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Consistent and robust delimitation of price zones under uncertainty with an application to 

Central Western Europe by Tim Felling and Christoph Weber 

 

Abstract 

 

New and alternative delimitations of price zones for Central Western Europe (CWE) might 

constitute a mid-term solution to cope with the increasing congestion in the electricity 

transmission grids. The significantly growing infeed from renewable energy sources puts more 

and more pressure on the grid and emphasizes the need for improved congestion 

management. Thus, a new delimitation of price zones is frequently considered in current 

discussions and research. The present paper applies a novel hierarchical cluster algorithm that 

clusters locational marginal prices and weights nodes depending on their demand- and supply 

situation to identify possible new price zone configurations. The algorithm is applied in a 

scenario analysis of six scenarios reflecting main drivers that influence the future development 

of European Electricity markets in line with the trilemma of energy policy targets. Robustness 

of the new configuration is an important criterion for price zone configurations according to the 

European Guideline on Capacity Allocation and Congestion Management (CACM). Therefore, 

a robust price zone configuration is computed taking into account all the six individual 

scenarios. Results show that shape, size and price variations of price zones on the one hand 

strongly depend on the individual scenario. On the other hand, the identified robust 

configuration is shown to outperform other configurations, particularly also the current price 

zone configuration in CWE.  

Keywords: Cluster Analysis, Electricity Market Design, Nodal Pricing, Congestion Management, Energy 

Markets and Regulation; Bidding zones, Price Zone Configuration, Bidding Zone Configuration 

JEL-Classification: C38, C61, D47, L51, Q41, Q48 

 

  

Tim Felling 

House of Energy Markets and Finance 

University of Duisburg-Essen, Germany 

Universitätsstr. 12, 45117 Essen 

+49-(0)201 / 183-xxx 

Tim.felling@uni-due.de 

www.hemf.net  

 

Christoph Weber 

House of Energy Markets and Finance 

University of Duisburg-Essen, Germany  

Christoph.Weber@uni-due.de 

 

 

  



 
 

II 

The authors are solely responsible for the contents which do not necessarily represent the opinion of the House of Energy Markets 

and Finance.  

  



 

III 

Content 

Abstract .................................................................................................................................. I 

Content .................................................................................................................................III 

1 Introduction and Literature Review ................................................................................. 1 

2 Methodology ................................................................................................................... 4 

2.1 Cluster Algorithm ................................................................................................... 5 

2.2 Flowchart of the Cluster Algorithm ......................................................................... 7 

2.3 Scenario Analysis .................................................................................................. 8 

2.3.1 General considerations ............................................................................. 8 

2.3.2 Determination of price parameters ...........................................................10 

2.4 Evaluation Methodology .......................................................................................11 

3 Application .....................................................................................................................12 

3.1 Underlying Models ................................................................................................12 

3.2 Scenarios .............................................................................................................13 

3.2.1 Scenario Outlines .....................................................................................13 

3.2.2 Scenario Parameters................................................................................14 

3.3 Price zone computation ........................................................................................15 

4 Results ..........................................................................................................................16 

4.1 Resulting LMPs ....................................................................................................17 

4.2 Resulting Standard Deviation at Nodes ................................................................18 

4.3 Resulting Price Zone Configurations ....................................................................18 

4.3.1 Price Zone configurations of the scenarios ...............................................18 

4.3.2 Resulting Robust Price Zone Configuration ..............................................20 

4.4 Results regarding number of zones ......................................................................21 

4.4.1 Resulting robust configurations ................................................................21 

4.4.2 Development of within & between zone variations ....................................22 

4.5 Benefits of the robust configuration ......................................................................23 

4.5.1 Comparison to current CWE configuration and scenario optimized 

configurations .......................................................................................................23 

4.5.2 Size of new price zones ...........................................................................24 



 
 

IV 

4.5.3 Evaluation of the benefits of robust configuration .....................................25 

5 Conclusions and Outlook ...............................................................................................27 

References ...................................................................................................................... XXIX 

Appendix ........................................................................................................................ XXXII 

 

 

  



 

1 

1 Introduction and Literature Review 

The face of electricity markets is constantly evolving. E.g. in 2015, Flow-Based-Market-

Coupling has been introduced in Central Western Europe (CWE) and the extension to Central 

Eastern Europe is already in planning. The continuously growing capacities of renewables 

imply also a shift in generation locations and increasing fluctuating infeed. This has a severe 

impact on the congestion situation and grid operations. In Germany, redispatch costs tripled 

from 2012 to 2015 (Bundesnetzagentur and Bundeskartellamt, 2015, 2014, 2013, 2012). 

Therefore, new frameworks for the European Electricity markets are currently discussed in the 

literature and in the political arena. A potential solution is to reshape present price zones 

(bidding zones). Currently, a large ENTSO-E bidding zone study is undertaken that shall give 

insights into the effects of redesigned price zones in Europe. So far, national borders often 

align with borders of price zones. That might not be the optimal solution, as national borders 

do not necessarily reflect congestions in the grid. 

The optimal solution for congestion management is often considered to be obtained via 

locational marginal pricing (nodal pricing), as nodal prices do not only reflect demand and 

supply characteristics but also congestions in the electricity grid. ((Hogan, 1992), (Stoft, 1997), 

(Egerer et al., 2016)). According to (Egerer et al., 2016), a single, uniform price for a zone 

might reflect wrong price information, since internal congestions and bottlenecks are not 

transparent. (Neuhoff et al., 2013) support the preceding findings stating that locational 

marginal prices (LMPs) constitutes to a more efficient grid utilization resulting in significant cost 

savings. Also, (Bertsch et al., 2015) investigate a zonal and nodal approach and conclude that 

LMPs are the best solution. Other configurations, e.g. zonal pricing or uniform pricing, would 

cause an increase of system costs of up to 4.6%. (Ding and Fuller, 2005) describe nodal pricing 

as the economically most efficient method as well, but also state that locational marginal pricing 

goes along with complex and complicated processes like data processing, accounting and 

financial settlements. (Walton and Tabors, 1996) investigate a variance criterion, namely the 

variance of LMPs between and within aggregated zones to evaluate zonal configurations, i.e. 

to reduce the amount of nodes in the Western Systems Coordinating Council (WSCC) system 

from 3500 to 20. The most well-known example for a system using LMP is Pennsylvania New 

Jersey Maryland Interconnection LLC (PJM) in the United States, but also most other 

deregulated electricity markets in the US use LMPs. Several price zones within one country 

can be found in Europe in Scandinavia where Norway, Sweden and Denmark are split into 

different price zones.    

Currently, a zonal approach that aggregates similar nodal prices to zones seems to be more 

readily applicable in Europe, since the implementation of nodal pricing generally requires the 

establishment of an independent system operator (ISO) who combines the role of market 
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operator with (at least) part of the grid operation. The European guideline on Capacity 

Allocation and Congestion Management for Electricity (CACM) identifies evaluation criteria for 

future price (bidding) zone configurations. The main criteria are liquidity, market power, 

stability, robustness, network security and unbiasedness of prices in the new price zones. 

Before applying the criteria and analysing the results, a new configuration of price zones 

obviously has to be identified. 

