

4.4.1. Model description

The estimated models can be expressed as

Model B1: ForwardPremiumh = α + β1∆(Wind&Solar)h + β2StdDev(Wind&Solar)h + ǫh (6)

Model B2: ForwardPremiumh = α + β1∆Loadh + β2StdDev(Load)h (7)

+ β3∆(Wind&Solar)h + β4StdDev(Wind&Solar)h + ǫh

Model B3: ForwardPremiumh = α + β1∆Windh + β2StdDev(∆Wind)h

+ 1solar,h (αSolar + β3∆Solarh + β4StdDev(∆Solar)h) + ǫh

(8)

where h denotes the hourly observations for the investigated timeframe from July 2015 to December 2016.

Model B1 (Equation (6)) is the basic model. It estimates the price deviations dependent on the wind

and solar production delta as well as the wind and solar uncertainty. The production delta is defined as

realization minus forecast. Note that the uncertainty is defined as the standard deviation of the observations

that belong to the same weather type. Since each weather type last for a complete day, the values are

matched to the hourly observations. Model B2 (Equation (7)) extends the basic model by the consideration

of the load deltas and the load uncertainty. An impact of load deltas to the forward price deviation can be

expected (cf. Bessembinder and Lemmon (2002)). Model B3 (Equation (8)) is similar to the Basic Model B1

except that wind and solar are independent regressors. Since hours at night with 0 MWh solar forecast

and solar production would bias the estimates for solar, a dummy variable is applied. The dummy variable

(or indicator function) is denoted as 1 and equals 1 if not both solar forecast and production are equal to

0 MWh.

The models estimate timeseries data. Thus, it is relevant to test for stationarity, homoscedasticity and

non-autocorrelation. Additionally, multi-collinearity between the variables is helpful to verify the model

specification.

4.4.2. Requirements check

4.4.2.1. Low multicollinearity. No relevant high correlation occurs within the regressor variables of each

analysis. The relevant correlation values between the regressors are in the range between −0.06 and 0.11.

Higher correlation could occur between variables which are not simultaneously used in the same regression

(e.g. a correlation of 0.86 between wind deltas as well as wind and solar deltas). The dependent variable
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forward premiums could have higher correlation to the regressors which is not critical (e.g. 0.43 to wind and

solar deltas). Correlation values can be found in Appendix G.1.

4.4.2.2. Stationarity: Unit root test via Augmented Dickey-Fuller test. An Augmented Dickey Fuller test is

performed as a unit root test to check for stationarity. Detailed numbers are listed in the Appendix G.2. The

test statistics show that the null hypothesis of unit roots can be rejected. Thus, the timeseries is stationary

or, in other words, does not have a time-dependent trend.

4.4.2.3. Heteroscedasticity and autocorrelation. White’s Lagrange Multiplier Test for Heteroscedasticity re-

jects the null hypothesis of homoscedasticity. Additionally, the Durbin-Watson test with a value of 0.45

rejects the null hypothesis of no autocorrelation.5 To address heteroscedasticity and autocorrelation, het-

eroscedastic and autocorrelation robust Newey-West standard errors are applied (Newey and West (1987)).

4.4.3. Regression results

Table 6 shows the estimated coefficients for Model B1, Model B2 and Model B3. For Model B1, both

regressors are significant. The capacity-normalized delta in wind and solar production is significant at the

1% level whereas the standard deviation for wind and solar deltas per weather type is significant at the 5%

level. The high significance of the wind and solar delta is expected since a lower wind and solar production

than expected should lead to higher prices. This effect is also stated in other literature as for instance

Kiesel and Paraschiv (2017), Sensfuß et al. (2008) or Hirth (2013). The interesting finding is the significant

effect of wind and solar uncertainty on forward prices. A higher standard deviation of the wind and solar

production delta per weather type leads to higher forward premiums. That indicates, in general, that the

ex-ante known uncertainty is hedged to forward premiums.

Model B2 shows significant coefficients for the three regressors (a) load delta, (b) the capacity-normalized

wind and solar delta and (c) the standard deviation of the capacity-normalized wind and solar delta. The

standard deviation of the load delta is not significant. The non-significance of the load uncertainty is not

surprising since the weather types are defined on meteorological conditions and do not necessarily reflect

relevant load characteristics. Note that this does not imply, that the standard deviations of load deltas are

not relevant in general. Another aggregation (e.g. load deltas dependent on season, hour or load level) may

lead to significant load results, as mentioned by Bessembinder and Lemmon (2002) or Longstaff and Wang

(2004). However, the load uncertainty is not the focus of this investigation and an investigation of different

load uncertainty aggregations is thus neglected. The findings of the Model B2 are the following:

5No autocorrelation would require a Durbin-Watson test statistic approximately at the value of 2. Values of 0 or 4 denote
perfect positive or negative auto-correlation.
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FowardPremiumh Model B1 Model B2 Model B3

Intercept −0.132 −0.357 −0.075

(0.305) (0.377) (0.255)

∆Loadh −0.193***

(0.032)

