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Abstract

There are twoways for taxpayers to avoid paying taxes: legally, through
tax optimization and illegally, through tax evasion. The government re-
acts by altering the law, and by conducting audits, respectively. These
phenomena are modeled as a population game, a strategic interaction
between all taxpayers: the more taxpayers optimize, the lower the opti-
mization result as a consequence of the government tightening the tax
law. The more taxpayers evade, the higher the risk of detection because
of the tax agencies increasing the audit probability. If the government
reacts to changed optimization behavior with too large a delay, an equi-
librium tax law cannot be reached. Tax codes should be updated rapidly
in order to avoid a permanent change of the tax law, which is costly both
for the legislator and the taxpayers facing legal uncertainty.
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1. Introduction

In the tax game the main forces at play are taxpayers’ efforts to avoid paying
taxes and the tax authority’s effort to enforce tax compliance. These forces act via
two channels: first, the government needs to establish a tax code that regulates
the details of liability for taxation and ensures horizontal and vertical equity.
To reach this goal tax codes have to consider many real-world eventualities
and grant tax exemptions where appropriate. Such tax shelters are used (and
misused) by taxpayers. Also, since tax codes typically are complicated and to
some extent inconsistent, taxpayers are able to legally avoid tax payments by
searching for “loopholes”. Second, taxpayers can illegally avoid taxes by simply
not reporting their income to the tax authority or by reporting nonexistent
expenses. The tax authority, in turn, conducts audits in order to detect and
punish tax evaders.

This second channel has featured heavily in economic theory, starting with
the seminal works of Allingham and Sandmo (1972) and Yitzhaki (1974) who
regard tax evasion as a portfolio optimization approach, with the amount of
evaded tax being the risky asset. One of their main findings is rather counterin-
tuitive: the change in tax compliance after increasing tax rates can be positive.
In fact, one would expect tax compliance to decrease with an increasing tax
burden. Their work was extended to cover the tax authority’s reaction and
public goods provision by Cowell and Gordon (1988) who, amongst others,
find that tax compliance may increase with increasing tax rates if public goods
are over-provided. Reinganum and Wilde (1986) develop a game theoretical
tax compliance model that assumes taxpayers with heterogenous income to
play against the tax authority. The authors construct a separating equilibrium
in which all taxpayers reduce their true income by a certain amount and the
tax authority audits taxpayers with a certain probability which decreases with
reported income. Erard and Feinstein (1994) extend the model by introducing
a budget constraint for the tax authority and by assuming a certain fraction
of taxpayers to be inherently honest. The complexity of the solution increases
considerably. In equilibrium, both the taxpayers’ income reports and the audit
schedule depend on the taxpayers’ income distribution. Since the model is not
analytically solvable, the authors perform simulations. They find that the tax
authority’s net tax and penalty revenue rises rather slowly with an increasing
share of honest taxpayers. Another string of literature relies on a principal-
agent framework to analyze tax compliance issues. Assuming lump-sum taxes
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and penalties, Reinganum and Wilde (1985) find that random audit sched-
ules where the audit probability is unconditional upon reported income are
dominated by an audit policy in which the tax authority (the principal) sets a
cutoff level, with lower reports are always audited and higher reports are never
audited. They assume that the tax authority can commit to a certain schedule.1

With regard to the first channel mentioned above—legal tax optimization—
the literature is less extensive, however. Mayshar (1991) generalizes the Alling-
ham-Sandmo model by introducing the notion of a “tax technology”, formally,
a function which takes as arguments the tax base, the taxpayer’s tax-shielding
effort and a vector of tax instruments adopted by the tax authority and gives
as output the tax payment. The function is kept general, the tax technology is
thus a “black box”, and the tax-shielding effort can be interpreted as any kind
of legal or illegal measure the taxpayer might take in order to reduce their tax
burden. Taxpayers choose labour effort and tax-shielding effort whereas the
tax authority chooses (costly) tax instruments. The model aims at providing
a framework capable of giving a cost-benefit analysis of administrative tax
instruments. Slemrod (2001) specifies the tax technology by assuming a linear
tariff. Tax avoidance is modeled as a reduction of the tax base by a certain
amount at costs that depend on the true income and the extent of avoidance.
The model’s main focus lies on explaining behavioral responses to taxation,
namely, the taxpayer’s choice of labor supply and tax avoidance effort, and the
interdependence between both. Cowell (1990) distinguishes between (illegal)
tax evasion and (legal) tax sheltering. He argues that taxpayers will either evade
or shelter parts of their income: since the tax sheltering function is publicly
known, tax sheltering implicitly causes taxpayers to reveal information about
their true income to the fiscal authority. It follows that there can be a complete
polarization between shelterers and evaders, with the “rich” sheltering and the
“poor” evading.2

The models mentioned above focus on individual taxpayer characteristics:
the authors investigate on how taxpayers choose labor effort, tax avoidance
effort, and, in case of tax evasion, the amount of tax evaded. As with tax
evasion, the fiscal authority’s reaction (i. e., audit probability) is based on the
taxpayer’s income report. As with tax avoidance, the government may choose
certain tax instruments. However, the economic damage of both legal and

1See Andreoni, Erard, and Feinstein (1998) for an overview.
2See Slemrod and Yitzhaki (2002) for an overview.
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illegal tax avoidance is heavily determined by the number of taxpayers applying
such strategies, and so may be the tax authority’s reaction. Formally, the tax
agency’s audit function (concerning tax evasion) and the “tax technology”
function (concerning tax avoidance) may take as arguments the number of
taxpayers applying either strategy. If so, an individual taxpayer’s benefit from
tax optimization or tax evasion is determined by the behavior of their fellow
taxpayers rather than by the tax agency’s reaction to an individual tax report:
the game is no longer played between an individual taxpayer and the tax agency,
but rather between all taxpayers.

Concerning tax evasion, this “crowding effect” can be motivated as follows:
tax agencies, while auditing a set of tax reports, should be able to estimate
the share of tax evaders based on the detection rate rather easily. It seems
reasonable to assume that auditing activities are broadened if it turns out that
there are many tax evaders, while auditing is cut down if the taxpayers turn
out to be predominantly honest. The relationship is kept general in this paper,
however, for lack of empirical evidence on its shape.

As with tax avoidance, there are several potential reasons for a “crowding
effect”. First, the government gets aware of the necessity to close loopholes
not until they are exploited by a sufficiently large number of taxpayers. Also,
if loopholes are used by a small fraction of taxpayers only, closing them is
simply not profitable. However, governments have to intervene if too many
taxpayers save on taxes in a way that is legal though not in the intention of
the legislator. They do so by altering the tax law, or by adding additional legal
norms. For example, most tax codes contain thin-capitalisation rules which
limit the companies’ possibilities of exploiting interest tax shields. Currently,
the OECD “base erosion and profit shifting” (BEPS) project aims at prohibiting
prominent structures like the “Double Irish with a Dutch Sandwich”. Moreover,
many tax authorities impose general anti-tax-avoidance doctrines which are not
necessarily part of the tax law. They restrict tax avoidance directly by limiting
the resulting tax savings.3 Examples are the business purpose doctrine or the
economic substance doctrine. Basically, such doctrines state that transactions
will not be regarded by the tax law if their only purpose is a reduction of the
tax liability. The presence of anti-tax-avoidance doctrines and legal norms
that prohibit the usage of certain tax avoidance schemes reduces the taxpayers’
profit from engaging in legal tax optimization. However, a tight tax law is also

