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Abstract

After the Lehman-Brothers collapse, the stock index has exceeded its pre-Lehman-Brothers

peak by 36% in real terms. Seemingly, markets have been demanding more stocks instead of

bonds. Yet, instead of observing higher bond rates, paradoxically, bond rates have been per-

sistently negative after the Lehman-Brothers collapse. To explain this paradox, we suggest

that, in the post-Lehman-Brothers period, investors changed their perceptions on disasters,

thinking that disasters occur once every 30 years on average, instead of disasters occurring

once every 60 years. In our asset-pricing calibration exercise, this rise in perceived market

fragility alone can explain the drop in both bond rates and price-dividend ratios observed

after the Lehman-Brothers collapse, which indicates that markets mostly demanded bonds

instead of stocks.

Keywords: asset pricing, disaster risk, price-dividend ratio, bond returns

JEL classi�cation: G12, G01, E44, E43



1. Introduction

Since the �rst oil crisis of 1973, the US stock exchange has been marked by two major setback

episodes of its aggregate dividend index : the dot-com bust and the Lehman-Brothers collapse

(see Figure 1). These two disaster episodes mark two subperiods, as depicted by Figure 1:

the pre- and post-Lehman-Brothers regimes.

Figure 1 - US Data. Flat lines are statistics reported in Table 1. Sources: Datastream

(TOTMKUS) and Board of Governors of the Federal Reserve System (US), 6-Month

Treasury Bill: Secondary Market Rate (TB6MS).
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In the post-Lehman-Brothers period (subperiod 2), by the end of July 2017, the stock

market has grown above and beyond its pre-Lehman-Brothers peak by more than 36% in

real terms (58% in nominal terms). On the other hand, we see that the real 6-month bond

rate has decreased signi�cantly from a mean bond rate of 0.33% in subperiod 1 to -1.29% in

subperiod 2. This high increase in stock prices together with persistently negative bond rates

after the Lehman-Brothers collapse, looks like a stock-bond dissonance according to standard

asset pricing theory. We further observe that the price-dividend ratio has signi�cantly fallen

from subperiod 1 to subperiod 2 from 60.24 to 49.26 as depicted in Table 1. These two

empirical observations are essential for explaining the current stock-bond dissonance. Later

in the subsection 5.1 these are our four targets which we want to match.

subperiods 1 2

2000/7�2008/1 2008/2�2017/7

mean real interest rate 0:33% (1:32%) �1:29% (1:12%) b

median P-D ratio a 60:24 (3:05) 49:26 (2:31) c

Table 1 �Descriptive statistics. Bond rate, and P-D-ratio statistics that appear in Figure 1.

a Medians are reported when normality tests fail. Standard errors are reported in parentheses for

means and median absolute deviations for medians.

b Di¤erence-of-means t-test for di¤erence from previous subperiod�s statistic is 9.53 (p-value is 0).

c Wilcoxon signed-ranks test for di¤erence from previous subperiod�s median is 12.13 (p-value is

0).

According to standard asset-pricing theory, it is reasonable to think that investors have

rebalanced their portfolios, demanding more stocks instead of bonds. If this was true, then

the bond price would have fallen, leading to an increase in the bond rate. However, in
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the post-Lehman-Brothers period, the bond rate has signi�cantly decreased and persistently

stayed in a negative regime. This stock-bond dissonance, (a) the persistent drop in bond

rates, and (b) the persistent growth of stock prices, is a paradox.

To explain this stock-bond dissonance we use the Lucas (1978) asset pricing model with

rare disasters as in Barro (2006). We focus on two key observations in the data, which are the

signi�cant drop in the bond rate and the signi�cant drop in the price-dividend ratio, which

we try to match with the model. We show that a change in investors�expectations about

the frequency of rare disasters can explain the observed dissonance. More precisely, after

the Lehman-Brothers collapse, the investors have the perception of higher market fragility,

i.e. higher disaster risk hitting the real economy, such as a sudden drop in dividends. In our

calibration exercise we show that without changing the investors�preference parameters, nor

market fundamentals, in both subperiods, the model can match the data only by allowing

for an increase in investors�perceived frequency of a rare disaster.

Our model builds upon investors�increasing fear for more frequent market disruptions.

As in Barro (2006) a rare disaster can be any low-probability event that triggers a sharp

drop in per capita GDP or consumption. An economic disaster can be triggered by economic

events that a¤ect the business sector and speci�cally the aggregate dividend index (Great

Depression in 1929, the 2008-2009 Global Financial Crisis), or by natural diasters, wartime

destruction (World War I, World War II, nuclear con�icts). As in asset-pricing literature

with rare disaster risks, e.g., Barro (2006, 2009), Gabaix (2012), Gourio (2012), and Wachter

(2013), we assume that rare disasters are exogenous events. Although bonds are not a perfect

hedge against disaster risks, investors substitute bonds for stocks in case of higher market

fragility.
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According to our model, an explanation to the paradox is based on investor perceptios

about disaster risk: investors think that disasters occur once every 30 years on average

compared to once every 60 years on average before the Lehman-Brothers collapse. Our

argument is based on the fact that there is no decrease in the dividend growth rate nor an

increase in its dividend volatility (outside crashes). So, without changing perceptions about

disaster risk (market fragility), the drop in the price-dividend ratio or the drop in the bond

rate.

