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Abstract 

 

We present a stochastic modelling approach to describe the dynamics of hourly electricity prices. The 

suggested methodology is a stepwise combination of several mathematical operations to adequately 

characterize the distribution of electricity spot prices. The basic idea is to analyze day-ahead prices as 

panel of 24 cross-sectional hours and to identify principal components of hourly prices to account for 

the cross correlation between hours. Moreover, non-normality of residuals is addressed by performing 

a normal quantile transformation and specifying appropriate stochastic processes for time series before 

fit. We highlight the importance of adequate distributional forecasts and present a framework to 

evaluate the distribution forecast accuracy. The application for German electricity prices 2015 reveal 

that: (i) An autoregressive specification of the stochastic component delivers the best distribution but 

not always the best point forecasting results. (ii) Only a complete evaluation of point, interval and 

density forecast, including formal statistical tests, can ensure a correct model choice. 
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1 Introduction 

Short-term electricity price forecasting has gained importance as market participants in 

the energy industry are exposed to the risk of electricity price variations or try to profit 

from volatile prices. In particular, recently increasing shares of variable renewable energy 

production substantially influence the uncertainties associated with electricity price 

forecasting. In order to improve the quality of decision making, e. g. for risk management 

purposes, the use of stochastic bidding and dispatch models, reliable distribution 

forecasts of prices are important. Also for longer-term decision making, e. g. for a 

reasonable valuation of flexible assets or stochastic optimization models, it is essential to 

forecast every hour of a day consistently and to ensure realistic smooth transitions 

between consecutive hourly price predictions. The challenges of predicting hourly 

electricity prices are a result of the idiosyncratic influences on the price formation. Mainly 

caused by the almost non-storability of electricity as well as fundamental production and 

demand characteristics, the electricity spot price time series are exhibiting characteristics 

like: Daily, weekly and seasonal cycles, high and non-constant volatility 

(heteroscedasticity), mean reversion and frequent outliers (positive and negative spikes). 

Short-term electricity price forecasting has to represent these characteristics. In practice, 

a well-performing simulation procedure that keeps time and effort small is required.  

Our approach belongs to the group of econometric-stochastic approaches and can be 

combined with different point forecasting methods. To highlight the benefits of the 

stochastic approach in this paper, we combine it with a relatively simple regression 

approach. The suggested method is a stepwise combination of several mathematical 

operations to adequately characterize the distributions of hourly electricity prices. One 

major element is a Principal Component Analysis (PCA) of hourly electricity prices by 

using an eigenvalue-eigenvector decomposition. Moreover, non-normality of residuals is 

accounted for by performing a normal quantile transformation. We consider several 

different specifications to capture autoregressive effects and time-varying volatility of the 

stochastic components. 

We contribute to the existing literature by developing a stochastic approach for 

describing highly volatile time series that delivers reliable distribution forecasts. To the 

best of our knowledge, the suggested quantile mapping and identification of principal 

components for the cross correlation is new to the price forecasting literature.1 

Additionally, we highlight the importance of distribution forecasting. Distribution 

forecasting has featured intensively in the economic-financial literature and probabilistic 

                                                        
1 Closely related works are from Härdle and Trueck (2010); Kovacevic and Wozabal (2014); Keles et al. (2013); 
Huisman and Kilic (2013). 
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electricity price forecasting has started to gain importance as of late (see Nowotarski and 

Weron 2016). Yet, said strand of electricity price forecasting requires further research 

and, to the best of our knowledge, no study has applied a distribution forecast evaluation 

framework as comprehensive as the one presented here. We present a framework to test 

the quality of distributional forecasts for electricity prices going beyond the evaluation of 

point and interval forecasts. The remainder of the paper is structured as follows. Chapter 

2 describes the theoretical background for the stochastic modelling approach and the 

procedure to evaluate the forecast quality. In chapter 0, the presented methodology is 

applied to the German electricity spot prices. After presenting the estimation and forecast 

results for point, interval and distribution forecasts, we conclude on the forecast ability of 

different model specifications. Chapter 0 summarizes the article and provides a short 

outlook. 