Two major methods, along with a few other approaches, have been developed in recent 

publications to delimitate these new price zones. The first one is to cluster the aforementioned 

LMPs to zones with similar prices, the other method refers to clustering of Power-Transfer-

Distribution-Factors (PTDF). Within these two possibilities, various types of cluster algorithms 

have been applied, e.g. hierarchical, genetic or partition algorithms such as fuzzy-k-means 

((Yang and Zhou, 2006)) . Also, underlying models vary from large scale applications to small 

examples like IEEE-test cases. 

Clustering of LMPs is applied by (Imran and Bialek, 2008), (Burstedde, 2012), (Breuer et al., 

2013), (Wawrzyniak et al., 2013), (Breuer and Moser, 2014). (Breuer and Moser, 2014) uses 

a genetic algorithm and applies the algorithm to a large scale model of the European 

transmission system for the years 2016 and 2018. He investigates redispatch costs, network 

security and also changing price zones depending on seasons. In contrast, (Burstedde, 2012) 

applies a hierarchical algorithm based on Ward’s criterion to a simplified model of the European 

transmission system with 72 nodes. In addition, two different scenario years (2015 and 2020) 

are investigated and evaluated e.g. using total system costs. (Imran and Bialek, 2008) present 

three different approaches to cluster LMPs notably geographical clustering, fuzzy-c-means and 

price differential clustering.  (Wawrzyniak et al., 2013) investigate zonal solutions based on 

LMPs for different wind scenarios on a Polish nodal system. 

In contrast to the LMP-method (Duthaler, 2012), (Kang et al., 2013), (Klos et al., 2014), (Kłos 

et al., 2015), (Sarfati et al., 2015) and (Bergh et al., 2016) apply cluster algorithms based on 

PTDF-values. (Kłos et al., 2015) aim to reduce loop effects by clustering PTDF values. Their 

methodology refers to the mentioned goal of CACM to minimize adverse effects of internal 

transactions on other price zones. A similar approach is utilized by (Bergh et al., 2016). The 

authors cluster PTDF values on selected critical branches and, after investigating a base 

scenario, analyse several delimitations with different amounts of price zones. (Klos et al., 2014) 

identify critical branches using a clustering based on KKT-multipliers first and cluster PTDF-

values afterwards. (Kang et al., 2013)  investigate the IEEE-39 system for a given number of 

zones. (Sarfati et al., 2015) consider new delimitations based on five indicators, e.g. loop flows 

or price convergence on a 32-node model of the Nordic system. Also, three different wind-

infeed scenarios are investigated.  
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Obviously, uncertainties strongly influence the delimitation of bidding zones. The dispatch of 

power plants, which depends mostly on variable costs, but also the development of demand, 

grid development and expansion of renewable energy sources (RES) affect congestions in the 

electrical grid, which in turn affect the LMPs and PTDF-values. Developments of all 

aforementioned factors may be related to the political choices made, which notably reflect the 

priority accorded to the different objectives within the triangle of energy policy targets (energy 

policy trilemma), namely security of supply, sustainability and economic efficiency (Spiecker 

and Weber, 2014).  

Given these uncertainties and under consideration of the different clustering approaches and 

underlying models, the major contributions of the present paper are three-fold. First, the 

applied cluster algorithm has a clear economic foundation and objective, namely the 

minimization of price variations within the newly formed price zones. Second, a novel 

hierarchical cluster algorithm is applied, that weights nodes according to their relevance in 

terms of infeed and demand. By doing so, the importance of different nodes is acknowledged. 

All this is applied on a large-scale electricity system, namely the CWE system. Third, several 

different scenarios are considered for a single year (2020). The scenarios are derived by 

varying not only one but five different key drivers for electricity markets. This corresponds to 

an operationalisation of the robustness criterion for price zones referred to in Article 33 of the 

CACM guideline. The guideline mentions robustness and stability of price zones as relevant 

criteria without providing clear definitions nor a delimitation between the two. Hence 

robustness is understood here as referring to uncertainties within one period (year), whereas 

stability is interpreted as absence of (or limited) changes over time. Stability is not considered 

further here, yet could be treated within the same framework. 

The remainder of the article is organized as follows: Section 2 outlines the developed 

methodology. First a general overview is given. Then the cluster algorithm is described, 

followed by the scenario construction and the evaluation methodology. Section 3 presents the 

application and the utilized grid- and generation models as well as the parameters retained for 

the different scenarios. The obtained results are then presented and discussed in section 4. 

Notably standard bidding zone configurations are compared to the robust one. Furthermore, 

the results are also compared to the current price zone configuration with five price zones in 

the (extended) CWE region (Switzerland, Netherlands, Belgium, France and Germany-Austria-

Luxembourg). Note that Switzerland being not part of the EU is to date not member of the 

electric CWE region. Given the strong electrical interconnections it has both with France and 

Germany (lines to Austria are less developed), it is yet subsequently included in the analysis. 
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2 Methodology 

The overall methodology of this paper is sketched in Figure 1. The starting point is the 

construction of scenarios reflecting the relevant uncertainties (cf. section 2.3).  

For each of the investigated scenarios, nodal hourly prices (LMPs) for the year 2020 are then 

computed by applying a DC-OPF on a detailed grid of Central Western Europe (CWE). In view 

of the later clustering, the infeed and demand situation at each node in each scenario is used 

to calculate nodal weights. A more detailed description of the grid model and data will be given 

in sections 3.1 and 3.3. The computed LMPs for each scenario are then clustered into 

aggregated price zones under consideration of the infeed and demand situation at the nodes 

using a hierarchical cluster algorithm. Thus, new price zones are computed for each of the 

scenarios resulting in optimal price zone configurations for each scenario for different numbers 

of zones.  

Additionally, the hourly prices of all six scenarios are clustered together to determine the so-

called robust configuration (cf. section 4.5.3 for a discussion whether this configuration is 

robust in a mathematical sense). Details on the developed algorithm can be found in section 

2.1 and 2.2. 

The results of both the optimal price zones for the individual scenarios and for the robust 

scenario may then be analysed (cf. section 4). 

 

 

 Background of 
scenario-analysis in 
section 2.3 

 Description of the six 
scenarios and the 
identified set of 
parameters in section 
3.2 

 Application and 
description of DC-OPF 
in section 3.1  

 Methodology of cluster 
algorithm in section 
2.1 

 Application in section 
3.3 

 Evaluation 
methodology in section 
2.4  

 Evaluation of results in 
section 4 

Figure 1: Methodology of this paper  
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As previously mentioned, the remainder of this section is organized as follows: First, the cluster 

algorithm is presented in sections 2.1 and 2.2. The scenario approach (2.3) and the evaluation 

methodology (2.4) are discussed subsequently.   

2.1 Cluster Algorithm  

The cluster algorithm may be used to determine new price zone configurations for individual 

scenarios as well as for a combination of scenarios. In the latter case, a robust configuration 

is obtained (c.f. (Felling and Weber, 2016)). 

Problem formulation  

The main objective of the algorithm is to minimize price variations within a zone. Therefore, we 

take the total weighted variation (V) of prices in the system under study as a starting point (1). 

Thereby 𝑝𝑛,ℎ refers to the hourly price at a node whereas 𝑝ℎ̅̅ ̅ equals the average hourly price 

of all nodes in the system. N is the set of all nodes and H the set of all hours considered. In 

case a robust configuration is looked for, the set H includes the hours from the different 

scenarios considered.  