Our sensitivity analysis supports our market-fragility explanation. Being aware that

disaster risk is considered to be �dark matter�, in our sensitivity analysis, we use a range of

initial disaster probabilities from 1.7% to 2.5% in subperiod 1 and doubling the frequency

for subperiod 2. Our model still performs relatively well which recon�rms our working

hypothesis of an increase in market fragility.

We also calibrate our model allowing for the possibility of a partial default in government

bonds, making them not completely risk-free. We show that the sovereign-default risk is less

important quantitatively to explain the observed stock-bond dissonance. Indeed sovereign-

default risk raises the government bond rate as markets require a default premium. Hence,

it is market fragility alone that can explain the persistently negative government bond rates.

Our market-fragility explanation is in line with a number of studies focusing on rare

disaster risks in asset pricing. First, an in�uential body of literature suggests that disaster

risk is variable. More speci�cally we refer to Gabaix (2012), Gourio (2012), and Wachter

(2013), who demonstrate that this variability can explain many asset-pricing puzzles. In

addition, Marfe and Penasse (2017) �nd empirical evidence for disaster-risk variablity. An-

other body of literature assumes imperfect information about rare disaster risk and argues

that parameter learning implies more pessimistic disaster-risk beliefs after a rare disaster
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(Collin-Dufresne et al., 2016, Koulovatianos and Wieland, 2017, and Kozlowski et al., 2017).

All these studies agree that after the Lehman-Brothers collapse, beliefs about rare disaster

risk should be more pessimistic, backing up the working hypothesis examined in this paper.

Yet, for the sake of simplicity, here we employ only rational expectations and an unexpected

post-disaster structural break.

Due to challenges in observing disaster risk, John Campbell in his 2008 Princeton Finance

lectures called disaster risk the �dark matter for economists�. But ever since much progress

has been made regarding disaster-risk estimation and its role in calibration. Chen, Joslin and

Tran (2012) demonstrate that small changes in the distribution of heterogeneous beliefs can

have substantial impact on the aggregate-market implications of disaster risk. Chen, Dou

and Kogan (2017) also stress that disaster risk is di¢ cult to infer, and o¤er a comprehensive

robustness measure for estimating asset-pricing models with disaster risk.

2. More empirical details on the paradox

To describe the aggregate dividend process described in Figure 1, we assume that, as in

Barro (2006, 2009), dividends, Dt, follow the process,

ln (Dt+1) = �� �2

2
+ ln (Dt) + �"t+1 + �t+1 ln

�
1� �t+1

�
, (1)

in which the random term "t+1 � N(0; 1), is i.i.d. normal with mean 0 and variance 1. The

random term, �t+1,

�t+1 =

8><>: 1

0

,

,

with Prob. �

with Prob. 1� �
, (2)

introduced low-probability, rare disasters to the dividend process, i.e., with probability �

2 (0; 1) dividends are hit by a negative rare disaster shock of size �t+1. Variable �t+1 2 (0; 1)

is a random variable with given time-invariant distribution and compact support, Z � (0; 1).
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An interesting feature of the post-Lehman-Brothers stock prices is that the P-D ratio has

fallen signi�cantly (see Figure 1 and Table 1). For explaining the persistent drop in the P-D

ratio, it would be reasonable to focus on changes in fundamentals. The three parameters

involved in equations (1) and (2) are �, �, and �. We �rst examine whether the transition

from subperiod 1 to subperiod 2 has been marked by any changes in the trend, �, and in the

component of volatility that is not related to disasters, namely parameter �. Interestingly,

neither �, nor � have changed across subperiods 1 and 2.

2.1 What remained constant across subperiods 1 and 2: the div-

idend trend and the non-crash dividend volatility

In order to see that neither �, nor � changed across subperiods 1 and 2, we �rst need to

obtain an estimate for �, the non-disaster-shock dividend volatility, by excluding crash-

episode periods. The criterion for determining non-crash periods is explained by Figure

2.

Figure 2 depicts the spread between the 3-month London Interbank O¤ered Rate (LI-

BOR) and the 3-month Overnight Indexed Swap (OIS). According to Thornton (2009, p.

1), the LIBOR-OIS spread is �a measure of the health of banks because it re�ects what banks

believe is the risk of default associated with lending to other banks.�This interpretation of the

LIBOR-OIS spread, and the overall pattern revealed by Figure 2, motivate that a systematic

rise of the LIBOR-OIS spread above 50 basis points indicates times of problems in the bank-

ing sector. The �rst green vertical line indicates the date at which the LIBOR-OIS spread

suddenly increased beyond the 50-basis-points threshold. That date was August 9, 2007,

when BNP Paribas, France�s largest bank, announced that it would halt redemptions on

three investment funds (see St. Louis Fed, 2007). Certainly, this date marked the start of a
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broader period of uneasiness regarding the solvency of the banking sector. Nevertheless, the

50-basis-points threshold of the LIBOR-OIS spread has been exceeded systematically only

since February 2008. Therefore, February 2008, marked by the red vertical line in Figure 2,

is the cuto¤ month separating subperiod 1 (the pre-subprime-crisis phase) and subperiod 2

(the post-subprime-crisis phase) in our sample.