2 Methodology 

2.1 Literature 

Forecasting models for electricity prices are commonly classified by the planning horizon 

and the applied methodology. The strength of econometric-stochastic (top down) 

approaches is the modelling of price volatilities. Yet, due to the almost non-storability of 

electricity, the no-arbitrage assumption for derivative (futures) markets is only true in 

expectation. Consequently, econometric-stochastic approaches are not exclusively 

adequate. Fundamental (bottom-up) approaches are beneficial to consider longer-term 

changes in supply and demand, whereas these models struggle to reproduce price 

variations and volatilities. So called hybrid modelling approaches try to combine the 

benefits from different modelling methodologies (see Pape et al. 2017). 

In recent years the forecasting of day-ahead electricity prices has been studied 

intensively. Weron (2014) delivers an extensive review of state-of-the-art electricity price 

forecasting methods. Other general works on electricity price modelling are done by 

Ventosa et al. (2005) summarizing electricity price modelling trends or a reviewing paper 

on this topic by Aggarwal et al. (2009). The literature on probabilistic electricity price 

forecasting has gained importance lately and continues to expand (Nowotarski and 

Weron 2016; Weron 2014). Given that well performing point forecasting models are not 

necessarily the best for distribution forecasting, a result underscored by the present 

study, the focus on probabilistic forecasting seems warranted. Thus, the correct choice of 

electricity price forecasting models requires a complete evaluation of point, interval and 

distribution forecasting ability. 
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Within the wide field of electricity price forecasting, some related works to this paper are 

the following: Janczura and Weron (2010) run and test goodness-of-fit for various Markov 

regime-switching models. They find the best structure for ‘[…] independent spike 3-

regime model with time-varying transition probabilities, heteroscedastic diffusion-type 

base regime dynamics and shifted spike regime distributions.’ Their application is on 

mean daily day-ahead prices from 2001 to 2005 for EEX, PJM Interconnection and the 

New England Power Pool. One work on hourly electricity spot prices is by Conejo et al. 

(2005) considering time series analysis, neural networks and wavelets to forecast 

electricity prices for the PJM market 2002. Checking the short and long term forecast 

ability, they conclude that time series are most efficacious and within time series those 

with dynamic regression and transfer function are more effective than ARIMA. Also 

forecasting within-day electricity prices, Karakatsani and Bunn (2008) consider an 

application to the UK half-hourly market. They highlight the importance to include 

fundamental factors within time series models for electricity price forecasting. Another 

related work on hourly spot electricity prices is by Weron and Misiorek (2008) comparing 

the accuracy of 12 time series models for day-ahead spot prices in Spain and California. 

They show that load as exogenous variable is essential for the quality of the models and 

that semi-parametric models generally lead to better point and interval forecasts under 

different market conditions. Jónsson et al. (2014) investigate density forecasts of energy 

prices for the Nord Pool market. They use a semi-parametric methodology to forecast 

densities for prices. Their model outperforms four benchmarks including a GARCH model 

by highlighting the ability to deliver reliable quantile estimates.  

Works on hourly electricity price forecasting applied to the German market are the 

following: Kosater and Mosler (2006) compare different time series approaches with 

nonlinear Markov regime-switching to ordinary linear autoregressive models in terms of 

their forecast ability. They infer that nonlinear regime switching models deliver better 

results especially for longer-run models for the German spot market. Bierbrauer et al. 

(2007) compare various regime switching models to jump diffusion and mean reversion 

models. In their application regime switching approaches outperform their benchmarks. 