V = ∑ ∑ ((ph,n − ph)
2

⋅ Wn)

h∈Hn∈N

 (1) 

The last multiplier 𝑊𝑛 corresponds to the weight of a node. To account for the different 

relevance of nodes in the system, weights are assigned according to the overall supply and 

demand quantities in the nodes. Weights are normalized so that their average equals one to 

facilitate interpretation. Numerical singularities are avoided by assigning a weight of 0.001 to 

nodes that have neither load nor infeed. Details of the computation are given in the appendix, 

cf. equations (A21) – (A23).   

Equation (2) shows the computation of the average hourly prices:  

𝑝
ℎ

=  (∑[ 𝑝ℎ,𝑛 ⋅ 𝑊𝑛]  

𝑁

𝑛=1

)  ⋅  
1

∑ 𝑊𝑛  𝑁

 (2) 

As the main objective is to identify price zones minimizing within-zone price variations, the total 

weight of a zone is set equal to the sum of the weights of all nodes within that particular zone, 

cf. equation (3). Thereby the assignment of nodes to zones is of importance. The nodes of a 

zone (cluster) 𝑐 are represented by 𝑛 ∈ 𝑁𝑐. 

𝑊𝑐 = ∑ 𝑊𝑛

𝑛∈𝑁𝑐

 (3) 

Analogously to (2), the average hourly price of a zone is the weighted average of the nodal 

prices for the nodes within the cluster. 
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𝑝
ℎ,𝑐

=  ( ∑ [ 𝑝ℎ,𝑛 ⋅ 𝑊𝑛]  

𝑛 ∈ 𝑁𝑐

) ⋅
1

∑ [𝑊𝑛]  𝑛 ∈ 𝑁𝑐

 (4) 

The within-zone variation (𝑉𝑤𝑖𝑡ℎ𝑖𝑛) presented in equation (5) is the variation of hourly prices of 

a zone compared to the average price of the particular zone. Thus, the total within-variation 

over all zones is computed using (3) and (4) as follows:  

𝑉𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ ∑ ∑ ((𝑝ℎ,𝑛 − 𝑝ℎ,𝑐)
2

⋅ 𝑊𝑛)  

ℎ∈𝐻𝑛∈𝑁𝑐𝑐∈𝐶

 (5) 

Based on equation (5) the within-zone variation in a single zone (𝑉𝐶
𝑤𝑖𝑡ℎ𝑖𝑛) is presented in 

equation (6) . 

𝑉𝐶
𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ ∑ ((𝑝ℎ,𝑛 − 𝑝ℎ,𝑐)

2
⋅ 𝑊𝑛)  

ℎ∈𝐻𝑛∈𝑁𝑐

 (6) 

The total variation in the system (1) can then be decomposed into the variations between- and 

within-zone as shown in equation (7).  

𝑉 =  𝑉𝑤𝑖𝑡ℎ𝑖𝑛 + 𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (7) 

Thereby, the between-zone variation is derived analogously to the within-zone variations. In 

contrast to the within-zone variation, the between zone variation is given by the squared 

difference of the hourly average zonal prices to the hourly overall mean weighted prices, cf. 

equation (8). 

𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = ∑ ∑(𝑝ℎ,𝑐̅̅ ̅̅ ̅ − 𝑝ℎ)
2

⋅ 𝑊𝐶

ℎ∈𝐻𝑐∈𝐶

 (8) 

The objective is to determine a new price zone configuration that has a low within-zone 

variation and a respective higher between-zone variation, so that price differences occur rather 

between zones than within zones. The clustering approach used here can hence be viewed 

as a generalization of Ward’s method (cf. e.g., (Härdle and Simar, 2003)  pp. 396-398). 

(Batagelj, 1988) provides some properties this and even more general versions of Ward’s 

method. 

Iterative price zone aggregation 

The aforementioned equations form the basis of the clustering algorithm. It clusters the single 

nodes stepwise to aggregated zones. In the first step, each node corresponds to a single zone, 

in which case the within-zone variation is zero. All variations are between the nodes. During 

the next steps, the increase (delta) of the within-zone price variations is computed for every 

possible merger of two zones. For example, when two nodes with different prices are merged 

to a new zone, the within-zone variation of the whole system increases. This increase (delta) 

is computed for all possible mergers. The two zones (nodes) with the least increase are 
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merged. This procedure is repeated until no zones are left to merge, i.e. when all nodes are 

grouped into one single zone and the between-zone variation becomes zero.  

The computation of the increase in weighted within-zone variations is shown in equation (9) 

based on (5). The within-zone variations for the new zone 𝐶𝑖 ∪ 𝐶𝑗, including all nodes from both 

old zones, are computed first. Then the weighted within-zone variations of the two old zones 

𝐶𝑖  and 𝐶𝑗 are deducted to obtain the increase.  

A merger is thereby only possible if the two old zones are physically connected by at least one 

transmission line. This ensures that any newly formed zone will only consist of nodes that are 

connected physically. The respective information is obtained from the node adjacency matrix 

(NAM). 

2.2 Flowchart of the Cluster Algorithm 

The algorithm can be divided into four main parts as Figure 2 visualizes.  

Input Data

Adjust/update the 
NAM and the list with 
increases of possible, 

connectable zones

Initial calculation of all increases of 
within-zone variations for all 

connected nodes (zones)

Merge two zones 
(nodes) with smallest 

increase in within-
zone variations

Clustering 
finished 

Any further 
connections 
remaining?

k=k+1

Start
k=1

Part 3

Part 4

Part 1

Part 2

 

 Part 1: Input data preparation: The algorithm 

requires three types of data. 

 

Prices: For each node, an array of prices (e.g. 

one price per node per hour) is handed over. 

Thus, by inserting hourly LMPs for one year, all 

grid load cases of a year are represented by the 

variation of demand and infeed in the separate 

hours.  

 

Demand and infeed values: For each node, the 

load situation is characterized by one value (the 

sum of average infeeds and loads). These are 

used to compute the nodal weights.  

 

Node adjacency matrix of the grid: This matrix 

contains the information about which nodes are 

physically connected.  

 
Figure 2: Flowch1art of the algorithm 

 ∆ 𝑉𝐶𝑖 ∪𝐶𝑗

𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ ∑ [(𝑝ℎ,𝑛 − 𝑝
ℎ,𝐶𝑖 ∪𝐶𝑗

)
2

⋅ 𝑊𝑛] − 

ℎ∈𝐻𝑛∈𝐶𝑖 ∪𝐶𝑗

𝑉𝐶𝑖

𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑉𝐶𝑗 
𝑤𝑖𝑡ℎ𝑖𝑛 (9) 
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 Part 2: List of increases of new configurations: For all nodes that are physically 

connected, the algorithm computes the increase (delta) in within-zone variation according 

to (9) once. For example, in a network with three nodes, where all nodes are connected, 

the algorithm would initially compute the increase of all three possible new zonal 

configurations. 

 Part 3: Iterative merging: Subsequently the smallest increase is chosen and the 

associated nodes (zones) are merged to a new zone. The computed list of increases from 

step 2 is then updated for all zones that are part of the two recently merged zones or are 

their neighbours using an adapted version of the Lance-Williams-formula (cf. (Lance and 

Williams, 1967; Murtagh and Legendre, 2014)). The remaining increases (deltas) are not 

affected and remain the same. Also, the NAM has to be adjusted. 