Std.Dev(∆Load)h 0.177

(0.134)

∆Wind&Solarh 1.220*** 1.208***

(0.037) (0.036)

Std.Dev(∆Wind&Solar)h 0.393** 0.376**

(0.158) (0.158)

∆Windh 0.542***

(0.020)

Std.Dev(∆Wind)h 0.124*

(0.070)

1solar,h 0.110

(0.441)

∆Solarh 0.937***

(0.041)

Std.Dev(∆Solar)h 0.170

(0.221)

N 13040 13040 13038

Adj. R2 0.166 0.171 0.174

F-statistic 557 290 269

Table 6: Regression results on the dependent variable Forward Premium with hourly observations. The standard deviations
are calculated for each weather types and then matched to the corresponding hours. Model B1 is the basic model which
considers capacity-normalized wind and solar production deltas and uncertainty. Model B2 extents Model B1 by consideration
of load deltas and the load uncertainty. Model B3 separates the wind and solar data. 1solar,h is a dummy variable for solar
production. Wind and solar production as well as the standard deviations are calculated with production deltas which are
normalized by the monthly installed capacity to account for capacity extensions over time. Data covers July 2015 to December
2016. Standard Errors are heteroscedasticity and autocorrelation robust (HAC). Standard errors in parentheses. * p<.1, **
p<.05, ***p<.01
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• An increase in the load delta (i.e. more realized load than expected) decreases the forward premium.

Per GWh increased load, the price delta is estimated to decrease by 0.19 EUR/MWh.

• An increase in the capacity-normalized wind and solar delta (i.e. more realized volatile renewable

production than expected) increases the forward premium. Each percent-point increased utilization

of wind and solar production increases the forward price delta by 1.22 EUR/MWh. Note that the

production delta is normalized by the installed capacity to account for capacity extensions.

• A higher standard deviation of the delta in wind and solar production (i.e. more uncertainty of the

wind and solar forecast error) has a significant positive effect on the forward premium. It is significant

at the 5% level. An increased standard deviation by 1 percent-point leads to a 0.39 EUR/MWh

increase in forward premiums.

For Model B3, the combined regressors for wind and solar are disentangled. The general results of

Model B1 hold true for Model B3. The separation allows additional insights on the origin of the price

premium effects. A difference between the normalized wind and the solar deltas can be observed. The

capacity-normalized solar deltas have a higher coefficient. This means that forward premiums are stronger

increased by an unexpected additional percent-point of solar production than wind production. This finding

is in line with common research for European and especially the German electricity markets. The high

correlation of peak-load at noon with general high solar feed-in has a strong price reducing potential. See

for instance Hirth (2013), Jägemann (2015) and Cludius et al. (2014). As to the uncertainty, only the

standard deviation of wind deltas are significant (at a 10% level). The solar uncertainty is not significant at

all. The positive effect of the disentangled wind uncertainty on the forward premium is 0.30 EUR/MWh.

A schematic plot how uncertainty affects the forward premiums is visualized in Figure 6.
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Figure 6: Schematic effect of uncertainty on the forward premium. The left figure (a) visualizes a situation without uncertainty
(perfect foresight). Day-ahead and intraday prices are equal. Figure (b) shows the schematic impact of wind and solar
production uncertainty. The forward premium is in general increased under uncertainty. p denotes prices and D denotes the
demand for the day-ahead (DA) and intraday (ID) market.

The regression analysis explains effects on the forward premium whereas the forward premium is defined

as the price delta. Thus, for an (absolute) increased forward premium, it is not clear whether the day-ahead

price is increased, the intraday price is decreased or both effects occur. Following seems rational (even

if the analysis is not suitable to provide statistical evidence): The deviations in load or wind and solar

production can be assumed to be ex-ante unknown random processes in the short-run. All available ex-ante

information are incorporated in the day-ahead price. Thus, short-term deviations are traded in the intraday-

market which has no price effect on the earlier closed day-ahead market. These deviations should therefore

influence only the intraday prices. On the other hand, the degree of uncertainty could be known ex-ante.

A higher ex-ante known uncertainty level could be incorporated in the day-ahead market as well as in the

intraday-market. The market selection is based on the traders’ decision at which time they internalize the

uncertainty. Internalization of the uncertainty in the day-ahead market would be rational in the sense of risk

hedging. However, a final determination is not possible solely on these regression results. The theoretical

results in Section 3 suggest to internalize uncertainty in the day-ahead forward markets. Note that these

results are not differentiated as to seasons or hours. This differentiation remains for further research.

