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Non-technical summary

Research Question

German house prices have been rising strongly since 2010 following decades of modest growth.

These price dynamics are increasingly raising concerns about a real estate bubble in Germany

which may pose a threat to financial stability. Recent estimates by the Bundesbank suggest

overvaluations between 15% and 30% in German cities. We take this as a starting point for

assessing the resilience of German less significant institutions (LSIs) to a severe decline in

house prices.

Contribution

Our contributions are fourfold: first, using a unique and very recent survey data set, we

assess the impact of a severe decline in house prices (up to 30%) on banks’ solvency over a

three-year stress horizon. The survey provides us with bank-specific information on current

risk parameters and exposures in residential mortgage portfolios. Second, to map the macro-

scenario to default probability (PD) dynamics, rather than applying one single model, we

estimate a battery of different specifications to reduce model uncertainty. Third, we derive a

relationship between loan to value (LTV) and loss given default (LGD) based on a review of

the literature. And fourth, we study the effects of different models for risk-weighted assets

(RWA) on stress test results by comparing stress impacts under the Standardized Approach

for credit risk (SA), a potential revision to the SA and the internal rating based approach

(IRB).

Results

We find German LSIs to be mostly well capitalized against a severe decline in house prices.

However, stress test results are highly heterogeneous among banks. The median bank expe-

riences - compared to its own planning - a reduction in CET1 ratio of 1.5pp over the stress

horizon, induced by an isolated stress to banks’ residential mortgage portfolios. About 12%

of banks suffer a reduction of more than 3pp. Comparing stress effects under different RWA

regimes, we find that under the SA the stress effect is up to 33% lower than under the IRB

approach. Revisions to the SA which are currently und discussion would make the approach

more risk-sensitive, implying an increase of the stress effect by 20% relative to the current

SA.



Nichttechnische Zusammenfassung

Fragestellung

Nach langjährig flachen Preisdynamiken im deutschen Wohnimmobiliensektor, steigen die 
Preise seit 2010 stark an. Dies schürt zunehmend die Besorgnis über eine Überhitzung des 
Marktes. Schätzungen der Bundesbank halten Überbewertungen in Städten von 15% bis 
30% für möglich. Vor diesem Hintergrund analysiert dieses Papier die Widerstandsfähigkeit 
kleiner und mittelgroßer deutscher Banken gegenüber einem starken Hauspreiseinbruch.

Beitrag

Das Papier quantifiziert, basierend auf aktuellen Umfrage-Daten, potentielle Verluste deut-

scher Banken infolge eines starken Einbruchs der Hauspreise (um bis zu 30%). Die Umfrage 
bietet Einblick in die aktuelle Risikoposition aus Wohnimmobilienkrediten von ca. 1500 Insti-

tuten, inkl. Ausfallwahrscheinlichkeiten (PD) und Beleihungsausläufe (LTV). Um den Effekt 
des Szenarios auf die PD zu schätzen, verwenden wir einen Ansatz, der die Modellunsicher-

heit reduziert, indem er eine große Menge an Regressionsmodellen geeignet kombiniert. Zur 
Berechnung gestresster Verlustquoten (LGD) leiten wir aus der Literatur eine empirische Be-

ziehung zwischen LTV und der LGD her. Wir analysieren den Einfluss verschiedener Ansätze 
zur Modellierung von Risikogewichten auf Stresstestergebnisse indem wir die Stresswirkun-

gen unter dem Kredit-Standard-Ansatz (KSA), einer möglichen Revision des KSA und unter 
dem auf bankinternen Ratings basierenden Ansatz (IRB) gegenüberstellen.

Ergebnisse

Die Ergebnisse zeigen, dass die meisten Institute ausreichend widerstandsfähig gegenüber 
einem starken Einbruch der Hauspreise sind. Jedoch herrscht eine starke Heterogenität zwi-

schen den Instituten. Der isolierte Stress auf Wohnimmobilienkredite führt im Median zu 
einer Reduktion der harten Kernkapitalquote (CET1-Quote) um 1,5 Prozentpunkte (Pp) im 
Vergleich zu bankinternen Prognosen. Für 12% der Institute reduziert sich die CET1-Quote 
um mehr als 3 Pp. Der Vergleich der Stresstestergebnisse für verschiedene Risikogewicht-

Modellierungen zeigt, dass im KSA der Stresseffekt um bis zu 33% unter dem IRB Ansatz 
liegt. Die aktuell diskutierte Revision des KSA würde diesen risikosensitiver machen, was zu 
einem Anstieg des Stresseffektes um 20% relativ zum aktuellen KSA führen würde.
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1 Introduction

In Germany, house prices have been rising strongly since 2010 following decades of modest
growth. This accelerating growth can partly be traced back to the low-interest-rate environ-
ment (LIRE), which leaves German banks with few profitable products, such as mortgage
credit, while low interest payments keep housing affordable despite rising prices. The price
dynamics are raising concerns about a real estate bubble in Germany which may pose a
threat to financial stability. Recent estimates by the Bundesbank suggest that residential
real estates may be overvalued between 15% and 30% in German cities. Real estate mort-
gage exposures make up a substantial percentage of total credit exposure in German less
significant institutions’ (LSIs) books with an aggregate share of 25% at the end of 2016. In
such an environment, obtaining sound estimates of potential losses looming in banks’ books
due to a corrective movement in house prices is of major importance.
The proposed stress testing framework sheds light on the quantitative implications of a severe
decrease in German house prices on banks CET1 ratios, transmitted through residential
mortgage portfolios. In the adverse scenario, we assume a house price decrease of 20%, while
in the severely adverse scenario we assume a decrease of 30%. Both scenarios are consistent
with the recent estimates by the Bundesbank concerning overvaluation in German cities.
Our contributions are fourfold: first, there is little evidence on the resilience of German banks
to residential mortgage stress, probably due to the lack of sufficiently granular data. We add
to the stress testing literature by using a unique and very recent data set, collected through
the Bundesbank’s LIRE survey, to conduct a stress test for banks’ residential mortgage
portfolios. The data set provides timely (as of December 2016) and granular information
on banks’ internal planning data over the entire stress horizon, residential mortgage risk
parameters and exposures at a rating class level, as well as (long-run) historical loss and
default rates at the portfolio level.
Second, we add to the stress testing literature by employing a benchmark constrained Bayesian
model averaging (BCBMA) framework to establish a sound mapping of the macro scenario
to probability of default (PD) dynamics. Our BCBMA model combines the BMA approach
of Henry and Kok (2013) with the quantile mapping idea of Bonti, Kalkbrener, Lotz, and
Stahl (2006) in order to reduce model uncertainty and to provide sound estimates of the re-
lationship between PDs and macro dynamics. Model uncertainty is an issue particularly in a
fragile statistical environment with few observations and highly correlated macro covariates,
as present in many top-down stress testing applications.
Third, we derive a continuous reduced-form dependency between current loan-to-value (CLTV)
and loss given default (LGD) for German banks by combining and extending the studies of Qi
and Yang (2009) and Palmroos (2016). Qi and Yang provide information on the dependency
between CLTV and LGD for CLTV buckets that are too coarse for stress testing purposes.
Palmroos derives a continuous relationship based on Finnish data. However, the level of
this relationship seems not to be in line with German experience. We contribute to the
stress testing literature by deriving a meta-dependency which equips the practitioner with
a traceable tool for translating CLTV into LGD and vice versa without requiring granular
data for calibration.
And fourth, we study the effect of different models for risk-weighted assets (RWA) on stress
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test results. To this end, we contrast the CET1 ratio impact under different RWA dynamics
derived from our baseline “pseudo-IRB” approach, the current SA and from the SA revision
as suggested in Basel Committee on Banking Supervision (2015).
The stress test is run on all banks which took part in the 2017 LIRE survey and which have
exposure to residential mortgages. This leaves us with 1401 institutions. Owing to access to
banks’ internal planning data, we can compute stress effects as the additional loss stemming
exclusively from the scenario-induced dynamics relative to banks’ planning data.
The main findings of the stress test are threefold: first, we find German LSIs to be mostly
well capitalized for weathering a severe decline in German house prices. However, the stress
test results are highly heterogeneous across banks. While the median bank experiences a
reduction in the CET1 ratio of 0.6pp (1.5pp) in the adverse (severely adverse) scenario, the
95%-quantile bank suffers from a reduction of 1.6pp (4.0pp). About 12% of banks suffer
from a reduction of more than 3pp in the severely adverse scenario, the maximum reduction
being 11.1pp.
Second, when comparing stress effects under different models for RWA, we find that RWA
increase by 4.6% under the “pseudo-IRB” approach over the three-year stress horizon of the
severely adverse scenario but by only 1.4% under the SA. The sluggish KSA RWA dynamics
reduce the median stress effect from -1.3pp to -0.9pp. We model RWA dynamics to capture
unexpected losses during the stress horizon. Since unexpected losses, similar to expected
losses, increase continuously with deteriorating macro conditions, our results would tend to
support the view that employing the risk-insensitive SA to approximate unexpected losses
may substantially bias stress effects downwards, also for banks using the SA for regulatory
purposes.
And third, when estimating the model space of the dependency of the residential mortgage
PD time series on macro variables, we find a high heterogeneity in estimated coefficients,
many showing a high R2 but having economic “implausible” coefficient signs, low out-of-
sample predictive power or implausible stress effects when compared to a benchmark. This
result emphasizes the importance of looking at the entire model space and filtering for
“plausible” model specifications, instead of employing ad hoc specifications.
While the residential mortgage market has been studied extensively (see Allen, 2004, for
a survey of the literature), the literature on residential mortgage stress tests is sparse.1