 Part 4: End: When only one zone is left, the algorithm stops. 

The overall result is a sequence or set of optimal price zone configurations, because the result 

of each single iteration corresponds to the optimal zonal configuration for the particular number 

of zones. Each configuration is optimal regarding the within-zone variation. 

As presented in Figure 1, the cluster algorithm may be applied for each scenario (cf. section 

2.3). Additionally a robust configuration may be determined by taking the particular LMPs of 

the different scenarios together into one price array.  

2.3 Scenario Analysis  

2.3.1 General considerations 

The location and shape of price zones as identified through the clustering algorithm mostly 

depend on the underlying locational marginal prices (LMPs). This minimization of within-zone 

price variation corresponds to the welfare-maximization objective of a (perfect) regulator under 

the hypothesis that price variations within zones lead to welfare losses. This hypothesis seems 

plausible since within zone price variations will imply inefficient redispatch to remove 

congestions and inadequate incentives for investments. Yet the challenge for the regulator is 

that he has to make his choice of price zones under (irreducible) uncertainty – especially when 

this choice has to be made several years in advance to allow market participants to adapt. The 

resulting decision situation is visualized in Figure 3. 

In order to identify the optimal configuration, future LMPs have to be forecasted. Those are 

influenced by various parameters such as demand, grid development and generation 

characteristics. They are, as the future energy markets in general, not trivial to predict as they 

are influenced by further factors as well. These factors are usually outside the control of the 

regulator and include world energy market developments, general economic growth and 

energy policies. E.g., generation at a node and in a network depends not only on different fuel 
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prices but also on the amount of conventional und renewable capacities. Those again are 

mostly affected by energy policies. Furthermore, energy policies not only influence generation 

capacities but also grid development.  

In conclusion, a regulator will have to consider different, descriptive scenarios when it comes 

to fixing price zones several years in advance. Identifying suitable scenarios is a challenging 

task since a limited number of scenarios should be chosen to represent as good as possible 

the range of future uncertainties.  

This task can hardly be accomplished from scratch within this paper, especially as the focus 

of this paper is on the clustering methodology for price zone configurations. Therefore, we 

base our selection of scenarios on an existing approach (Spiecker and Weber, 2014), where 

systematically different development paths for the European energy system have been 

investigated. The starting point for the scenario description is there the triangle of energy policy 

targets, also called the energy policy trilemma.  

From the scenario outline one has then to derive a consistent set of parameters that are both 

relevant for the question at hand and distinguishable between the scenarios. Since local 

marginal prices are used as input for the clustering algorithm, the parameters used to 

characterize the scenarios should have a major impact on the nodal prices. At the same time 

they should be linked back to the economic and political developments describing the 

scenarios (cf. Figure 3). 

 

Figure 3: Decision Situation and Exogenous Drivers of Uncertainties 
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Therefore we use the following parameters to characterize and differentiate the scenarios: 

 Average fuel price level 

 Fuel price spread 

 Expansion of renewables 

 Demand development 

 Status of grid development 

The parameter choices for the selected scenarios are introduced in section 3.2. Yet in order to 

ensure that choices are consistent with observed developments in the past, we develop 

subsequently an approach to derive price parameters based on empirical estimates. 

2.3.2 Determination of price parameters 

Figure 3 illustrates that fuel prices are one key parameter of uncertainty that strongly influences 

LMPs. For the merit order as well as the congestion costs, not only the absolute fuel price level 

is relevant but also the price or rather cost spreads between different generation technologies. 

Of particular relevance are the spreads between coal-fired and gas-fired generation units, 

since those are frequently setting the prices in the European market. Therefore we use two 

parameters to characterize the fuel price development, on the one hand the average fuel price 

and on the other hand the spread in generation costs for coal and gas units. Subsequently we 

briefly explain the methodology to determine possible future variations in these parameters.  

As starting point we take the wide-spread assumption that commodity prices like other asset 

prices follow a geometric Brownian motion (Hull, 2015). This implies that log price changes are 

independently, identically and normally distributed. Since we are ultimately interested in 

marginal electricity generation cost, we do not model fuel and CO2 prices separately. Rather 

we model directly the variable generation cost for a typical coal plant 𝑐𝑐𝑜𝑎𝑙 (including fuel and 

CO2 certificate cost) and for a typical gas plant 𝑐𝑐𝑜𝑎𝑙. Those may be written 

ci,t =
ci,t

f + εi ⋅ ct
CO2

ηi
      i ∈ {coal, gas} (10) 

With the plant efficiencies 𝜂𝑖 and carbon intensities of fuels 𝜀𝑖. 

Then logarithmic averages and spreads may be computed: 

𝑙𝑛 cm,t =
𝑙𝑛 cgas,t + 𝑙𝑛 ccoal,t

2
 (11) 

𝑙𝑛 ∆ct =
𝑙𝑛 ccoal,t − 𝑙𝑛 cgas,t 

2
 (12) 

And for these price factors now independent, identically increments are assumed, i.e.: 

∆(𝑙𝑛 cm,t)~N(μcm, σcm) (13) 
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∆(𝑙𝑛 𝛥ct)~N(μ𝛥c, σ𝛥c) (14) 

Thereby the parameters for the normal distributions are obtained from an appropriate sample 

of historical observations. By modelling the mean price development and the spread 

development as separate, orthogonal factors, we automatically include the observable 

correlation between coal and gas prices in the modelling. 

When it comes to derive future parameter values, we may use the following well-known 

property of Brownian motions: 

𝑙𝑛 cm,t+T − 𝑙𝑛 cm,t ~N(T ⋅ μcm, √T ⋅ σcm) (15) 

𝑙𝑛 𝛥ct+T − 𝑙𝑛 𝛥ct ~N(T ⋅ μ𝛥c, √T ⋅ σ𝛥c) (16) 

i.e. the drift scales linearly with the forecast time horizon whereas the standard deviation 

increases by the square root of the time difference. If within our scenarios we consider three 

hypotheses high, mid and low for these prices, then a rather straight forward choice is to select 

𝑇 ⋅ 𝜇 + √𝑇 ⋅ 𝜎 for the price change in the high hypothesis, 𝑇 ⋅ 𝜇 for the mid case and 𝑇 ⋅ 𝜇 − √𝑇 ⋅

𝜎 for the low case. Those correspond than roughly to the 85%, 50% and 15% quantile of a 

distribution that has been empirically derived instead of being chosen arbitrarily. 

2.4 Evaluation Methodology 

As previously described, the cluster algorithm computes the optimal price zone delimitations 

for either an individual scenario or for a combination of all scenarios. The latter price zone 

delimitation is called the robust configuration (cf. Figure 1). The question then arises what the 

relative merits or disadvantages of these different configurations are. In addition, it might be of 

interest to compare those optimized configurations to others, exogenously defined ones, 

notably the current CWE configuration.  

For evaluation, obviously the within-zone variations according to equation (5) may be assessed 

for each of the configurations. In order to evaluate the configurations, it is however not only of 

interest to investigate the performance of each configuration in the particular scenario for which 

it has been optimized. Rather their performance may be checked by evaluating them also 

under all other possible scenarios. For example, the configuration determined in the first 

scenario may be fed with the LMPs computed for the second scenario and then the within-

variation may be computed. This then indicates whether the first configuration still performs 

reasonably well if scenario 1 instead of scenario 2 materializes. This is of particular importance 

if the selection of the configuration has to be done well-ahead of the actual implementation. 

