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bUniversity of Melbourne

November 29, 2017

Abstract

In order to identify structural shocks that affect economic variables, restrictions need to be

imposed on the parameters of structural vector autoregressive (SVAR) models. Economic theory

is the primary source of such restrictions. However, only over-identifying restrictions can be

tested with statistical methods which limits the statistical validation of many just-identified SVAR

models. In this study, Bayesian inference is developed for SVAR models in which the structural

parameters are identified via Markov-switching heteroskedasticity. In such a model, restrictions

that are just-identifying in the homoskedastic case, become over-identifying and can be tested.

A set of parametric restrictions is derived under which the structural matrix is globally identified

and a Savage-Dickey density ratio is used to assess the validity of the identification conditions.

For that purpose, a new probability distribution is defined that generalizes the beta, F, and

compound gamma distributions. As an empirical example, monetary models are compared using

heteroskedasticity as an additional device for identification. The empirical results support models

with money in the interest rate reaction function.
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1. Introduction

A central problem in structural vector autoregressive (SVAR) analysis is the identification of the

structural parameters or, equivalently, the identification of the structural shocks of interest. The

identifying assumptions are often controversial. In order to avoid imposing unnecessarily many

restrictions, typically only just-identifying restrictions are formulated. In that case the data are

not informative about the validity of the restrictions and they cannot be tested with statistical

methods. Moreover, even if over-identifying restrictions are imposed, they can only be tested

conditionally on a set of just-identifying restrictions. This state of the art has led some researchers

to extract additional identifying information from the statistical properties of the data. Notably

heteroskedasticity and conditional heteroskedasticity of the reduced form residuals have been

used in this context. Using such additional information may enable the researcher to make the

data speak on the validity of restrictions that cannot be tested in a conventional framework.

One model that has been used repeatedly in applied studies lately to capture heteroskedasticity

is based on a latent Markov process that drives the changes in volatility. The model was first

proposed by Lanne, Lütkepohl & Maciejowska (2010) for SVAR analysis with identification

through heteroskedasticity and it was further developed by Herwartz & Lütkepohl (2014). The

SVAR model with Markov-switching heteroskedasticity (SVAR-MSH) is in widespread use (see,

e.g., Netšunajev (2013), Lütkepohl & Netšunajev (2014, 2017), Lütkepohl & Velinov (2014), Velinov

& Chen (2015), Chen & Netšunajev (2017) and (Kilian & Lütkepohl, 2017, Chapter 14)). Some

Bayesian methodology has been developed for its analysis by Kulikov & Netšunajev (2013, 2017),

Lanne & Luoto (2016) and Woźniak & Droumaguet (2015). Apart from Woźniak & Droumaguet

(2015), all Bayesian approaches base inference for these models on draws from the posterior of the

reduced form parameters and transform this output into the posterior draws of the structural

model identified through heteroskedasticity. Hence their methodology can only be used to

generate posterior draws for just-identified structural parameters which limits its applicability

when over-identifying restrictions are of interest. Woźniak & Droumaguet (2015) focus on a

locally identified SVAR-MSH model and develop methods for drawing from the posterior of the

structural parameters. The posterior distribution of the parameters of a locally identified model

is multimodal, however, which allows a statistical model comparison, but severely limits the

analysis of the structural parameters.
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In the present study, a full Bayesian analysis framework is presented based on a globally

identified SVAR-MSH model that facilitates both of the objectives mentioned above. The main

additional contributions to the SVAR-MSH literature for identification through heteroskedasticity

are as follows: (1) A set of parametric restrictions for global identification of the model is derived

and the model is set up in an identified form such that the data become informative on the

conditions required for identification through heteroskedasticity. Moreover, the model setup

facilitates the Bayesian estimation of the structural parameters. (2) A procedure for investigating

the restrictions for unique identification of the structural parameters based on a Savage-Dickey

density ratio (SDDR) is proposed. For that purpose, a new probability distribution is defined

that generalizes the beta, F, and compound gamma distributions. Thereby a Bayesian statistical

procedure is obtained for investigating global identification of the SVAR-MSH model. A SDDR

can also be used for assessing the heteroskedasticity of the structural shocks. (3) A fast Markov

Chain Monte Carlo (MCMC) sampler is developed for the posterior distribution of the structural

parameters and a method for computing the marginal data density (MDD) is provided which

facilitates a full Bayesian model selection.

The methods are illustrated by applying them for an empirical analysis of the role of a Divisia

money aggregate in a monetary policy reaction function. In a frequentist SVAR analysis, Belongia

& Ireland (2015) find support for the hypothesis that Divisia monetary aggregates are important

variables in the monetary policy rule. In their conventional SVAR models without accounting

for heteroskedasticity they can only test over-identifying restrictions to validate their hypotheses.

Using Belongia & Ireland (2015) as a benchmark, the Bayesian methods developed in the current

study for the SVAR-MSH model are applied for a broader statistical analysis of the identifying

restrictions even for models that are not identified in Belongia & Ireland’s framework. We find

evidence that a money aggregate is an important factor determining the monetary policy.

The remainder of this study is organized as follows. The next section presents the basic model

framework and derives conditions for global identification of the structural parameters. Section 3

discusses the prior assumptions used for the structural parameters. The SDDR procedure for

investigating the conditions for global identification of the structural parameters obtained from

the volatility model is presented in Section 4 and the empirical illustration is discussed in Section 5.

Conclusions follow in Section 6 and, finally, the computational details of the Gibbs sampler and
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the estimation of the marginal data densities are presented in Appendix A, while Appendix B

contains more details on the new distribution used in the SDDR procedure. Additional empirical

results on the precision of our estimates are presented in Appendix C.

2. Identified Heteroskedastic Structural Vector Autoregressions

2.1. The Model

In this section, a structural VAR model is introduced for the N-dimensional vector of observable

variables yt in which the structural shocks are conditionally heteroskedastic. The structural-form

model is given by

A0yt = µ + A1yt−1 + · · · + Apyt−p + ut, (1)

where the structural matrix A0 is assumed to be nonsingular with unit diagonal, denoted by

diag(A0) = ıN, where ıN is an N-dimensional vector of ones, and A0 does not have other

unit elements. In other words, there is one equation for each variable. This assumption is

not restrictive for standard macroeconomic models, but it helps simplifying the identification

conditions presented later on. The quantity µ is an N-dimensional vector of constant terms,

A1, . . . ,Ap denote N ×N autoregressive slope coefficient matrices, and ut is a contemporaneously

and serially uncorrelated structural error term. The variances of the structural errors are assumed

to change over time according to a latent process st, t ∈ {1, . . . ,T}, and the variance of uit conditional

on the state st is denoted as λst,i. Moreover, conditionally on st, the structural errors are assumed

to be normally distributed with mean vector zero and diagonal covariance matrix,

ut|st ∼ N(0,diag(λst)), t ∈ {1, . . . ,T}, (2)

where λst = (λst,1, . . . , λst,N)′ is an N-dimensional vector of variances associated with volatility

state st and diag(λst) denotes a diagonal matrix with main diagonal given by λst . Later in this

section, the heteroskedasticity of the data is used to identify the structural matrix A0.

The process st for each t can take a discrete number of values, st ∈ {1, . . . ,M}. In the current

study it is assumed to be an unobservable Markov process that defines a Markov-switching model

as proposed by Lanne et al. (2010). In principle, the uniqueness restrictions and their Bayesian

verification procedure can also be used for other types of processes st that describe the volatility
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changes.

The properties of the Markov process, st, considered in the current study are fully governed

by an M ×M matrix of transition probabilities P. The (i, j)th element of P is the probability of

switching to state j at time t, given that at time t− 1 the process is in state i, pi j = Pr
[
st = j|st−1 = i

]
,

for i, j ∈ {1, . . . ,M}, and
∑M

j=1 pi j = 1. Since the hidden Markov process has M states, also M vectors

of the state-specific structural error variances, λ1, . . . , λM, have to be estimated. Such a flexible MS

heteroskedastic process offers a range of possibilities of modeling particular patterns of changes

in volatility in economic data (see Sims, Waggoner & Zha, 2008; Woźniak & Droumaguet, 2015).

The heteroskedastic SVAR model presented so far allows for the statistical identification of all

the N2
− N free elements of the structural matrix A0, as will be demonstrated shortly. Therefore,

the matrix A0 can be estimated in a heteroskedastic structural form model given by equations (1)

and (2). Any further restrictions imposed on the matrix A0 over-identify the system, and thus, the

data are informative about such restrictions.