3Weisbach (2002) discusses the efficiency of anti-tax-avoidance doctrines.
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costly. Both the government and the taxpayers suffer bureaucracy costs from
a high level of tax complexity. Also, multinational companies might refrain
from investing in countries with tight tax laws. Hence, in part, countries could
compete over the laxness of the tax law rather than over tax rates. Indeed,
countries like the United States, Spain and Ireland recently weakened or abol-
ished their thin capitalisation rules (Haufler & Runkel, 2012). This shows that
governments basically have incentives to laxen their tax laws, if possible. In
other words, if no one would optimize, governments would desire a tax law
which is both uncomplicated and allows for generous tax savings. If such a
lenient tax law is then heavily exploited by taxpayers, however, governments
would need to tighten it again.4 Another explanation for a crowding effect
could be the government’s aim to reach a certain budget target. For an example,
consider a government’s budget target of $ 90. Legal tax avoidance / tax opti-
mization is interpreted as taxpayers applying for tax refunds. If ten taxpayers
each pay taxes of $ 10 the total tax revenue exceeds the budget by $ 10. The
excess amount is divided among the optimizing taxpayers. If only one taxpayer
optimizes they receive the whole amount of $ 10. However, if five taxpayers
optimize, each get a tax refund of $ 2.

Again, for lack of knowledge on the shape of the relation between the number
of tax avoiders and the “profit” from tax avoidance, apart from being negative,
it is kept general.

Strategic interactions where an individual plays against a whole society rather
than a limited number of other individuals are referred to as population games
(Hofbauer & Sigmund, 1998). Then, a Nash equilibrium is given not by a
strategy choice of single individuals, but by population shares that each play
pure strategies. In the basic model developed in this paper, taxpayers decide
between two strategies, “optimization” and “non-optimization”. “Optimization”
involves tax planning costs that depend on the amount of pre-tax income. Tax

4This situation was modeled by Diller, Grottke, and Schneider (2013) as a single-shot two-
player game between a taxpayer who can choose to exert a certain tax planning effort and
a government which chooses a certain degree of tax complexity. Higher planning effort
is associated with bigger tax savings but increasing planning costs. Higher complexity is
associated with smaller tax savings and increasing complexity costs. Inter alia, the authors
find that both planning effort and tax complexity increase with an increasing tax base.
With regard to the results of the present article, it should be pointed out that Diller et al.
(2013) find that an existing level of tax complexity and tax planning effort changes over
time only if the costs of either tax complexity or tax planning change.
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planning then leads to a certain tax refund. The size of the tax refund depends
negatively on the share of optimizing taxpayers, as motivated above. There
exists only one Nash equilibrium which involves a certain share of taxpayers
who optimize while the remainder does not optimize. It turns out that the
share of optimizing taxpayers increases with increasing tax rates, decreasing
optimization costs and a generally higher optimization result. A dynamic
version of the game is implemented by applying a pairwise proportional revision
protocol. That is, when receiving an opportunity to update their strategy, a
taxpayer meets another taxpayer at random and adopts their strategy with
probability proportional to the payoff difference if the latter is positive. The
evolution of the whole population’s behavior can then be approximated by
the replicator dynamic (Schlag, 1998), which was originally developed by
Taylor and Jonker (1978) to capture the evolution of species by survival and
reproduction of the fittest. Applying the replicator dynamic, it is shown that
the Nash equilibrium is the only stable rest point and thus a good prediction for
the outcome of the game. Since in reality the legislative process is rather slow,
next, a delay is introduced to the tax law reaction function, which causes the
population share of optimizing and non-optimizing taxpayers to oscillate over
time. If the delay is small, the oscillation is dampened and over time the system
approaches the Nash equilibrium. If the delay exceeds a certain threshold,
however, the population state continues to oscillate. This result is especially
interesting because of two points: first, it shows that the structure of the tax
law changes “endogenously” without a change in institutional parameters like
cost of tax complexity or cost of tax optimization. Second, looking only at the
Nash equilibrium but neglecting the dynamic adaption process, the very result
of an oscillating population state would not be found, giving a fundamentally
different prediction for the outcome of the game. In reality, the process of
legislative amendments is costly. Moreover, a permanently changing tax law
creates legal uncertainty.5 One potential policy implication is that the legislative
process should be accelerated in order to reach an equilibrium and to avoid
having to amend the law incessantly.

In the next step, the taxpayers are allowed to choose to evade taxes illegally
as a third possible strategy. As explained above, in contrast to other tax evasion
models, the audit probability is assumed to depend not on the tax return but on

5There is empirical evidence that that tax law uncertainty has a negative impact on investment
(Edmiston, 2004).
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the share of evading taxpayers within a population. Because of that, tax evasion
is an all-or-none decision: taxpayers always report an income of zero once
they choose the “evasion” strategy. Depending on parameter relations, two
possible Nash equilibria can be identified. The first equilibrium requires that all
three strategies are played by positive population shares. Then, the population
share of optimizers is the same as in the two-strategy case, and the share of
evaders increases to the detriment of the share of non-optimizing taxpayers if
the penalty rate decreases or if the audit function generally decreases. As to the
dynamic case, the Nash equilibrium again is the only stable rest point. If the
parameters are chosen such that the payoff fromnon-optimization is lower than
both the payoffs form tax optimization and tax evasion, the “non-optimization”
strategy becomes extinct. Then, both increasing the tax rate and the penalty
rate causes the share of optimizers to increase to the detriment of the share of
tax evaders. Introducing a delay into the tax law reaction function causes the
population state to oscillate over time, as in the two-strategy case. Again, if the
delay is below a certain threshold, the Nash equilibrium is reached over time
whereas if the delay is too large, the system keeps oscillating.

The remainder of this paper is structured as follows. In the next section a
basic model with the two strategies “optimization” and “non-optimization” is
presented; the game’s equilibrium is characterized and a dynamic approach
including a delayed government’s reaction is outlined. Section 3 extends the
model to allow for (tax) “evasion” as a third strategy. Again, the game is analyzed
as a static and dynamic model. The paper closes with a brief summary.

2. Basic Model

2.1. Framework with Two Strategies

Consider a population of risk-neutral taxpayers as defined by the set P = {1,
… ,N}. Every period, each taxpayer plays against the whole population of
taxpayers . The set of strategies available to the taxpayers is denoted by S =
{o, n} where o denotes legal tax optimization and non-optimization is denoted
by n. Let xs denote the share of the population that chooses strategy s ∈ S. The
population state is given by X = {x ∈ ℝ2

+ ∶ ∑s∈S xs = 1}. The reaction of the
government is not considered explicitly. Instead its actions are reflected by the
payoff functions. That is, it is assumed that the state of the tax law is a function
of the number of agents who try to reduce their tax burden in a legal manner:
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the more agents optimize, the less can be gained through optimization by an
individual taxpayer.

Formally, tax savings as a fraction of the tax rate are denoted by a continuous,
strictly decreasing function o(xo) with o(1) = 0 and o(0) = 1.6 If all taxpayers
optimize (xo = 1), the tax code takes a state that allows for no more tax savings.
By contrast, if no one optimizes (xo = 0), the first taxpayer to optimize can
reduce their tax rate to zero.7 The payoff vector field F ∶ X → ℝ2 consists of
the following continuous payoff functions.