Figure 2 - Three-month LIBOR-OIS Spread (US daily data). Source for London

Interbank O¤ered Rate (LIBOR): Federal Reserve Bank of St. Louis, Economic Research

Division. Source for Overnight Indexed Swap (OIS): Datastream.

Table 2 presents statistics regarding the average dividend growth rate (means and me-

dians), and also a measure of variability of the dividend growth rate, but focusing on the
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non-disaster-shock dividend volatility across subperiods 1 and 2.

subperiods 1 2

2000/7�2008/1 2008/2�2017/7

mean dividend growth rate 5:59 a

(12:02)
4:89
(17:27)

b

median dividend growth rate 4:88
(6:23)

6:66
(5:67)

standard deviation of dividend growth rate
(excluding crash period)

12:22 11:57

Table 2 �Descriptive statistics of dividends in real terms appearing in Figure 1. All numbers

are percentages. Standard errors are reported in parentheses for means, and median absolute

deviations are reported for medians.

a Normality test does not fail (Jarque-Bera test statistic is 3.19 with p-value 20.3%).

b Normality test fails (Jarque-Bera test statistic is 564.43 with p-value 0%).

Regarding measures of the average dividend growth rate, in Table 2 Jarque-Bera test

statistics are reported, testing normality of distributions. While the dividend growth rate

does not fail a normality test in subperiod 1, normality is rejected in subperiod 2. For this

reason, a test of equality of means across subperiods 1 and 2 is not appropriate. Instead, in

Table 3 we report a number of equality tests for the medians of the dividend growth rate

across subperiods 1 and 2.
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Table 3 - Tests of equality of medians of dividend growth across subperiods 1 and 2.

Variable "GR_D_1" is the dividend growth rate in subperiod 1 and Variable "GR_D_2"

is the dividend growth rate in subperiod 2. This is a standardized Eviews output.

Since according to all median tests reported in Table 3 the null hypothesis of equality

between the two medians cannot be rejected, in our calibration of the model below, we use

the total-sample median spanning the two subperiods, from July 2000 until July 2017 (205

months in total) which is equal to 6.32% (see also the last line in Table 3).

Regarding the measure of non-disaster dividend volatility (volatility of dividend growth

excluding crash periods), for subperiod 1 we include the months from 2000/7 until 2007/7

and for subperiod 2 we include the months from 2009/6 until 2017/7.
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Table 4 - Tests of equality of variances of dividend growth across subperiods 1 and 2,

excluding crash periods. Variable "GRD1_NO" is the dividend growth rate in subperiod 1

for which crash periods are excluded, and variable "GRD2_NO" is the dividend growth

rate in subperiod 2, for which crash periods are excluded as well. This is a standard

Eviews output.

Based on Table 4, the standard deviations for these no-disaster subperiods are 12.22%

and 11.57%, but all tests cannot reject the null hypothesis that these two standard deviations

are equal. So, throughout the rest of the paper, in the calibration below, we use the total-

sample standard deviation, spanning the two subperiods, from July 2000 until July 2017 (183

months in total, after excluding the period from August 2007 until May 2009), which is equal

to 11.91% (see also the penultimate line in Table 4).
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2.2 What changed across subperiods 1 and 2: perceptions about

disaster risk

While neither �, nor � changed across subperiods 1 and 2, parameter �, seems to have

changed. Our working hypothesis is that there has been a pessimistic shift in rare-disaster

beliefs about parameter � after the Lehman-Brothers collapse, i.e. � mhas increased. This

working hypothesis is corroborated by an increase in the �SKEW�index, depicted by Figure

3.

Figure 3 - The SKEW index, US monthly data. Source: Chicago Board Options

Exchange.

The SKEW index partially reveals the investors�beliefs on market fragility. despite that

it is not a perfect proxy for the rare disaster risk hitting the dividend index. Figure 3 plots
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the Chicago Board Options Exchange (CBOE) Skew index, commonly known as �SKEW�.

According to Chicago Board Options Exchange CBOE (2010), the SKEW is an indicator

based on options, measuring the perceived tail risk of the distribution of Standard and Poor�s

(S&P) 500 log returns at a 30-day horizon. The SKEW measures tail risk, and speci�cally

the risk related to an increase in the probability of extreme negative outlier returns, two

or more standard deviations below the mean. Details on the formal de�nition of SKEW is

provided by Chicago Board Options Exchange CBOE (2010, p. 5).

The main point made by Figure 3 is that the mean level of the SKEW index has increased

in subperiod 2. Interestingly, the SKEW index is well approximated by a normal distribution

in both subperiods (the Jarque-Bera statistic is 3.71, implying a p-value of 0.16 in subperiod

1, while for subperiod 2 the Jarque-Bera statistic is 2.51, implying a p-value of 0.29).

subperiods 1 2

2000/7�2008/1 2008/2�2017/7

mean SKEW 117:0 (4:99) 122:1 (6:28)a

Table 5 �Descriptive statistics of the SKEW index appearing in Figure 3.