Rodriguez and Trucharte (2007) conduct a stress testing exercise for the aggregate Spanish
mortgage market using a simulation approach to derive a credit loss distribution assuming
constant LGD. Coleman, Esho, Sellathurai, and Thavabalan (2005) suggest a stress testing
framework for the Australian mortgage market using a combination of reduced-form and ad-
hoc dependencies to model credit risk parameters. For Ireland, Gaffney, Kelly, and McCann
(2014) use a transition-based PD framework to model stressed PD dynamics which accounts
for hysteresis effects in loan cures. Hott (2015) employs a calibrated structural model for
the US and Switzerland to conduct a mortgage stress test on the macro level. While such
an approach may serve as a top-down benchmark, it lacks the granularity necessary for
microprudential stress testing.2

1For a survey of the credit risk stress testing literature in general, see Foglia (2009).
2See also Basel Committee on Banking Supervision (2012) for a discussion of the role of macro models

in stress testing.
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The remainder of the paper is structured as follows: Section 2 provides a brief overview of
the current situation in the German housing market, Section 3 lays out our stress testing
framework, Section 4 describes the data and the macro scenarios, and Section 5 discusses
quantitative results including a comparison of different RWA models. Section 6 concludes.

2 The German housing market

This section provides a brief overview of recent developments in the German housing market.
Germany has traditionally experienced only weak growth (if any) in house prices with an
average annual growth rate of -0.7% between 1991 and 2009. However, as the left-hand
panel in Figure 1 shows, since 2010 growth accelerated and the average annual growth rate
between 2009 and 2016 increased to 2.3%. The increase in house prices sent price-rent-ratios
soaring, especially in the seven major German cities3 where it reached 30 in 2016 (see middle
panel). One factor driving this development, besides fundamentals such as limited space in
urban areas, is the low-interest-rate environment. With interest rates in most developed
economies at all-time lows, investors are deprived of profitable outside options and are thus
willing to accept low returns on housing investments. On the other hand, low interest rates
mask increasing house prices through low annuities (see right-hand panel). Both effects are
currently keeping demand up for housing and mortgage credit. Still, the situation can be
fragile, as further increasing prices may at some point lead investors to start selling their
properties or a tightening of monetary policy may put upward pressure on mortgage lending
rates. This could trigger a downward movement of prices, raising losses (when selling a house
bought at a high price) and default rates (when borrowers cannot entertain their interest
payments) along the way. Current Bundesbank estimates indicate potential overvaluations
in German cities between 15% and 30% (see Deutsche Bundesbank, 2017).
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Figure 1: Standard indicators for the German real estate market

3Munich, Stuttgart, Frankfurt am Main, Cologne, Hamburg, Berlin, Düsseldorf.
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The LIRE survey shows that residential mortgages are material for German LSIs, which
constitute the sample for our stress testing exercise. Banks participating in the LIRE survey
had a combined residential mortgage exposure of about e640 billion, 25 % of their total
credit exposure, at the end of 2016. Given this significant share, deteriorating real estate
prices harbor the potential for high losses. The aim of this paper is to quantify these losses.

3 Methodology

This section sets out our stress testing framework. The framework consists of three model
blocks: first, a model that maps the macro scenario to stress PD dynamics using a benchmark
constrained Bayesian model averaging approach (see Section 3.1), second, a model that maps
the scenario to stress LGD dynamics using a meta-dependency between current LTV (CLTV)
and LGD (see Section 3.2) and third, a set of recursive equations that translates stressed risk
parameters to P&L effects (expected losses) and RWA effects (unexpected losses) (see Section
3.3). The modeling of the stress effects follows the EBA methodology (see European Banking
Authority, 2016) which considers impairments on new defaulted assets, old defaulted assets
and risk-weighted assets. In addition, our granular data allows us to model foregone interest
payments due to defaulted assets. Before going into greater detail, Figure 2 gives a high-level
overview of our stress testing framework.

Macroeconomic stress scenario
(house prices, GDP, un-
employment, inflation)

LGD
model
(meta-

dependency)

PD
model

(BCBMA)

LTV
model

(structural
depen-
dency)

RWA
effects

(IRB, SA)

Impairment effects
(non-defaulted & de-

faulted exposure)
Interest income effects

Effects on CET1 ratio

Figure 2: Overview stress testing framework
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3.1 PD model

The PD model combines the standard BMA approach with a quantile mapping procedure
suggested by Bonti et al. (2006), which maps quantiles of the macro variable distribution to
quantiles of the PD distribution.
The rationale behind Bayesian model averaging (BMA) is the need to account for model
uncertainty in statistical analyses. Model uncertainty is a concern especially when using
short time series (as in many macro stress testing applications) and highly correlated co-
variates. In these cases, regressor coefficients may be non-unique, since variables catch up
on effects of other variables. In such an empirical environment it is highly recommendable
to analyze the entire model space rather than picking one model at random or by discretion
and neglecting the information from all other models (for another application see Pelster and
Vilsmeier, 2017). This is especially true in a stress testing context, where biased estimates
can substantially affect stress test outcomes (see Gross and Poblacion, 2017).4

While model uncertainty is extensively discussed in the macroeconomic forecasting litera-
ture (see Wright, 2008; Hirano and Wright, 2017, among others) it is mostly neglected in the
stress testing literature. Stress tests, as pointed out by Misina and Tessier (2008), face the
additional problem that they forecast dynamics at the edge of or even beyond the “obser-
vation space” where regression-based models, which extrapolate average observations from
the sample period, are likely to perform poorly (see also Corbae, D’Erasmo, Galaasen, Irar-
razabal, and Siemsen, 2017). This induces an additional source of model uncertainty, since
none of the (usually OLS-based) models can properly describe the true stressed relationship.
Credit risk stress test models which deal explicitly with issues of model uncertainty are,
to our knowledge, restricted to Misina and Tessier (2008), who emphasize theoretically the
need to account for model risk and non-linearity in credit risk stress tests, and Henry and
Kok (2013) and Gross and Poblacion (2017), who use a BMA approach to carry out their
credit risk stress test exercise.
To derive time series for stressed PDs at the bank level we proceed in two steps: first, we
derive a mapping between residential mortgage sector PD and the macro scenario, which
we use to compute stressed time series for the sector PD. Second, we translate the stressed
sector PD to bank-specific starting values in the distance-to-default space.
We consider a standard autoregressive distributed lag specification (ADL):

∆4 log

(
PD

1− PD

)
t

=
K∑
i=1

αi∆
4 log

(
PD

1− PD

)
t−i

+
L∑
i=0

β′ixt−i + εt , (1)

where PD denotes the quarterly residential-mortgage-sector probability of default derived
from the German Credit Register and xt denotes a vector of macro variables, which includes
growth rates for GDP, inflation, unemployment rate, house prices and the 3M EURIBOR
(the 3M EURIBOR is also included in levels). To derive robust estimates of this dependency
despite the rather short time series for PDs (starting in 2008Q1) and the fact that the macro
covariates are highly correlated (and estimates are thus very sensitive to the inclusion and
exclusion of covariates), we estimate the entire model space for Equation (1). This implies