The payoff from tax optimization is given as

Fo(x) = y − 𝜏(1 − o(xo))y − c(y), (1)

where y is a taxpayer’s income before tax, 𝜏 is the tax rate and c(y) denotes the
cost of tax optimization as a function of income. It seems reasonable to assume
that c′(y) > 0 and c″(y) ≤ 0: it is more expensive to “hide” higher income from
the tax authority, the marginal tax planning costs decrease, however, because of
economies of scale.8 This can also be interpreted in the way that taxpayers with
higher income are well-educated and thus find it easier to optimize taxes at the
margin. Moreover, marginal optimization costs can also be constant with lower
costs representing greater knowledge of the tax law, or higher capability. An
optimizer can expect to receive the fraction o(xo) of their tax liability as a tax
refund. As described above, the success of their optimization activities depends
on the total number of optimizing agents. If a large number of taxpayers
reduce their tax liabilities using loopholes in the law, the government will close

6A somehow comparable approach is presented by Weisbach (2002). He denotes the strenght
of anti-avoidance doctrines by a parameter 𝛼 ∈ [0, 1] where 𝛼 = 0 describes the absence of
anti-avoidance doctrines and 𝛼 = 1 means that taxation cannot be avoided. 𝛼 = 0 does
not necessarily imply that no taxes have to be paid, however, as does the corresponding
case o = 1 in the present article.

7A systems-theoretical notion of tax compexity would suggest that d
dxo

(1 − o(xo)) > 0 and
d2
dx2o

(1 − o(xo)) < 0, that is, tightening the tax law increases the government’s tax revenue;
however, the marginal tax revenue decreases because the most obvious loopholes are
already closed. Referring to the tax savings function used in the present article, this would
imply that o′(xo) < 0 and o″(xo) > 0. However, the results are valid without assuming
that o″(xo) > 0.

8Marginal tax planning costs are allowed to be constant in order to enable a simple linear
cost structure. De facto, it is not necessary to make any assumptions on c″(y).

8



these loopholes by adopting additional laws, thus complicating the tax code.
Optimization activities will then be less successful.

Non-optimization delivers the payoff

Fn = y(1 − 𝜏), (2)

which is certain and does not depend on the actions of other taxpayers. Note
that optimizing may be never a beneficial strategy, even if only one taxpayer
chooses “optimization” and hence o(xo) → 1. Still, it is possible that y − c(y) <
y(1 − 𝜏), i. e., the cost of tax optimization is higher than its benefit. Given the
concave cost structure introduced above, this could happen for low values of y.
A strategy which is never beneficial will become extinct in equilibrium. Since a
trivial solution involving all taxpayers paying their taxes without optimization
is of little interest, it is assumed that c(y) < 𝜏y below; i. e., optimization costs
are lower than the tax payment and thus tax optimization can (though need
not always) be beneficial.
F is a potential game (Monderer& Shapley, 1996) since there exists a potential

function f ∶ X → ℝ which satisfies ∇f (x) = F(x)∀x ∈ X:

f (x) = xny(1 − 𝜏) + xo(y(1 − 𝜏) − c(y)) + 𝜏y ∫

xo

0
o(z) dz.

Since f is concave9, all Nash equilibria are maximizers of f (see Sandholm,
2010, p. 60).

2.2. Equilibrium

The only Nash equilibrium of the game is given by the population state {x⋆
o ,

x⋆
n } that satisfies the conditions

𝜏o(x⋆
o ) −

c(y)
y

= 0, (3)

x⋆
o + x⋆

n = 1. (4)

9The hessian Hf (x) = ( 𝜏yo′(x) 0
0 0 ) has non-positive eigenvalues {𝜏yo′(x), 0}.
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Equation (3) is intuitive: the beneficial decrease in the tax rate due to opti-
mization activities has to equate the cost of optimization relating to income.
Note that in equilibrium the payoff of the strategy “optimization” is equal to
the outcome of the strategy “non-optimization”, y(1 − 𝜏). Hence, legal tax
avoidance is not profitable. This is not surprising but rather a requirement
for a Nash equilibrium: if in some population state x′ one of the strategies is
profitable, other taxpayers will adopt this strategy until there is no more excess
return; the system converges to state x⋆.10 Deriving (3) with respect to income
y delivers

𝜕x⋆
o

𝜕y
=

c(y) − yc′(y)
−𝜏y2o′(x⋆

o )
, (5)

which is positive as long as the average costs exceed marginal costs: c(y)/y >
c′(y). Making use of (3), the condition can be rewritten as 𝜏o(x⋆

o ) > c′(y): as
long as marginal optimization costs are smaller than the optimization effect,
the share of optimizing taxpayers will increase if income increases. If costs are
assumed to be linear, the equilibrium share of optimizing taxpayers does not
depend on the amount of income. If costs decrease with increasing income
(possibly because better-educated individuals with higher income find it easier
to shelter income from taxation), increasing income increases the share of
optimizers. The same is true if costs are assumed to be constant.

The derivative of the equilibrium share of optimizing taxpayers x⋆
o with

respect to the tax rate,

𝜕x⋆
o

𝜕𝜏
=

o(x⋆
o )

−𝜏o′(x⋆
o )

, (6)

is unambiguously positive: higher tax rates cause the share of optimizing tax-
payers to increase. This result is driven by the optimization costs which depend
on income y only, but do not increase in the tax rate 𝜏. As is immediately
evident from (3), not surprisingly, fewer taxpayers optimize if they are con-
fronted with a higher cost structure cH(y) > c(y)∀y. The share of optimizing
taxpayers also decreases if they are confronted with a new tax law reaction
function oL(xo) < o(xo)∀xo ≠ 0, 1 and vice versa.

10A dynamic adaption process of this kind is modeled explicitly in section 2.3.
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In equilibrium the tax code will allow tax savings of

o(x⋆
o ) =

c(y)
𝜏y

(7)

generating a total tax revenue of

T = ∑
i∈P∶s=n

𝜏y + ∑
i∈P∶s=o

𝜏y(1 − o(x⋆
o ))

=N (𝜏y − x⋆
o c(y)) , (8)

where N is the number of all taxpayers. An optimizing taxpayer’s tax payment
is given by 𝜏y − c(y). The tax authority hence loses exactly the optimization
cost c(y) measured by the share of optimizing taxpayers.

2.3. Replicator Dynamics

The Nash equilibrium derived in the previous section is a static concept. So
far, there is no explanation of how the equilibrium population state is actually
reached. The taxpayers’ behavior at the micro-level is modeled using the no-
tion of a revision protocol (Sandholm, 2010, p. 121). Hereby, the evolutionary
process for a number of N taxpayers is described by a Markov process. It is as-
sumed that individuals receive opportunities to change their strategies at certain
points in time. The time lags between the arrivals of revision opportunities are
distributed independently according to an exponential distribution with rate 𝜆.
If a revision opportunity arrives, an individual taxpayer switches from strategy
i to strategy jwith probability rij/𝜆, where rij is called conditional switch rate. In
this article the revision protocol known as proportional imitationwill be applied,
defining the conditional switch rate as rij = xj [Fj(x) − Fi(x)]

+
(Schlag, 1998).

For the two-strategy game introduced above the conditional switch rate from
non-optimization to optimization is given by rno = xo[Fo(x)−Fn]+. Intuitively,
a taxpayer with the opportunity to switch strategies meets another taxpayer at
random. With probability xo they will meet an optimizer. If this is the case, the
taxpayer will switch strategies only if the payoff from optimization exceeds the
payoff from non-optmization. Given that, the taxpayer’s probability of switch-
ing to the optimization strategy will be proportional to the payoff difference.
This way of modeling the taxpayers’ decision making has the pleasant feature
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that they need not be informed about properties like the population state x,
the population’s average payoff or other individuals’ payoffs (except the payoff
of the one taxpayer met at random). This is especially desirable in view of the
fact that tax returns are undisclosed in most countries. Note that if no one
optimizes, thus xo = 0, the probability of switching to the optimization strategy
is zero for all taxpayers. That is, strategies that are currently not played by a
positive population share will not be invented under the proportional imitation
protocol.