Then severe uncertainties persist at the moment of configuration selection which will be 

resolved when the configuration is actually implemented. The current European procedures 

are likely to induce such a time gap of two to three years. 
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To perform the corresponding evaluation, the assignment of nodes to zones in equation (5) is 

changed. Thus, for the same LMPs the within-zone variation changes with a different 

assignment of nodes to zones (𝑛 ∈ 𝑁𝑐) as the zonal average price 𝑝ℎ,𝑐 changes. Ergo the 

variations of multiple configurations for a scenario, which materializes as a set of LMPs, can 

be investigated. 

Furthermore, the dependence of the within and between variations on the number of zones is 

of interest. This provides an indication on the potential benefits of smaller over larger zones.  

Besides these assessments based on the selection criterion itself, further criteria are of 

interest. Notably the size of zones is an indication of balanced design. As a measure for the 

size of zones, the percentage of the weight of a cluster (𝑊𝐶, c.f. equation (3)) in the total weight 

of the system is assessed. 

3 Application 

The presented methodology and developed cluster algorithm is applied to a model of the 

(future) electricity grid of Central Western Europe and its neighboring countries as 

subsequently described. Covered countries are Austria, Switzerland, Belgium, France, 

Germany, Luxembourg and the Netherlands. Before describing the scenarios and parameters 

used in section 3.2, the underlying models for demand, renewables and grid modelling are 

briefly described in section 3.1. Then some computation details on the clustering algorithm are 

given in section 3.3.  

3.1 Underlying Models 

The grid model is based on public available data. Envisaged network extensions until 2020 are 

modelled according to the European Ten-Year-Network-Development-Plan (TYNDP) 

(ENTSO-E, 2014) and the German grid development plan (Bundesnetzagentur, 2014). The 

status of the network extension, as mentioned in section 2.3.1 and discussed in more detail 

below, is one key variable that differs across the scenarios. Data for load, renewable infeed 

and distributed conventional generation are simulated by a vertical load model developed in 

the research group based on public available data (Osinski, 2016). The model of the CWE 

transmission grid compromises over 2200 nodes, 3600 branches and 600 transformers of the 

voltage levels 220 and 380 kV. In Germany, relevant 110 kV nodes are represented as well. 

Furthermore, phase shifters are incorporated into the model.  

Market related relevant values are derived from the Joint Market Model (Meibom et al., 2011; 

Tuohy et al., 2009). The model simulates day-ahead and intra-day markets and is capable of 

optimizing hydro- and combined heat production. Data like cross-border flows to non-CWE 

countries, infeed and shadow prices for hydro power stations and combined heat production 

are integrated into the grid model via an interface. 
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3.2 Scenarios  

The background of the scenario analysis have been outlined in section 2.3. The scenario family 

taken here as starting point (Spiecker and Weber, 2014) is exploring different priority settings 

within the energy policy trilemma (cf. above). In the following two sections, the selected six 

scenarios are presented. Afterwards the corresponding parameters are discussed.  

3.2.1 Scenario Outlines 

The scenario storylines for the first five scenarios correspond to those presented by (Spiecker 

and Weber, 2014). A sixth scenario has been added, which reflects a policy vision of improved 

control over the relevant variables. This scenario describes what policy makers aspire at. All 

scenario outlines have been adjusted to reflect particularly the parameters of interest in the 

context of this study. 

Scenario 1: “Realistic Scenario” 

This scenario is characterized by continued conflicts between the different energy policy 

priorities. On the one hand, extension of renewable capacities will progress as planned and 

reach the targeted goals of SOAF for 2020 (Scenario B) (ENTSO-E, 2015). On the other hand, 

grid development is expected to be delayed by four years, which is considered a realistic 

assumption given the current gap between the targeted commissioning dates and actual 

progress of grid extensions. Prices, demand and the spread between coal and gas prices are 

assumed to develop according to medium forecasts. 

Scenario 2: “Climate Policy” 

The emphasis in this scenario is on the extension of renewable capacities and energy 

efficiency measures. A reduction of greenhouse gas emissions constitutes the main objective. 

This is reflected by an increasing and accelerated extension of renewable capacities and 

decreasing demand due to efficiency measures. Less effort is put on the reinforcement of the 

grid, which is thus expected to be delayed by two years. The shrinking demand for conventional 

resources will lead to a drop of prices for resources and CO2-certificates.  

Scenario 3: “Climate Market” 

In comparison to scenario 2, this scenario focuses on a market for greenhouse gas emissions 

(CO2). Besides an extension of renewables, greenhouse gas emissions shall be reduced by 

raising costs for emission certificates. Thus, the spread between coal and gas prices will 

decrease and the price for CO2 will rise. 

Scenario 4: “Security of Supply” 

The scenario “Security of Supply”, in contrast to the climate scenarios, sets the focus on grid 

development rather than extension of renewable capacities. In fact, extension of capacities is 
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slowed down to protect the grid from too high quantities of fluctuating renewable infeed. This 

causes, again in contrast to the climate scenarios, higher demand for conventional generation 

and therefore increasing prices.  

Scenario 5: “Economic Growth” 

This scenario expects economic growth that is reflected in rising demand in line with rising 

prices for fuels. The further parameters remain on a medium level.  

Scenario 6: “Alternative Scenario” 

This “alternative” scenario illustrates a rather unrealistic path assuming that some of the 

mentioned drivers are not exogenous to the decision maker. Therefore, both stability and 

sustainability goals are achieved. The grid development progress as scheduled and expansion 

of renewable capacities overachieves the current aims. The further parameters remain on a 

medium level.  

The following section presents the chosen parameters that are varied to determine the 

scenarios.  

3.2.2 Scenario Parameters 

In section 2.3.2, the methodology to derive meaningful and empirically validated parameters 

for fuel prices has already been discussed. For the empirical application, weekly fuel price 

changes for the year 2015 have been analysed. The expected drift has been set to zero, since 

empirical estimates have been insignificant. and the corresponding annualized standard 

deviations have been determined as: 

σcm = 0,117  (17) 

σ𝛥c = 0,066 (18) 

The CO2 prices are chosen so as to support the change in the cost spread. 

For the further parameters mentioned in section 2.3.1, grid development, demand and the 

extension of renewables the retained hypotheses are explained subsequently: 

Grid Development 

The status of the grid development is differentiated in: progress as scheduled (no delay), delay 

of two years (delayed) and delay of four years (very delayed).  

Expansion of renewables 

Regarding the build-up of renewable capacities, capacities of the SOAF for 2020  (Scenario 

B) (ENTSO-E, 2015) for the year 2020 are chosen as mid case. An accelerated (high) or 

slowed down (low) build-up is translated into a 50% increase/decrease of the additional 

capacities from 2015 on.  
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Demand 

The demand case mid refers to the same demand as in 2015. An increased demand (high) is 

translated into 5% increase in demand, a decrease (low) into minus 5%, respectively. This 

equals 1%-point per year.  

An overview over the parameters selection for the scenarios is given in Table 1. 