Standard errors in parentheses.

a Di¤erence-of-means t-test for di¤erence from previous subperiod�s statistic is -6.37 (p-value is 0).

Table 5 presents a formal statistical test revealing that the mean SKEW has increased

signi�cantly in subperiod 2. This evidence supports our working hypothesis that, after the

Lehman-Brothers collapse, beliefs about rare disasters have become more pessimistic. The

risk interpretation of the changes reported by Figure 3 and Table 5 is given by Chicago Board

Options Exchange CBOE (2010, p. 8). Speci�cally, the estimated risk-adjusted probability

that the S&P 500 may experience a sudden drop of two standard deviations in the next 30

days has increased from 6.89% in subperiod 1 to 8.27% in subperiod 2 on average. Similarly,
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the estimated risk-adjusted probability of a sudden drop of three standard deviations has

increased from 1.16% in subperiod 1 to 1.46% in subperiod 2 on average. Although these

estimates are not a perfect proxy of the risk of a rare disaster hitting the dividend index,

they reveal that beliefs about tail risks and market fragility have been elevated after the

Lehman-Brothers collapse. In the rest of the paper we use an asset-pricing model in order

to investigate whether a change in � alone across subpriods 1 and 2 is capable of replicating

key asset-pricing features summarized by Table 1, and we obtain a model-based sense of the

increase in parameter �.

3. Model

In this section we present our model with disaster risk. We follow the classic Lucas-tree setup

(Lucas, 1978). There is a risky asset, the stock composite index (the market portfolio), and

a one-year zero-coupon bond. Our stylized asset-pricing model that uses i.i.d. disaster

shocks hitting the dividend process, and summarized by equations (1) and (2), implies a

�at term structure on bond rates in equilibrium, so there is no need to introduce bonds

with di¤erent maturity. The one-year zero-coupon bond is not entirely risk-free. In the

case of a rare disaster hitting the dividend process, the probability of a partial default on

government bonds exists. So we do not only have market fragility in our model but also a

sovereign-default risk.

The budget constraint of an investor is,

St�1Dt| {z }
q

Incom e

= Pt (St � St�1)| {z }
q

Investm ent in Sto cks

+ QtBt � (1� �)�t�
B
t Bt�1| {z }

q
Investm ent in Bonds

+ Ct|{z}
q

Consumption

, (3)

in which St�1 and Bt�1 is the number of stocks and bonds held by the investor in the

beginning of period t, while Pt and Qt are the stock and bond prices in period t. The term
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(1� �)�t�
B
t multiplying Bt�1 in (3) states that if there is no dividend disaster (vt = 0), then

the zero-coupon bond pays 1 unit of the consumable good at the maturity date; in periods

that a dividend disaster occurs (vt = 1), then a probabilistic sovereign-default process is

triggered, governed by �Bt ,

�Bt =

8><>: 1

0

,

,

with Prob. �

with Prob. 1� �
, (4)

with � 2 [0; 1). If both a dividend-disaster and a default occur (�t = �Bt = 1), then the

zero-coupon bond pays 1 � � units of the consumable good, i.e., it defaults by the fraction

� 2 [0; 1].1 Variables "t+1, �t+1, �Bt+1, and �t+1 are independent among each other and also

independent and identically distributed (i.i.d.) over time.

Preferences are recursive, of the form of Epstein-Zin-Weil (EZW), with utility in period

t, denoted by Jt, given by the recursion,

Jt =

(
(1� �)C

1� 1
�

t + �
�
Et
�
J1�t+1

�� 1� 1
�

1�

) 1

1� 1
�

, (5)

in which � > 0 is the intertemporal elasticity of substitution (IES),  > 0 is the coe¢ cient

of relative risk aversion, and � 2 (0; 1) is the utility discount factor that is inversely related

to the rate of time preference, � = (1� �) =�.

3.1 Asset prices

Equation (1) implies that dividend growth is random following i.i.d. shocks over time. In

Appendices A through C we prove that these i.i.d. shocks imply a constant P-D ratio over

time, denoted by x,

Pt
Dt

= x =
!

1� !
with ! = �e(

1� 1
� )
�
�� �

2

2

�
(1� ��)

1� 1
�

1� , t = 0; 1; :::, (6)

1 The concept of sovereign default follows Barro (2006, p. 836) who observes that in periods of rare market
disasters the probability of a sovereign default increases. We thank an anonymous referee for raising this
point.
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in which � = 1 � E�
�
(1� �)1�

�
, with E� (�) denoting expectation with respect to variable

� only. The expected bond rate, denoted by rB, is

E
�
rB
�
=
1

�
e
1
�
��(1+ 1

� )
�2

2
(1� ��)

1
��
1� (1� ���)

1� �
�
1� E�

�
(1� �)�

�
(1� ��)

	 � 1 , t = 0; 1; :::. (7)

3.2 Empirical implications and tests of the model

The �at P-D ratio implied by equation (6) is not a bad approximation of the P-D ratio

dynamics in both subperiods 1 and 2. As Figure 1 indicates, after the P-D ratio overreactions

to the disaster episodes calmed down, P-D ratios remained almost constant throughout

subperiods 1 and 2, but at di¤erent levels.

subperiods 1 2

2000/7�2008/1 2008/2�2017/7

estimator �1 in equation (9) 1:05 (0:37) a 0:88 (0:07) a

ADF statistic for unit root of ln (Pt) �2:09 b �0:52 b

ADF statistic for unit root of ln (Dt) 1:69 b 1:39 b

Table 6 �Cointegration coe¢ cients (standard errors in parentheses) and ADF unit-root tests.

a Max eigenvalue test indicates one cointegrating equation at the 5% level.

b ADF test rejects a unit root (1% critical value is -3.50, 5% critical value is -2.89).