Härdle and Trueck (2010) suggest a dynamic semiparametric factor model (DSFM) for 

hourly electricity prices. They identify three factors explaining 80 percent of the variation 

in hourly Germany electricity prices from 2005 to 2008. Kovacevic and Wozabal (2014) 

forecast day-ahead electricity prices with ‘[…] a semi parametric, single-index, 

generalized linear model. PCA is used to reduce complexity of the model. Their results for 

EEX and PJM data show good forecast quality compared to simple benchmarks and a 

seasonal ARIMA model. The only exception from these good results are very low prices in 

the German market. In light of this, Keles et al. (2012) compare point forecasting results 

and the coverage of negative prices from different stochastic processes (mean reversion, 
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ARMA, ARIMA and GARCH) that try to incorporate negative prices within a regime 

switching model. They highlight the necessity of regime switching models to cover price 

jumps (positive and negative) and improve the error measures. In their application to 

German electricity prices, the ARMA model delivers the lowest errors between actual and 

simulated prices. Recent works on hourly price forecasting highlight the increasing 

importance of renewable energy uncertainty for electricity price modelling in Germany 

(among others Keles et al. 2013; Pape et al. 2016; Wozabal et al. 2014; Ziel et al. 2015). 

With increasing shares of renewable production in today's power systems, electricity 

prices behave differently from those of fossil-fuel-based systems. 

2.2 A stochastic forecasting approach  

The approach in this article belongs to the class of econometric-stochastic approaches and 

focusses on explaining causal dependencies between factors influencing electricity price 

formation. Here, electricity prices are analyzed separately for every single hour in a so-

called panel of 24 cross-sectional hours (Huisman et al. 2007).2 The intuition behind the 

panel analysis is that day-ahead bidding is done simultaneously for all 24 hours of the 

same day and based on the same information set.  Therefore, the 24 series are expected 

to be interrelated and dependent. In order to characterize distributions adequately, we 

suggest a combination of several mathematic approaches. The estimation and simulation 

procedure includes the following steps, whereby step (i), (ii), (v) and (vi) are adjustable 

depending on the application: 

 

(i) Treat the time series of spot prices as panel of different individual hours and 

transform the original values 

(ii) Determine the main deterministic influences and the residuals 

(iii) Map the residuals’ empirical distribution to a normal distribution  

(iv) Identify the common factors of hourly prices 

(v) Model lagged effects of price level and price volatility  

(vi) Use rolling window technique to estimate and simulate 

 

(i) The first step is the setup of vectors 𝒑௛ for individual hours ℎ ∈ {1, … , 𝐻} observed with 

daily frequency 𝑡 ∈ {1, … , 𝑇} where each vector contains 𝑇 elements, i. e. the number of 

days in the dataset.  

                                                        
2 E. g. Cuaresma et al. (2004) have shown that modelling each hour of the day separately outperforms models that 
calculate daily price time series. 
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 𝑷 = (𝒑ଵ, 𝒑ଶ, … , 𝒑ଶସ) = ൮

𝑝ଵ,ଵ 𝑝ଶ,ଵ… 𝑝ு,ଵ

𝑝ଵ,ଶ 𝑝ଶ,ଶ… 𝑝ு,ଶ

⋮ ⋮⋱ ⋮
𝑝ଵ,் 𝑝ଶ,் … 𝑝ு,்

൲ (2-1) 

A transformation of the original values is needed if the original time series is far away 

from normality. Applying a non-linear transformation like the logarithmic transformation 

to obtain normality is a common procedure in econometrics and financial analysis. On the 

one hand, a logarithmic transformation can be useful due to its variance stabilizing 

properties. On the other hand, this variance stabilizing property could mask the statistical 

properties that were intended to be modelled. Furthermore, a logarithmic transformation 

restricts the effects of fundamental influences to an exponential form, while other non-

monotonic relationships may be appealing. A general transformation for time series 

including values equal to or below zero is given by equation (2-2), where price 𝑝, on day 

𝑡 and hour ℎ is transformed as follows: 

 𝑥௛,௧ = 𝑙𝑛൫𝑝௛,௧ + 𝑒൯ (2-2) 

A positive constant (here Euler’s number e = 2,718...) is added to receive values greater 

or equal to one. If the original time series is highly non-normal this transformation can 

reduce skewness and kurtosis of the price distribution. In some electricity markets prices 

can get negative. Eq. (2-3) suggests an adjusted log-transformation for this case. 