Given the pairwise proportional imitation revision protocol explained above
the behavior of the Markov process can be approximated11 by the dynamic

̇xo = xo (Fo(x) − xTF(x))
̇xn = xn (Fn − xTF(x)) , (9)

where ̇xi = d
dtxi denotes the time derivative and xT is the transposed vector of

the population state. The system (9) is the well-known replicator dynamic. At a
macro level the relative rate of change of a strategy is given by the difference
between its own payoff and the mean payoff.

A fixed point is reachedwhen the change over time is zero, hence ̇xo = ̇xn = 0
has to be fulfilled simultaneously. The replicator dynamic (9) features three
fixed points

{xn = 0, xo = 1} ,
{xn = 1, xo = 0} ,
{xn = x⋆

n , xo = x⋆
o } .

11The expected number of revision opportunities arriving in the time interval [0, dt] is given
by 𝜆 dt. Thus, the number of revision opportunities received by non-optimizing agents in
this time span is given by Nxn𝜆 dt. The number of agents who switch to the optimization
strategy (or continue to optimize) is given by rno

𝜆 Nxn𝜆 dt+ roo
𝜆 Nxo𝜆 dt = N(xnrno +xoroo) dt

and the number of agents who choose to become (or remain) non-optimizers is given
by N(xoron + xnrnn) dt. The expected change in the population share of non-optimizing
agents is given by (xoron − xnrno) dt. Eliminating the time differential one obtains the
differential equation ̇xn = xoron − xnrno. Applying the pairwise imitation protocol one gets

̇xn = xn(xo[Fn − Fo(x)]+ − xo[Fo(x) − Fn]+) = xn(xoFn − xoFo(x)) which can be rewritten
as ̇xn = xn(Fn − (xnFn + xoFo(x))). The derivation of the mean dynamic for a higher
number of strategies is analoguous (Sandholm, 2010, p. 126).
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The first two are corner solutions in which the whole population either op-
timizes or doesn’t optimize, respectively. The third fixed point is the Nash
equilibrium shown above. It is easily shown that the Nash equilibrium is the
only stable fixed point of the system. Starting from xo = 0, ̇xo = 0, if a single
taxpayer, for whatever reason, starts optimizing, the rate of change ̇xo becomes
positive since

𝜕 ̇xo
𝜕xo |

xo=0
= 𝜏y − c(y) > 0

is positive by an assumption made earlier in this article. Thus, more tax-
payers start optimizing until the Nash equilibrium is reached and one has
xo = x⋆

o , ̇xo = 0. If the whole population optimizes, that is, xo = 1, ̇xo = 0 but
one taxpayer decides to pay their taxes regularly, the rate of change ̇xo becomes
negative since

𝜕 ̇xo
𝜕xo |

xo=1
= c(y) > 0.

Thus, more taxpayers refrain from optimizing and xo decreases until the Nash
equilibrium is reached again. The same kind of reasoning applies for the share of
non-optimizing taxpayers since xn = 1 − xo. Figure 2.1 illustrates the situation.
Over time the system converges to theNash equilibrium from (almost) all initial
population states. Only if all taxpayers optimize (all taxpayers don’t optimize)
the respective alternative strategy will never be “invented”. As described above,
however, these states are not robust to small perturbations. Figure 2.2 shows the
evolution of the population state for different initial conditions. All illustrations
below are plotted choosing the reaction functions and parameters stated in
Table A.1 in Appendix A.

2.4. Delayed Amendments

In the previous section, the sequence of the game could be thought of as follows:
first, all taxpayers simultaneously choose their respective strategies. The tax
authority then observes the population state and chooses the state of the tax law.
Third, taxes are collected and tax refunds are granted according to o(xo). It is,
however, a strong assumption to demand that tax law be adjusted immediately

13



x⋆
o

10

̇xo

Figure 2.1: Rate of change of the “optimization” strategy, ̇xo, depending on the
population share of optimizing taxpayers xo.

0

x⋆
o

1

t

xo(t)

Figure 2.2: Evolution of the share of optimizing taxpayers xo over time for initial
conditions varying from (almost) zero to (almost) one in steps of
0.125.
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depending on the number of optimizing taxpayers. It would bemore realistic to
assume that the tax authority amends the legislation in the subsequent period.
In reality, however, amendments can take even longer. This phenomenon is
captured by a delay parameter 𝛿. 𝛿 is a positive real number which is interpreted
as the time the tax authority needs to amend the tax code. A taxpayer deciding
to optimize at time t hence receives a tax refund according to the tax code at
time t − 𝛿. Denoting the population state as a function of time, the modified
payoff vector field can be written as

̂F(x(t)) = (
̂Fo(x(t))

̂Fn
) = (y − 𝜏(1 − o(xo(t − 𝛿)))y − c(y)

y(1 − 𝜏) ) (10)

and the modified replicator dynamic is then given by the system

̇xo(t) = xo(t) ( ̂Fo(x(t)) − x(t)T ̂F(x(t)))
̇xn(t) = xn(t) (Fn − x(t)T ̂F(x(t))) . (11)

Introducing a delay causes the population state to oscillate over time. It can be
shown that the system over time converges to the Nash equilibrium if the delay
is not too large, that is, 𝛿 < 𝛿 where

𝛿 =
𝜋

2x⋆
o (1 − x⋆

o )𝜏y(−o′(x⋆
o ))

(see Appendix B). Otherwise, the system doesn’t converge and continues to
oscillate. In an economic context, this means that if it takes too long to amend
the tax code to reflect changed taxpayer behavior, an equilibrium tax law and
equilibrium population shares of optimizers and non-optimizers cannot be
reached. Figure 2.3 illustrates the population’s evolution for different values
of delay. If there is no delay, the share of optimizers approaches the Nash
equilibrium and remains there. If the delay is small, the oscillation around the
equilibrium is dampened after some time. In both cases the tax code is not
amended any more once the equilibrium is reached. For delay values that are
equal or greater than the critical delay 𝛿 the population share of optimizers
continues to oscillate. Accordingly, the tax code keeps changing, too. In reality,
tax codes are updated on a regular basis. In the context of this model this
phenomenon can be explained by real-world governments reacting too slowly
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Figure 2.3: Evolution of the share of optimizing taxpayers for different values of
delay; the initial population share of optimizers is 0.35.

to changed taxpayer behavior implying that a stable equilibrium tax law cannot
be reached.12

3. Extended Model with Tax Evasion

3.1. Framework withThree Strategies

Taxpayers may also attempt to reduce their tax burden in an illegal manner. The
economic difference between (illegal) tax evasion and (legal) tax optimization
is that the latter involves paying optimization costs in advance, which can be
either costs for engaging a professional tax consultant, opportunity costs for
having to cope with the tax code, or a disutility from doing so, or a mixture of
all three. By contrast, tax evasion does not require an ex ante payment. The
taxpayer just reports less income and thus generates tax savings immediately.
Afterwards, they are confronted with a certain probability of being audited and
having to pay a penalty fee. Many other analytical models of tax evasion assume

12Of course, there are many additional exogenous reasons why the tax code needs to be
amended which are not covered in this model: technological advancements, financial
globalization, and so forth. The essential insight in this model is, however, that the tax
code can change even without such external “shocks”.
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that the audit probability is exogenous13 or conditional on reported income14.
However, I do not assume that the detection probability depends on the amount
evaded / reported by an individual but on the proportion of the population that
evades taxes. This assumption is taken in order to fade out the effects of the
reported amount in favor of shedding light on the population effects which
are of interest in this article. In addition, the tax authority can estimate the
population rate of evaders since the latter should be almost identical—but at
least highly correlated—with the detection rate. It seems plausible for the tax
authority to increase its audit effort when it realizes that tax evasion behavior
is starting to spread within society.