For empirical evidence on the validity of (6), notice that another way of writing (6) is,

ln (Pt) = ln (x) + ln (Dt) . (8)
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In Table 6 we report estimates of �1 in the cointegrating equation,

ln (Pt) = �0 + �1 ln (Dt) + ut , (9)

whenever cointegration is applicable, based on Augmented Dickey-Fuller (ADF) unit-root

tests.

Table 6 provides evidence that, in subperiods 1 and 2, ln (Pt) and ln (Dt) are both

integrated of order 1, and that the estimates of �1 do not di¤er much from 1.2 In subperiod

1, coe¢ cient �1 is not signi�cantly di¤erent from 1. Although in subperiod 2 coe¢ cient

�1 di¤ers from 1, the value of 0:88 supports that equation (8) is not a bad big-picture

approximation of �nancial markets in the US after the Lehman-Brothers collapse. This

evidence validates using the Barro (2006, 2009) model for asset-pricing purposes during

subperiods 1 and 2, despite that these subperiods have relatively short length of about 8

years each.

4. Calibration

4.1 Benchmark calibration and key targets

We summarize our calibrating parameter values in Table 7, focusing on the benchmark case

of no sovereign fragility (� = � = 0).

2 ADF tests showing that ln (Pt) and ln (Dt) are not integrated of order 2 or above can be provided by the
authors upon request.
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subperiods 1 2

2000/7�2008/1 2008/2�2017/7

� 1:85 same

� 2:91% same

 3:92 same

� 6:32% (data) same

� 11:91% (data) same

� 7:08 (data) same

� 1:7% (benchmark) 3:5%

Table 7 �Calibrating parameter values. E�(�) = 23:28%.

Parameter � is a newly introduced parameter. It is based on the �nding by Barro and Jin

(2011) that, after transforming disaster sizes using the formula z = 1= (1� �), empirically,

variable z is Pareto distributed with density f (z) = �z�0 =z
�+1, in which z0 is the minimum

value of z. Our chosen value for �0 (obeying z0 = 1= (1� �0), the minimum cuto¤ disaster

size) is 12.5%. We independently estimate �, and choose calibrating values of � from the

95% con�dence interval of its estimated value.3 For estimating �, we use the database by

Barro and Jin (2011) that refers to GDP disasters, which is downloadable from,

https://scholar.harvard.edu/barro/publications/size-distribution-macroeconomic-disasters-data

Barro and Jin (2011) present a sensitivity analysis of all their results considering that the

lower bound for the disasters, �0, ranges from 9.5% to 14.5%, while Barro (2006, 2009)

3 We use this estimated Pareto distribution in order to compute all expressions involving the expectation
E� (�). Barro and Jin (2011) demostrate that the goodness of �t to disaster-size data increases if one uses
two Pareto distributions, each being e¤ective for a di¤erent interval of the support of z. Yet, a single Pareto
distribution also gives a good approximation, so we use this for simplicity.
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also work with �0 = 15%. We pick a value somewhere in the middle of this range, setting

�0 = 12:5%, which leaves 110 disasters out of 157 in the Barro and Jin (2011) sample. Using

the maximum-likelihood estimation of the �shape�parameter � in the Pareto distribution,

we obtain an estimate for � equal to 5:986 (standard error 0.57), and a 95% con�dence

interval implying that �̂ 2 [4:87; 7:11].4

Figure 4 - Goodness of �t of transformed disaster-size data above the 12.5% threshold.

Source: Barro and Jin (2011).

4 Speci�cally, we use the package �PARETOFIT�, a module to �t a Type 1 Pareto distribution by Stephen
P. Jenkins, which is implementable using Stata and downloadable from,

http://fmwww.bc.edu/RePEc/bocode/p

18



In our calibration exercise we compute all expectations involving �, using E� (�) based on

a Pareto distribution for the transformed variable z = 1= (1� �) with a calibrating parameter

��, taken from this 95% con�dence interval, i.e., �� 2 [4:87; 7:11]. As Figure 4 reveals, our

calibrating value, �� = 7:081 �ts the disaster data very well, doing approximately the same

good job in �tting the disaster distribution as the point estimate �̂ = 5:986.