4Note moreover that using a panel data set is no remedy for the issue of model uncertainty, since the
identification of variable dynamics requires sufficient observations in the time dimension.
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estimating Equation (1) for all possible xt, i.e. combinations of the macro covariates, for all
possible lag lengths and definitions of growth rates (quarter-on-quarter, year-on-year and,
for the 3M EURIBOR, also levels).5 Then, we filter the model space for models which satisfy
the following set of restrictions:

1. highly correlated covariates are not within the same model (exclusion restriction),

2. models are econometrically correctly specified (no autocorrelation in residuals),

3. estimated coefficients satisfy economic plausibility (sign restriction), and

4. the models have no significantly worse out-of-sample forecast performance than the
best model in the model space as measured by the “leave-one-out” principle (Occam’s
window).6

We refer to models that survive filtering criteria 1 to 4 as “filtered model space”. Under a
standard BMA approach, one would now combine all surviving models, weighting each model
with its posterior inclusion probability. In doing so, all statistically and economic relevant
information would be used in the final model in order to derive a robust estimate for the
dependency of the sector PDs on macroeconomic conditions. However, we pursue a different
route. While restrictions 1 to 4 impose minimum requirements on statistical and economic
soundness, they do not necessarily guarantee “plausible” stress test dynamics. For example,
a model in the filtered model space may well imply that under the adverse macroeconomic
conditions PDs increase by 1000% or decrease by 50%, which may be regarded as implausible
judging from historical experience and the severity of the assumed scenario. To guarantee
“stress testing plausibility” in addition to statistical and economic soundness, we benchmark
constrain the filtered model space (benchmark constrained BMA, BCBMA). To this end, we
impose an additional restriction following Bonti et al. (2006):

5. the model-implied stress forecast for PDs does not deviate “too strongly” from a bench-
mark forecast. The benchmark forecast is derived from a Merton-Vasicek one-factor
model, in which the systematic factor is set to a stress-level consistent with the es-
timated probability of occurrence of the macro scenario.7 We set the “plausibility”
bounds to two standard deviations of the historical PD time series around the Merton-
Vasicek-implied PD-increase. We set this region to be generous enough to guarantee
some dispersion in the predicted PD increases of the surviving ADL models. This
reflects our approach of combining the information from both frameworks, instead of
using only one. Appendix B provides details.

5When defining the model space we allow for a maximum of four covariates in each model (nvmax = 4),
including lags and a maximum lag order of two (L = K = 2). This leaves us with N = 26 potential
regressors. Thus, the entire model space features

∑nvmax
j=1

N !
j!(N−j)! = 17, 901 different model setups. To

economize on computation time we restrict our attention to a subset of the 10,000 best models according to
the adjusted R2 using the leaps and bounds algorithm (see Furnival and Wilson, 1974). Pelster and Vilsmeier
(2017) provide additional details.

6See Appendix A for a detailed description of these filtering criteria. The ”leave-one-out” principle implies
that one repeatedly drops one observation from the sample, estimates the model using the remaining data
and predicts the missing observation.

7The realization of the stressed macro variables is mapped to a realization of the systematic component
in the one factor model that has the same probability of occurrence.
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The advantage of using a benchmark constrained filtered model space lies in the fact that
the benchmark is derived from a model that does not suffer from the same limitations as the
estimated OLS models, such as scarce data or collinearity. Instead, the suggested quantile-
mapping approach offers a simple alternative by just assuming a co-monotone relationship
between the endogenous variable and at least one covariate (Bonti et al., 2006). By dropping
all models from the model space, which predict stressed PD increases that lie outside a region
deemed plausible by the non-OLS benchmark model, we attenuate the impact on the final
BMA model of issues, which may not be filtered out by only considering OLS-type models.
By assuming a co-monotone dependency between the PD dynamics and the macro scenario,
zero stress-sensitivity always lies outside the benchmark constraints (for a more detailed
discussion, see Siemsen and Vilsmeier, 2017).
Before any filtering criteria are applied, the unfiltered model space contains 10,000 different
estimated models. Figure 3 shows the R2 of all models in the unfiltered and filtered model
space as a function of the scenario-implied average annual PD increase over the three-year
horizon together with the quantile-mapping-implied benchmark constraints. We find a large
dispersion of implied PD changes across the model space. Also, it shows that R2 is not a
good predictor of model plausibility, since a large percentage of models with high R2 predicts
a strong decrease in PDs over the stress scenario. Such non-intuitive model estimates are
rather frequent in time series models based on historical PDs or default rates and are caused
by correlated regressors (among the different macro-variables and also among the lags of the
same variable) in combination with scarce data. In such cases, regressor coefficients may be
non-unique, since variables catch up on effects of other variables. The benchmark constraints
filter out such models. Of 10,000 estimated models in the unfiltered model space, 17 models
survive the filtering and lie within the benchmark constraints.
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Figure 3: Scenario Implied PD increases (average over 3-year stress-horizon) vs. R2 of models in
unfiltered and filtered model space

Figure 4 shows the normalized long-run multipliers of the BMA-combined final ADL speci-
fication. The long-run multiplier is defined as

θi =
σXi

σY

∞∑
k=0

∂EYt+k
∂Xi,t

=
σXi

σY

∑L
l=0 βi,l

1−
∑M

m=1 αm
,

with Y = ∆4 log(PD/(1 − PD))t and can be interpreted as the increase in Y in terms of
standard deviation if Xi is increased permanently by one standard deviation. All variables
which are considered in our macro scenario (see Section 4.3) are selected by the BCBMA
algorithm to be included in the final model. In the final specification, only contemporary
dependencies and no lags are included. Given that macroeconomic variables tend to move
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sluggishly, this may be driven by the exclusion restriction (restriction 1), which prevents
highly correlated covariates from being included in the same model. Except for the unem-
ployment rate and 3M EURIBOR, all variables enter significantly according to the posterior
inclusion probability (see Appendix A for a definition).
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Figure 4: BCBMA-implied long-run multipliers

We combine the estimated coefficients of all models, M , remaining in the filtered and bench-
mark constrained model space to one model using each model’s posterior inclusion probability

βBMA =
M∑
i=1

πiβi ,

where βi is the vector of coefficients of model i and πi is the posterior inclusion probability,
which can be interpreted as the probability of a model being the “best model” in the model
space in repeated samples

Pr (Mi|Data) ≡ πi =
exp(−0.5∆i)∑M
j=1 exp(−0.5∆j)

,

with ∆i = AICi − AICmin and AIC = n log(σ2
ε) + 2k (assuming εt ∼ N(µ, σ2

ε)). We
compute σ2

ε using the “leave-one-out” principle. The βBMA vector is then used to derive
the sector-aggregate PD dynamics over the stress horizon. Figure 8(a) shows the predicted
scenario-implied evolution of the residential-mortgage aggregate sector PD.
To translate the stressed dynamics of sector s PDs to bank-specific PD dynamics for bank
i, we apply a distance-to-default-transformation on starting values at t = 0:

9



PDi,t = Φ
(
Φ−1 (PDi,0) +

[
Φ−1 (PDs,t)− Φ−1 (PDs,0)

])
,

where Φ denotes the standard-normal cumulative distribution function and PDi,t is the bank-
level PD computed as volume-weighted rating-class PDs.8 Figure 6(a) shows the initial PD
distribution at the bank level to which the BCBMA approach is applied. The median PD is
0.7% with a standard deviation of 0.4%.

3.2 LGD model

The LGD model maps the macro scenario to LGD dynamics. To this end, we first exploit
the structural relationship between CLTV and house prices. Measured at market value, a
decrease in house prices for a given loan volume translates directly to an increase in CLTV.
In particular, for a bank i and rating class j the following recursion holds:

CLTV2016,i,j =
EaDpre

2016,i,j

C2016,i,j

CLTVt,i,j =
EaDpre

2016,i,j

Ct,i,j
,∀t ≥ 2017 ,

with

C2016,i,j = EaDpre
2016,i,j − EaD

post
2016,i,j

Ct,i,j = Ct−1,i,j ×
HPIt
HPIt−1

,∀t ≥ 2017 ,

with EaDpre and EaDpost denoting exposure at default pre and post collateral, C denot-
ing the collateral value and HPI denoting the house price index. Note that by keeping
EaDpre

2016,i,j constant in the numerator of the CLTV, we impose a static balance sheet as-
sumption that rules out amortizations during the stress horizon.
In the second step, we translate the CLTV to a corresponding LGD. We do so by using a
reduced-form meta-dependency between CLTV and LGD based on international evidence.