 

The costs for fuel oil and light oil are adapted to the development of gas prices. Overall, this 

results in the following prices shown in Table 2. 

Table 2: Fuel prices for scenarios 

  

Scenario 1  

"Realistic 

Scenario" 

Scenario 2 

"Climate 

Policy" 

Scenario 3 

"Climate 

Market" 

Scenario 4 

"Security 

of Supply" 

Scenario 5 

"Economi

c Growth" 

Scenario 6 

"Alternativ

e Scenario"  

Gas [€/MWh] 22,4 20,4 13,5 24,5 29,6 22,4 

Coal [€/MWh] 8,0 5,3 5,4 12,0 11,2 8,0 

Fueloil [EUR/MWh] 23,6 21,4 14,2 25,7 31,1 23,6 

Lightoil [EUR/MWh] 37,5 23,5 23,5 59,7 59,7 37,5 

CO2 [€/t] 8,1 5,3 12,3 12,3 8,1 8,1 

Lignite[EUR/MWh th] 1,5 1,5 1,5 1,5 1,5 1,5 

Nuclear[EUR/MWh] 1 1 1 1 1 1 
 

 

3.3 Price zone computation 

The parameters in the different scenarios affect the LMPs and the nodal weights in the 

scenarios (cf. Figure 3 and Table 1). Both the LMPs and the weights are inserted to the cluster 

algorithm. Overall, the algorithm is applied seven times. Once for each scenario and one time 

for the robust configuration. For the robust configuration, the hourly prices of all six scenarios 

are handed over as input data, as presented in Figure 1 and Figure 2. 

Table 1: Parameter selection for the scenarios 

 

Scenario 1  

"Realistic 

Scenario" 

Scenario 2 

"Climate 

Policy" 

Scenario3 

"Climate 

Market" 

Scenario4 

"Security 

of Supply" 

Scenario 5 

"Economic 

Growth" 

Scenario 6 

"Alternative 

Scenario" 

Grid Development 
Very 

delayed 
Delayed Delayed No delay Delayed No delay 

Extension of 

Renewable 

Capacities 

Mid High High Low Mid High 

Demand Mid Low Low Mid High Mid 

Average Prices Mid Low Low High High Mid 

Spread Coal vs. Gas Mid High Low Low Mid Mid 

Price for CO2 Mid Low High High Mid Mid 
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As a result, six price zone configurations, each optimal in the particular scenario, are 

computed. In addition the robust configuration that is based on the LMPs of all scenarios is 

determined. Thereby the algorithm does not compute the optimal number of zones for a 

scenario but the optimal configuration for a given number of zones. This is because a 

hierarchical cluster algorithm is applied. During each step, starting with a nodal setup where 

each node is a zone, the optimal zonal solution is computed. Thus, the sequence of 

configurations from each cluster-application offers the optimal solution for two, three, four etc. 

zones.   

Thereby the algorithm is able to compute the configurations quite fast. The computation time 

of the robust configuration is higher than the time for the single scenario configurations, simply 

due to the amount of data. Table 3 shows the computation time for a single scenario and the 

robust configuration. The calculation is undertaken on an 8 GB RAM System with an Intel® 

Core™ i5-4690 CPU with 3.5 GHz. Despite the amount of data, the algorithm is able to find 

the solution for the single scenarios in about 2 minutes. Since the amount of LMPs is six times 

higher for the robust configuration, the computation takes about a factor five longer.  

Table 3: Computation Time 

 Configurations 1 – 6 Robust Configuration 

Computation Time 110 s– 121 s 530 s– 564 s 

4 Results 

This section presents the results of the scenario analysis and the cluster algorithm. It organizes 

as follows: At first, the LMPs and the standard deviation of prices at nodes are presented since 

the nodal prices are the key input parameter of the algorithm. The LMP values and their 

standard deviation already offer a good first impression why the later presented price zone 

configurations differ between the scenarios.  

Second, the resulting price zone configurations of each scenario for a fixed number of price 

zones is presented. Five zones are chosen as this equals the current number of price zones 

in the considered extended CWE region. Also the robust five zone configuration is presented 

that takes into account the different possible scenarios. 

Third, results regarding varying numbers of zones are shown for the robust configuration. 

Section 2.1 has already explained that the algorithm computes a sequence of optimal 

configurations for different numbers of zones. Thus, results for selected numbers of zones and 

their shape, size and their values for within and between variations are shown. 

Finally, the benefits of the robust configuration are evaluated using the evaluation methodology 

outlined in section 2.4. This is done by comparing it to the single scenario configurations and 
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to the current configuration in CWE. Moreover, the size and within-zone variations are 

analysed.  

4.1 Resulting LMPs  

This section illustrates the LMPs for the scenarios by showing their nodal average and 

standard deviations. The LMPs are computed from a DC-OPF using MATPOWER based on 

the underlying models and scenario assumptions explained in section 3. The detailed 

optimization problem formulation can be found in (Zimmerman et al., 2011). N-1-secure prices 

are approximated by reducing line capacities to 85% of the original values.  

Figure 4 presents the average LMPs for each of the six scenarios. The average nodal LMPs 

are computed according to equation (19).  

pn̅̅ ̅ =  
1

|H| 
⋅  ∑ ph,n

h∈H

 (19) 

The colors indicate price differences from low prices (blue) to higher prices (red). Thereby 

obviously unrealistic prices in a few of the simulated hours (eventually related to inaccuracies 

of the grid and load model and the regional distribution) of under 0 €/MWh and above 

150 €/MWh were set to 0 €/MWh respectively 150 €/MWh. This approach has been applied to 

less than 1 % of all prices.  

The first obvious observation is that resulting LMPs differ significantly between the scenarios. 

This observation is confirmed when looking at the nodal standard deviations presented in the 

following section.  

 

Figure 4: Average nodal prices for the six scenarios 
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4.2 Resulting Standard Deviation at Nodes  

Figure 5 illustrates the standard deviation at nodes since price variations are detected by the 

algorithm according to equation (9). The presented standard deviation at nodes are derived 

according to equation (20).  

σn =  √
1

|H| 
⋅  ∑(ph,n

h∈H

− pn̅̅ ̅)² 
(20) 

 

 

Figure 5: Standard deviations of nodal prices for the six scenarios 

The cluster algorithm detects both the difference in average prices and in the variations 

between nodes as shown in the next section.  

4.3 Resulting Price Zone Configurations  

This section presents exemplary price zone configurations for the scenarios based on the 

LMPs described in the previous section. Results for configurations with five zones are 

presented, as there are also currently five price zones in the considered extended CWE region. 

First, the six configurations corresponding to the six scenarios are shown. Then the robust 

configuration with five price zones is presented.  

4.3.1 Price Zone configurations of the scenarios 

In Figure 6, the shapes of the resulting price zones are visualized. Two major observations 

should be highlighted when considering the visual shape of price zones. 

First, borders of price zones do not necessarily align with national borders any more. Each 

country is split into more than one zone that are merged with parts of other countries. The 

individual price zones of Belgium and the Netherlands disappear. Both zones are united in all 

scenarios and further merged with parts of Germany. The eastern part of Austria is split apart 
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from the remaining four price zones in three out of six scenarios (scenario one, four and six). 

In each of the three cases it is also the most expensive price zone. In reference to that, the 

German-Austrian-Luxembourgian price zone is at least split into three new price zones. 