We have four targets: rB1 , r
B
2 , (P=D)1, and (P=D)2, denoting the bond rate and the

P-D ratio in the two subperiods. Parameter values �, �, and � are directly inferred from

data. We use parameter �1 = 1:7% as a benchmark value. Then our calibration exercise

is to match the four targets using four parameter values, the three preference parameters,

�, �, and , which are constant across the two subperiods, and also �2, which is the fourth

parameter value.

rB rB P-D ratio P-D ratio

subperiods Model Data Model Data

2000/7�2008/1 0:33% 0:33% 60:61 60:24

2008/2�2017/7 �1:29% �1:29% 48:34 49:26

Table 8 �Model vs. data. Case with no sovereign fragility: � = � = 0.

The key element of our calibration exercise is that, in subperiod 2, after the Lehman-

Brothers collapse, the disaster-risk parameter, �, has more than doubled, re�ecting that

disasters occur in slightly less than 30 years (1=3:5% ' 29) on average.5 In Table 8 we

can see that this simple modi�cation in perceived market fragility is capable of replicating the

5 Barro�s (2009) benchmark suggests disasters occurring once every 60 years (1/1.7% = 59). This change is
consistent with models of rational learning about disaster risk implying that perceived disaster risk increases
after a disaster episode and then remains high for a long period afterwards (see Koulovatianos and Wieland,
2017).
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persistent changes in the bond rate and the P-D ratio that occurred after the Lehman-Brothers

collapse.

4.2 Sensitivity analysis: varying the disaster probability in the
�rst subperiod

In this subsection we provide a sensitivity analysis using a di¤erent benchmark for �1: instead

of �xing �1 to 1:7%. We vary its values in a range from 1:5% to 2:5%, doubling �2 in

each calibration exercise. The key message here is that none of the matching preference

parameters �, �, and , change drastically.

Table 9 - Sensitivity analysis examining the impact of changing �1.

We perform a sensitivity analysis focusing on changing the disaster probability parameter

�. Compared to the benchmark value of �1 at 1:7%, we expand the parameter space ranging

from �1 = 1:5% to �1 = 2:5%. Keeping all parameters inferred from data constant, namely
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�, �, and �, in each calibration exercise we gradually increase �1 by 0.1% percentage points,

doubling �2 at the same time.

Figure 5 - Sensitivity analysis examining the impact of changing �1 (and setting

�2 = 2�1) on preference parameters, , �, and � that provide the best �t to the four data

targets, keeping �, �, and � constant.

Fitting the four targets of Table 8 through a minimum-distance approach, Figure 5 and

Table 9 report how the three preference parameters, �, �, and , change as we vary the

anchor value of �1 each time. In Table 9, we provide the re-calibrated parameters and the

corresponding matched values. Under this sensitivity analysis, our model still performs rel-
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atively well. The model simulated values do not vary much compared to the benchmark

results, and the results are quite close to the actual data targets. Regarding the prefer-

ence parameters �, �, and , Figure 5 plots the corresponding variations, and none of the

matching preference parameters change drastically. Importantly, according to Chen, Dou,

and Kogan (2017, Figure 1, p. 23), we are con�dent that our calibration parameters are in

the �acceptable calibration�area for models like ours.

4.3 Sensitivity analysis: sovereign-default risk

We also introduce sovereign-default risk, setting � = E� (�) = 23:28%, and � = 40%, as in

Barro (2006). As it is obvious from formulas (6) and (7), sovereign-default risk leaves P-D

ratios unaltered, but raises rB, as markets require a default premium. Using our calibrating

values from Table 3, the resulting interest rates are rB1 = 0:75% and rB2 = �0:50%. In

light of our sensitivity analysis, it seems that even if sovereign-default risk is present, it is,

instead market fragility that is most likely to explain recent asset-price trends. Especially

if we think that higher sovereign-default risk emerged after the Lehman-Brothers collapse,

this risk element would push bond rate upward instead of downward.Conclusion

5. Conclusion: market fragility can resolve the paradox

The �rst part of the stock-bond-dissonance paradox refers to why bond rates have been

so persistently low. Since the Lehman-Brothers collapse, the rise in stock prices creates

the plausible impression that markets have increased their demand for stocks, lowering the

demand for bonds. However, if fewer bonds had been demanded in the post-Lehman-Brothers

era, then bond rates should have increased. Our approach to this part of the paradox has

been to focus on explaining the simultaneous drop in the P-D ratio through increased market

fragility, captured by the size of parameter � in our model. Our theory says that there is no
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paradox: the drop in the P-D ratio implies that this substitution between stocks and bonds

did not necessarily happen; instead markets must have increased the demand for bonds, while

decreasing the demand for stocks in a subtle manner.

The other part of the paradox, referring to why stock prices have grown so much and so

fast, can be explained by the fact that no disasters have occurred after 2008. To an extent, the

dividend trend, captured by parameter � in the model, re�ects the incremental productivity

growth of �rms in the stock exchange. Disasters a¤ect the perceived e¤ective growth of

dividends, so di¤erent perceptions of disaster risk before and after the �nancial crisis a¤ect

only the perceived but not the actual growth of dividends and prices. Therefore, the fast

rise of stock prices can be explained by the coincidence, that no disasters have occurred after

2008.

For explaining the persistently negative bond returns, we do not rule out that the Fed

policy contributed to the high demand for bonds. Yet, according to our approach, it is

market fragility (perhaps bank fragility that followed the 2008 �nancial crisis, consistent

with a rise in � in our model), that led the Fed to its aggressive quantitative easing policy.