The extended set of strategies is denoted by ̄S = {e, o, n} where e denotes
the “tax evasion” strategy. The population state is now given by ̄X = {x ∈
ℝ3

+ ∶ ∑s∈S xs = 1}. As with tax optimization, the tax authority’s reaction to
tax evasion is reflected by the payoff function. Audit probability is denoted by
the function p(xe) which strictly increases in the share of evading taxpayers
xe. Further, it is assumed that p(1) = 1 and p(0) = 0: if the whole population
evades it is reasonable for the tax authority to always audit. By contrast, if no
one evades, it is rational to never audit. Since the audit probability does not
depend on the amount that is evaded, a risk-neutral taxpayer will report “all
or nothing”. Thus, choosing the evasion-strategy implies that a taxpayer will
report an income of zero. An evading taxpayer receives their pre-tax income y
if no audit takes place; if audited, they receive their pre-tax income y minus tax
payment minus penalty payment. Evading taxes illegally delivers an expected
payoff of

Fe(x) = p (xe) (y − 𝜏y − 𝜃𝜏y) + (1 − p(xe))y, (12)

where 𝜃 > 0 is the penalty rate. Note that the penalty is imposed on the amount
of taxes evaded, 𝜏y, as proposed by Yitzhaki (1974). If the whole population
evades, the “tax evasion” strategy is always dominated by non-optimization
since 𝜏(1 + 𝜃) > 𝜏. If no one evades, the “evasion” strategy dominates non-
optimization: y > y(1 − 𝜏). The payoff functions of the “optimization” and
“non-optimization” strategies are given by Equations (1) and (2), respectively,
giving the new payoff vector field ̄F(x) = (Fe(x), Fo(x), Fn)T . The potential

13E. g. Allingham and Sandmo (1972), Yitzhaki (1974).
14E. g. Reinganum and Wilde (1986), Erard and Feinstein (1994).
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function of the extended game is given by

̄f (x) = (xe + xo + xn)y − (xo + xn)𝜏y − xoc(y) + 𝜏y ∫

xo

0
o(z) dz

− y𝜏(1 + 𝜃) ∫

xe

0
p(z) dz.

Again, ̄f (x) is concave,15 implying that all Nash equilibria are maximizers of ̄f .

3.2. Equilibrium

3.2.1. Survival of three strategies

Consider first the case where all strategies are played by positive population
shares in equilibrium. The only Nash equilibrium is denoted by the population
state {x∗

e , x∗
o , x∗

n} satisfying the conditions

p(x∗
e ) −

1
1 + 𝜃

= 0, (13)

𝜏o(x∗
o ) −

c(y)
y

= 0, (14)

x∗
e + x∗

o + x∗
n = 1, (15)

where (14) is similar to (3). The comparative statics with respect to x∗
o derived

from the two strategy game are therefore still valid. Interestingly—in contrast
tomost other analytical tax compliancemodels—the share of evading taxpayers
does not depend on the tax rate. Instead, the only parameter that affects tax
evasion behavior is the penalty rate 𝜃. Deriving (13) with respect to 𝜃 delivers

𝜕x∗
e

𝜕𝜃
= −

1
(1 + 𝜃)2p′(x∗

e )
< 0. (16)

Increasing the penalty causes taxpayers to switch from tax evasion to non-op-
timization, ignoring the possibility of legal optimization. If the tax authority

15The hessian H ̄f (x) = ⎛⎜
⎝

−y(1 + 𝜃)𝜏p′(xe) 0 0
0 y𝜏o′(xo) 0
0 0 0

⎞⎟
⎠

has non-positive eigenvalues

{0, 𝜏yo′(xo), −y(1 + 𝜃)𝜏p′(xe)}.
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were to introduce a new audit function pH(xe) > p(xe)∀xe ≠ 0, 1 the share of
evading taxpayers would decrease and vice versa.

In summary, increasing optimization costs cause the share of optimizers to
shrink while the share of non-optimizers increases. By contrast, a higher tax
rate causes taxpayers to switch from non-optimization to legal optimization
behavior. If income y changes the shift takes place between the share of non-
optimizing and optimizing taxpayers; the direction is, however, not distinct.
Increasing y may cause optimization activities to increase to the detriment of
non-optimization (see Equation (5)). Still, this would not yet be a theoretical
explanation for anecdotical evidence that the “rich” are more involved in legal
tax optimization than the “poor”, since in this model all taxpayers are identical.
If income rises, then it rises by the same amount for all taxpayers. Instead, the
reason for this effect would be the concave optimization cost structure.

In equilibrium, the tax code allows for tax savings according to Equation (7)
and audits will happen with probability

p(x∗
e ) =

1
1 + 𝜃

. (17)

The tax authority’s total tax revenue

̄T = ∑
i∈P∶s=n

𝜏y + ∑
i∈P∶s=o

𝜏y(1 − o(x∗
o )) + ∑

i∈P∶s=e
p(x∗

e )𝜏y(1 + 𝜃)

= N(𝜏y − x∗
o c(y))

is identical to (8) since the share of optimizing taxpayers is not altered by
introducing the possibility to evade taxes. Further, the tax authority loses
nothing through tax evasion: in equilibrium, tax evasion is not beneficial to
taxpayers (again, by definition of the Nash equilibrium) because expected tax
savings equate expected penalty payments. This result of course no longer holds
if one assumes audits to be costly to the tax authority, or if penalty payments
are not part of tax revenue.

3.2.2. Extinction of Non-Optmization

Depending on the choice of parameters, the “non-optimization” strategy may
become extinct over time. This is the case if the payoff of either “evasion” or
“optimization” in equilibrium exceeds the payoff of “non-optimization”. The
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section above demonstrates that an increase in the shares of both evaders
(possibly caused by a decrease in the penalty rate) and optimizers (possibly
caused by an increase in the tax rate) goes entirely to the detriment of the
share of non-optimizing taxpayers. If xn reaches zero it cannot decrease any
further. Hence, if the share of evaders (optimizers) were to increase to a greater
degree, then the share of optimizers (evaders) would decrease, respectively. This
would cause the payoff of the “optimization“ (“evasion”) strategy to increase. In
equilibrium these two payoffs have to balance again, that is, Fe(x) = Fo(x) > Fn.
This equilibrium is denoted by the population state {x†

e , x†
o , 0} that fulfills the

conditions

𝜏y(1 + 𝜃)p(x†
e ) = 𝜏y + 𝜏yo(x†

o) − c(y), (18)
x†
e + x†

o = 1. (19)

This is the Nash equilibrium if only “evasion” and “optimization” are chosen by
positive population shares.16 The condition for non-optimization to become
extinct can be derived from either one of the equivalent conditions

Fe(x†
e ) ≥Fn ⟺ 𝜃 ≤

1 − p(x†
e )

p(x†
e )

, (20)

Fo(x†
o) ≥Fn ⟺ c(y) ≤ 𝜏yo(x†

o). (21)

Deriving (18) with respect to y, making use of the fact that 𝜕x†
e

𝜕y + 𝜕x†
o

𝜕y = 0 and
rearranging delivers

−
𝜕x†

e
𝜕y

=
𝜕x†

o
𝜕y

=
c(y) − yc′(y)