 𝑥௛,௧ =
𝑝௛,௧

ห𝑝௛,௧ห
𝑙𝑛൫ห𝑝௛,௧ห + 1൯ , 𝑓𝑜𝑟 𝑝 ≠ 0 (2-3) 

(ii) In the second step, deterministic influences on hourly electricity prices are modelled 

to isolate the stochastic part of the electricity price formation. The first information 

included in the regression model is the day-ahead price information of relevant 

commodities. Instead of directly using coal, gas and emission prices we calculate variable 

cost 𝑐௧
௙௨௘௟ in order to avoid multicollinearity. The variable costs of a power plant include 

the fuel prices (𝑝௧
௙௨௘௟

) and emission certificate prices ൫𝑝௧
஼ைమ൯. By assuming typical plants 

efficiencies (𝜂௙௨௘௟) and emission intensities (𝜈஼ை
௙௨௘௟

) the following equation delivers the 

typical variable costs of coal (𝑐௧
௖௢௔௟) and gas (𝑐௧

௚௔௦) fired power plants. The second 

information included in the regression model is the day-ahead expected residual load 

(𝑅௛,௧) as the difference between load (𝐿௛,௧) and solar infeed (𝑆௛,௧). Additionally, the 

expected production of wind (𝑊௛,௧) is included. Wind infeed is introduced as separate 
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variable because it exhibits no daily cycles like load and solar.3 The residual load data and 

the wind infeed already captures the seasonal effects, so that it becomes redundant to 

apply a seasonal function or introduce other dummy variables for weekly patterns or 

holidays and special days (e. g. Christmas). 

 𝑐௧
௙௨௘௟

=
𝑝௧

௙௨௘௟
+ 𝑝௧

஼ைమ ∙ 𝜈஼ைଶ
௙௨௘௟

𝜂௙௨௘௟
 (2-4)  

For the 𝐻 = 24 price series, we consider 𝐻 multiple regressions of the form shown in Eq. 

(2-4). 

 𝑥௛,௧ =  𝛽௛,଴ + 𝛽௛,ଵ𝑐௧
௖௢௔௟ + 𝛽௛,ଶ𝑐௧

௚௔௦
+ 𝛽௛,ଷ(𝐿௛,௧−𝑆௛,௧) + 𝛽௛,ସ𝑊௛,௧ + 𝜀௛,௧ (2-5) 

The estimation of regression coefficients 𝛽௛,଴ିସ is done with Ordinary Least Squares 

method (OLS) where 𝜀௛,௧ is the notation for the residuals. OLS delivers robust results in 

presence of non-normal errors even if it is not the most efficient estimation procedure. 

(iii) In the third step, the residuals 𝜀௛,௧ are transformed by mapping their empirical 

distribution to a normal distribution.4 More precisely, the empirical cumulative 

distribution function (ECDF) of the residuals is determined. As such, each residual 𝜀௛,௧ 

corresponds to a particular quantile of the ECDF. Subsequently, the associated quantile of 

the normal distribution 𝑢௧,௛ is determined by using the inverse of the cumulative 

distribution function Ф of the standard normal distribution. The transformation (𝑇௛) is 

represented by: 

 𝑇௛: 𝜀௛,௧  ⟼ 𝑢௛,௧ =  Фିଵ ቀ𝐸𝐶𝐷𝐹௛൫𝜀௛,௧൯ቁ (2-6) 

(iv) In the fourth step, the normally distributed residuals 𝑢௛,௧ = 𝑇௛(𝜀௛,௧) for different 

hours are compared and common effects are identified by performing a factor 

decomposition based on a PCA. Doing so, we first evaluate the correlations between the 

standardized errors of every hour. Second, the eigenvalue-eigenvector-problem is solved 

for the resulting correlation matrix 𝑪.5 Since 𝑪 is by construction a symmetric matrix, 

there are 𝐻 =  24 real-valued (not necessarily distinct) eigenvalues 𝜆௜, which are 

obtained as solutions of the problem: 