8To ensure that banks’ internal PD estimates for real estate exposures, which we use as starting values
for the stress test, do not deviate “too strongly” from observed default rates, we benchmark reported one-
year-ahead PDs with observed (long-run average) default rates from “exposures secured by real estate” (for
fully secured residential mortgages) and “retail exposures” (for partially secured residential mortgages). If
the reported, bank-level-aggregated PDs for fully and partially secured mortgages lie more than 20 % below
historical default rates, we scale up reported PDs. For bank i and rating class j

PDi,j = Φ
(
δ + Φ−1

(
ˆPDi,j

))
with δ = Φ−1

(
PDh

k,i

)
−Φ−1

(
¯PDi

)
, with ˆPDj being the unadjusted PD, PDh

k,i being the historical (2014-

2016) benchmark with k ∈ {“secured by real estate”, “retail” exposures} and ¯PD being the bank-level ag-
gregated real estate exposure PD. See Düllmann and Kick (2014) and Koziol, Schell, and Eckhardt (2015)
for other stress tests, where initial PDs are based on bank-internal estimates instead of historical default
rates.
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Several studies argue that the CLTV is the single most important determinant of LGD (see,
for example, Pennington-Cross, 2003; Calem and LaCour-Little, 2004; Qi and Yang, 2009,
and the sources cited therein). While a more structural approach to LGD modeling offers
the advantage of identifying the deep parameters that determinate LGD dynamics (see,
for example, Gupton and Stein, 2002; Seidler and Jakubik, 2009), such determinants are
often not necessary to compute expected and unexpected losses in a stress testing context.
Moreover, calibrating a structural model often requires granular data such as debt type,
seniority of the debt or debt market value after default, which may not be readily available
(at the required level of granularity). Our reduced-form dependency remains silent about
the particular nature of LGD determinants and simply exploits the correlation between
CLTV and LGD found in different studies. Since it is not calibrated to any specific portfolio
or jurisdiction, an application to different credit types or countries is feasible but requires
additional adjustments and robustness checks.
For the meta-dependency, we employ two studies: Qi and Yang (2009) study the dependency
between LGD and CLTV for the US using a granular loan-level data set from the Mortgage
Insurance Companies of America, a trade association of six major US private mortgage
companies. Their data covers a total of 241,293 mortgage insurance claims in the period
1990-2003. Qi and Yang bucket loans in seven CLTV classes: CLTV ≤ 0.80, 0.80 <
CLTV ≤ 0.90, 0.90 < CLTV ≤ 0.95, 0.95 < CLTV ≤ 1.00, 1.00 < CLTV ≤ 1.10 , 1.10 <
CLTV ≤ 1.20 and CLTV > 1.20. Thus, while they provide relatively dense information
of the CLTV-LGD dependency for CLTVs between 80% and 120%, the information is more
sparse in the higher and lower CLTV regions. In particular, they find that in the highest
CLTV bucket (> 120%), the mean LGD is 49.2%, far below the maximum possible value
of 100%. Since, in a stress testing context, CLTV and thus LGD are likely to rise above
historical heights, we are especially interested in the CLTV region that induces high LGDs.
To this end, we draw on another study to find indications of the correlation between CLTV
and LGD in high CLTV regions.
Palmroos (2016) uses Finnish mortgage data collected in a 2010 survey among all Finnish
banks. The survey covers maturity structure at the loan level as well as LTV distributions.
The dependency derived by Palmroos between CLTV and LGD covers the CLTV region
between 0.60 and 20 and can therefore be used to shed light on CLTV and LGD correlation
for high CLTV.9 To derive our meta-dependency we split the CLTV space into four regions:

1. 0.85 ≤ CLTV ≤ 1.15: the corresponding LGD values are directly taken from Qi and
Yang (2009), Table 5.10

2. 1.15 < CLTV : as discussed above in the high CLTV region, Qi and Yang (2009)
provide only sparse information. We use the marginal rate of change between CLTV
and LGD as shown in Palmroos (2016). The rate of change is anchored at CLTV=1.15

9We use the CLTV-LGD dependency derived if default can only occur for LGD>0. CLTV is derived via
CLTV=1/collateral value.

10Assuming uniform distribution within each CLTV bucket, the CLTV is approximated by the mean
bucket value. Values between buckets are linearly interpolated. To keep the dependency agnostic and due
to a lack of corresponding information in our data set, we set all dummy variables in Qi and Yang (2009),
except the relevant CLTV-bucket, to zero.

11



and iterated forward until CLTV=2.00, which corresponds to a LGD of about 1.0.11

3. 0 < CLTV < 0.85: to derive the CLTV-LGD dependency in this region we draw
on two pieces of information from Qi and Yang (2009): first, they show that overall
the correlation between CLTV and LGD is 0.7 (see their Table 4) and, second, they
show that in this CLTV region the mean LGD is 0.13 (see their Table 5).12 We use
these pieces of information to derive a linear dependency. We draw 10,000 synthetic
normally distributed LGD series, which have a mean of 0.13 and a correlation with
CLTV ∈ [0, 0.85) of 0.7, and run a linear regression for each of these draws. We take
the mean of the estimated coefficients.

We fit a polynomial of second order in regions 1 to 3 to filter any artifical jumps due to
plugging regions 2 and 3 together.

4. 0 < CLTV < 0.10: We floor the CLTV at 0.10, which corresponds to a LGD of about
0.07.13

Figure 5 shows the final meta-dependency between CLTV and LGD and Appendix F provides
the corresponding data. The solid diamond shows average LTV and LGD of German banks
in the EBA 2014 stress test for the “Retail – secured by real estate-of which: non-SME“
portfolio. This data point for German significant institutions (SIs) seems to suggest that we
can approximate the level of the CLTV-LGD dependency reasonably well.14

Given our granular LIRE data set, which features observed (long-run) LGD for retail and
secured by real estate portfolios, we can anchor residential mortgage LGD starting values
(pre-stress) at historical observations. Thus, we ensure that the level of the initial LGD in
the residential mortgage portfolio, which we derive through the meta-dependency from the
initial CLTV reported in the data set, does not deviate too much from observed LGDs in
the “retail” portfolio (initial LTV > 0.8) or “secured by real estate” portfolio (initial LTV ≤
0.8).15 As a consequence, the level of the meta-dependency itself is not directly relevant for

11We use the rate of change instead of the level from Palmroos, since we find LGD to be relatively low in
Finland compared to data for German banks that participated in the 2014 EU-wide stress test. This may
be due to differences in bankruptcy law, culture or financial market regulation.

12Again, to keep the dependency agnostic and due to a lack of corresponding information in our data set
we set all dummy variables except the relevant CLTV-bucket to zero.

13CRR Art. 164(4) prescribes a minimum LGD of 0.10 for retail exposures secured by real estate. Given
our meta-dependency, this would correspond to a CLTV about about 0.30. Since such low CLTVs are not
commonly observed, especially not under stressed conditions, the floor has no effect on stress results and is
imposed only to account for potential data issues.

14The LGD of SIs participating in the EBA stress test does not necessarily have to be representative of
the smaller LSIs participating in the LIRE survey. However, in the EBA 2014 stress test German SIs report
an average LGD of 0.14, which lies very close to the average loss rate reported by LSIs of 0.12 (average
2014-2016).

15The LIRE survey data set features LTV only for partially secured exposures (LTV>1.0). We anchor
the initial LGD for these positions by computing the meta-dependency-implied LGD and compare it to the
historical retail LGD. If it deviates by more than 50% above or below, we replace the derived LGD with
the historical counterpart. For fully secured positions no initial LTV is reported in the LIRE survey data.
Therefore, we use the historical LGD in the secured by real estate portfolio directly as a starting point and
map it to an initial LTV through the meta-dependency.
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the computation of stress effects, since we always start off from a LGD that is anchored by
the bank-specific loss history. We only exploit the estimated slope which maps percentage
increases in CLTV during stress to percentage increases in LGD.16
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the “Retail – secured by real estate-of which: non-SME“ portfolio. Numbers 1 to 4 indicate CLTV regions

in which different methods of deriving the dependency are used. See main text for explanations.