2.2. Identifying A0 via Heteroskedasticity

To see how statistical identification of the model is obtained via heteroskedasticity, it is useful to

study the implied reduced-form model and its relation to the structural form. The reduced form

of the model is obtained by multiplying the structural-form model in equation (1) by A−1
0 from the

left. The reduced-form residuals are εt = A−1
0 ut such that, for a uniquely determined matrix A0,

the structural errors are obtained from the reduced-form residuals as A0εt = ut. Suppose that the

M covariance matrices of the reduced-form residuals are denoted by Σm, m ∈ {1, . . . ,M}. Under the

current assumptions, where only the variances of the structural errors are state dependent while

the VAR structure is time-invariant, there exists a decomposition

Σm = A−1
0 diag (λm) A−1′

0 , m ∈ {1, . . . ,M}. (3)

The following proposition shows that for M ≥ 2, the matrix A0 is unique if there is enough

heterogeneity in the changes of the variances.

Proposition 1. Let Σm, m ∈ {1, . . . ,M} and M > 1, be positive definite matrices that can be

decomposed as in equation (3). Then A0 is unique iff ∀ i, j ∈ {1, . . . ,N}, i , j, there exists an
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m ∈ {2, . . . ,M} such that λm,i/λ1,i , λm, j/λ1, j.1

Proof. Given that Σm, m ∈ {1, . . . ,M}, are positive definite symmetric, the same is true for the

inverses and there exists a decomposition

Σ−1
1 = CC′, Σ−1

m = C diag(ωm) C′, m ∈ {2, . . . ,M}, (4)

where ωm = (ωm,1, . . . , ωm,N)′ is an N × 1 vector of positive numbers such that ωm,n = λm,n/λ1,n.

It follows from Proposition 1 of Lanne et al. (2010) that C = [ci j] is unique up to column sign

changes and column ordering iff ∀ i, j ∈ {1, . . . ,N}, i , j, there exists an m ∈ {2, . . . ,M} such that

ωm,i , ωm, j. Defining A′0 = C diag(1/c11, . . . , 1/cNN) so that it has unit diagonal, A0 is unique iff

∀ i, j ∈ {1, . . . ,N}, i , j, there exists an m ∈ {2, . . . ,M} such that ωm,i , ωm, j. Replacing C by

A′0 diag(c11, . . . , cNN) in (4) and taking inverses, the latter condition is seen to be equivalent to the

condition for uniqueness of A0 given in Proposition 1. Note that unlike C, the column (and row)

signs of A0 are determined by the unit main diagonal and, hence, this type of non-uniqueness

of C does not affect A0. Likewise, the rows of this matrix are fixed by the requirement of a unit

diagonal because there are no other unit elements that would allow a permutation of rows of A0. �

Proposition 1 implies that A0 is globally identified if the conditions of the proposition are

satisfied. This fact is an advantage of our model setup relative to the typical setup used in the

related literature on identification via heteroskedasticity. In that literature, a so-called B-model is

typically used which results in locally identified shocks, which are unique up to sign and ordering

only (see Lütkepohl, 2005). More precisely, the structural errors ut are assumed to be related to

the reduced-form residuals εt as

ut = B−1εt

such that we get a reduced-form covariance decomposition

Σ1 = BB′, Σm = B diag(λ∗m) B′, m = 2, . . . ,M. (5)

The matrix B has a direct interpretation as the matrix of impact effects of the shocks on the variables.

1Note that the standardization of the relative variances by the variances from the first state could be changed to
variances from any other state. Our results do not depend on this choice.
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No restrictions are imposed on the main diagonal of B and local uniqueness of B is obtained by

normalizing the variances of the structural shocks associated with the first volatility state, that is,

ut|(st = 1) ∼ N(0, IN). The conditions for local uniqueness of this decomposition for any number

of states M are derived in Lanne et al. (2010).

While such local identification results are sufficient for asymptotic theory in a frequentist

framework, they are not convenient for Bayesian analysis because they complicate simulating

posterior distributions. Thus, the setup of Proposition 1, with restricted diagonal elements of A0,

is particularly useful for Bayesian analysis. Moreover, estimation and inference of the unrestricted

parameters of the matrix A0 in the current model is separated from the scaling problem associated

with the label switching of heteroskedastic states. In effect, the likelihood function and the

posterior distribution have more regular shapes with fewer modes (see Woźniak & Droumaguet,

2015, for the detailed analysis of the impact of label switching of the heteroskedastic states on the

shape of the posterior distribution).

The main condition of Proposition 1 is that there has to be some heterogeneity in the volatility

changes. For example, if there are just two volatility states and all variances change proportionally,

that is, for some scalar c, λ1 = cλ2, then λ2,i/λ1,i = λ2, j/λ1, j, so that the conditions of Proposition 1

are not satisfied. On the other hand, Proposition 1 implies that full identification may be obtained

even if one of the structural shocks is homoskedastic. For example, in a two-dimensional model

the conditions of Proposition 1 are satisfied if the first variance components λ1,1 and λ2,1 are equal

(λ1,1 = λ2,1) as long as λ1,2 and λ2,2 are distict.

Conditions for full identification could be formulated equivalently for parametrisation (5).

In fact, instead of normalizing the diagonal elements of A0, one could normalize the diagonal

elements of B to obtain global identification. Such a normalization amounts to assuming that the

kth shock has unit instantaneous impact on the kth variable. It is used by Stock & Watson (2016)

who list several of its advantages. However, a potential drawback is that such a normalization

requires knowledge that the kth shock has a nonzero impact effect on the kth variable which may

not be obvious in some situations. Thus, we prefer to work with a normalized A0 matrix.

The advantage of the conditions given in Proposition 1 for the variances in parametrization (3)

is that they can be investigated by statistical methods because the data are informative about them.

If the conditions for full identification in Proposition 1 are not satisfied, the changing volatility
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may still offer some additional identifying information that implies sufficient curvature in the

likelihood and, hence, in the posterior, to enable the data to discriminate between competing

economic models.

Note that the identification of the matrix A0 using heteroskedasticity is only a statistical

identification that allows to estimate all the elements of this matrix without imposing any

further restrictions on the model. This method allows to fully identify the structural parameters.

Therefore, the matrices Ai for i ∈ {0, . . . , p} can be used to compute the structural impulse response

functions. However, the structural-form errors do not have economic interpretations as such. In

order to call any of the structural shocks, say a monetary policy shock, economic reasoning needs

to be imposed. Still, it is useful to exploit such an identification of the shocks as it opens up

the possibility for testing any further restrictions imposed on the model on the basis of economic

considerations.

2.3. Imposing Restrictions on the Matrix A0

In order to obtain a flexible framework that facilitates the estimation of models with unrestricted or

restricted matrix A0, the approach proposed by Amisano & Giannini (1997), used also by Canova

& Pérez Forero (2015) is helpful. Let the r× 1 vector α collect all of the unrestricted elements of the

matrix A0 column by column. Then we impose restrictions on the structural matrix A0 by setting

vec (A0) = Qα + q, (6)

where Q and q are respectively an N2
× r matrix and an N2

× 1 vector. Typically the elements of Q

and q will be zeros and ones if zero restrictions are imposed on the off-diagonal elements of A0 in

addition to the restrictions due to normalizing the main diagonal.

3. Prior Distributions for Bayesian Analysis

To facilitate the inference on the restrictions for the uniqueness of the matrix A0 with ones on the

main diagonal we estimate state-specific variances of the structural shocks in a parametrization

that includes the variances of the structural shocks in the first state, λ1, and M−1 vectors of relative

variances, ωm = [λm,i/λ1,i], for states m ∈ {2, . . . ,M}. Specifying independent inverse gamma 2

distributions (IG2) as prior distributions for theωms, given our assumptions about the distribution
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of the error terms, leads to the full conditional posterior distributions for these parameters being of

the same type.2 This setup is the basis for feasible computations of the SDDRs for the uniqueness

conditions that are specified for relative variances. The choice of the parametrization, marginal

prior and full conditional posterior distributions for the ωms makes our framework general. Note

that it does not dependent on the inference on the latent state variable st. The details of Bayesian

assessment of the uniqueness restrictions are given in Section 4.

The variances of the structural shocks in the first state, λ1,n, are a priori independently

distributed as IG2 with parameters aλ and bλ set to 1 which makes the distribution quite spread

out over a wide range. In fact, under this assumption the first and second moments of λ1,n may

be infinite which limits the impact of the prior distribution on the posterior distribution.

The prior of each of the relative variances of structural shocks ωm,n, for m ∈ {2, . . . ,M}, follows

independently an IG2 distribution with parameters aω = 1 and bω = aω + 2, which ensures that

the mode of the prior distribution is located at 1. This assumption implies that the state-specific

variances for states 2, . . . ,M have the same prior distributions similar to Woźniak & Droumaguet

(2015). At the mode of the prior distribution there is no heteroskedasticity and hence the rows of

A0 are not uniquely identified.