Throughout all six scenarios, a price zone in northern or north-eastern Germany emerges that 

has lower average prices than the other, more southern zones, what is due to the high wind 

feed-in in that area.  

In comparison to that, France is at most only split in two parts and almost remains a zone by 

its own in scenario four and six. Eventually, one reason for this is the applied methodology of 

detecting price differences. Since nuclear power stations set marginal generation cost at 

similar levels at most nodes in France (especially, as time restrictions like ramp rates are not 

modelled in the DC-OPF), the algorithm rather adjusts power plant outputs than to detect price 

differences. Furthermore, Switzerland is always incorporated into a South-German-Austrian 

zone.  

Second, the price zones differ between the scenarios although similarities are detectable. This 

observation is in line with Figure 4 and Figure 5 that already illustrated the difference of the 

average LMPs between the scenarios. Between scenario two and three, the resulting price 

zones differ, although only the price spread between coal and gas is varied. The difference 

appears small, yet the difference in average prices of the two German-BeNeLux-Swiss-zones 

is reversed. In scenario 2, where the spread is high, the zone including Netherlands and 

Belgium has a lower average price than the other partly German-Austrian-Swiss-zone. In case 

of a low spread and a high CO2-price, the BeNeLux-zone grows and the average price rises 

above the average price of the Austrian-German-Swiss-zone. The main reason is that the 

power plants in the BeNeLux and West-German region are more affected by the high CO2-

 

Figure 6: Shape of price zones for 5 zones in CWE for the six scenarios 
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price than those in the other zone where also hydro power stations and nuclear power plants 

exist. In scenario five, which is based on the same status of grid development as two and three, 

the rising demand appears to affect the Belgium-Dutch zone more than the other zones. In this 

particular scenario and in scenario 3, the Dutch-Belgium-Western-German price zone has the 

highest average prices. In all other scenarios, the highest prices are (as previously mentioned) 

found in the southern German- and/or- Austrian price zone.  

In conclusion, none of the existing price zones remains the same. The big German-Austrian-

Luxembourgian price zone is split into at least two separate zones and France is split in four 

out of six scenarios into two zones. The rather small zones like Switzerland, Belgium and 

Netherlands (and Austria) are merged and join parts of Germany. In addition, borders of price 

zones differ between the six scenarios.  

4.3.2 Resulting Robust Price Zone Configuration 

In parallel to Figure 6, the results for the robust price zone configuration for five price zones 

are presented in Figure 7. As mentioned before, the robust configuration is determined based 

on all the LMPs of all six scenarios. 

 

 

Figure 7: Robust Configuration for 5 Zones 
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In line with the observations made in section 4.3.1 and Figure 6, price zone borders do not 

align with national borders anymore. Germany is split into three parts. The northeastern zone 

has lower average prices than the other two regions. The western region merges with a 

Belgium-Dutch price zone. In comparison to the other regions, this appears to be the most 

expensive one on average. The southern zone merges with Austria, Switzerland and a few 

nodes of France. France is split in two parts. The split is more or less straight in north-south 

direction passing just east of Paris. Thereby the eastern French zone has the lowest average 

price of all zones. 

4.4 Results regarding number of zones  

The previous two sections have illustrated the scenario specific optimal configurations and the 

robust configuration in case of five price zones. As mentioned in sections 2.1 and 3.3, the 

algorithm computes not one optimal configuration per scenario but a sequence of optimal 

configurations for different numbers of price zones. Therefore, the robust configurations for 

selected numbers of price zones are presented subsequently. In addition, key parameters like 

the within- and between-zone variations are investigated.  

4.4.1 Resulting robust configurations 

Figure 8 shows the results for robust price zone configurations for different numbers of zones. 

Thereby the resulting configurations are presented in a decreasing order starting from 20 price 

zones. This mirrors the hierarchical, stepwise aggregation of zones by the cluster algorithm as 

described in sections 2.1 and 2.2. During the step from eight to seven price zones the algorithm 

for example detects the least increase in within-variation from merging two north-eastern 

German Zones to one. From seven to six zones, a Dutch-Belgium price zone is merged with a 

small Western-German price zone.  

Finally, the optimal result for two zones presents a (almost only) French and a unified zone 

of the other remaining countries. Thereby the French zone would have the lower average 

price.  
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Figure 8: Robust Price Zone Configurations for various number of zones 

 
4.4.2 Development of within & between zone variations 

For each of the presented configurations, the share of within- and between variations is 

computed. Figure 9 shows the results depending on the total amount of price zones. The x-

axis shows the number of price zones in a log-scale. The y-axis indicates the share of within-

and between-zone variations in percent. When each node is a price zone, all variations are 

located between the nodes (zones). For the case of one big price zone, all variations are 

located within the zone, respectively. For the presented case of five price zones around 20.5% 

of the variations are within the zones and 79.5% between them.  
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Figure 9: Within-and between-zone variation of the robust configuration depending in number of 
zones 

To ease the interpretation of these values, the following section compares these parameters 

to the variations in the current CWE configuration. In addition, further benefits of the robust 

configuration in comparison to the current CWE configuration are presented.  

4.5 Benefits of the robust configuration 

Whereas the previous discussion has mostly focused on the qualitative and graphical 

interpretation of different price zone configurations, the focus is now on assessing 

quantitatively the merits of a robust configuration. In line with Figure 9 the share of within-zone 

variation of each scenario is compared to the robust and the current CWE configuration. In 

addition, the size of price zones, in particular the number of nodes per zone, is assessed and 

analysed. Finally, the within-zone variation that results from applying each of the eight 

configurations (six scenario configurations, the current CWE and the robust configuration) in 

each of the single scenarios, is presented.  

4.5.1 Comparison to current CWE configuration and scenario optimized 
configurations 

Figure 10 presents a comparison of the within-zone variation of each scenario configuration 

to the robust and CWE-configuration in each particular scenario. E.g. the top left bar chart 

shows the share of within-zone price variations for the optimal 5-zone-configuration of 

scenario one. The second bar shows the share of within-zone price variations that would occur 

when the robust configuration would be applied in scenario 1. The third bar represents the 

resulting within-zone share when the current CWE-configuration is used in the first scenario. 

In each of the six bar charts, i.e. under all scenarios, the CWE-configuration is the worst 

choice. The robust configuration does not beat the configuration optimized for a given scenario 

- this is impossible by virtue of the solved optimization problem. Yet its share of within-zone 
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price variations is throughout only slightly higher than the share for the scenario-specific 

optimal configuration. Throughout, the robust configuration is moreover performing 

substantially better than the current CWE-configuration.  

Noticeable is scenario 4, where overall the lowest shares of within-zone variations occur. 

This scenario refers to the “system security” scenario. Both the reduced infeed from 

renewables and the grid development as scheduled without delays lead to less volatile 

prices and less congestions, respectively.  

 

Figure 10: Comparison of within-zone variation between configurations 

4.5.2 Size of new price zones  

In addition to the benefits regarding the within-zone variation, this section investigates the 

resulting size of price zones. Thereby size refers to the weight of a zone in line with equation 

(3). Figure 11 visualizes the share of the zonal weight (𝑊𝑐) in each of the five zones ordered 

by increasing weight. The fifth and largest zone is on the right and the smallest zone, the first 

zone, on the left. The y-axis indicates how many nodes, in relation to all nodes in the system, 

are located in each particular price zone. The single bars represent the six configurations of 

the scenarios (cf. Figure 6) whereas the horizontal grey line shows the sizes of the current 

CWE configuration and the red line the sizes of the robust configuration.  