𝜏y2 (−o′ (x†
o) + (1 + 𝜃)p′ (x†

e ))
,

the sign of which is identical to the comparable derivative in the two-strategy
game 𝜕x⋆

o
𝜕y (Equation 5). It is positive if average costs exceed marginal costs, if

costs decrease with income or if costs are constant. Increasing income then
causes the population share of optimizers to increase to the detriment of the
population share of evaders. Deriving (18) with respect to 𝜏 and rearranging

16Of course, it would also be the Nash equilibrium of a model which requires taxpayers to
choose between optimization and evasion only.
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gives

−
𝜕x†

e
𝜕𝜏

=
𝜕x†

o
𝜕𝜏

=
c(y)

𝜏2y (−o′ (x†
o) + (1 + 𝜃)p′ (x†

e ))
,

which is positive. Increasing the tax rate causes the population share of opti-
mizers to increase. This effect can be explained as follows: since this model
employs the penalty structure of Yitzhaki (1974) there is no substitution effect
in the “evasion” strategy. As taxpayers are assumed to be risk-neutral, neither
is an income effect. Since the optimization cost does not depend on the tax
rate, however, optimization becomes more beneficial with increasing tax rates.
Finally, the derivative with respect to 𝜃,

−
𝜕x†

e
𝜕𝜃

=
𝜕x†

o
𝜕𝜃

=
p (x†

e )
−o′ (x†

o) + (1 + 𝜃)p′ (x†
e )

,

is positive. Not surprisingly, increasing the penalty rate causes taxpayers to
switch to legal optimization.

It is not possible to give a closed-form solution for both p(x†
e ) and o(x†

o).
Hence, the government’s total tax revenue cannot be stated explicitly either.
However, since the taxpayers’ equilibrium payoffs increase, the government’s
total tax revenue has to be smaller than above. Formally,

̄T = ∑
i∈P∶s=o

𝜏y(1 − o(x†
o)) + ∑

i∈P∶s=e
p(x†

e )𝜏y(1 + 𝜃)

= n (𝜏y − x†
oc(y) + c(y) − 𝜏yo (x†

o)) . (22)

Equations (18) and (19) are used. Comparing (22) with (8) one finds that the
former is smaller than the latter if

c(y) (1 − x†
o + x∗

o) < 𝜏yo (x†
o) .

Comparing (18) and (14) one ascertains that o (x†
o) < o (x∗

o ) if (20) holds
strictly, hence x†

o > x∗
o . Thus, (1 − x†

o + x∗
o ) < 1. If Condition (21) holds

strictly, than the inequality is fulfilled. That is, tax revenue decreases if the
“non-optimization” strategy is not played.
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3.3. Replicator Dynamics withThree Strategies

Themodel of individual taxpayer’s behavior described in section 2.3 is applied to
the three strategy-case: upon receiving an opportunity to update their strategy,
a taxpayer meets another taxpayer at random and compares payoffs. As with
tax evasion, however, recall that (12) is an expected payoff. At the micro-level,
in contrast, there are two distinct types of tax evaders: those who where audited,
incurred a punishment and thus “lost”, receiving a payoff of FLe = y(1−𝜏(1+𝜃)),
and those who “won”, receiving FWe = y. Applying the proportional imitation
protocol having regard to these additional instances, weighting each with the
probabilities p(xe) and (1 − p(xe)), respectively, the new replicator dynamic
with three strategies is given by the system

̇xe = xe (Fe(x) − xT ̄F(x))
̇xo = xo (Fo(x) − xT ̄F(x))
̇xn = xn (Fn − xT ̄F(x))

(23)

which has seven fixed points.17 Three of them,

{xe = 1, xo = 0, xn = 0} ,
{xe = 0, xo = 1, xn = 0} ,
{xe = 0, xo = 0, xn = 1} ,

are corner solutions in which the whole population either evades, optimizes
or non-optimizes, respectively. It turns out that all corner solutions are un-
stable source nodes. Both alternative strategies deliver excess return; thus,
the population shares of taxpayers playing these strategies would increase to
their equilibrium values x∗

e and x∗
o once some taxpayers started to play these

strategies. Then there is one fixed point,

{xe = 0, xo = x∗
o , xn = 1 − x∗

o} ,

in which the population share x∗
o optimizes and the rest of the population non-

optimizes with no one evading. This is the Nash equilibrium of the two-strategy
game elaborated on in Section 2. In the three-strategy model it is an unstable
saddle point: excess return could be generated by evading taxes. Thus, xe would

17A stability analysis is given in Appendix C.1.
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reach x∗
e once a single taxpayer started tax evasion. Another fixed point,

{xe = x∗
e , xo = 0, xn = 1 − x∗

e } ,

is given for a population share of x∗
e evading taxes and the rest non-optimizing

with no one optimizing. This would be the Nash equilibrium of a two-strategy
model without the possibility to “optimize”, but the strategies “evasion” and
“non-optimization” only. This fixed point is also an unstable saddle point in
the three-strategy model because optimizing delivers excess return. If no one
non-optimizes the fixed point

{xe = x†
e , xo = x†

o , xn = 0}

can be reached. This fixed point is stable if Conditions (20) and (21) hold, that
is, if the parameters are such the “non-optimization” strategy in equilibrium
delivers a payoff that is worse than “evasion” and “optimization”, and thus “non-
optimization” becomes extinct. Otherwise, the fixed point is an unstable saddle
point because “non-optimization” delivers excess return. Finally, the Nash
equilibrium

{xe = x∗
e , xo = x∗

o , xn = 1 − x∗
o − x∗

e }

elaborated on above is a stable fixed point of the system (23). See Appendix
C.1 for a detailed stability analysis of all fixed points. Figure 3.1 shows the
flow pattern in the three-strategy space. At the corners of the simplex the
whole population either evades, optimizes or non-optimizes, respectively. The
respective corner solutions are source nodes: all arrows point away from the
corners. All population states on the edges require the strategy of the opposite
corner to be non-existent within the population. In this example the Nash
equilibrium requires all three strategies to be played by positive population
shares. Thus, all rest points on the edges are saddle points. The arrows point
from the corners towards those rest points; however, they are unstable. If
the third strategy is played by a single individual the population state moves
towards the Nash equilibrium indicated by a black circle in the bottom-left
corner of the simplex, which involves all strategies to be played by a fraction of
all individuals.
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Optimization Non-optimization

Evasion

Figure 3.1: Flow pattern for the three-strategy game. Red (blue) colors indi-
cate fast (slow) movement. White circles indicate the unstable rest
points; the black circle shows the stable rest point. The figure was
created using the Mathematica application “Dynamo” by Sandholm,
Dokumaci, and Franchetti (2012).
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Figure 3.2: Evolution of the population state over time for 4 000 individuals. The
initial population state is 1

2 evaders and
1
2 non-optimizing taxpayers.

At time t⋆ the optimization strategy is invented by one formerly
non-optimizing taxpayer.

While the saddle point on the right-hand edge of Figure 3.1—where no one
optimizes—is not stable if the “optimization” strategy is available, it would be
stable if such an alternative did not exist.

The “optimization” strategy can also be interpreted in a more specific way as
a particular (legal) tax avoidance model rather than general tax planning. A
popular example of such a model is the Double Irish arrangement. The former
tax law reaction function o(xo) could then be interpreted as the probability of
such a model being accepted by the tax authority. The assumption that o(xo) is
strictly decreasing would still be reasonable: the more prominent such a model
becomes, the higher the probability that it will be rejected by the tax authority
or a fiscal court. Fo would then be the expected value of the (uncertain) income
after tax. The model can then capture the behavior of the population if a
specific tax savings model is invented by a single taxpayer at time t⋆. Figure
3.2 illustrates the behavior of the system over time for a population of 4 000
taxpayers.