Figure 5: Meta dependency between LGD and LTV

This completes the description of the two main model parts of our stress testing framework.
Figure 6(b) shows the initial LTV distribution at the bank level and Figure 6(c) the corre-
sponding initial LGD distribution derived from the meta-dependency. The median LGD is
22.9% with a standard deviation of 12.8pp.

16Note, moreover, that benchmarking non-market-value-based LTVs against 2014-2016 average realizations
ensures that stress test starting values reflect recent market conditions.
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Figure 6: Distribution of initial risk parameters

3.3 Stress impact calculation

The impact of the stressed risk parameters on banks’ CET1 ratios follows the EBA credit
risk methodology and is fourfold. First, elevated PDs and LGDs increase default flows and
thus impairments on non-defaulted assets:

defaultflowt+1 = EaDt × PDpitt+1

EaDt+1 = EaDt − defaultflowt+1

impflownewt+1 = LGDpitt+1 × defaultflowt+1 ,

where pit indicates “point-in-time parameters” in contrast to “through-the-cycle” (ttc) pa-
rameters, EaD denotes exposure at default and impflow denotes impairment flows. Second,
a further deterioration in collateral quality during stress, reflected in increasing LGD, re-
quires banks to also increase impairments on assets that already defaulted:

defaultstock2016 =
∑

EaD2016
PD=1

defaultstockt+1 = defaultstockt + defaultflowt+1

impflowoldt+1 = max {0, LGDpitt+1 × defaultstockt − provstockt}
provstockt+1 = provstockt + impflowoldt+1 + impflownewt+1 .

where provstock denotes the provision stock. Note that we approximate the initial default
stock by the exposure amount that was assigned by banks to the PD=100% rating class.
Third, we assume that defaulted assets do not pay interest. Thus, elevated default flows
induce foregone interest payments. From the LIRE survey, we know the interest rate on new
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business for real estate mortgage lending from 2014-2016. We assume that the interest rate
remains constant during the stress horizon at the average 2014-2016 level R̄. Thus, stressed
interest income, intinc, is given by

intinct+1 = R̄× [EaDt − defaultflowt+1] = R̄× EaDt+1 .

Fourth, we model RWA dynamics. We pursue a “pseudo-IRB” approach that applies the
Basel IRB formula to calculate risk weights depending on PDttc and LGDttc, F , to all
banks.17 This modeling choice implies that we consider expected as well as unexpected
losses that accumulate during the stress horizon. The IRB formula is designed to calculate
RWA as a buffer against unexpected losses as measured by the value at risk in excess of
the expected loss (see Basel Committee on Banking Supervision, 2005). Under stressed
conditions, both the mean of the loss distribution (expected losses), as well as the variance
(unexpected losses) increase and have to be accounted for by thorough risk management. In
that sense we pursue an economic in contrast to a purely regulatory view of stress losses.
Below, we study how stress test results are affected by RWA modeling. To this end, in Section
5.2 we contrast the benchmark “pseudo IRB” approach with the regulatory SA as stated in
CRR Art. 125 and a more risk-sensitive SA revision as proposed in Basel Committee on
Banking Supervision (2015).

∆RWAt+1 = FBasel
[
PDttc

t+1, LGD
ttc
t+1

]
−FBasel

[
PDttc

t , LGD
ttc
t

]
RWAt+1 = RWAt + ∆RWAt+1 .

To compute the through-the-cycle adjustments we apply a pragmatic adjustment algorithm
outlined in Appendix C. These four effects are then mapped to banks’ profits, πStresst+1 through

πStresst+1 = πPlant+1 − intincPlant+1 + impflowPlant+1 + intincStresst+1

− impflownew,Stresst+1 − impflowold,Stresst+1 ,

i.e. the counterfactual stress profit is computed as the profit as assumed in banks’ planning
data in the corresponding year of the stress horizon adjusted for stressed interest income
and stressed impairments. Finally, we can compute the stressed CET1 ratio

17Most banks participating in the LIRE survey follow the credit standardized approach. We model RWA
dynamics for those banks using the “pseudo-IRB” approach as well, since we are interested in continuous and
economically relevant unexpected loss dynamics during the stress horizon. Under the SA, RWA dynamics
occur when loan splitting is applied between the “secured by real estate” exposure class (with a risk weight
of 35%) and the regulatory non-preferred exposure class (with a risk weight of 75%). The threshold LTV
between these two classes is 80%. According to Art. 208(3)a CRR residential property collateral has to be
revalued at least every three years, such that, even in the absence of loan splitting, LTVs are not constant
during the lifetime of a mortgage, but likely to move only sluggishly. A more frequent revaluation is necessary
if market conditions are subject to “significant changes”. The Standardized Approach has been criticized as
being too risk-insensitive and the Basel Committee on Banking Supervision (2015) proposed a revision to
increase risk sensitivity. Section 5.2 shows stress test results for the SA.
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CET1t+1 = CET1t + πStresst+1

CET1rt+1 =
CET1t+1

RWAt+1

.

4 Data

4.1 LIRE Survey

The stress testing framework draws upon a unique and granular data set collected through the
LIRE survey among 1,500 German LSIs. These banks account for 88% of all German banks
and 41% total assets. This survey has been conducted by the Bundesbank in cooperation
with BaFin on a biannual basis since 2013. For the first time, the 2017 survey (with data as
of 31/12/2016) includes a template on real estate mortgage lending. This template provides
granular data on mortgage interest rates, as well as PDs, collateral and exposures on a
rating class level.18 These data are used to derive bank-specific starting values for credit
risk parameters and exposures. Appendix D shows the design of the residential mortgage
template.
Besides data on bank-individual starting values for PDs, collateral values and exposure, the
LIRE survey provides further information which we use in our stress test exercise: first, it
features bank-internal planning data spanning the entire stress horizon from 2016 to 2019.
Therefrom, we can compute all CET1 changes anticipated by each bank’s internal planning
(interpreted as the baseline scenario). This allows us to determine the CET1 ratio level post
residential mortgage stress as the difference between banks’ anticipated 2019 CET1 ratios
and the scenario-induced stress effect. With these values, we can assess banks’ regulatory
CET1 ratios under an isolated stress to their mortgage portfolios, keeping the remainder of
banks’ balance sheets in line with banks’ expectations. Second, reported values on bank-
specific long-run average historical default and loss rates in the mortgage portfolios allow us
to check the conservatism of banks’ reported starting values (and to adjust them if necessary).

4.2 German Credit Register

To derive a time series for residential mortgage sector PDs used in the BCBMA model, we
draw on the German Credit Register (GCR). The GCR features quarterly observations since
2008Q1 on all loans from a bank to a given borrower of more than e1 million. For each
IRB loan the regulatory PD is reported. We identify residential mortgage loans as loans
with a residential mortgage loan share above 90%.19 This gives us a total coverage for all

18Note that collateral values in the survey are not based on market values. While values based on market
prices may be preferable, we are not aware of any data source that provides such data for Germany at
the same level of granularity as the LIRE survey. Note, moreover, that according to Art. 208(3)a CRR
residential property collateral has to be revalued at least every three years and more frequently if market
conditions change significantly.

19This assumption is required as PDs are reported only at the loan level, but not at the sublevels “of
which: collateralized loans” and “of which: collateralized loans, of which: residential mortgage loans”.
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residential mortgage loans of about 10%.20 The corresponding PDs are aggregated to a real-
estate-sector PD by volume-weights, which is then linked to the macro scenario. Figure 8(a)
shows the historical time series from 2008Q1 to 2016Q4 together with the BCBMA-implied
stress dynamics.