The prior distribution for the unrestricted elements of the matrix A0 collected in the vector

α, conditionally on hyper-parameter γα, is a normal distribution with mean vector zero and a

diagonal covariance matrix γαIr. To avoid making the prior more restrictive for some elements of

A0 than for others one could make sure that the variables entering the model have similar orders

of magnitude. In macro models this is typically not a problem because many variables enter in

logs or rates of change. The hyper-parameter γα is interpreted as the level of shrinkage imposed

on the structural parameters α and is also estimated. For that purpose, we define the marginal

prior distribution of γα to be IG2 with parameters a and b set to 1.

The conditional prior distribution of the variable-specific constant term, µn, n ∈ {1, . . . ,N},

given a constant term specific hyper-parameter γµ, is a univariate normal distribution with mean

zero and variance γµ. The marginal prior distribution for γµ is IG2 with parameters a and b set to

1.

To specify the prior distribution of the structural VAR slope parameters β = [A1, . . . ,Ap], let

2For the definition of the distribution, its properties, and the random numbers sampling algorithm see Bauwens,
Richard & Lubrano (1999, Appendix B).
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P =
[
D 0N×N(p−1)

]
, where D is an N × N diagonal matrix. Typically the diagonal elements of the

matrix D are zeros for stationary variables and ones for persistent variables, as in the Minnesota

prior, but they could also be other known quantities. Then the conditional prior distribution

of the equation-specific autoregressive parameters, βn = [A1.n, . . . ,Ap.n], where Al.n is the nth

row of matrix Al for l ∈ {1, . . . , p}, is a pN-variate normal distribution. It is conditioned on an

autoregressive hyper-parameter γβ and the nth row of A0, denoted by A0.n. Its prior mean is equal

to A0.nP and its prior covariance matrix is equal to γβH. The diagonal matrix H has the main

diagonal set to the vector
(
(12)−1ı′N, (2

2)−1ı′N, . . . , (p
2)−1ı′N

)′
, and thus it allows to impose a decaying

pattern of prior variances for the subsequent lags as in the Minnesota prior of Doan, Litterman &

Sims (1983). The prior distribution for γβ is IG2 with parameters a and b set to 1.

Finally, denote by Pm the mth row of the transition matrix P. The prior distributions for the

rows of the transition probabilities matrix, Pm, are set independently for each row and are given by

M-dimensional Dirichlet distributions (DM) as in Woźniak & Droumaguet (2015). The parameters

of these distributions, em,k, for k ∈ {1, . . . ,M}, are all set to 1 except the parameters corresponding

to the diagonal elements of the matrix P of transition probabilities, denoted by em,m, which are set

to 10. This choice expresses the prior assumption that the volatility states are persistent over time.

To summarize, the prior specification takes the following form:

p(θ) = p
(
γα

)
p
(
γµ

)
p
(
γβ

)
p
(
α|γα

)  M∏
m=1

p (Pm)


 N∏

n=1

p
(
µn|γµ

)
p
(
βn|A0.n, γβ

)
p (λ1.n)

 M∏
m=2

p (ωm.n)


 ,

(7)
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where the specific prior distributions are:

µn|γµ ∼ N
(
0, γµ

)
β′n|A0.n, γβ ∼ NpN

(
A0.nP, γβH

)
α|γα ∼ Nr

(
0r, γαIr

)
λ1,n ∼ IG2

(
aλ, bλ

)
ωm̃,n ∼ IG2

(
aω, bω

)
γα ∼ IG2

(
a, b

)
γµ ∼ IG2

(
a, b

)
γβ ∼ IG2

(
a, b

)
Pm ∼ DM

(
em1, . . . , emM

)
for n ∈ {1, . . . ,N}, m ∈ {1, . . . ,M} and m̃ ∈ {2, . . . ,M}.

The above choice of the prior distributions is practical. Priority is given to distributions that

result in convenient and proper full conditional posterior distributions, and therefore, allow for

the derivation of an efficient Gibbs sampler that is described in Appendix A. The hierarchical prior

distributions for the constant terms, autoregressive slope parameters, and the structural matrix

constitute a flexible framework in which the impact of the choice of the hyper-parameters of the

prior distribution on inference is reduced, in line with Giannone, Lenza & Primiceri (2015).

4. Bayesian Assessment of Identification Conditions and Heteroskedasticity

In this section, we propose to use the Savage-Dickey Density Ratio (SDDR) (see Verdinelli &

Wasserman, 1995, and references therein) to verify the identification conditions for the structural

model considered in this paper. The SDDR is one of the methods to compute a Bayes factor. The

Bayes factor itself, under the assumption of equal prior probabilities of the competing models, is

interpreted as a posterior odds ratio of the model with restrictions versus the unrestricted model.

Thus, a large value of the SDDR is evidence in favor of the restriction considered and a small

SDDR provides evidence against the restriction. The identification requires sufficient variability

in the conditional variances of the structural shocks. The uniqueness of the structural matrix A0
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can be assessed by verifying the equality restrictions for specific relative variances, such as:

ωm,i = ωm, j. (8)

If the restriction above holds for some i and j for all m ∈ {2, . . . ,M}, then the ith structural shock

cannot be distinguished from the jth structural shock and the corresponding rows of matrix A0 are

not uniquely identified.

Of course, identification through heteroskedasticity requires that there are at least two distinct

volatility states. In other words, for heteroskedasticity of structural shock i, there must be two

distinct variances λm,i, m ∈ {1, . . . ,M}, which translates to the requirement that at least one of the

ωm,i, m ∈ {2, . . . ,M} is not equal to one. Thus, the homoskedasticity of the ith structural shock is

assessed by verifying restrictions

ω2,i = · · · = ωM,i = 1. (9)

Both of the restrictions (8) and (9) can be verified as the data are informative about these features.

4.1. Identification Conditions

We rewrite the restriction in equation (8) as

ωm,i

ωm, j
= 1 (10)

and use the SDDR to evaluate its validity. The SDDR for the restriction given in equation (10) is a

ratio of the marginal posterior distribution to the marginal prior distribution of the left-hand side

of the restriction both evaluated at the restricting value. Formally,

SDDR =
p
(
ωm,i
ωm, j

= 1|Y
)

p
(
ωm,i
ωm, j

= 1
) , (11)

where Y = (y1, . . . , yT) denotes the data. Small values of the SDDR provide evidence against the

ratio ωm,i
ωm, j

being 1. Of course, this raises the question how small the SDDR has to be to indicate

clear evidence against the restriction. Kass & Raftery (1995) discuss a scale for evaluating the size

of the SDDR. We will use that scale in our empirical illustration in Section 5.
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The SDDR is particularly suitable for the verification of the identification conditions because

it does not require the estimation of the restricted models. Moreover, the SDDR can be easily

computed as long as the densities of the full conditional posterior and the prior distributions

of ωm,i
ωm, j

are of known analytical form. We propose a new distribution that is useful for such

computations in the context of IG2 distributed relative variances of the structural shocks.

Definition 1 (Inverse Gamma 2 Ratio distribution). Let x and y be two strictly positive independent

random variables distributed according to the following IG2 distributions: x ∼ IG2 (a1, b1) and

y ∼ IG2 (a2, b2), where a1, a2, b1, and b2 are positive real numbers and the probability density

function of the inverse gamma 2 distribution is given by:

fIG2 (x; a, b) = Γ
( a
2

)−1
(

b
2

) a
2

x−
a+2

2 exp
{
−

1
2

b
x

}
, (12)

where Γ(·) denotes the gamma function. Then, the random variable z, defined as z = x/y, follows

the Inverse Gamma 2 Ratio (IG2R) distribution with probability density function given by:

fIG2R (z; a1, a2, b1, b2) = B
(a1

2
,

a2

2

)−1
b

a1
2

1 b
a2
2

2 z
a2−2

2 (b1 + b2z)−
a1+a2

2 , (13)

where B(·, ·) denotes the beta function. �

It is easy to show that the moments of the Inverse Gamma 2 Ratio distribution are as follows.

Moments of theIG2Rdistribution. The expected value and the variance of theIG2R–distributed

random variable z are respectively given by

E[z] =
b1

b2

a2

a1 − 2
for a1 > 2, (14)

Var[z] =
2
(

b1
b2

)2
a2(a1 + a2 − 2)

(a1 − 2)2(a1 − 4)
for a1 > 4. (15)

In general, the kth order non-central moment of z is given by

E
[
zk

]
=

(
b1

b2

)k B
(

a1−2k
2 , a2+2k

2

)
B
(

a1
2 ,

a2
2

) for a1 > 2k. (16)

�
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The density given above generalizes the F distribution that is nested within our distribution

family by setting a1 = b1 and a2 = b2, as well as the compound gamma distribution derived by

Dubey (1970) that is parametrized by three parameters a1/2, a2/2, and b1/b2.3 For completeness of

the derivations, Appendix B defines the Inverse Gamma 1 Ratio distribution of a random variable

that is defined as a ratio of two independent inverse gamma 1-distributed random variables. The

probability density function as well as the moments of that distribution are also established. These

results may facilitate the computations if one prefers to parametrize the model in terms of the

conditional standard deviations instead of conditional variances λ and ω.