Starting from an initial population state of 1/2 evaders and 1/2 non-opti-
mizing taxpayers the system approaches the rest point with x∗

e evaders and
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1 − x∗
e non-optimizing individuals and remains there. At time t⋆ one formerly

non-optimizing taxpayer develops a particular tax optimization model. Since
the initial population share of optimizers is only 1/4 000 some time elapses
until the strategy starts to spread to other parts of the population. Then, xo
increases quickly and the population state approaches the Nash equilibrium of
the three-strategy game. The equilibrium population share of evaders is the
same in both the two-strategy (evasion and non-optimization only) and the
three-strategy game. There is just a small dent in xe shortly after the invention
of the optimization model during the adjustment process towards the new
equilibrium. The equilibrium share of optimizers goes entirely to the detriment
of the share of non-optimizing taxpayers.

3.4. Delayed Amendments and Tax Evasion

In Section 2.4 it was argued that the tax authority may not be able to amend
the tax code immediately. Thus, a delay 𝛿 is introduced to the “optimization”
strategy in the extended model, too. Of course, the tax authority may not be
able to adjust the audit rate immediately as well, since the population share of
evaders is not known before actually having audited the population. On the
other hand, adjusting the audit rate is far easier than amending the code. If
the tax authority, while auditing, realizes that a lot of tax reports are incorrect
it could immediately decide to broaden its audit activities, possibly following
a Bayesian updating inference. Therefore in this section it is assumed that
the audit rate can be adjusted instantly whereas the tax code is adjusted with
delay. This gives the new payoff vector field ̄F𝛿 = (Fe(x), ̂Fo(x), Fn)T where

̂Fo(x) includes the delay 𝛿 as stated in Equation (10). The replicator dynamic
including delay is given by the system

̇xe = xe (Fe − xT ̄F𝛿(x))
̇xo = xo ( ̂Fo − xT ̄F𝛿(x))
̇xn = xn (Fn − xT ̄F𝛿(x)) .

(24)

Again, introducing a delay to the “optimization” strategy causes the population
state to oscillate over time. The analysis is carried out for the case that in
equilibrium all three strategies are played by positive population shares. I. e., it
is assumed that the Conditions (20) and (21) do not hold. For zero delay the
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system is stable at x∗. It turns out that the system remains stable for all 𝛿 < ̂𝛿,

̂𝛿 =
1

𝜔+
arccot(𝜔+(d − al)

ad + l𝜔2
+

) , (25)

where

a = (1 − x∗
e ) x∗

e 𝜏(1 + 𝜃)yp′ (x∗
e ) > 0,

l = (1 − x∗
o ) x∗

o𝜏y (−o′ (x∗
o )) > 0,

d =x∗
e x∗

o (1 − x∗
e − x∗

o ) (1 + 𝜃)𝜏2y2 (−o′ (x∗
o )) p′ (x∗

e ) > 0,

𝜔+ = (1
2

((l2 − a2) + √(l2 − a2)2 + 4d2))
1/2

> 0.

For higher delay values 𝛿 > ̂𝛿 the system becomes unstable and stability cannot
be regained with increasing delay further. Refer to Appendix C.2 for details.
Figure 3.3 shows the evolution of the population state for different values of
delay. While the main shift takes place between optimizers and non-optimizers,
the adaption process causes the share of evaders to oscillate, as well. Whereas
the state of the tax law is hard to measure empirically, the fraction of tax
evaders is easy to assess. Thus, it is an empirically testable hypothesis whether
tax evasion rates oscillate over time. In the sense of this model, such a finding
could be an indication that (hard-to-observe) optimization activities and the
(almost unobservable) state of the tax law also change over time.

4. Conclusion

This article aims to contribute to the scarce theoretical literature on the strategic
interdependency between taxpayers and tax authority relating to legal tax
avoidance. It is assumed that taxpayers can legally avoid taxes by searching for
appropriate legal norms in the tax code, which is associated with optimization
costs. The tax authority reacts by closing certain loopholes if they are exploited
by too many taxpayers. It emerges that the share of optimizing taxpayers
increases if the tax rate increases, optimization costs decrease and tax law
gets less tight. If the legislation reacts to changed taxpayer behavior with a
delay, the population shares of optimizers and the tax law oscillate over time.
It is shown that the tax law can change endogenously by explicitly modeling
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Figure 3.3: Evolution of the population state for different values of delay.

the adaption process towards equilibrium. If the delay is not too large, the
oscillation is dampened over time. Otherwise, however, the population state
keeps oscillating and the Nash equilibrium cannot be reached. As a policy
implication, it is recommended to accelerate the legislation process in order to
avoid costly repeated amendments to the tax code.

Then, tax evasion is introduced as a third strategy. Depending on parameter
values, there exist two Nash equilibria. The first equilibrium consists of all
three strategies being played by positive population shares. It turns out that
the population shares of optimizers and evaders are not interdependent; in-
stead an increase in both groups goes fully to the detriment of the share of
non-optimizing taxpayers. A second equilibrium is reached if the payoff to
non-optimization is worse than the payoffs of both optimization and evasion.
Then, no one applies the “non-optimization”-strategy. The share of optimizers
increases to the detriment of the share of evaders if the tax rate or the penalty
rate increase. Introducing a delay again causes the population shares and the
tax law to oscillate over time. The oscillation is not dampened if the delay
exceeds a certain threshold. This confirms the policy implication found above.

Of course, there are several limitations to the model. First, if the crowding
effect in the “optimization”-strategy is interpreted as tax complexity, the fact
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is neglected that increasing tax complexity also affects the payoffs of non-
optimizing taxpayers and of audited evading taxpayers since they need to
spend more resources on coping with a complex tax code. This holds no
longer, however, if the reduction in tax savings after an increase in the share of
optimizers is interpreted as anti-tax avoidance doctrines or legal norms that
reduce the profitability of certain tax shelters but do not bother individuals who
pay their taxes regularly. The assumption that the tax law reaction function is
continuous is also a simplified one. A more realistic tax law reaction function
would be likely to jump if the number of optimizers exceeds a certain threshold.
Future research could implement a discontinuous tax law reaction function.
Then, the assumptions that tax savings possibilities decrease if more taxpayers
optimize and that audit probability increases if more taxpayers evade taxes are
not empirically tested. However, neither is it certain that the crucial assumption
of some other tax compliance models is valid, namely that audit probability
depends on the amount of reported income. Both assumptions taken in this
model seem plausible; whether or not they are true is ultimately an empirical
question.

The main results of this paper could also be empirically tested: increasing the
tax rate ought to leave the extent of tax evasion unaffected; instead, optimization
activities—which could be measured by offsets of tax consultancy costs—ought
to increase. While the state of the tax law is hard to measure, amendments to
the tax code are easy to observe. It can also be empirically tested if audit rates
vary over time, which could be an indirect indication of a changing tax law.

Future research should allow taxpayers to be heterogenous with respect to
their income and possibly other individual characteristics, such as risk aver-
sion. Also, a social disutility from behaving “immorally” could be integrated.
Finally, it would be desirable to drop the mean field assumption and instead to
incorporate a social network model.

Appendix

A. Exemplary Reaction Functions and Parameters

The reaction functions and parameters used for illustration purposes in this
article are chosen according to the following table.
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Pre-tax income y 10
Tax rate 𝜏 0.3
Penalty rate 𝜃 3
Optimization cost function c(y) 0.1y
Tax law reaction function o(xo) 1 − xo
Audit reaction function p(xe) xe

Table A.1: Reaction functions and parameters used in the illustrations.