The size of zones in the current CWE configuration seems more uneven in comparison to the 

other configurations. The two big French and German-Austrian-Luxembourgian price zones 

sum up to around 82% of total CWE size. The scenario-specific configurations mostly avoid 

such extremely large zones, especially scenario 2 shows rather equally sized zones. 

Nevertheless, the other five scenario configurations still have a rather wide range of sizes in 

comparison to the robust configuration. In the robust configuration, the weights of zones are 

by contrast rather equal. The three small zones are of quite similar size. Eventually, the robust 
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configuration turns out to level out zone sizes by not giving weight to strong congestions and 

corresponding deviating LMPs in particular scenarios. 

 

Figure 11: Size of price zones 

 
4.5.3 Evaluation of the benefits of robust configuration 

From the previous two figures, we have already concluded that the robust configuration has 

benefits in terms of more equally sized zones and that its within-zone variation in each scenario 

is only slightly higher in comparison to the scenario-specific configuration. Figure 12 extends 

these observations and shows that the robust configuration indeed beats the other 

configurations both in terms of average within-zone variation and in worst-case performance.  

Whereas Figure 10 has compared the within-zone variation of the robust configuration to each 

scenario-specific configuration, Figure 12 visualizes the resulting total within-variation of all 

configurations in each scenario. So the robust configuration is no longer only compared to the 

best case within each scenario, but the more realistic decision situation is represented: The 

decision maker has to make a single configuration choice now and the performance will only 

be revealed later. As seen of today, different scenarios are possible and the decision maker 

wants to compare the merits of his configuration choice against these scenarios. 

Consequently, the eight retained configuration choices are aligned on the x-axis. These include 

the six optimal configurations with five zones for each scenario, the robust configuration and 

the existing CWE configuration. On the y-axis, the performance in terms of within-zone price 

variations is visible. For each configuration, the stars indicate the within-zone variation that 

result from the LMPs in all scenarios. The blue bar presents the average of these six values. 

Note that we choose to present the absolute within-zone price variations here instead of the 
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shares shown in figure 10. Hence, scenarios with higher overall variations get a higher weight 

than scenarios with lower overall price variations since they are considered as more critical. 

In this figure, we may thus see the consequences of relying on erroneous predictions when 

choosing a configuration. E.g., configuration 1 would be the best choice, if scenario 1 was 

anticipated – the dark blue square in column 1 is lower than the dark blue squares in the other 

columns (other possible configuration choices). Yet the other squares in the first column 

indicate the consequences if another scenario actually became reality. The worst case would 

result from a development according to scenario five (yellow square). Then the within-zone-

variation would increase by about 50% in comparison to the expected value of scenario one. 

The best case, as it is in most scenarios, would be scenario three.  

In comparison between all eight configurations, the current CWE configuration appears to be 

the worst choice. This is true both in terms of the average within-zone variation (grey bar) and 

in terms of the worst case outcome: the highest value of within-variation occurs when the CWE 

configuration is chosen (or rather maintained) and scenario 5 materializes. 

In contrast to that, the robust configuration exhibits the lowest average within-zone variation. 

So under the given uncertainties, the robust configuration performs best “on average”. This 

goes beyond the observations made in Figure 10, where we only could state that it would not 

perform much worse than the scenario-specific best choice. Pushing further, we can even 

assert that the robust configuration is robust in the usual minimax sense of the word: the worst 

case that can occur with the robust configuration corresponds to the square in the seventh 

column with the highest value, i.e. scenario 1. This worst case is however better than the worst 

case of any other configuration. The top squares in columns 1 to 6 and 8 rank higher than the 

 
Figure 12: Comparison of within-zone variations over all scenarios and configurations 
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one in column 7.1 Consequently, the uncertainties of future development are dealt with best by 

choosing the robust configuration.  

5 Conclusions and Outlook  

The present paper commenced with a review of relevant literature and the actuality and 

relevance of the topic. Price zone configurations for European countries are highly relevant 

and a frequently addressed topic in academic literature and politics. Nevertheless, the impact 

of uncertainties on price zone configurations has not been addressed in that manner yet.  

Therefore, a new and consistent methodology has been developed based on a generalized 

version of Ward’s method. At first, the decomposition of the total variation into a variation 

within- and between zones is presented. Based on that a hierarchical cluster algorithm that 

weights nodes according to their infeed and demand situation and has an objective function 

with a clear economic foundation, the minimization of within-zone price variations, is applied.  

Finally, descriptive scenarios are derived in order to investigate the shape of price zones and 

the effect on within-zone price variations. Based on these scenarios, an approach to compute 

a robust configuration is presented by applying the same cluster algorithm on the results 

(LMPs, weights) of all six scenarios.   

The results provide interesting insights regarding the shape of price zones and the benefits of 

a robust configuration. First, zones differ significantly between the six scenarios. Not only grid 

development has a major impact but also the other parameters like average prices and price 

spreads. Second, national borders do not align with price zone borders anymore. Third, price 

variations within price zones can be significantly lowered by reshaping current price zones. 

The benefits of a robust configuration become apparent both when comparing to scenario-

specific configurations and in comparison to the current CWE configuration. One advantage is 

the similar size of price zones. The robust configuration has more equally sized zones than 

most of the scenario configurations, including notably the current CWE configuration – this 

may help to limit the market power of major players in the electricity market. Also, the within-

zone price variations have been investigated. In each scenario, the robust configuration has 

lower within-zone price variations than the current CWE-configuration. The within-zone 

                                                
1 Note that we cannot assert these findings for any possible application of the method. By design, the 
method ensures that at each step increases in the average within-variations are minimized. Given the 
underlying quadratic penalty function, the simultaneous application to several scenarios will normally 
also ensure in the case of the robust configuration that there are no outliers for certain scenarios – 
hence usually the results are robust in a minimax sense. But this cannot be proven formally – even the 
global optimality with respect to the minimization of within-variations cannot be proved for the 
general case. This is generally acknowledged for Ward’s method (e.g. (Govaert, 2013), section 7.3.5.4) 
as for other clustering methods. 
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variations are only slightly higher than the variations in the scenario-specific configurations. In 

total, the average variation of prices within a zone is even the lowest of all eight configurations. 

Finally, the robustness of the configuration is confirmed by the improved worst-case property 

regarding within-zone variations in different scenarios.   

Beyond the presented observations and results, further aspects and improvements may be 

considered to extend this paper’s work. The paper has investigated impacts of price zone 

configurations for the year 2020 for an extended CWE region. An extension could focus on 

both an extension of the simulated countries and of the simulated years. In particular, results 

for more European countries and for years more in the future are of interest to policy makers. 

Here a key issue is that investment decisions may depend on the zonal configuration. This 

leads to endogeneity issues as changing power plant characteristics affect the zonal 

configuration and vice versa, the zonal configuration influences the investment decision.  

Finally, a detailed market simulation with the configured price zones could give further insights 

on the role of price zone configurations and their effect on welfare and redispatch amounts and 

costs.   
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