4.3 Macro Scenarios

As discussed in Section 2, current Bundesbank estimates indicate potential overvaluations in
German cities of about 15% to 30%. We study the impact of a corrective movement in house
prices of this magnitude on German LSIs’ balance sheets. To derive adverse yet plausible
scenarios for the drop in real estate prices, we use the dynamics observed in the Spanish
housing market in the period 2011-2013. In this period, real estate prices dropped by about
30% peak to trough (severely adverse scenario). To study the sensitivity of German LSIs to
changes in house prices we also consider a second less extreme scenario with a 20% house
price drop peak-to-trough, which we derive through a parallel shift in annual growth rates
of the house price index (adverse scenario).
For our stress test exercise, we consider a horizon of three years, ranging from 2017Q1
to 2019Q4. To derive macro dynamics consistent with the assumed drop in real estate
prices, we use a standard VARX model with house prices and 3M EURIBOR as exogenous
variables.21 The endogenous variables include stationary time series for quarterly year-on-
year GDP growth, quarterly year-on-year changes in the unemployment rate and the annual
inflation rate. To control for the monetary policy stance, we include the level of the 3M
EURIBOR interest rate, despite the fact that the EURIBOR level is not chosen by the
BCBMA algorithm to be included in the final PD model (see Figure 4). The EURIBOR
is kept constant during the stress horizon at its 2016Q4 level, assuming exogenous and
constant monetary policy.22 All data is taken from Eurostat, ranges from 2005Q1 to 2016Q4
and is seasonally adjusted, except for the house price index and the EURIBOR rate. Figure 7
shows the paths for the macro variables under the adverse and the severely adverse scenarios.
Appendix E puts the assumed macro dynamics in historical perspective, showing how the
assumed house price decline and corresponding GDP and unemployment dynamics compare
to international experience.

20There is a possible concern that deriving the PD time series based on large loans from IRB banks may
not be representative for the small to medium-sized banks participating in the LIRE survey. In this context it
is worthwhile noting that the sector PD time series is used only to derive stress-implied relative PD increases
which are applied to bank-specific initial PDs reported in the LIRE survey. That said, the sector PD is
about 0.54% in 2016Q4, which lies close to the median residential mortgage PD of 0.67% reported by banks
in the LIRE survey.

21Due to the short time-series we include two lags of endogenous and exogenous variables.
22Note that the EURIBOR interest rate is only kept constant during the stress horizon. Both the VARX

and the BCBMA model use historical realizations for estimation. Detailed estimation results are available
from the authors upon request.
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Figure 7: Macro Scenarios
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Finally, Figure 8 shows the stressed credit risk parameter dynamics induced by the assumed
macro scenario. We find that in the adverse (severely adverse) scenario the residential
mortgage sector PD increases over the three-year stress horizon by about 206% (461%).
Figure 8(b) shows the implied LGD dynamics for an initial LTV of 0.80. We find that, in
the adverse (severely adverse) scenario, this initial LGD increases by 44% (92%).
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Figure 8: Scenario-implied residential mortgage sector risk parameter increases

5 Quantitative Results

5.1 Stress test results

The stress test follows a top-down approach and has a purely microprudential focus.23 Only
the effects of the scenarios on residential mortgage portfolios of banks are considered, and
only impairments, interest income and RWA effects within these portfolios are captured. PD
and LGD dynamics in other portfolios and potential contagion effects between risk types,
asset classes and banks are outside the scope of this stress test exercise. Changes in the
impairments and RWA that are anticipated by the banks over the stress horizon (2017-
2019) and which are independent of the scenarios are separately accounted for as “plan data
effects”. This means that all stress effects are to be interpreted as additional CET1 losses
due to residential mortgage portfolios.

23In contrast to a “bottom-up” approach, where the stress calculations are performed by the banks them-
selves.
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Figure 9 shows the stress dynamics in CET1 ratios for the bank with the median losses in
the severely adverse scenario, as well as for the 95% quantile bank. Panels (a) and (b) show
the CET1 ratio levels relative to banks’ internal planning data. Panels (c)-(d) show the drop
in the CET1 ratio relative to the 2016 initial level.
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Figure 9: Stressed CET1 ratio dynamics

In the adverse (severely adverse) scenario the CET1 ratio of the median bank decreases by
0.55pp (1.47pp) relative to 2016 (panel c). These additional CET1 losses reduce the CET1
ratio relative to the level anticipated in banks’ plan data. In 2019, the framework predicts a
CET1 ratio of 17.4% (16.4%) post stress for the median bank (panel a). The values include
banks’ internal predictions for CET1 growth over the three-year horizon from 2017-2019,
which anticipate a substantial growth of more than 2pp.
The stress impact is highly heterogeneous across banks. About 12% of the banks experience
a decrease by more than 3pp in the severely adverse scenario. The maximum decline is
11.1pp. The standard deviation of the CET1 ratio is 0.5pp (1.1pp) in the adverse (severely
adverse) scenario. The heterogeneity of stress impacts becomes evident if one looks at the
95% quantile bank. For this bank the scenario-induced change in the CET1 ratio relative to
2016 is 1.6pp (4.0pp) in the adverse (severely adverse) scenario.
Comparing the two scenarios, we find a strong non-linear impact of real estate mortgage
stress on banks’ CET1 ratios. Relative to the adverse scenario, the drop in real estate prices
in the severely adverse scenario is about 50% stronger. However, we find that the aggregate
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(composite bank) CET1 ratio drops 1.65 times more than under the adverse scenario. This
non-linearity is driven by the non-linear increase in PD and LGD (see Figure 8) and the
non-linear IRB formula used for computing RWA. The non-linear increase in LGD is thus
affected by the non-linear dependency between CLTV and LGD as suggested by the meta-
dependency (see Figure 5).
Besides considering median results, it is also interesting to elaborate on aggregate stress
effects. To this end, Figure 10 shows the composition of stress effects on the CET1 ratio of
the composite bank, i.e. the sum of all participating banks. We find that the main stress
drivers are RWA (40% in the adverse scenario, 50% in the severely adverse scenario) and
impairments on newly defaulted loans (38% and 35%). Also, the effect of impairments on
the default stock is, at 13% and 10%, considerable. The figure shows the plan data effect on
banks’ CET1 ratios separately. The composite bank predicts an increase in its CET1 ratio
by 1.1pp over the three-year horizon.
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Figure 10: Stress effect composition

To summarize, we find that German LSIs, while being mostly sufficiently capitalized, are
susceptible to a corrective movement in house prices. If banks were to raise their CET1 ratio
post severely adverse stress back to the initial 2016 level, they would on aggregate require
e19 billion, which corresponds to 7.3% of aggregate 2016 CET1 capital. It should be borne
in mind that such expected and unexpected losses are due solely to exposures to residential
mortgages. If contagion effects between portfolios, risk types and banks were additionally
to be taken into consideration, losses would probably be much higher.
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5.2 The impact of RWA modeling on stress test results

The stress test results show that RWA dynamics are a major determinent of stress outcomes.
Under the benchmark “pseudo-IRB” approach we model RWA dynamics using the BCBS
formula for IRB banks, with through-the-cycle-PDs and LGDs as main inputs. Despite the
fact that the vast majority of banks participating in this stress test use the SA, we prefer
this approach since it allows for economic relevant and continuous dynamics in unexpected
losses. Under the SA, RWA dynamics are induced if (among others) the LTV passes an
80% threshold (CRR Art. 125(2)d) and/or loan splitting is applied.24 For real estate-
secured exposures with an LTV below 80% (among others) a preferred risk weight of 35%
can be used; otherwise the risk weight is 75%. This approach is generally considered to
feature only limited risk sensitivity and thus no economically relevant modeling of unexpected
losses. As discussed in Basel Committee on Banking Supervision (2005), IRB risk weights
are computed to create a buffer of capital in excess of expected losses in order to insure
banks against unexpected losses. Unexpected losses can be measured by the value at risk
(or expected shortfall), which provides an upper bound of losses that will occur in a given
time frame with a certain probability. Since in a stressed condition both the mean and
the variance of the loss distribution increase, quantifying total losses requires measuring
both expected losses (impairments) and unexpected losses (RWA). From this point of view,
the SA approach may be considered as a simplified IRB approach which only accounts for
sluggish, discrete movements in unexpected losses, thus pursuing a regulatory rather than an
economic approach to RWA modeling. In Basel Committee on Banking Supervision (2015),
a revision to the SA is suggested (“SA revision”) which would increase risk sensitivity by
using six instead of two RWA buckets for different LTVs. Table 1 shows risk weights for the
SA and for the SA revision.

Table 1: SA risk weights

LTV (%) SA risk weights (%) SA revision risk weights (%)

[0,40) 35 25
[40,60) 35 30
[60,80) 35 35
[80,90) 75 45
[90,100) 75 55
[100,Inf) 75 75

Notes: SA risk weights according to Art. 125(2)d CRR. SA revision weights
according to Basel Committee on Banking Supervision (2015).