Overall, Hypothesis B of an increasing forward premium effect by increased production volatility can

thus be confirmed based on the regression results. These findings give new insights and contributes to ex-

isting literature on forward premiums. It supports the analytic finding in Section 3 that weather-dependent

production uncertainty increases the forward premium. Thus, it extends the fundamental literature which fo-

cuses on forward premium effects by demand uncertainty (e.g. Bessembinder and Lemmon (2002), Longstaff
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and Wang (2004)) and which identifies forward premiums with respect to different temporal resolutions

(Viehmann (2011), Kiesel and Paraschiv (2017) or Furió and Meneu (2010)). The novel aspect in this re-

search is that the weather types are almost fully decoupled of the current observation due to the long time

horizon. Classical literature (e.g. Contreras et al. (2003),Conejo et al. (2005),Weron (2007)) oftenly apply

autoregressive timeseries models which predict uncertainty-based price forecasts on limited past observa-

tions. Thus, the forward premium prediction is derived out of the current situation. The analysis within

this paper applies a long-lasting time horizon to classify uncertainty. Hence, it can be interpreted as a

classification which does not rely on the current situation. Additionally, the analysis shows that weather

types are a suitable clustering method to consider wind and solar uncertainty. The effects on the forward

premium are expected to increase under a higher merit order convexity as well as under a higher wind and

solar production standard deviation.

4.4.4. Approximation of the economic implications

The economic implication for Germany suggests a relevant reduction in total costs if the forward premium

due to wind an solar uncertainty could be reduced by 1%-point. Costs savings can be derived based on a

rough approximation. For 2016, the total costs for electricity production on the day-ahead market amounts

to EUR 6.625bn. This is the summation of the hourly day-ahead prices multiplied with its corresponding day-

ahead volumes. The source is the EPEX Spot Market. Based on the Model B2 results, a 1%-point decrease

in the wind and solar uncertainty translates to 0.376 EUR/MWh reduced forward premiums. The overall

costs for 2016 with a 1%-points improved wind and solar standard deviation are EUR 6.536 bn. Therefore,

the potential cost saving estimates to EUR 88m per year. The slightly higher forward premium reduction

effect of Model B1 with a value of 0.393 EUR/MWh would result in total cost savings of EUR 92 million.

The approximation indicates the high relevance of an forecast quality increase to reduces total system costs.

Under the assumption of an inelastic consumer demand function, this represents the welfare gain of an

improved forecast quality. Note that the rough approximation neglects rebound effects or interdependencies

between markets (effects on intraday-markets or long-run forward markets). Additionally, the approximation

assumes an equal forward premium reduction effect for each hour, which is on average true but could be

higher or lower in certain situations.

5. Conclusion

Weather-dependent wind and solar production are facing an increasing share in electricity systems. This

increasing share induces higher production uncertainty due to volatile characteristics by wind and solar
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production. This essay contributes to closing the research gap how wind and solar production uncertainty

affects forward price premiums. First, theoretical evidence of an increasing forward price effect by increased

uncertainty is identified. The theoretical findings show an increase in forward prices dependent on the merit

order convexity and the production’s standard deviation. In a second step, the theoretical findings are

connected to weather type definitions and supported by empirical evidence for the German day-ahead and

intraday market. The weather types have relevant impact to the forward premium levels. Additionally,

the production uncertainty per weather type has an increasing effect on the forward premiums. Thus, this

research contributes to understand short-term forward price premiums within electricity markets. As to

the best of my knowledge, this is the first work on weather-dependent price premiums. Results support

that weather types are a suitable measure for wind and solar production uncertainty. Thus, weather types

should be incorporated in price forecasting methods to increase quality. An improved wind and solar forecast

quality by 1%-point could additionally result in welfare gains of approximately EUR 88 million for Germany.

Therefore, emphasize should be put on further weather forecast quality improvements.
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Appendix

Appendix A. On the order of the German electricity supply curve

Bessembinder and Lemmon (2002) performs his theoretical analysis with different orders of the supply

curve. Note that the order reflects the highest exponent and that the supply curve is synonym with the merit

order. Note additionally, that the supply curve is the first derivative of the total production costs function.

Dependent on the supply curve order, the influence of the mean and skewness of the price distributions

might have different effects. For instance, for higher orders (i.e. >2) of the supply curve, the forward price

premium might become negative with very high standard deviations. In contrast, for linear or quadratic

supply curves, the forward premium is always positive. Within the empirical evaluation, Bessembinder and

Lemmon (2002) estimates the order of the supply curve via

Pricet = a (Demandt)
c̃

(A.1)

⇔ ln(Pricet) = a + c̃ ln (Demandt) + εt, (A.2)

where Pricet, is the daily average on-peak spot price, Demandt is the daily average load and a and c̃ the

parameters to be estimated. The analysis is performed with data from PJM and CALPX electricity markets

for approximately 1998 to 2000. They find empirical evidence for an average merit order convexity with

a coefficient c̃ = 3.8 for PJM and c̃ = 4.81 for CALPX. This shows a high convexity of the merit order

function. Note that Bessembinder and Lemmon (2002) estimates the order c of the Total Costs Function

which first derivative reflects the order of the Marginal Cost Function c̃.