                                                        
3 Solar infeed is not considered separately due to its non-linear form and the high number of zeros in the 
time series. 
4 Achieving normality is also necessary to be allowed to test ARMA specifications. 
5 Since all dependencies in the correlation matrix are measured in the same unit, it is possible to use the 
covariance matrix and avoid the division of the covariance to receive the correlations. Yet, in contrast to 
Zugno et al. (2013) we use the correlation matrix since we do not want to isolate the strongest effect and 
include all variation in the dataset for the calibration of the stochastic processes.  
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 𝑪𝒗𝒊 = λ୧𝒗𝒊, with 𝑖 ∈ {1, … , 𝐼} (2-7) 

Thereby the eigenvectors 𝒗𝒊  are by definition different from the zero vector. The index 𝑖 

identifies a particular factor and the total number of factors is given by 𝐼 = 𝐻 = 24. The 

corresponding eigenvalues 𝜆௜ represent the strength of an influence factor. The higher the 

eigenvalue, the more influence the factor has on the total variance of the 𝑢௛,௧
 . The 

components of the eigenvector 𝒗𝒊  can be interpreted as loadings on factor 𝑓௜,௧. In matrix 

notation the relationship between error terms 𝑢௛,௧
 

 and factors 𝑓௜,௧ is the following: 

 𝐔 = 𝐅𝐋𝐕 (2-8) 

Matrices 𝑼 and 𝑭 include all error terms 𝑢௛,௧  and all factors 𝑓௜,௧. Matrix 𝑽 contains the 

orthonormal eigenvectors 𝒗𝒊  and the diagonal matrix 𝑳 the square root of the eigenvalues 

𝜆௜.  

 

 

𝐔 = ൮

𝑢ଵ,ଵ 𝑢ଶ,ଵ… 𝑢ு,ଵ

𝑢ଵ,ଶ 𝑢ଶ,ଶ… 𝑢ு,ଶ

⋮ ⋮⋱ ⋮
𝑢ଵ,் 𝑢ଶ,் … 𝑢ு,்

൲ 

 

𝐕 = (𝒗𝟏, 𝒗𝟐, … , 𝒗𝟐𝟒)் 

 

𝐅 = ൮

𝑓ଵ,ଵ 𝑓ଶ,ଵ… 𝑓ூ,ଵ

𝑓ଵ,ଶ 𝑓ଶ,ଶ… 𝑓ூ,ଶ

⋮ ⋮⋱ ⋮
𝑓ଵ,் 𝑓ଶ,் … 𝑓ூ,்

൲ 

𝐋 =

⎝

⎜
⎛

ඥλଵ 0… 0

0 ඥλଶ… 0

⋮ ⋮⋱ ⋮

0 0… ඥλ୍ ⎠

⎟
⎞

 

 

(2-9) 

 

 (v) In the fifth step we analyze the stochasticity of the factor 𝑓௜,௧. To model the 

stochasticity, different stochastic processes may be considered (see chapter 1). The most 

sophisticated process for the stochastic component in this paper will be an ARMA(1,1)-

GARCH(1,1)6 specification to model lagged effects in price level and price volatility.7 An 

ARMA (1,1)-GARCH(1,1) specification the factor 𝑓௜,௧ is dependent on its own lagged value 

the period before and the error 𝜔𝑖,𝑡  of the current and 𝜔𝑖,𝑡−1  of the previous period (2-10), 

while the conditional variance follows itself an autoregressive process (2-11). 

 𝑓௜,௧ = μ௜ + 𝛼௜,ଵ𝑓௜,௧ିଵ + 𝛼௜,ଶ 𝜔௜,௧ିଵ + 𝜔௜,௧ 𝑤𝑖𝑡ℎ 𝜔௜,௧ ~N(0, 𝜎௜,௧) (2-10) 

                                                        
6 ARMA stands for Autoregressive Moving Average and GARCH for Generalized Autoregressive Conditional 
Heteroskedasticity, respectively. 
7 In order to prevent over-fitting, the lag lengths of the ARMA-GARCH specifications were determined based 
on standard information criteria (AIC and BIC) and significance tests. 
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 𝜎௜,௧
ଶ =  𝛾௜,଴ + 𝛾௜,ଵ 𝜎௜,௧ିଵ