24Loan splitting implies that a loan with LTV>0.8 is split up into two loans: one loan with LTV 0.8 and
the remainder, thereby reducing RWA. For example, assume a loan with volume 1000 and LTV=1. This
loan would induce RWA requirements according to the SA of 0.75×1000 = 750. Splitting this loan up would
create a loan of volume 800 with LTV 0.8 and an unsecured loan of 200, implying RWA requirements of
0.35× 800 + 0.75× 200 = 430. For the SA revision one can show that loan splitting is only optimal for loans
with LTV >0.8. In this case the split is done between the LTV=0.8-bucket and the LTV≥1-bucket, as the
LTV=0.8-bucket optimizes the trade-off between risk-weight and collateralizable volume. See also footnote
17.
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We study how stress test results differ across different RWA models. Table 2 shows stress
test moments for the benchmark “pseudo-IRB” approach as well as for the SA and the SA
revision. Note that in all cases the initial RWA are the same 2016Q4 values as submitted
in the LIRE survey templates; only the modeling of ∆RWAt+1 is affected (see Section 3.3).
We find that, under the SA, stress effects are reduced by 18% (33%) in the adverse (severely
adverse) scenario. This can be traced back to a substantially lower increase in RWA during
the stress horizon. While, under the “pseudo-IRB” approach, RWA increase by 1.3% (4.6%)
in the adverse (severely adverse) scenario relative to 2016, the increase in RWA under the
SA is by 46% (70%) lower.
Looking at the stress test outcomes under the SA revision, we find that, under this approach,
stress test outcomes move towards those of the “pseudo-IRB” approach. In the adverse
(severely adverse) scenario, SA revision results lie 14% (20%) above those of the SA. The
increase in RWA almost doubles across both scenarios. Under the adverse scenario, SA
revision results lie very close to the “pseudo-IRB” results. This analysis highlights the
important role of RWA modeling in stress test frameworks. Benchmarked against the “pseudo
IRB” approach which is explicitly designed to approximate unexpected losses, employing a
less risk-sensitive RWA model to approximate unexpected losses may induce substantially
attenuated stress effects.
Figure 11 shows the CET1 ratio impact of RWA increases under different RWA regimes.
Interestingly, we find that compared to the IRB approach (panel a) the SA (panel b) has a
very similar stress distribution in the left-hand tail of the CET1 loss distribution (the 95%
quantile of the loss distribution under the “pseudo-IRB” approach is 4.0pp, under the SA
it is 3.7pp). However, the loss distribution features a higher mass of banks that experience
low stress impact (the 5% quantile is 0.50pp under the “pseudo-IRB” approach, under the
SA it is 0.25pp). This can be traced back to the sluggish RWA dynamics under the SA,
which are only triggered once the CLTV rises above 80%. Thus, banks that start off with
low CLTV and do not pass the 80% threshold (and thus do not apply loan splitting), within
the three-year horizon, will not incur any RWA dynamics. Since these are the banks that
will also experience low expected losses due to low CLTV, the SA induces a clustering in the
right-hand tail of the distribution, which can induce an underestimate of aggregate economic
losses. Under the SA revision (panel c), we find that the increased risk sensitivity moves the
loss distribution closer to the IRB approach. This tends to support the view that a more
risk-sensitive SA, benchmarked against the IRB approach, provides a better approximation
of unexpected losses during the stress horizon and is less likely to underestimate economic
losses.

23



Table 2: RWA effects

IRB SA SA Revision

Adverse scenario
Aggregate stress effect (pp) -0.50 -0.41 -0.49
Contribution ∆RWA (%) 39.8 26.3 39.3
RWA change (%) 1.3 0.7 1.2

Severly adverse scenario
Aggregate stress effect (pp) -1.32 -0.88 -1.00
Contribution ∆RWA (%) 50.1 24.6 33.9
RWA change (%) 4.6 1.4 2.3

Notes: Stress effect measured in pp of CET1 ratio. “Contribution
∆ RWA” corresponds to percentage share of total stress effect at-
tributed to changes in RWA over the stress horizon. “RWA change”
corresponds to percentage increase of RWA relative to 2016 within
three-year stress horizon.
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Figure 11: Distribution of stress effect depending on RWA model in the severely adverse scenario
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6 Conclusion

The paper proposes a real estate mortgage stress testing framework for German LSIs. The
framework combines a unique data set from the 2017 LIRE survey conducted among all 1500
German LSIs with a benchmark-constrained Bayesian model averaging approach to derive
stressed risk parameter dynamics. Its main contributions are fourfold: first, the granular
data set grants unique insights into German LSIs real estate mortgage exposures and credit
risk parameters. Second, a benchmark-constrained BMA approach is used to map dynamics
from a macro scenario to PDs, thereby reducing model uncertainty in a fragile statistical
environment. Third, we derive a traceable reduced-form dependency between CLTV and
LGD, which allows us to translate stressed CLTV dynamics to LGD dynamics and vice
versa. And fourth, we elaborate on the effect of RWA modeling on stress test outcomes,
contrasting a “pseudo-IRB” approach with the SA and the SA revision suggested in Basel
Committee on Banking Supervision (2015).
We find that German LSIs are mostly well equipped to withstand a serve decline in house
prices. However, stress test results are heterogeneous at the bank level. Following a house
price drop by 30%, the median bank suffers a reduction in its CET1 ratio of 1.5pp. Raising
the CET1 ratio back to a pre-stress level would on aggregate require about e19 billion,
7.3% of initial CET1 capital. We also show that using a regulatory RWA model that does
not account for continuous dynamics in unexpected losses during the stress horizon can
substantially attenuate stress effects. Comparing the “pseudo-IRB” approach with SA, we
find that the latter induces stress effects which are up to 33% lower.
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A Model space filtering criteria

When computing and filtering the model space as outlined in Section 3.1 we proceed as
follows.

1. Due to computational constraints we have to define bounds of the model space. The
bounds are

• a maximum of 4 covariates in each model, including lags,

• a maximum lag order of four, and

• no lag for the endogenous variable25

2. We estimate 10,000 specifications for each set of models with the same number of
covariates.

3. Of these models we consider only the 10,000 models with the highest adjusted R2. We
call these 10,000 models the “unfiltered model space”.

4. We filter the unfiltered model space according to a set of statistical and economic
criteria:

• We allow only those covariates to be in the same model which have a pairwise
correlation below 0.80 to limit imperfect collinearity, which may induce imprecise
estimation.

• We filter for models for which the Durbin-Watson test cannot be rejected at a 1%
confidence level.

• We filter for models with estimated coefficients that satisfy the sign restrictions
in Table A.1.

• We filter for models that do not have a significantly worse out-of-sample prediction
performance than the best model in the model space according to the posterior
model probability. Let Pr(Mi|D) denote the probability that model Mi is the
best model in repeated samples given data D. Then

Pr(Mi|D) =
exp(−0.5∆i)∑M
j=1 exp(−0.5∆j)

,

where ∆i = AICi−min(AICi)
M
i=1 and, under the assumption that εt ∼ N(µ, σ2

ε),
AIC = n log(σ2

ε) + 2k with n denoting the number of observations and k the
number of regressors. To compute σ2

ε we use the “leave-one-out” principle, such
that σ̂2

ε = 1
n

∑T
i=1(ŷi − yi)2, with ŷi is computed by dropping yi from the sample

and predicting it, using the remaining observations to estimate the model. We
drop all models with Pr(MI |D) < max[Pr(Mi|D)]/100 from the model space.

25The quantitative results do not change when extending the model space to allow for more covariates or
additional lags.
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Table A.1: RWA effects in severely adverse scenario

Variable sign restriction

HPI -
GDP -
Unemployment Rate +
Inflation 0
3M EURIBOR 0

Notes: “+” denotes a positive coefficient sign
restriction, “-” denotes a negative coefficient
sign restriction and “0” denotes an unrestricted
coefficient sign.

5. In the final model specification the significance of each included variable can be evalu-
ated by comparing the prior with the posterior inclusion probability of each variable:

• the prior inclusion probability (PrIP) is the probability that variableXi is included
in a model if each variable is picked randomly. Let n denote the maximum number
of regressors allowed in each model specification and let K denote the number of
potential covariates. Then

PrIPi =

∑n
j=1 j

K!
j!(K−j)!∑n

j=1
K!

j!(K−j)!

K

• the posterior inclusion probability (PoIP) is defined as

PoIPi =
N∑
j=1

Iβi 6=0πi ,

i.e. it corresponds to the sum over the posterior model probabilities of all N
models in which the covariate i takes a non-zero value.

• a covariate Xi is significant if PoIPi > PrIPi.