The estimated function in this section is similar to Equation (A.2) but with data for the German elec-

tricity market on hourly data from July 2015 to December 2016. The residual demand is applied, which is

defined as total demand subtracted by wind and solar production. The estimated value for c̃ is 1.32 and

statistical significant at a 1% level with an Adj.R2 of 0.49. Different months suggest a slight deviation of

the merit order function. The convexity is highest in January and December with a significant c̃ of 1.45 or

1.6, respectively. This effect can be explained by -in general- higher demand which utilizes power plants in

the steeper right sight of the merit order. However, the estimated c̃ suggest a convexity between the linear

and quadratic merit order function for the German electricity market for 2015 and 2016. This supports the

assumption that the theoretical investigation in Section 3 is limited to the quadratic merit order function.

However, situations might occur which have higher merit order convexities, e.g. under high residual load

and scarcity situations. The identification and analysis of these situations remain to further research.
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Appendix B. Proof of Proposition 1

Proof. Assume the model definition as to Section 3. Assume that the expected production µ is smaller than
the total demand.6 Because all renewable producers are symmetric, the total traded renewable production
of all players in stage 1 can be denoted by qr1 := qir1 + (N − 1)qjr1 (where qjr1 is another symmetric
renewable producer). Additionally, denote the realized production in stage 2 by Q := NQi, the expected
quantity by µ := Nµiq and the standard deviation by σ := Nσi.

The basic profit function of a renewable producer i in the present theoretical model framework is described
in Equation (1). The following expected profit function is derived by plugging in the above formulas:

E[Πir(qir1, (N − 1)qjr1)] = −D2aqir1

∫

f(Qi) dQi + D2a

∫

Qif(Qi) dQi + 2DNaqir1

∫

Qif(Qi) dQi

− 2DNa

∫

Q2
i f(Qi) dQi − Dbqir1

∫

f(Qi) dQi + Db

∫

Qif(Qi) dQi

− N2aqir1

∫

Q2
i f(Qi) dQi + N2a

∫

Q3
i f(Qi) dQi + Nbqir1

∫

Qif(Qi) dQi

− Nb

∫

Q2
i f(Qi) dQi − cqir1

∫

f(Qi) dQi + c

∫

Qif(Qi) dQi

+ qir1

(

a (D − qir1 − qjr1 (N − 1))
2

+ b (D − qir1 − qjr1 (N − 1)) + c
)

.

(B.1)

The first derivative with respect to qir1 is

(B.2)

d

dqir1

E[Πir(qir1, (N − 1)qjr1)] = −D2a

∫

f(Qi) dQi + 2DNa

∫

Qif(Qi) dQi − Db

∫

f(Qi) dQi

− N2a

∫

Q2
i f(Qi) dQi + Nb

∫

Qif(Qi) dQi

+ a (D − qir1 − qjr1 (N − 1))
2

+ b (D − qir1 − qjr1 (N − 1))

− c

∫

f(Qi) dQi + c + qir1 (a (−2D + 2qir1 + 2qjr1 (N − 1)) − b) .

This can be simplified by the following substitutes for the probability density function f(Q):

Distribution function has a total probability of 1:

∫

f(Qi) dQi = 1 (B.3)

Expected value for Qi:

∫

Qif(Qi) dQi = µi (B.4)

The second moment (re-ordered):

∫

Q2
i f(Qi) dQi = µ2

i + σ2
i (B.5)

This leads to the simplified necessary condition for the profit maximizing quantity q∗

ir1 as

d

dqir1

E[Πir(qir1, (N − 1)qjr1)] = −D2a+2DNaµi −Db−N2a
(
µ2

i +σ2
i

)
+Nbµi +a (D −qir1 −qjr1 (N −1))

2

+ b (D − qir1 − qjr1 (N − 1)) + qir1 (a (−2D + 2qir1 + 2qjr1 (N − 1)) − b)
!
= 0.

(B.6)

6If µ > D, then the total demand can be fulfilled by renewable production such that prices close to zero or below are
expected and renewable production curtailment could occur.
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Now this equation can be solved for qir1 which results in the profit maximizing quantity

(B.7)
q∗

ir1 =
1

3a

(

2Da − 2Naqjr1 + 2aqjr1 + b +
[
4D2a2 − 6DNa2µi − 2DNa2qjr1 + 2Da2qjr1 + 4Dab

+3N2a2µ2
i +N2a2q2

jr1 +3N2a2σ2
i −2Na2q2

jr1 −3Nabµi −Nabqjr1 +a2q2
jr1 +abqjr1 + b2

]1/2
)

for producers i = 1, ..., N . Note the square root for the square brackets. The second derivative becomes zero
if and only if qir1 = 1

2N+1
(2D + b

a ) which can only be the case for qir1 = 0 for perfect competition (whereas
the case of perfect competition is the investigation focus).