Our suggested market fragility explanation for resolving the paradox, points at a �rst

message: it is crucial to avoid misinterpreting seemingly good market trends as market

robustness at times of underlying market fragility. Market fragility always implies weaker

investment in the real economy. This weakness alters the e¤ects of planned �scal and mon-

etary policies. Our arguments in this study may serve as a starting point for new research

on better identifying underlying market fragility and its sources.
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1. Appendix A �Proof of equations (6) and (7) in the paper

Using the transformation,

Wt = St�1 (Dt + Pt) + (1� �)�t�
B
t Bt�1 , (A.1)

the budget constraint (3) becomes,

Wt+1 = RPt+1 (Wt � Ct) , (A.2)

in which RPt is the gross portfolio return de�ned as,

RPt = �St�1R
S
t + �Bt�1R

B
t , (A.3)

with

RSt =
Dt + Pt
Pt�1

and RBt =
(1� �)�t�

B
t

Qt�1
(A.4)

being the gross returns of stocks and bonds, and with �St = PtSt= (PtSt +QtBt) and �
B
t =

QtBt= (PtSt +QtBt) being the portfolio weights.

Using (A.2) the Bellman equation is,

Vt (Wt) = max
ct�0;�St ;�Bt

8<:(1� �)C
1� 1

�

t + �
n
Et

h
Vt+1

�
RPt+1 (Wt � Ct)

�1�io 1� 1
�

1�

9=;
1

1� 1
�

, (A.5)

subject to (A.3) and subject to the stochastic structure given by (1) and (2). Under a general

stochastic structure, the value function, Vt (�), is of the form,6

V (Wt) =  tWt , t = 0; 1; ::: . (A.6)

6 Equation (A.6) corresponds to Epstein and Zin (1991, p. 267, eq. 9).
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A useful implication of (A.6) is,7

Ct
Wt

= (1� �)�  1��t , t = 0; 1; ::: . (A.7)

In addition, (A.6) implies the key asset pricing equation of this model, which is,8

Et

"
�

1�
1� 1

�

�
Ct+1
Ct

� 1�
1�� �

RPt+1
� 1
��

1� 1
� Rit+1

#
= 1 , i 2 fS;Bg . (A.8)

In the standard textbook Lucas (1978) asset-pricing model the key simplifying assumption is

that all investors are identical, all having the same amount of S�1 stocks in period 0, and all

having Bt�1 = 0 for all t 2 f0; 1; :::g, i.e., bonds in zero net supply in all periods. Identical

investors do not trade stocks in equilibrium. Combining these simplifying assumptions of no

trade in equilibrium with the budget constraint, and also with equations (3) and (A.1), we

obtain,

St = S�1 , Ct = S�1Dt , Wt = S�1 (Dt + Pt) , �
S
t = 1 , and �

B
t = 0 , t = 0; 1; ::: . (A.9)

Combining (A.3) with (A.9) gives,

RPt = RSt , (A.10)

while equation (A.4) implies,

RSt+1 =
1 + xt+1

xt

Dt+1

Dt

, with xt �
Pt
Dt

. (A.11)

In addition, equation (A.9) implies that Ct+1=Ct = Dt+1=Dt, so substituting this result into

(A.8) for i = S, together with (A.10), (A.11), and (1), equation (A.8) becomes,

Et

(�
�
1 + xt+1

xt

� 1�
1� 1

�
h
e��

�2

2
+�"t+1

�
1� �t+1

��t+1i1�) = 1 . (A.12)

7 Equation (A.7) should correspond to Epstein and Zin (1991, p. 268, eq. 12), but equations (A.7) and
Epstein and Zin (1991, p. 268, eq. 12) are di¤erent. See Appendix B for a proof ot equation (A.7).
8 See Epstein and Zin (1991, p. 268, eq. 16).
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In Appendix C we prove that, as a consequence of our assumption that variables "t+1, �t+1,

and �t+1 are i.i.d. over time, the P-D ratio is also constant over time, i.e.,

xt = x , t = 0; 1; ::: . (A.13)

Substituting (A.13) into (A.12), proves the formula given by (6).

For proving equation (7) we substitute (A.4), (A.10), (A.11), and (A.13) into (A.8), for

i = B, to obtain,

�
1�
1� 1

�

�
1 + x

x

� 1
��

1� 1
�
Et

�h
e��

�2

2
+�"t+1

�
1� �t+1

��t+1i� (1� �)�t+1�
B
t+1

1

Qt

�
= 1 . (A.14)

Equation (A.14) implies a constant value for Qt over time, Qt = Q for all t 2 f0; 1; :::g.