In Section 3 it was assumed that the parameters ωm,i and ωm, j are a priori independently

distributed as IG2. In effect, the denominator of the SDDR from equation (11) can be computed

by simply evaluating the newly proposed distribution with parameters a1 = a2 = aω = 1 and

b1 = b2 = bω = 3 at value z = 1.

In Appendix A it is shown that, given the data, realizations of the Markov process, and other

parameters, the relative variances are independently IG2 distributed. We use this feature to

compute the numerator of the SDDR, apply the Rao-Blackwell tool of Gelfand & Smith (1990), and

obtain

p̂
(
ωm,i

ωm, j
= 1

∣∣∣∣Y)
=

1
S

S∑
s=1

fIG2R

(
1; a(s)

i,m, a
(s)
j,m, b

(s)
i,m, b

(s)
j,m

)
, (17)

where
{
a(s)

i,m, a
(s)
j,m, b

(s)
i,m, b

(s)
j,m

}S

s=1
is a sample of S draws from the posterior distribution defined for

n ∈ {i, j} as follows:

a(s)
n,m = aω + T(s)

m , (18a)

b(s)
n,m = bω +

(
λ(s)

1,n

)−1
T∑

t=1

(
A(s)

0,nyt − µ
(s)
n − A(s)

1,nyt−1 − · · · − A(s)
p,nyt−p

)2
, (18b)

where T(s)
m is the number of observations classified as belonging to the mth state in the sth iteration

of the sampling algorithm.

According to the conditions stated in Section 2, the jth structural shock may not be identified

3Further generalizations of the F, Beta, and compound gamma distributions were proposed by McDonald (1984) and
McDonald & Xu (1995). The latter work is particularly relevant for our developments as it proposes the generalizations
of the compound gamma distributions parametrized by four and five parameters. Their distributions explicitly nest
the compound gamma distribution, however, none of them nests our Inverse Gamma 2 Ratio or the Inverse Gamma 1
Ratio distribution.
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if all the ratios ωm,i
ωm, j

are equal to 1. Hence, to establish possible identification problems, we have

to investigate whether ωm,i
ωm, j

= 1 holds for all m ∈ {2, . . . ,M}. The SDDR can be extended for that

purpose. Let Ui. j denote the event that ωm,i
ωm, j

= 1 holds for m ∈ {2, . . . ,M}. In such a case, the

denominator of the SDDR forUi. j is computed simply as:

p̂
(
Ui. j

)
=

M∏
m=2

p
(
ωm,i

ωm, j
= 1

)
= fIG2R

(
1; aω, aω, bω, bω

)M−1
, (19)

where the last equality comes from the assumption of the invariance of the prior distribution with

respect to m. The SDDR’s numerator is computed as:

p̂
(
Ui. j

∣∣∣∣Y)
=

1
S

S∑
s=1

M∏
m=2

fIG2R

(
1; a(s)

i,m, a
(s)
j,m, b

(s)
i,m, b

(s)
j,m

)
. (20)

The computations of the SDDRs presented above, given the output from the MCMC estimation,

are fast and accurate, which emphasizes the advantages of the current setup. The verification of

the identification conditions with the SDDRs requires the prior and full conditional posterior

distributions for the relative variances of the structural shocks being IG2- or IG1-distributed.

The setup can be further generalized by assuming hierarchical prior distributions for the relative

variances, ωm,n, and is independent on how the state variable st is estimated. It is, therefore, easily

applicable also to other regime-dependent heteroskedastic processes such as those considered

by Woźniak & Droumaguet (2015) and Markov-switching models with time-varying transition

probabilities as considered by Sims et al. (2008) and Chen & Netšunajev (2017).

Having a procedure for verifying the identification conditions emphasizes the benefits of

applying Bayesian inference in this paper. Note that there does not exist a general, valid frequentist

test of such conditions. In Bayesian inference the estimation of a model that is not identified does

not pose any theoretical or practical obstacles. Therefore, using a standard way of verifying

hypotheses, such as through the SDDR, is straightforward. Still, verification of the uniqueness is

essential to understand the SVAR model identified through heteroskedasticity.

4.2. Homoskedasticity

If the identification conditions are confirmed, then heteroskedasticity is also established as a by-product.

However, one may also be interested in testing the shocks individually or jointly for heteroskedasticity.
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In a similar way as the SDDR can be used to verify the identification conditions, it can also be

used to investigate the heteroskedasticity of the structural shocks. Denote by Hi the event that

the restrictions ω2,i = · · · = ωM,i = 1 hold, which is the condition for the homoskedasticity of the

ith shock. The SDDR for assessing this hypothesis is given by

SDDR =
p (Hi|Y)
p (Hi)

. (21)

The elements of the SDDR in the equation above can be computed easily by

p̂ (Hi) =

M∏
m=2

p
(
ωm,i = 1

)
= fIG2

(
1; aω, bω

)M−1
(22)

and

p̂
(
Hi

∣∣∣Y)
=

M∏
m=2

p
(
ωm,i = 1|Y

)
=

1
S

S∑
s=1

M∏
m=2

fIG2

(
1; a(s)

i,m, b
(s)
i,m

)
, (23)

where a(s)
i,m and b(s)

i,m are given in equation (18).

The condition for joint homoskedasticity of several structural shocks can be assessed as well.

Let J be a set of K ≤ N indicators that define the considered conjuction of homoskedasticity

conditions: J =
{
ji ∈ {1, . . . ,N} for i ∈ {1, . . . ,K} : H j1 ∩ · · · ∩ H jK

}
. Then, the joint homoskedasticity

condition is denoted byH = H j1∩· · ·∩H jK and the elements of the SDDR are computed as follows:

p̂ (H) =
∏
i∈J

M∏
m=2

p
(
ωm,i = 1

)
= fIG2

(
1; aω, bω

)K(M−1)
(24)

and

p̂
(
H

∣∣∣Y)
=

∏
i∈J

M∏
m=2

p
(
ωm,i = 1|Y

)
=

1
S

S∑
s=1

∏
i∈J

M∏
m=2

fIG2

(
1; a(s)

i,m, b
(s)
i,m

)
. (25)

All the computations in this section are facilitated by the fact that ωm,n are a priori as well as

conditionally a posteriori independent for m ∈ {2, . . . ,M} and n ∈ {1, . . . ,N}. The proposed Bayesian

SDDR for assessing homoskedasticity can be computed easily given the sample of draws from

the posterior distribution and it does not pose any significant theoretical challenges (see, e.g.,

Frühwirth-Schnatter, 2006).
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Figure 1: Time series data taken from Belongia & Ireland (2015).

5. Empirical Illustration

5.1. Background

In this section we illustrate our Bayesian procedures by applying them to SVAR models that

were considered by Belongia & Ireland (2015) to study the role of Divisia monetary aggregates

in monetary policy models. These authors find statistical support for the importance of Divisia

monetary aggregates in the monetary policy rule. They document these relationships using Divisia

measurements of several alternative monetary aggregates.

In this paper, we focus on the particular role of the money aggregate M2 that, when properly

represented by a Divisia measure, has the capability of explaining aggregate fluctuations to a

large extent, as argued by Barnett (2012). For that purpose, we review a number of identification

schemes for the SVAR model some of which have been considered by Belongia & Ireland (2015).