In an equilibrium of identical players, the solutions qir1 are identical as well. Thus, qir1 = qjr1 holds and
can be replaced. Following is derived:

(B.8)
qir1 =

1

3a

(

2Da−2Naqir1+2aqir1+b±
[
4D2a2−6DNa2µi−2DNa2qir1+2Da2qir1+4Dab+3N2a2µ2

i

+ N2a2q2
ir1 + 3N2a2σ2

i − 2Na2q2
ir1 − 3Nabµi − Nabqir1 + a2q2

ir1 + abqir1 + b2
]1/2

)

This can be solved with respect to qir1 which gives

q∗

ir1 =
1

2Na (N + 2)

(

(N + 1) (2Da + b)

+
[
4D2N2a2 + 8D2Na2 + 4D2a2 − 8DN3a2µi − 16DN2a2µi + 4DN2ab + 8DNab + 4Dab

+ 4N4a2µ2
i + 4N4a2σ2

i + 8N3a2µ2
i + 8N3a2σ2

i − 4N3abµi − 8N2abµi + N2b2 + 2Nb2 + b2
]1/2

)

(B.9)

Note that another possible profit optimal solution exists. This solution would have a negative bid. Thus, it
is not in the feasible range of solutions and neglected. Equation (B.8) is the profit maximizing quantity q∗

ir1

of one symmetric player i in a price-competitive oligopoly.
The optimal joint bid of all renewable producers’ becomes

q∗

r1 =

N∑

i=1

q∗

ir1

= Nq∗

ir1

=
1

2a (N + 2)

(

(N + 1) (2Da + b)

−
[
4D2N2a2 + 8D2Na2 + 4D2a2 − 8DN2a2µ + 4DN2ab − 16DNa2µ + 8DNab + 4Dab + 4N2a2µ2

+ 4N2a2σ2 − 4N2abµ + N2b2 + 8Na2µ2 + 8Na2σ2 − 8Nabµ + 2Nb2 + b2
]1/2

)

,

(B.10)

where µ = Nµi and σ = Nσi since all renewable producers are assumed to be symmetric.
The focus lies on the solution under perfect competition. This is reflected via N → ∞. For N → ∞,

Equation (B.10) becomes

(B.11)q∗

r1 = D +
1

2

b

a
−

√
√
√
√

[((

D +
1

2

b

a

)

− µ

)2

+ σ2

]

To derive Equation (B.11) from Equation (B.10), terms with N in the denominator goes to 0 for N → ∞.
Additionally, if there are multiple exponents for N in one term, only the highest exponent of N is dominant
for N → ∞. Equation (B.11) is the optimal first stage total renewables’ bid under uncertainty and the
solution of the proposition.

34



Appendix C. Statistics on the data

Appendix C.1. Statistics on the wind, solar, price forecasts

Table C.7 shows statistics for the price, wind and solar deviation dataset.

Mean Std.dev. Min Max

Price forecast deviation [EUR/MWh] 0.5 12.4 -138.8 253.4

Wind forecast error [GWh] -0.4 1.5 -8.4 11.5

Solar forecast error [GWh] -0.1 0.9 -5.8 4.7

Table C.7: Statistics on the price and wind/solar deviation dataset. Data covers July 2015 to December 2016.

A structural deviation of the mean value for the wind and solar forecast erros can be observed. A

reason for the structural deviations could be the extrapolation methods of the TSOs (cf. 50Hertz (2017),

Amprion (2017), Tennet (2017), TransnetBW (2017) and APG (2017)). Additionally, structural forecast

overestimation could exists due to reduced efficiency (old PV modules/wind turbines), surface roughness,

aerosols and air pollution and similar effects. The standard deviation of wind forecast errors is higher than

for solar forecast errors.

Appendix C.2. Objective Weather Type Classification

Table C.8 shows characteristics for the forty DWD Objective Weather Type Classifications. Each com-

bination of wind speed, cyclonality on 950 hPA, cyclonality on 500 hPa and humidity exists. Additionally,

the frequency is shown. Table C.9 gives statistical numbers for combined wind and solar forecast errors per

weather type.
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No. Wind direction Cyclonalitity Cyclonalitity Humidity Frequency

in 950 hPa in 500 hPa (from 1979 to 2016)