B Quantile-mapping benchmark constraints

For deriving the benchmark constraints for the filtered model space we pursue a quantile map-
ping approach as suggested by Bonti et al. (2006). Quantile mapping is a simple approach
for deriving a non-linear dependency between variables, as the only required assumption is a
co-monotone relationship. It does not require any OLS assumptions and would, for example,
not suffer from collinear dependencies between covariates. Therefore, the advantage of using
a quantile mapping approach to generate benchmarks for the BMA-derived model space is
that the two model classes are independent of each other. The benchmarks are thus not
affected by biased or imprecise estimation of the model space.
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When computing the quantile mapping benchmarks we proceed as follows.

1. We start from a Vasicek (2002) one-factor model to derive a relationship between the
macro scenario and the sector PD. The Merton-Vasicek model assumes that the value
of borrower j in sector s, Aj,s,t is driven by a systemic factor Zs,t and an idiosyncratic
factor Uj,s,t, both of which are assumed to be standard-normally distributed:

Aj,s,t = ρsZs,t +
√

1− ρ2sUj,s,t .

We assume that a borrower defaults if her value drops below a constant threshold Ds.
It is straightforward to show that under these assumption the sector PD can be derived
as

PDs,t = Φ

(
Ds − ρsZs,t√

1− ρ2s

)
, (2)

where Φ is the standard normal cdf.

2. Solving Equation (2) for the systemic factor yields

zs,t =
Ds − Φ−1 (PDs,t)

√
1− ρ2s

ρs
, (3)

which gives us the systemic factor zs,t for a given Ds, ρs and the time series of the
observed sector PDs from the German credit register.

3. Ds is calibrated using the long-run average residential mortgage sector PD from 2008Q1
to 2016Q4:

Ds = Φ−1
(

¯PDs

)
. (4)

This calibration is based on the assumption that Aj,s,t and thus Zs,t are standard-
normally distributed. In particular, it requires that V ar(Zs,t) = 1. Thus for Equation
(4) to be a valid calibration for Ds we have to ensure that this assumption is indeed
satisfied. ρs is calibrated to satisfy this assumption. We use Equation (3) to compute
zs,t for 100,000 ρs ∈ [0, 1]. The optimal ρs implies V ar(zs,t) = 1.

4. Equipped with the calibrated parameters we link the macro scenario to the systemic
factor zs,t. We standardize all macro variables xi,t ∈ Xt through x̃i,t = Ii(xi,t− x̄i)/σxi ,
where we impose a “sign restriction” It such that a negative co-monotonicity between
X̃t and PDs,t can be expected.

5. Given the time series for zs,t implied by Equation (3) and the time series for the

standardized macro variable X̃t, we estimate the cdf F̂z and F̂X̃i
using kernel density

estimation.
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6. We can then compute the stressed systemic factor ẑs,t+k for k ∈ stress horizon, using
the quantile mapping26:

ẑs,t+k = F̂−1z

(
F̂X̃i

(xi,t+k)
)
,∀i, k

and compute the implied stressed PD forecast

P̂Ds,t+k = Φ

(
Ds − ρsẑs,t+k√

1− ρ2s

)

7. We apply a univariate quantile mapping. To this end, we use the macro variable
xi,t ∈ Xt which implies the lowest RMSE when predicting the sector PD in-sample27

8. We use the estimated stressed PD increases P̂Ds,T at the end of the stress horizon T as
benchmark constraints for the BMA model space. In particular, we set the constraints
to ±2sd(∆PD) where ∆PD denotes the relative PD changes between 2008 and 2016.

C Through-the-cycle adjustment algorithm

To compute through-the-cycle (TTC)-adjusted sector PD time series we proceed as follows.

1. We apply a four-year rolling window on the stressed risk parameter time series to get
a smoothed scenario forecast.

2. We calculate the implicit TTC-adjustment factor in the distance-to-default space:

αTTCt = Φ−1
(
PDTTC

t

)
− Φ−1

(
PDPIT

0

)
,

where t ∈ stress horizon and PDPIT
0 is the initial (pre- stress) corresponding point-in-

time value.

3. We apply the TTC-adjustment factor to the bank-specific initial PD. Thus, for bank i

PDTTC
i,t = Φ

(
Φ−1

(
PDPIT

i,0

)
+ αTTCt

)
For the TTC-adjusted LGDs, we stop at step 1, i.e. calculate bank-specific long-term aver-
ages via the moving window approach.

26Note that the quantile mapping simply maps the nth worst realization of the macro variable to the nth
worst realization of the systemic factor.

27The results are robust to the application of multivariate quantile mapping, which weights each univariate
PD forecast with the inverse of its RMSE.
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D The residential mortgage template in the LIRE 2017

survey

Figure D.1 shows the residential mortgage template of the LIRE 2017 survey. Banks provided
data on up to 30 different rating classes (not shown in their entirety here) with correspond-
ing volume-weighted PDs, pre- and post-collateral exposures and fully secured exposures.
Exposures are provided for 2014, 2015 and 2016, of which we use only the 2016 values as
initial exposures for the stress test.

Figure D.1: Example residential mortgage survey sheet

E The macro scenarios in a historical perspective

To provide some intuition about the severity of the assumed macro scenario this section
compares the assumed macro dynamics with historical experience in Germany and in other
countries. Figure E.2 shows the two assumed scenario paths for the house price index relative
to a number of selected real estate crises. Given that the severely adverse scenario reproduces
exactly the Spanish dynamics in 2011-2013 it is not surprising that the dynamics are in line
with historical experience. Compared to the housing crisis in Germany in 1985 we find that
both scenarios feature a stronger decline in house prices but are less persistent than the
German experience. The house price scenario therefore seems to be adverse yet plausible for
the German housing market.
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Figure E.2: Stress scenarios compared to international experience

Figure E.3 compares the dynamics for GDP and unemployment derived from the VARX
model to dynamics actually experienced in Germany. We find for GDP a decrease in growth
that is less severe than during the Great Recession, although more persistent. This seems
to be in line with the evidence in Claessens, Kose, and Terrones (2009) that recessions asso-
ciated with house price busts appear to be deeper and more persistent than those without.
We compare the unemployment rate dynamics to the German recession starting in 1992.
We find that the initial scenario-implied increases are less strong. In both scenarios the
unemployment rate peaks after about two years, which corresponds closely to the dynamics
observed during the recession.
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Figure E.3: Stress scenarios compared to German experience

F CLTV-LGD dependency

This section provides the data for the CLTV-LGD dependency based on Qi and Yang (2009)
and Palmroos (2016) underlying Figure 5.
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Table F.2: CLTV-LGD dependency

CLTV LGD CLTV LGD CLTV LGD CLTV LGD

0.000 0.07 0.525 0.14 1.025 0.34 1.525 0.63
0.025 0.07 0.550 0.14 1.050 0.35 1.550 0.65
0.050 0.07 0.575 0.15 1.075 0.36 1.575 0.67
0.075 0.07 0.600 0.15 1.100 0.37 1.600 0.68
0.100 0.07 0.625 0.16 1.125 0.38 1.625 0.70
0.125 0.07 0.650 0.16 1.150 0.41 1.650 0.71
0.150 0.07 0.675 0.16 1.175 0.42 1.675 0.73
0.175 0.08 0.700 0.17 1.200 0.44 1.700 0.75
0.200 0.08 0.725 0.17 1.225 0.45 1.725 0.76
0.225 0.09 0.750 0.18 1.250 0.47 1.750 0.78
0.250 0.09 0.775 0.18 1.275 0.49 1.775 0.80
0.275 0.10 0.800 0.19 1.300 0.50 1.800 0.82
0.300 0.10 0.825 0.19 1.325 0.52 1.825 0.83
0.325 0.10 0.850 0.22 1.350 0.54 1.850 0.85
0.350 0.11 0.875 0.23 1.375 0.54 1.875 0.87
0.375 0.11 0.900 0.24 1.400 0.55 1.900 0.89
0.400 0.12 0.925 0.27 1.425 0.57 1.925 0.91
0.425 0.12 0.950 0.28 1.450 0.59 1.950 0.93
0.450 0.13 0.975 0.30 1.475 0.60 1.975 0.96
0.475 0.13 1.000 0.32 1.500 0.61 2.000 0.98
0.500 0.13

Notes: Values correspond to data used for Figure 5. All LGD
values rounded to two decimal places.
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