The bond price, Q, is set a-priori to the realization of disasters and defaults. This is the

reason why Q is constant over time. Yet, because of the sovereign default risk, the ex-post

bond return is variable over time. Speci�cally, with probability ��, the ex-post (post-

default) maturity price of the bond is 1 � �, making the ex-post bond return equal to

rB = (1� �) =Q� 1. So,

rBt =

8><>: rB = 1
Q
� 1

rB = 1��
Q
� 1

,

,

with Prob. 1� ��

with Prob. ��
. (A.15)

In equation (7) we refer to the expected return implied by equation (A.15), which is given

by E
�
rB
�
= (1� ���) =Q� 1. �

2. Appendix B �Proof of equation (A.7)

Take equation (A.6) as an initial guess for the functional form of the value function, consid-

ering that  t is an unknown stochastic process. Substituting (A.6) into equation (A.5) we

obtain,

 tWt = max
ct�0;�St ;�Bt

�
(1� �)C

1� 1
�

t + �!t � (Wt � Ct)
1� 1

�

� 1

1� 1
�
, (A.16)
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in which, !t �
n
Et

h
 1�t+1

�
RPt+1

�1�io 1� 1
�

1�
. Taking �rst-order conditions on equation (A.5)

with respect to Ct gives,

Ct =

�
�

1� �
!t

���
(Wt � Ct) . (A.17)

Equation (A.17) implies,

C
1� 1

�

t =

�
�

1� �
!t

�1��
(Wt � Ct)

1� 1
� . (A.18)

Substituting (A.18) into (A.16), imposes optimality conditions on (A.16). So, the max

operator in (A.16) can be eliminated after substituting (A.18) into (A.16), which gives,

 
1� 1

�

t W
1� 1

�

t = �!t

"�
�

1� �
!t

���
+ 1

#
(Wt � Ct)

1� 1
� . (A.19)

Using (A.18) and substituting it into (A.19) results in,

 
1� 1

�

t

�
Ct
Wt

� 1
�
�1

= (1� �)

�
1 +

�
�

1� �
!t

���
. (A.20)

Equation (A.17) implies,

Ct
Wt

=

�
1 +

�
�

1� �
!t

����1
. (A.21)

Substituting (A.21) into (A.20) gives,

 
1� 1

�

t = (1� �)

�
1 +

�
�

1� �
!t

��� 1�
. (A.22)

Equation (A.22) recon�rms that the guess given by equation (A.6) is valid. Combining

(A.21) with (A.22) leads to equation (A.7). �

4



3. Appendix C �Proof that the price-dividend ratio is constant

Since variables "t+1, �t+1, and �t+1 are i.i.d. over time, through integral-variable transfor-

mation, equation (A.12) implies that,

Et

�
1 + xt+1

xt

�
= Et+1

�
1 + xt+2
xt+1

�
= � , t = 0; 1; ::: . (A.23)

To see that xt+1 = xt = x for t = 0; 1; :::, �x some xt = �xt > 0, assuming that �xt is a solution

to the asset-pricing model. Consider conditional expectations for (A.23), namely,

Et

�
1 + xt+1

xt
j xt = �xt

�
= � . (A.24)

Equation (A.24) implies a unique solution for Et (xt+1). Let that unique solution be �xt+1 =

Et (xt+1). Using �xt+1, consider equation (A.24) one period ahead to obtain �xt+2 � Et+1 (xt+2).

Notice that, due to additive separability, and since the choice of t 2 f0; 1; :::g was arbitrary,

equation (A.24) implies,

1 + �xt+1
�xt

=
1 + �xt+2
�xt+1

, t = 0; 1; ::: . (A.25)

Using gt+1 � �xt+1=�xt equation (A.25) implies,

gt+2 � gt+1 =
1

�xt

�
1� 1

gt+1

�
, t = 0; 1; ::: . (A.26)

If gt+1 6= 1, since �xt > 0, we can easily verify that equation (A.26) implies unstable dynamics

for xt. If gt+1 > 1 for some t, then (A.26) implies gt+s > 1 for all s 2 f0; 1; :::g, and xt !1.

If gt+1 < 1 for some t, then eventually gt̂ < 0 for some t̂ > t, leading to xt̂ < 0. For

� 6= 1 (which is of interest for matching the data), both of these possibilities lead to a non-

well-de�ned value function. To see this, use equations (A.7), (A.11), (A.9), and (A.6) to

obtain,

Vt (Wt) =  tWt = (1� �)
�

��1 (1 + xt)
�

��1 S�1Dt . (A.27)
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For xt !1, either Vt (Wt)!1 (if � > 1), or Vt (Wt)! 0, (if � < 1), even if 0 < Dt <1.

None of these possibilities implies a well-de�ned value function or a maximum value, given

that the EZW utility function represents a cardinal certainty-equivalent time aggregator

measured in consumption units (in addition, the solution gt = 1 for all t 2 f0; 1; :::g, gives

Vt (Wt) > 0 bounded away from 0 for all t 2 f0; 1; :::g). Since from equation (A.9) Ct=Wt =

1= (1 + xt), having xt̂ < 0 for some t̂ > t, implies Ct̂ > Wt̂, and equation (A.2) then gives

Wt̂+1 < 0 if RP
t̂+1

> 0, i.e. Vt̂ (Wt̂) < 0, which is unacceptable, given the consumption-unit

cardinality of EZW preferences. But even if RP
t̂+1

< 0, having negative stock prices in an

exchange economy of identical agents is impossible in equilibrium. So, the only acceptable

equilibrium solution for (A.26) is gt = 1 for all t 2 f0; 1; :::g, which leads to equation (A.13),

proving the result. �
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