We build VAR models for the following six quarterly U.S. variables: pt - log of GDP deflator, gdpt

- log of real GDP, cpt - a measure of commodity prices defined as the spot index compiled now by

the Commodity Research Bureau and earlier by the Bureau of Labor Statistics, FFt - federal funds

rate, Mt - M2 Divisia monetary aggregate to measure the flow of monetary services and mt its

logarithm, uct - user-cost measure, provided by Barnett et al. (2013), that is the price dual to the

Divisia monetary aggregate Mt. These variables in exactly this order are collected in the vector

yt, i.e., y′t = (pt, gdpt, cpt,FFt,mt,uct). The series are plotted in Figure 1 for the sample period from
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Table 1: Competing Monetary Policy Models

Unrestricted Recursive Scheme

1 α12 α13 α14 α15 α16
α21 1 α23 α24 α25 α26
α31 α32 1 α34 α35 α36
α41 α42 α43 1 α45 α46
α51 α52 α53 α54 1 α56
α61 α62 α63 α64 α65 1





1 0 0 0 0 0
α21 1 0 0 0 0
α31 α32 1 0 0 0
α41 α42 α43 1 0 0
α51 α52 α53 α54 1 0
α61 α62 α63 α64 α65 1


Taylor Rule with Money Taylor Rule without Money Money-Interest Rate Rule

1 0 0 0 0 0
α21 1 0 0 0 0
α31 α32 1 α34 α35 α36
α41 α42 0 1 α45 0
−1 α52 0 0 1 α56
−α65 0 0 α64 α65 1





1 0 0 0 0 0
α21 1 0 0 0 0
α31 α32 1 α34 α35 α36
α41 α42 0 1 0 0
−1 α52 0 0 1 α56
−α65 0 0 α64 α65 1





1 0 0 0 0 0
α21 1 0 0 0 0
α31 α32 1 α34 α35 α36
0 0 0 1 α45 0
−1 α52 0 0 1 α56
−α65 0 0 α64 α65 1


Note: Vector of variables at time t is y′t = (pt, gdpt, cpt,FFt,mt,uct). The fourth row of each matrix specifies
the monetary policy reaction function and identifies the fourth shock as the monetary policy shock.

1967Q1 - 2013Q4.4

5.2. Alternative Identification Schemes

Assuming that there is sufficient heterogeneity in the covariance structure of the VAR model, a

full set of shocks can be identified by heteroskedasticity. No further restrictions are needed for

A0 in this case. In the following we refer to the model as unrestricted if it is identified purely by

heteroskedasticity (see the first scheme in Table 1).

A standard conventional identification scheme is a recursive model motivated by the work

of Bernanke & Blinder (1992), Sims (1986, 1992) and others (see the second scheme in Table 1).

It just-identifies the system in the conventional homoskedastic case. In the heteroskedastic case

instead, the zero restrictions above the main diagonal are over-identifying and can be tested. This

model identifies the monetary policy shock by imposing restrictions on the fourth row of the

matrix A0 such that the interest rate reacts to contemporaneous changes in the price level, output,

and commodity prices.

Note that the fourth equation of our model represents the interest rate reaction function. In

a monetary model the interest rate equation is typically set up as a Taylor rule which assumes

4We thank Belongia & Ireland for sharing their data set with us.
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that the interest rate reacts to inflation and the output gap. In our model comparison we include

a benchmark model inspired by Leeper & Roush (2003) which is also discussed by Belongia &

Ireland (2015). In Table 1 the identification of the A0 matrix from this work is described as Taylor

Rule with Money. In addition to standard Taylor rule variables such as output gap and inflation,

the interest rate equation also contains the Divisia monetary aggregate, meaning that monetary

policy reacts to changes in the money stock. Additionally, this model identifies the fifth and sixth

shocks as money demand and money supply shocks, respectively. The restrictions imposed on

the last two rows of A0 over-identify the model and, hence, they can be tested in a conventional

setting as well as in our heteroskedastic setting.

Belongia & Ireland are specifically interested in the role of the divisia money variable in the

interest rate reaction function. Therefore they test two sets of over-identifying restrictions on the

fourth row of A0. First, they exclude the money aggregate from the Taylor rule by imposing

the restriction α45 = 0. This scheme is indicated as Taylor Rule without Money in Table 1.

It corresponds to the standard monetary policy reaction function of Taylor (1993). Another

specification considered by Belongia & Ireland (2015) is denoted as Money-Interest Rate Rule in

Table 1. It assumes that the interest rate reacts contemporaneously only to the money aggregate.

Such a rule was advocated by Leeper & Roush (2003) and used also in Leeper & Zha (2003) and

Sims & Zha (2006). The restrictions α41 = α42 = 0 are over-identifying in this model and they were

not rejected by Belongia & Ireland (2015).

There are some major differences in the comparison of the models proposed in the present

paper and the analysis conducted by Belongia & Ireland (2015). First of all, Belongia & Ireland did

not allow for heteroskedasticity of the structural shocks. Consequently, they could only test the

over-identifying specifications conditional on a set of just-identifying restrictions. Thus, their tests

of the restrictions in the fourth row of A0 are conditional on restrictions imposed in the other rows

of A0. By using the heteroskedasticity of the structural shocks we can test not only the restrictions

imposed by Belongia & Ireland, but we can also test the restrictions in the fourth row and leave

all other rows unrestricted because in the heteroskedastic case any of the zeros imposed on the

matrix A0 over-identify the model and, thus, the data are informative about them.

In order to investigate the importance of the money aggregate in the interest rate equation, we

estimate the models mentioned above with heteroskedastic structural shocks. We estimate models
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with the full set of restrictions as presented in Table 1 and also test models in which all of the

rows apart from the fourth row are unrestricted, as well as models where restrictions are imposed

only on the last three rows which correspond to the monetary system. Finally, all of the models

are confronted with a model solely identified by heteroskedasticity in which all the off-diagonal

elements of matrix A0 are estimated without any zero restrictions. Importantly, our approach

allows us to statistically compare alternative monetary policy models that are not nested within

one another. For instance, our Bayes factors allow us to compare the recursive model to each of

the remaining monetary policy models despite the fact that neither of them is nested within the

recursive one.

We fit VAR models of order p = 4, as in Belongia & Ireland (2015), to our full sample of quarterly

data from 1967Q1 - 2013Q4 and also to a reduced sample from 1967Q1 - 2007Q4. Following

Belongia & Ireland (2015), the shorter sample is considered because it excludes the financial crisis

period which could affect the structure of monetary policy in the US and, hence, it might lead to

distortions in our analysis.

5.3. Assessing Heteroskedasticity

We have fitted a two-state Markov process to capture possible changes in the volatility of the

residuals. The estimated variances of the second regime relative to the variances in the first

regime are shown in Table 2 for all the different identification schemes imposed on A0. Thus the

quantities in the table are the estimated elements of ω2. They are all distinct from one, indicating

that the second regime indeed has different variances than regime 1.

The marginal posterior regime probabilities of the second volatility state are depicted in

Figure 2. They show that roughly the first part and the last part of the sample constitute the

second volatility regime and the middle part from the first half of the 1980s to the beginning of

the financial crisis constitute the first volatility regime. There is also a short period around the

change of the millennium which is assigned to the second volatility state in the longer sample.

Since the relative variances of the second volatility state are greater than one, this regime is clearly

a high-volatility state. With respect to the dating and the interpretation the first state resembles

the Greenspan state found by Sims & Zha (2006) while the second one highly resembles the Burns

and Volcker state (see, e.g., Woźniak & Droumaguet, 2015). A similar classification of the volatility

states is also obtained when the model is fitted only to the reduced sample ending in 2007Q4.
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Table 2: Estimated Relative Variances, ω̂2, of Structural Shocks in Heteroskedastic Models

Taylor Rule Taylor Rule Money-
Unrestricted Recursive with Money without Money Interest Rate

Sample period 1967Q1 - 2013Q4

pt 4.268 4.448 4.747 4.193 4.315
(1.081) (1.216) (1.301) (1.160) (1.212)

gdpt 11.115 7.538 7.271 7.705 7.518
(2.920) (2.016) (1.971) (2.183) (2.131)

cpt 7.432 6.913 6.870 5.977 5.936
(1.720) (1.712) (1.717) (1.547) (1.570)

FFt 45.087 33.106 42.774 38.411 37.409
(10.825) (8.270) (10.484) (10.007) (9.839)

mt 7.800 8.995 6.373 7.040 7.171
(1.970) (2.517) (1.673) (1.909) (1.973)

uct 3.806 5.678 5.934 5.760 5.842
(0.991) (1.592) (1.616) (1.586) (1.591)

Sample period 1967Q1 - 2007Q4

pt 3.783 3.916 4.045 4.021 3.961
(1.167) (1.270) (1.216) (1.254) (1.220)

gdpt 9.859 6.884 6.766 7.126 7.197
(3.273) (2.034) (1.991) (2.151) (2.229)

cpt 3.694 3.507 3.485 3.307 3.321
(0.992) (0.959) (0.940) (0.918) (0.921)

FFt 45.560 31.044 38.188 31.209 33.711
(13.908) (8.497) (10.773) (8.892) (9.598)

mt 3.133 2.901 1.931 1.854 1.873
(1.367) (1.375) (0.712) (0.810) (0.756)

uct 2.807 3.214 3.543 3.309 3.706
(0.806) (0.917) (1.008) (0.924) (1.052)

Note: The table reports posterior means and posterior standard deviations – in parentheses – of the
structural shocks’ relative variances, ω2, for the Markov-switching models with two states, M = 2.