1 no prevailing direction anticyclonic anticyclonic dry 751

2 northeast anticyclonic anticyclonic dry 498

3 southeast anticyclonic anticyclonic dry 120

4 southwest anticyclonic anticyclonic dry 640

5 northwest anticyclonic anticyclonic dry 1204

6 no prevailing direction anticyclonic anticyclonic wet 401

7 northeast anticyclonic anticyclonic wet 80

8 southeast anticyclonic anticyclonic wet 45

9 southwest anticyclonic anticyclonic wet 1262

10 northwest anticyclonic anticyclonic wet 1058

11 no prevailing direction anticyclonic cyclonic dry 331

12 northeast anticyclonic cyclonic dry 351

13 southeast anticyclonic cyclonic dry 48

14 southwest anticyclonic cyclonic dry 582

15 northwest anticyclonic cyclonic dry 1241

16 no prevailing direction anticyclonic cyclonic wet 103

17 northeast anticyclonic cyclonic wet 20

18 southeast anticyclonic cyclonic wet 9

19 southwest anticyclonic cyclonic wet 439

20 northwest anticyclonic cyclonic wet 178

21 no prevailing direction cyclonic anticyclonic dry 148

22 northeast cyclonic anticyclonic dry 16

23 southeast cyclonic anticyclonic dry 128

24 southwest cyclonic anticyclonic dry 159

25 northwest cyclonic anticyclonic dry 32

26 no prevailing direction cyclonic anticyclonic wet 223

27 northeast cyclonic anticyclonic wet 9

28 southeast cyclonic anticyclonic wet 207

29 southwest cyclonic anticyclonic wet 975

30 northwest cyclonic anticyclonic wet 109

31 no prevailing direction cyclonic cyclonic dry 372

32 northeast cyclonic cyclonic dry 55

33 southeast cyclonic cyclonic dry 111

34 southwest cyclonic cyclonic dry 276

35 northwest cyclonic cyclonic dry 304

36 no prevailing direction cyclonic cyclonic wet 251

37 northeast cyclonic cyclonic wet 22

38 southeast cyclonic cyclonic wet 143

39 southwest cyclonic cyclonic wet 745

40 northwest cyclonic cyclonic wet 173

Table C.8: Objective Weather Type Classification by the German Weather Service (DWD) defined by Bissolli and Dittmann
(2001). Frequency counted by daily occurrences from 1979 to 2016.
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count mean std min 25% 50% 75% max RMSE MAE

Weather type

1 623 -0.09 1.21 -6.48 -0.68 0.01 0.58 3.45 1.22 0.88

2 264 0.09 0.96 -5.25 -0.39 0.05 0.65 2.13 0.96 0.69

3 96 0.00 1.13 -3.06 -0.84 0.24 0.74 1.92 1.12 0.90

4 648 -0.83 1.59 -4.57 -1.94 -0.63 0.08 10.62 1.79 1.31

5 1248 -0.74 1.31 -6.70 -1.41 -0.57 0.04 7.97 1.50 1.09

6 480 -0.16 1.46 -6.16 -0.88 -0.20 0.45 5.96 1.47 1.00

9 1176 -0.18 1.62 -7.00 -0.91 -0.05 0.61 9.96 1.62 1.12

10 1296 -0.61 1.94 -8.43 -1.44 -0.43 0.42 11.13 2.03 1.40

11 336 -0.13 1.12 -3.38 -0.82 -0.24 0.54 3.38 1.13 0.88

12 360 -0.22 1.07 -4.31 -0.81 -0.15 0.37 3.19 1.09 0.81

14 576 -0.52 1.66 -7.09 -1.26 -0.20 0.45 3.73 1.74 1.19

15 1008 -0.81 1.79 -7.82 -1.71 -0.74 0.15 6.54 1.97 1.47

16 24 0.33 0.66 -0.66 -0.40 0.67 0.89 1.21 0.73 0.67

17 24 -1.19 1.06 -2.68 -1.93 -1.28 -0.36 0.81 1.58 1.35

19 336 -1.02 1.33 -5.91 -1.70 -0.91 -0.16 2.35 1.67 1.30

20 216 -1.42 2.09 -6.79 -2.58 -0.60 0.12 1.94 2.52 1.71

21 120 -0.92 2.08 -6.48 -1.63 -0.45 0.66 1.87 2.27 1.61

23 144 -0.47 1.89 -4.80 -1.49 -0.60 0.93 3.99 1.94 1.56

24 168 0.15 1.19 -2.39 -0.72 -0.02 0.78 3.68 1.20 0.93

25 48 -1.67 1.53 -5.30 -2.74 -1.87 -0.18 0.41 2.25 1.76

26 168 -0.77 1.74 -4.94 -1.61 -0.45 0.42 3.10 1.89 1.39

27 24 0.04 1.36 -1.86 -1.01 -0.25 0.81 2.80 1.33 1.08

28 168 -0.30 1.27 -3.55 -1.14 -0.31 0.63 2.87 1.31 1.06

29 960 -0.49 1.70 -5.81 -1.52 -0.42 0.47 5.18 1.77 1.35

30 48 -1.04 1.56 -7.23 -1.85 -1.12 0.08 1.41 1.86 1.38

31 528 -0.65 1.52 -6.52 -1.48 -0.38 0.32 4.13 1.65 1.20

32 72 -0.06 1.17 -1.65 -0.77 -0.32 0.29 3.48 1.17 0.85

33 96 -0.19 1.62 -4.67 -0.86 0.04 0.72 2.69 1.63 1.17

34 312 -0.34 1.67 -4.81 -1.19 -0.21 0.82 3.58 1.70 1.30

35 144 0.42 3.35 -4.93 -1.21 -0.09 0.50 11.55 3.36 2.13

36 312 -1.68 1.74 -7.37 -2.34 -1.11 -0.53 1.51 2.41 1.73

37 48 -0.44 0.72 -1.98 -0.80 -0.36 0.08 0.93 0.84 0.65

38 120 -0.74 1.42 -3.93 -1.62 -0.77 -0.02 3.26 1.60 1.27

39 912 -0.33 1.84 -6.16 -1.28 -0.33 0.59 9.28 1.87 1.35

40 96 -0.87 2.01 -4.29 -2.33 -0.82 0.34 4.75 2.18 1.75

Total Data 13199 -0.52 1.67 -8.43 -1.33 -0.37 0.38 11.55 1.75 1.24

Table C.9: Statistics on the (combined) wind & solar forecast errors for the objective weather type classifications. Observations
cover July 2015 to December 2016 in hourly resolution. Units are in GWh (except for count). std denotes the standard deviation
which is incorporated as the uncertainty measure for the empirical analysis. The standard deviations deviate between 0.66 and
3.35. 37



Appendix D. The wind and solar production level gives insufficient information on forecast
errors

Figure D.7 addresses the question whether the wind and solar production level would be a suitable

classification for forecast errors. One would expected that higher renewable production results in higher

renewable forecast errors. The both upper plots of Figure D.7 show the forecast errors per hourly observation.