B. Stability of the Replicator Dynamic with Two Strategies and Delay

Since xn = 1 − xo it suffices to study the stability of ̇xo. Let z(t) = xo(t) − x⋆
o .

The linear variational system of (11) is then

z′(t) + x⋆
o (1 − x⋆

o )𝜏y(−o′(x⋆
o ))z(t − 𝛿) = 0. (26)

The fixed point {xn = x⋆
n , xo = x⋆

o } is asymptotically stable for the system (11)
if the trivial solution of (26) is asymptotically stable (Bellman & Cooke, 1963,
p. 336). As shown by Freedman and Kuang (1991, p. 195), (26) is stable if 𝛿 < 𝛿
where

𝛿 =
𝜋

2x⋆
o (1 − x⋆

o )𝜏y(−o′(x⋆
o ))

.

C. Replicator Dynamic withThree Strategies

C.1. Stability without Delay

To evaluate the stability of the fixed points of the system (23) it suffices to
study the system of two equations, ̇xe and ̇xo only, where xn = 1 − xe − xo.
Since ̇xn = ̇xe − ̇xo it must be that ̇xn is stable whenever ̇xe and ̇xo are stable.
The eigenvalues of the Jacobian J(xe, xo) of the system are examined at the
respective fixed points (Bellman & Cooke, 1963, p. 338).

The first fixed point requires all taxpayers to evade. The eigenvalues of
J(1, 0) are given by {𝜃𝜏y, (1 + 𝜃)𝜏y − c(y)}. Since 𝜏y > c(y) by assumption all
eigenvalues are positive; the first fixed point is an unstable source node.
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The second fixed point is reached if all taxpayers optimize. It is also a source
node since the eigenvalues of J(0, 1), {c(y), 𝜏y + c(y)}, are positive.

The third corner solution requires all taxpayers to non-optimize: the shares
of evaders and optimizers are zero. The eigenvalues of J(0, 0) are given by
{𝜏y, 𝜏y − c(y)}. Since they are positive, the population state with all taxpayers
non-optimizing is an unstable source node, as well.

The next fixed point requires the share x∗
o to optimize whereas the remainder,

1 − x∗
o , non-optimizes with no one evading. The eigenvalues of J(0, x∗

o ) are
given by {𝜏y, 𝜏 (1 − x∗

o ) x∗
oyo′ (x∗

o )}. The first eigenvalue is positive, the second
is negative; the fourth fixed point is thus an unstable saddle point.

Another fixed point is given if the share x∗
e evades and the remainder, 1− x∗

e ,
non-optimizes. The eigenvalues of J(x∗

e , 0) are given by {𝜏y − c(y), −(1 +
𝜃)𝜏y (1 − x∗

e ) x∗
e p′ (x∗

e )}. Again, the eigenvalues have opposite signs. The fifth
fixed point is thus also a saddle point.

If no one non-optimizes, a fixed point can be reached in which the share x†
e

evades and the share x†
o = 1 − x†

e optimizes. The eigenvalues of J(x†
e , x†

o) are
given by

{𝜏y ((1 + 𝜃)p (x†
e ) − 1) ,

𝜏y (1 − x†
e ) x†

e (o′ (1 − x†
e ) − (1 + 𝜃)p′ (x†

e ))} .

The second eigenvalue is always negative. The first is negative if the condition
(20) holds strictly. The fixed point is then a stable sink node; it is an unstable
saddle point otherwise.

Finally, the eigenvalues of J(x∗
e , x∗

o ) are given by {𝜓 − √𝜑, 𝜓 + √𝜑}, where

𝜓 = −
1
2

𝜏y ((1 − x∗
e )x∗

e (1 + 𝜃)p′(x∗
e ) + (1 − x∗

o )x∗
o (−o′(x∗

o )))

is clearly negative and the sign of

𝜑 =𝜏2y2
1
4

((−(1 − x∗
o )x∗

oo′(x∗
o ) + (1 − x∗

e )x∗
e (1 + 𝜃)p′(x∗

e ))2

−4x∗
e x∗

o (1 − x∗
e − x∗

o )(1 + 𝜃) (−o′(x∗
o )) p′(x∗

e ))
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is not distinct. If 𝜑 is positive then 𝜓 −√𝜑 is always negative. Further, 𝜓 +√𝜑
is negative if √𝜑 < −𝜓 ⇔ 𝜑 < 𝜓2. This gives the condition

x∗
e (1 + 𝜃)x∗

o𝜏2y2(1 − x∗
e − x∗

o )(−o′(o))p′(e) > 0

which is always fulfilled. It can be concluded that the fixed point is stable if 𝜑
is positive, that is, if the eigenvalues of J(x∗

e , x∗
o ) are real. If 𝜑 is negative the

eigenvalues take the form {𝜓 − i√−𝜑, 𝜓 + i√−𝜑}. Since the eigenvalues have
negative real parts the system behaves as a damped oscillator; the fixed point is
also stable.

C.2. Stability with Delay

Again, only the stability of ̇xe and ̇xo needs to be studied. Let u(t) = xe(t) − x∗
e

and v(t) = xo(t) − x∗
o . The variational system of (24) about x∗ is given by

u′(t) = −au(t) + bv(t − 𝛿)
v′(t) = ku(t) − lv(t − 𝛿) (27)

(Bellman & Cooke, 1963, p. 339), where

a = (1 − x∗
e ) x∗

e 𝜏(1 + 𝜃)yp′ (x∗
e ) > 0,

b =x∗
e x∗

o𝜏y (−o′ (x∗
o )) > 0,

k =x∗
e x∗

o𝜏(1 + 𝜃)yp′ (x∗
e ) > 0,

l = (1 − x∗
o ) x∗

o𝜏y (−o′ (x∗
o )) > 0.

The system (27) can be written as

v″(t) + av′(t) + lv′(t − 𝛿) + dv(t − 𝛿) = 0 (28)

where d = (al − kb). The Laplace transform of (28) is given by

𝜆2 + a𝜆 + l𝜆e−𝜆𝛿 + de−𝜆𝛿 = 0. (29)
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The roots of (29) are given by 𝜆 = i𝜔, 𝜔 > 0. From equation (4.6) in Freedman
and Kuang (1991, p. 199) one has

𝜔2
± =

1
2

((l2 − a2) ± √(l2 − a2)2 + 4d2) . (30)

Theorem 4.1 of Freedman and Kuang (1991, p. 202) is applied. d ≠ 0 if

(𝜏y − c(y))(𝜏y − (1 + 𝜃)c(y)) ≠ 0.

𝜏y > c(y) by an assumption made in Section 2.1. The additional assumption
𝜏y ≠ (1 + 𝜃)c(y) has to be made. Since 0 < d2 only one imaginary root exists
(Freedman & Kuang, 1991, p. 200). Hence the system is stable if 𝛿 < ̂𝛿, and
unstable afterwards, with

̂𝛿 =
𝜂

𝜔+
, (31)

where

cos 𝜂 = −
al𝜔2

+ − d𝜔2
+

l2𝜔2
+ + d2

, (32)

sin 𝜂 =
da𝜔+ + l𝜔3

+
l2𝜔2

+ + d2
(33)

according to equations (4.13) and (4.14) of Freedman and Kuang (1991, p. 201);
thus,

𝜂 = arccot(𝜔+(d − al)
ad + l𝜔2

+
) . (34)
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