Thus, the assignment of states is reasonably similar in both samples and is, hence, not driven

entirely by the potentially higher macroeconomic volatility during the financial crisis.

In Table 2 the posterior standard deviations of the relative variances are also presented. Partly

they are quite large. Therefore one may wonder whether the two estimated volatility states are

really clearly distinct. This question can be answered by our formal statistical tools. In Table 3
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Figure 2: Marginal posterior probabilities of the second state for the best models with Markov-switching
heteroskedasticity with 2 states.

we use SDDRs to assess whether the relative variances are actually 1.5 Note that for our model

with only two volatility regimes (M = 2), the ith structural shock is heteroskedastic if ω2,i , 1. It

turns out that all results for the longer sample show strong support for the relative variances to be

different from 1 which implies heteroskedasticity of all structural shocks. For the shorter sample

the evidence is still strong that at least some of the relative variances are not equal to 1, while

some others may not be different from 1. Apart from the unrestricted model, in all other models

the evidence is strong that at most one shock is homoskedastic and, hence, we may still have full

identification through heteroskedasticity, as discussed in Section 2. In any case, the evidence for

two distinct volatility states is very strong for both samples because, to confirm distinct covariance

matrices in the two states, it is enough that one of the relative variances differs from 1.

5In Appendix C we provide details on the precision of the estimated quantities. All results are sufficiently precise
so as to ensure the qualitative validity of the results.
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Table 3: Natural Logarithms of SDDRs for Assessing Heteroskedasticity

Taylor Rule Taylor Rule Money-
Unrestricted Recursive with Money without Money Interest Rate

Sample period 1967Q1 - 2013Q4

Hypothesis: ω2,i = 1
pt -16.75 -15.14 -15.95 -11.66 -10.72

gdpt -80.55 -36.14 -35.98 -26.93 -29.59
cpt -52.62 -27.78 -31.45 -27.2 -23.63
FFt -541.29 -393.51 -542.65 -406.74 -373.75
mt -40.84 -46.34 -27.77 -33.04 -30.77
uct -12.04 -17.25 -28.34 -21.36 -19.65

Hypothesis: ω2,i = 1 for i = 1, . . . ,N
-1058.07 -849.44 -981.9 -773.1 -838.41

Sample period 1967Q1 - 2007Q4

Hypothesis: ω2,i = 1
pt -7.29 -5.17 -8.3 -5.88 -6.5

gdpt -44.09 -27.07 -31.50 -28.49 -31.07
cpt -9.86 -7.29 -7.89 -6.55 -6.67
FFt -406.27 -280.94 -369.25 -287.87 -341.29
mt -0.64 -0.62 0.72 1.08 0.88
uct -4.06 -5.64 -8.15 -6.32 -8.61

Hypothesis: ω2,i = 1 for i = 1, . . . ,N
-582.38 -464.92 -518.97 -426.52 -495.53

Note: The table reports natural logarithms of SDDRs for the hypothesis of homoskedasticity of individual
structural shocks, as well as the hypothesis of joint homoskedasticity in the models with two volatility
states, M = 2. Numbers in boldface denote SDDR values indicating very strong evidence against the
hypothesis on a scale by Kass & Raftery (1995). The numerical standard errors for the SDDRs reported in
this table are given in Appendix C.

5.4. Assessing Identification

These results clearly indicate that there is time-varying volatility in the data that can be used for

identification purposes. It is therefore of interest to know whether there is sufficient heteroskedasticity

to ensure a fully identified model. As discussed in the earlier sections, in a model with two states,

full identification requires that all of the relative variances, ω2,n, n = 1, . . . ,N, are distinct. Again

we can use SDDRs to investigate this identification condition. In Table 4 the relevant SDDRs are

given. For both samples they provide strong support for at least some distinct relative variances.
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Table 4: Natural Logarithms of SDDRs for Assessing Identification

Hypothesis: ω2,i/ω2, j = 1

Sample period 1967Q1 - 2013Q4

i↓, j→ 2 3 4 5 6
1 -2.71 -0.41 -22.85 -0.45 1.02
2 0.42 -7.44 0.49 -3.42
3 -13.22 1.12 -0.96
4 -12.55 -24.35
5 -0.97

Sample period 1967Q1 - 2007Q4

i↓, j→ 2 3 4 5 6
1 -1.92 1.01 -19.47 0.65 0.68
2 -2.47 -7.14 -2.32 -3.37
3 -22.77 0.63 0.69
4 -18.87 -24.36
5 0.64

Note: The entries of the table are natural logarithms of SDDRs for the hypotheses of pairwise proportional
changes in the volatility of the structural shocks in the models with two volatility states, M = 2 and
unrestricted matrix A0. Numbers in boldface denote SDDR values indicating very strong evidence against
the hypothesis on a scale by Kass & Raftery (1995). The numerical standard errors for the SDDRs reported
in this table are given in Appendix C.

In particular, the SDDRs strongly indicate that ω2,4 is different from all other ω2, j, because all

SDDRs related to ω2,4/ω2, j = 1 are very small. Thus, there is particularly strong support for the

fourth equation to be identified. Recall that this equation is the interest rate equation which is of

special interest in Belongia & Ireland (2015). Although there is also support for some of the other

relative variances to be distinct, this support is less strong and there is a chance that only some of

the equations of our model are identified by heteroskedasticity.

5.5. The Role of Money Revisited

Given the results for the relative variances in our model, we can compare different identification

schemes via their MDDs. For a range of models they are given in Table 5. Each row displays the

MDDs for the five identification schemes listed in Table 1 for a different model setup. The model

with the largest MDD in each row is highlighted in boldface.

Looking at the models identified through heteroskedasticity, for all setups models with divisia
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Table 5: Natural Logarithms of MDDs for Assessing Restrictions on A0

Taylor Rule Taylor Rule Money-
Unrestricted Recursive with Money without Money Interest Rate

Sample period 1967Q1 - 2013Q4

all restrictions -1700.2 -1657.6 -1632.5 -1643.6 -1644.6
last three equations restricted -1700.2* -1695.4 -1659.3 -1668.6 -1596.6
interest rate equation restricted -1700.2* -1695.9 -1687.8 -1695.3 -1688.1

Sample period 1967Q1 - 2007Q4

all restrictions -1469.8 -1428.6 -1414.4 -1410.4 -1411.2
last three equations restricted -1469.8* -1460.7 -1424.2 -1430.1 -1412.6
interest rate equation restricted -1469.8* -1457.6 -1453.7 -1453.6 -1442.1

Note: The table reports natural logarithms of marginal data densities for particular models. Numbers in
boldface denote the largest values of the MDDs in rows. * denotes values that are copied from the row
above. The numerical standard errors for the logarithms of the MDDs reported in this table are given in
Appendix C.

money in the interest rate equation have the largest MDDs for the longer sample according to the

results in Table 5. The same is also true for the shorter sample with the single exception that the

largest MDD is obtained for the scheme signified as Taylor Rule without Money when restrictions

are imposed on all of the rows of matrix A0. Note, however, that in this case the three schemes

Taylor Rule with Money, Taylor Rule without Money, and Money-Interest Rate have almost identical

MDDs such that the evidence in favor of a model without money in the interest rate equation is

very weak at best.

The advantage of our setup is that we can deal also with models which are only partially

identified in a conventional setting as they are compared in rows three and four of the two panels

in Table 5. Thus, using heteroskedasticity we can compare models which impose restrictions on the

part of the model which is of direct interest. We do not have to condition on the restrictions on the

first three rows of A0, as in a conventional frequentist analysis. Clearly, if additional restrictions are

imposed and then the restrictions are rejected in such a setup, it is unclear whether the restrictions

of interest or the additional restrictions drive the rejection. In contrast, using heteroskedasticity it

is possible to explicitly impose the restrictions only on the interest rate equation or the equations

representing the monetary sector. The other parameters are identified by heteroskedasticity.

Admittedly, this argument relies on full identification through heteroskedasticity which is not

strongly supported for our data. However, identification of the interest rate equation is strongly

supported confirming that the differences in MDDs are not only driven by our prior but reflect
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data properties. The last claim is based on the fact that we assume hierarchical prior distributions

for the parameters for which the level of shrinkage is estimated. Thereby we leave considerable

room for the data to speak. Overall our analysis supports the importance of divisia money in the

interest rate equation.

6. Conclusions

This study considers structural VAR models with heteroskedasticity where the changes in volatility

are driven by a Markov process. A full Bayesian analysis framework is presented for such

SVAR-MSH models. A set of parametric restrictions for unique identification of the structural

parameters through heteroskedasticity in these models is derived and Bayesian methods are

presented for investigating the restrictions for global identification based on a Savage-Dickey

density ratio. Moreover, a fast Markov Chain Monte Carlo sampler is developed for the posterior

distribution of the structural parameters and a method for computing the marginal data density

is provided which facilitates a full Bayesian model selection and model comparison.