The observations do not indicate a sufficient heteroscedastic behavior. That means, the forecast errors are

not sufficiently increasing with the production level. The lower plots show the standard deviations per

production level aggregated to 1 GWh clusters. It is obvious, that in a broad range of the production levels,

the standard deviations have only minor gradients. The small gradients mean, that these observation have

only slight differences to the surrounding classes and thus limited distinction possibility. Thus, the level of

wind or solar production can be expected as no adequate estimator for forecast errors. Note that a longer

dataset time period would smoothen the error but incorporates a bias effect due to different capacity levels.

Lange and Heinemann (2002) report a similar finding that the production level has only limited distinction

possibility.
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(a) Wind realization vs. wind forecast (b) Solar realization vs. solar forecast
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Figure D.7: Forecast errors for wind and solar dependent on forecast levels. The black dotted lines in the upper plots displays
the diagonal line. Data covers July 2015 to December 2016.

Appendix E. Effect coding results for cyclonality at 500 hPa

Table E.10 reports the results of the effect coding with respect to cyclonality on 500 hPa. The effect

coding estimates the deviation in the group means to the grand means. The groups are cyclonic and

anticyclonic weather patterns at 500 hPa. The estimates are not significant which means, that they do not

significantly deviate from the overall mean forward premium.

39



Cyclonality on 500 hPa Difference to grand mean

Grand mean -0.140***

Anticyclonic -0.057

Cyclonic 0.078

Table E.10: Results of the effects coding approach for the weather types’ criteria cyclonality on 500 hPa for the model
F orwardP remiumh = Intercept +

∑

i
βiCyclonality500hP ai,h + ǫh. The estimated values indicate the difference of the

criterias’ mean value to the grand mean. Number of observations is 13040 hourly values from July 2015 to December 2016.
Significance levels denoted by * p<.1, ** p<.05, ***p<.01. Significance and estimations of the grand mean indicates the
difference to a zero mean value. Note that five weather classes are omitted due to too less observations in the investigated time
horizon.

Appendix F. Wind and solar uncertainty translates to price uncertainty

Appendix F.1. General price decreasing effect of positive production deviations

Several studies analyze the effect of an increase in renewable production on the day-ahead to intraday

price differences. In general, more renewable production than forecasted would decrease the realized prices

(compared to the price forecast). This is in line with the expectation (cf. Hirth (2013)). A similar trend can

be observed within this dataset. It is not the focus of this research, but the dataset used shows a typical

decreasing trend. The trend can be observed in Figure F.8.

Figure F.8: Price effect of an increase in renewable production compared to forecasts (delta = realization - forecast). Price
realizations are the volume weighted prices of the last three hours (ID3-prices). Observations cover July 2015 to December
2016.

An increase in wind and solar production delta (realization minus forecast) tend to an decrease in

price delta (intraday minus day-ahead). A linear regression shows a price decrease of 2.22 EUR/MWh per

additional GWh wind or solar production in the intraday-market. Former years (back to 2010) have higher
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price reduction effects than latter years. This trend can be explained by adjustment processes, learning and

saturation effects.

However, in this simple linear OLS regression, several drivers are not considered. For instance, one

relevant factor is the shape of the merit order, which covers e.g. information about the actual power plant

fleet and outages. Another relevant factor is the residual demand level, which determines the intersection

on the merit order shape and serves e.g. as an indicator for scarcity situations. Thus, the fit of the linear

regression is strongly limited and has an Adj. R-squared value of 0.09.

Appendix F.2. Weather type production volatility implies forward price volatility

In this supplementary section, the hypothesis is stated that an increased production uncertainty leads

to an increase in the price uncertainty. The price uncertainty is the standard deviation of the forward

premiums within each weather type. The uncertainty of wind production, solar production and load is

defined analogous. Note that wind and solar production are capacity-normalized to account for capacity

extension over the time horizon.

Figure F.9 compares the standard deviations of the capacity-normalized wind and solar deltas (wind and

solar uncertainty) to the standard deviations of the forward premiums (price uncertainty); categorized as to

the weather types.
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Figure F.9: Relative standard deviations of capacity-normalized wind and solar deviations as well as price deviations per
weather type w. Descending sorted w.r.t. weather types’ standard deviation of wind and solar deviation. Data is additionally
normalized to the sample mean. Observations cover July 2015 to December 2016. The Forward premium is calculated as the
delta between the day-ahead price and the volume weighted intraday price of the last three hours (ID3).

Both standard deviations have a Pearson correlation factor of 0.48, which indicates a medium correlation.
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Since the wind and solar uncertainty should be independent of the price forecasts, the relationship can be

interpreted as a causality. Thus, it indicates that a reduction in weather uncertainty leads in general to a

certain reduction in price uncertainty.

To examine the impact of load, wind and solar uncertainty on the the forward premium uncertainty,

two regression estimations are performed. In Model C1, the standard deviations of the forward premiums

are explained by the standard deviations of the load deviation and the standard deviation of the combined

wind and solar deviations (per weather type). Model C1 can be expressed as Equation (F.1). In Model C2

the standard deviations of the forward premiums are explained by the separated standard deviations of the

(capacity-normalized) wind and the solar deltas as denoted in Equation (F.2):

Model C1: Std.Dev(FP )w = α + β1Std.Dev(∆Load)w + β2Std.Dev(∆Wind&Solar)w + ǫw (F.1)

Model C2: Std.Dev(FP )w = α + β1Std.Dev(∆Wind)w + β2Std.Dev(∆Solar)w + ǫw (F.2)

where w states the weather type. Due to low observations (limited amount of weather types), the number

of regressors need to be restricted. Thus, in Model A1, the general effect of load and volatile renewable

production (i.e. combined wind and solar) are estimated. Whereas Model A2 disentangles the effect within

wind and solar production and neglects load.

Table F.11 shows the regression results of the Weighted Least Squares estimation. The estimation

weights are the corresponding number of observation per weather type. Note that not every weather type

is represented due to occurrence in the estimated time range.
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Std.Dev(FP )w Model C1 Model C2

Intercept 2.190** 3.043***

(0.873) (1.033)

∆Loadh 0.749**

(0.301)

∆Wind&Solarh 1.132***

(0.343)

∆Windh 0.556***

(0.167)

∆Solarh 0.468

(0.413)

N 32 32

Adj. R2 0.357 0.247

Table F.11: Weighted Least Squares estimation. Hourly data is aggregated to weather types. Weights are the number of
observations per weather type. Note that not every weather type is represented due to occurrence in the estimated time range.
Standard errors in parentheses. * p<.1, ** p<.05, ***p<.01

The estimation of Model C1 shows significant coefficients for both regressors. However, the coefficient

of the standard deviation for wind and solar deviations is significant at a 1% level whereas the standard

deviation of the load deviations has a broader significance level of 5%. The lowered significance level is

somehow expected, since the classification is based on weather data which has limited influence on load

data. The coefficient for the standard deviation of the capacity-normalized wind and solar deviations is

1.1%; the coefficient for the standard deviation of load is 0.75 GWh. Among the wind and solar deviations,

the wind deviations have a significant effect whereas the solar deviations have not. This becomes obvious

by the results of Model C2. Overall, the stronger the deviations with respect to wind and solar or load, the

stronger fluctuates the forward premium, i.e. the day-ahead to intraday price delta. The hypothesis of an

increased price volatility by increased production volatility can thus be confirmed.

Appendix G. Requirement checks for the regression analysis

Appendix G.1. No relevant correlation of regression variables

Figure G.10 shows the correlation matrix within a heatmap. No relevant high correlation occurs. The

relevant correlation values between the regressors are in the range between −0.06 and 0.11. Higher correlation

could occur between variables which are not simultaneously used in the same regression (e.g. a correlation

of 0.86 between wind deltas as well as wind and solar deltas). The dependent variable forward premiums

could have higher correlation to the regressors which is not critical (e.g. 0.43 to wind and solar deltas).
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Figure G.10: Pearson correlation of the regression variables. Data covers July 2015 to December 2016.

Appendix G.2. Time series data is stationary

Table G.12 shows the statistics of the Augmented Dickey Fuller test. The null hypothesis of non-

stationarity can be rejected. Thus, the data have no statistical significant time-dependent structure like a

trend or seasonal effect. The time series OLS prerequisite of stationarity is fulfilled.
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Test Statistic p-value # lags

∆Prices -22.96 0.00 14

∆Load -13.71 0.00 37

∆Wind -10.02 0.00 41

∆Solar -12.84 0.00 27

∆Wind&Solar -10.50 0.00 41

StdDev(∆Wind) -11.82 0.00 24

StdDev(∆Solar) -12.22 0.00 24

Model residuals -18.88 0.00 17

Table G.12: Test statistics for the Augmented Dickey Fuller test for unit roots (cf. Dickey and Fuller (1979)). The null
hypothesis of a unit root in the respective period of observation is rejected. The test uses the Akaike Information Criterion
(AIC) in order to determine the optimal lag lengths. Additional to the standard Augmented Dickey Fuller test which controls
for a constant effect, the Augmented Dickey Fuller test is performed with a linear trend as well as with a linear and quadratic
trend (trend and drift). Both additional tests indicate the same result, i.e. to reject the non-stationarity hypothesis at a 1%
significance threshold. The model residuals refer to the estimation results for Equation (8).
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