SVAR models from a frequentist study by Belongia & Ireland (2015) are used to illustrate the

Bayesian methods. Belongia & Ireland are interested in the role of a Divisia money aggregate in an

interest rate reaction function. In the empirical illustration we compare our Bayesian methods to

frequentist methods. It is shown that using heteroskedasticity for identification is beneficial and

that this can be done in a Bayesian framework. In fact, our methods go beyond what is currently

possible in a frequentist framework. In particular, in our Bayesian framework we can formally

investigate conditions for uniqueness for which formal statistical tests are currently not available

in a frequentist framework.
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Lütkepohl, H., & Netšunajev, A. (2014). Disentangling demand and supply shocks in the crude oil market: How to

check sign restrictions in structural VARs. Journal of Applied Econometrics, 29, 479–496.
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Woźniak, T., & Droumaguet, M. (2015). Assessing Monetary Policy Models : Bayesian Inference for Heteroskedastic

Structural VARs. University of Melbourne Working Paper Series, 2017.

28



Appendix A. Computational Details

Appendix A.1. Notation and Likelihood Function

Let the N × T matrix Y = [y1, . . . , yT] collect all the observations of the time series considered. Let

K = 1 + pN and define the K × 1 vector xt as

xt =
(
1, y′t−1, y

′

t−1, . . . , y
′

t−p

)′
.

It collects all the variables on the right-hand side (RHS) of equation (1). Moreover, let X =

[x1, . . . , xT] be a K × T matrix, where the initial conditions y0, . . . , yp−1 are treated as given and

set to the first p observations of the available dataset. Similarly, collect the structural errors in

the matrix U = [u1, . . . ,uT], and denote its nth row by Un. Let Ym, Xm, and Un.m denote matrices

corresponding to the matrices Y, X, U, and Un collecting only the state specific columns for which

st = m, m ∈ {1, . . . ,M}. The column dimension of these matrices is denoted by Tm and
∑M

m=1 Tm = T.

The 1× T vector S = (s1, . . . , sT) is the realization of the hidden Markov process for periods from 1

to T. Define a N ×K matrix A = [µ,A1, . . . ,Ap] collecting the slope parameters and constant terms

on the RHS of equation (1) and denote its nth row by An which is a 1 × K vector. For convenience

we also denote by θ the vector of all the parameters of the model.

Using the previously defined notation, equation (1) can be written in matrix notation as

A0Y = AX + U, (A.1)

and the nth row of (A.1) can be written as

A0.nY = AnX + Un, (A.2)

for n = 1, . . . ,N.

Given the assumptions above and the conditional normality assumption in equation (2) for
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the structural errors of the SVAR-MSH model, the likelihood function is given by:

p (Y|S, θ) = (2π)−
TN
2 |det (A0)|T

 N∏
n=1

λ
−T
2

1,n


 M∏

m=2

N∏
n=1

ω
−Tm

2
m,n

×
× exp

−1
2

M∑
m=1

N∑
n=1

λ−1
1,nω

−1
m,n [A0.nYm − AnXm] [A0.nYm − AnXm]′

 , (A.3)

where ω1,n = 1 for n ∈ {1, . . . ,N}. The likelihood function written in this form emphasizes the

feature of the SVAR models that equations of the model can be analyzed one by one leading to a

convenient form of the full conditional posterior distributions used in the Gibbs sampler.

Appendix A.2. Gibbs Sampler

Sampling the variances of the structural shocks. For given Y, S, An and A0.n, each λ1,n is drawn

independently, for n ∈ {1, . . . ,N}, from an IG2 distribution:

λ1,n|Y,S,An,A0.n, ωm,n ∼ IG2

aλ + 2T1, bλ +

M∑
m=1

ω−1
m,n (A0.nY1 − AnX1) (A0.nY1 − AnX1)′

 .
Similarly, the relative variancesωm,n are drawn independently, for m ∈ {2, . . . ,M} and n ∈ {1, . . . ,N},

from the following IG2 distribution:

ωm,n|Y,S,An,A0.n, λ1,n ∼ IG2
(
aω + Tm, bω + λ−1

1,n (A0.nYm − AnXm) (A0.nYm − AnXm)′
)
.

Sampling the structural matrix A0. To sample the posterior of the unrestricted elements of A0

collected in the vectorα (see equation (6)), rewrite the SVAR model from equation (1) as ỹt = x̃tα+ut,

where ỹt =
(
y′t ⊗ IN

)
q−Axt, and x̃t = −

(
y′t ⊗ IN

)
Q. Then the likelihood function takes the following

form:

p (Y|S, θ) = (2π)−
TN
2

T∏
t=1

N∏
n=1

λ
−

1
2

st,n |det (A0)|T exp

−1
2

T∑
t=1

[
ỹt − x̃tα

]′ diag
(
λst

)−1 [
ỹt − x̃tα

] . (A.4)

This likelihood function resembles a multivariate normal density function for α, apart from the

term |det(A0)|T. This observation motivates the choice of the candidate-generating density in

the following Metropolis- Hastings algorithm. Draw a candidate value, denoted by ᾱ, at the

sth iteration from a multivariate t distribution centered at the previous state of the Markov
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Chain, α(s−1), with the scale matrix set to P∗ and the degrees of freedom parameter ν, where

P∗ =
(∑T

t=1 x̃′t diag
(
λst

)−1 x̃t
)−1

. If α followed a multivariate normal distribution resembling the

likelihood function from equation (A.4), then P∗ would be its covariance matrix. Then, compute

δ = p (ᾱ|Y) /p
(
α(s−1)

|Y
)
, where p (x|Y) is equal to the product of the likelihood function and the

prior distribution evaluated at x, i.e., p (Y|S, x) p (x). Finally, draw u from a uniform distribution

on the interval (0, 1) and set α(s) = ᾱ if u < δ and α(s) = α(s−1) otherwise. This Metropolis-Hastings

algorithm is adjusted to the structural VAR identified through heteroskedasticity and in that

respect it generalizes the algorithm by Canova & Pérez Forero (2015) maintaining its overall

functionality.

Sampling the autoregressive parameters. The convenient form of the prior distribution and the

likelihood function allow for sampling the constant term and the autoregressive parameters

independently equation by equation from a multivariate normal distribution:

A′n|Y,S,A0.n, λ1,n, ωm,n ∼ NK
(
A0.nPn,Hn

)
,

for n = 1, . . . ,N, where

Hn =

λ−1
1,nX1X′1 + λ−1

1,n

 M∑
m=2

XmX′m/ωm,n

 + H̃
−1


−1

and

Pn =

λ−1
1,nY1X′1 + λ−1

1,n

 M∑
m=2

YmX′m/ωm,n

 + P̃H̃
−1

 Hn.

Here H̃ is a diagonal matrix with the first element on the diagonal equal to γµ and the remaining

ones equal to the diagonal of γβH, and P̃ = [0N×1 P].
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Sampling the shrinkage parameters. The shrinkage parametersγα,γµ andγβ are sampled independently

from the following IG2 distributions:

γα|Y, α ∼ IG2
(
a + r, b + α′α

)
,

γµ|Y, µ ∼ IG2
(
a + N, b + µ′µ

)
,

γβ|Y,A0, βn ∼ IG2

a + pN2, b +

N∑
n=1

[
βn − A0.nP

]′
H−1

[
βn − A0.nP

] .
Simulating the hidden Markov process. In order to estimate the states of the hidden Markov process

we apply the algorithms presented in Section 11.2 of Frühwirth-Schnatter (2006) that are based on

the smoothing procedure by Chib (1996). We estimate a stationary hidden Markov process for the

Markov-switching mechanism, and thus, we set the distribution p(s0|P) to the ergodic probabilities

(see Frühwirth-Schnatter, 2006, Section 11.2).

Sampling the transition probabilities matrix. The transition probabilities Pm, are sampled independently

from an M-dimensional Dirichlet distribution given S:

Pm|S ∼ DM
(
em1 + Nm1(S), . . . , emM + NmM(S)

)
,

for m ∈ {1, . . . ,M}. The parameters of the prior Dirichlet distributions are updated by the count of

the transitions from the ith to the jth state given S, denoted by Ni j(S).

Estimation of the stationary Markov chain for the Markov-switching model requires a Metropolis-

Hastings step because p(s0|P) is set to a vector of ergodic probabilities which depends on P. For

more details the reader is referred to Section 11.5.5 of Frühwirth-Schnatter (2006) or, for the case

of a restricted matrix P, Droumaguet, Warne & Woźniak (2017). Woźniak & Droumaguet (2015)

use a restricted matrix of transition probabilities to model different pattens of heteroskedasticity

of the structural shocks.

Appendix A.3. Estimation of Marginal Data Densities

To compute the posterior probabilities of alternative SVAR-MSH models we estimate the MDDs

for a particular model, M, defined as: p(Y|M) =
∫
Θ

p(Y|θ,M)p(θ|M)dθ, where Θ denotes the

parameter space of the parameter vector θ, while p(Y|θ,M) and p(θ|M) denote respectively the
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likelihood function and the prior density for modelM (below the conditioning onM is suspended

and only used in the context of model comparison).

We apply a simple corrected arithmetic mean estimator proposed by Pajor (2016) that is based

on the identity:

p(Y) =
Eθ

[
p(Y|θ)IO(θ)

]
Pr [O|Y]

=
Pr [O]

Pr [O|Y]
Eθ

[
p(Y|θ)|O

]
, (A.5)

that is indexed by the subset O ⊆ Θ, where Eθ[.] denotes the expected value with respect to the

prior distribution of θ,Eθ[.|O] denotes the conditional expected value given O, Pr [O] and Pr [O|Y]

denote the prior and posterior probabilities, respectively, of set O and IO(θ) denotes an indicator

function that takes the value of one if θ ∈ O, and zero otherwise.

Pajor (2016) shows that a consistent and unbiased estimator of the MDD in equation (A.5) is

given by

p̂(Y) =
1
J

J∑
j=1

p
(
Y|θ( j)

)
p
(
θ( j)

)
IO

(
θ( j)

)
s
(
θ( j)

) , (A.6)

where
{
θ(k)

}J

j=1
denotes a sample drawn from the importance density s(.). In the estimator above

P̂r[O|Y] = 1 by defining the set O as
{
θ∗ : p (Y|θ∗) ≥ cO

}
, where cO is the minimum value of the

likelihood function evaluated at the draws from the posterior distribution, as recommended by

Pajor (2016). Moreover, following Pajor (2016) the importance density is set to a multivariate

truncated normal density with the mean and covariance set to the posterior mean and posterior

covariance of the parameters, respectively. The truncation is only active to ensure that θ(k)
∈ Θ.
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Appendix B. Definition and Moments of the Inverse Gamma 1 Ratio Distribution

This section specifies the inverse gamma 1 ratio distribution for a random variable that is defined

as a ratio of two independent inverse gamma 1–distributed random variables. The probability

density function as well as the moments of the new distribution are established. These results

may facilitate the computations if one prefers to parametrize the model in terms of the conditional

standard deviations instead of conditional variances λ and ω that were used in Section 2.

Definition 2 (Inverse Gamma 1 Ratio distribution). Let x and y be two strictly positive independent

random variables distributed according to the following IG1 distributions: x ∼ IG1 (a1, b1) and

y ∼ IG1 (a2, b2), where a1, a2, b1, and b2 are positive real numbers and the probability density

function of the inverse gamma 1 distribution is given by

fIG1 (x; a, b) = 2Γ
( a
2

)−1
(

b
2

) a
2

x−(a+1) exp
{
−

1
2

b
x2

}
. (B.1)

Then, the random variable z, defined as z = x/y, follows the Inverse Gamma 1 Ratio (IG1R)

distribution with the probability density function given by

fIG1R (z; a1, a2, b1, b2) = 2B
(a1

2
,

a2

2

)−1
b

a1
2

1 b
a2
2

2 za2−1
(
b1 + b2z2

)− a1+a2
2 , (B.2)

where B(·, ·) denotes the beta function.

Moments of theIG1Rdistribution. The expected value and the variance of theIG1R–distributed

random variable z are respectively given by

E[z] =

(
b1

b2

) 1
2 B

(
a1−1

2 , a2+1
2

)
B
(

a1
2 ,

a2
2

) for a1 > 2, (B.3)

Var[z] =
b1

b2

a2

a1 − 2
−

b1

b2

B
(

a1−1
2 , a2+1

2

)
B
(

a1
2 ,

a2
2

) 
2

for a1 > 4. (B.4)

In general, the kth order non-central moment of z is given by

E
[
zk

]
=

(
b1

b2

) k
2 B

(
a1−k

2 , a2+k
2

)
B
(

a1
2 ,

a2
2

) for a1 > 2k. (B.5)
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Appendix C. Numerical Standard Errors for MDDs and SDDRs

In the following tables we report the Numerical Standard Errors (NSEs) for the logarithms of

the SDDRs for the assessment of the homoskedasticity and identification conditions reported in

Tables 3 and 4, respectively. All of the values of the NSEs are small and show that our assessment

measures are numerically stable. The values of the NSEs increase monotonically with increasing

absolute value of the logarithm of the corresponding SDDRs. Nevertheless, the relative values of

the NSEs to the logarithms of the SDDRs are negligible and do not affect the conclusions.

Table C.6: NSEs for Savage-Dickey Density Ratios for Assessing Heteroskedasticity

Taylor Rule Taylor Rule Money-
Unrestricted Recursive with Money without Money Interest Rate

Sample from 1967Q1 to 2013Q4

Hypothesis: ω2,i = 1

pt 0.105 0.123 0.130 0.119 0.120
gdpt 0.466 0.245 0.216 0.270 0.251
cpt 0.237 0.280 0.245 0.216 0.216
FFt 1.889 1.382 1.554 1.635 1.492
mt 0.315 0.487 0.214 0.301 0.305
uct 0.122 0.277 0.301 0.308 0.305

Hypothesis: ω2,i = 1 for i = 1, . . . ,N
2.193 1.732 1.839 2.024 1.854

Sample from 1967Q1 to 2007Q4

Hypothesis: ω2,i = 1

pt 0.084 0.112 0.089 0.103 0.097
gdpt 0.401 0.205 0.189 0.208 0.197
cpt 0.094 0.083 0.077 0.070 0.070
FFt 2.219 1.162 1.376 1.121 1.187
mt 0.133 0.091 0.012 0.013 0.014
uct 0.047 0.081 0.107 0.082 0.119

Hypothesis: ω2,i = 1 for i = 1, . . . ,N
2.722 1.280 1.546 1.276 1.329

Note: The table reports the Numerical Standard Errors for the ln SDDRs reported in Table 3 computed by
the batch means method using 2000 batch means.
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Table C.7: NSEs of Savage-Dickey Density Ratios for Assessing Identification

Sample from 1967Q1 to 2013Q4

i↓, j→ 2 3 4 5 6
1 0.017 0.005 0.059 0.008 0.002
2 0.006 0.034 0.006 0.026
3 0.044 0.001 0.013
4 0.047 0.073
5 0.015

Sample from 1967Q1 to 2007Q4

i↓, j→ 2 3 4 5 6
1 0.016 0.001 0.070 0.009 0.004
2 0.017 0.035 0.047 0.033
3 0.062 0.010 0.005
4 0.125 0.090
5 0.008

Note: The table reports the Numerical Standard Errors for the ln SDDRs reported in Table 4 computed by
the batch means method using 2000 batch means.

In the next table we report the NSEs for the logarithms of the MDDs for the models that are

reported in Table 5. These NSEs are greater in value than the NSEs for the logarithms of the

SDDRs discussed above. These NSEs are smaller than the NSEs of the MDD estimator proposed

for the heteroskedastic SVARs by Woźniak & Droumaguet (2015) that were computed for a similar

simulation settings, but for a larger model (N = 8). These results allow us to state that our

conclusions are reliable even in the case of the smallest difference between the MDDs for two

models. The logarithm of the MDD for the Taylor Rule without Money model is significantly

different from the corresponding value for the Money-Interest Rate model when all restrictions are

imposed and for the sample ending in 2007. Still, the implied posterior probability of the former

model is just over two times as large as the posterior probability of the latter one.
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Table C.8: NSEs for Marginal Data Densities

Taylor Rule Taylor Rule Money-
Unrestricted Recursive with Money without Money Interest Rate

Sample from 1967Q1 to 2013Q4

all restrictions 0.138 0.142 0.145 0.138 0.141
last three equations restricted 0.135 0.141 0.132 0.550
interest rate equation restricted 0.135 0.137 0.136 0.145

Sample from 1967Q1 to 2007Q4

all restrictions 0.148 0.138 0.135 0.143 0.140
last three equations restricted 0.135 0.129 0.129 0.255
interest rate equation restricted 0.142 0.134 0.132 0.134

Note: This table reports the NSEs of the estimates of the logarithms of the MDDs reported in Table 5. The
NSEs are computed with the batch means method described in Perrakis, Ntzoufras & Tsionas (2014) based
on 1000 batched means.
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