ଶ + 𝛾௜,ଶ 𝑤௜,௧ିଵ
ଶ  (2-11) 

For the estimation of the parameters 𝛼௜,ଵ, 𝛼௜,ଶ and 𝛾௜,଴,  𝛾௜,ଵ,  𝛾௜,ଶ, the maximum likelihood 

method is used, determining the parameters where the probability of the observation of 

the empirical value of 𝑓௜,௧ is maximized. For the parameterization of the model, no outliers 

are removed from the time series.8 

(vi) The sixth step is the selection of the rolling window in order to estimate and simulate 

prices. Note that for the simulation of the price distribution, steps (i) to (v) have to be 

performed in inverse order. The basic idea of rolling windows is to re-estimate the 

parameters after each window to update the information basis. If the rolling window 

length is fixed, older information is falling out of the window as time goes by, so that there 

is no increasing memory in the future. Fixing the rolling window length is reasonable 

because of the dynamics in the electricity markets over the past years, the resulting 

structural changes in price formation and distributional characteristics. This is consistent 

with previous findings that longer memory arises in electricity markets dominated by 

hydro rather than thermal generation (Karakatsani and Bunn 2008) and to avoid over 

estimation (Catalao et al. 2007). Another option of modifying the rolling window 

techniques is to give more weights to certain observations, e.g. the latest observations 

(forgetting factor). So-called time adaptive models where already successfully tested by 

Jónsson et al. 2013. 

2.3 Evaluation of forecast quality 

To evaluate the point forecast quality, common statistical measures like the Mean 

Absolute Error (MAE) or the Root Mean Square Error (RMSE) may be used. We assess the 

point forecast quality using the MAE and the RMSE, as both measures are robust to 

adverse effects of prices close to zero (contrary to the MAPE) and the RMSE in contrast to 

the MAE puts more weight on larger errors (cf. (Misiorek et al. 2006)). (Weron 2014) as 

well as Hyndman and Koehler (2006) highlight the importance of scaled error measures 

and suggest to normalize the error, i.e. by the average price within the evaluation interval 

of one week, known as Weekly-weighted Mean Absolute Error (WMAE) or Mean Weekly 

Error (MWE). 

                                                        
8 Outliers are not removed in order not to distort the estimation results or mask the statistical properties. 
Influences on estimation results, based on different outlier treatment, is discussed in Trueck et al. (2007). 
Given that the residuals are transformed to a normal distribution in step (iii), the impact of outliers on the 
subsequent steps is anyhow reduced. 
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 𝑀𝑊𝐸 =
1

𝑝̅ଵ଺଼
∙

∑ |𝑝௛ − 𝑝̂௛|ଵ଺଼
௛ୀଵ

168
 (2-12)  

If every hour of a day is modelled separately, it is important to avoid unrealistic jagged 

forms of individual price paths over the 24 hours of a day.9 To measure the smoothness 

of the simulated price paths, we suggest to investigate the spot price variation of every 

day 𝑡 until the end of the simulation period 𝑇 and over each simulation path 𝑛 of the total 

number of simulations 𝑁, see equation (2-13). We therefore define the smoothness 

indicator 𝑆𝐼 : 

 
𝑆𝐼 =

∑
∑ ∑ ห𝑝௧,௛ାଵ,௡ − 𝑝௧,௛,௡หଶଷ

௛ୀଵ
்
௧ୀଵ

𝑇
 ே

௡ୀଵ

𝑁
 

(2-13) 

The point forecast error measures do not contain information about the distance between 

the observations and individual simulation paths and fail to provide information on the 

quality of probabilistic forecasts. Among others Christoffersen and Diebold (2000) 

propose to evaluate interval forecasts by calculating the model-dependent prediction 

interval for the next observation. The nominal coverage is compared to the empirical 

coverage for different significance levels. The quality assessment of distribution forecasts 

require the assessment of all interval forecasts, which  Diebold et al. (1998)  consider a 

daunting task. Additionally, Pinson et al. (2007) maintain that the evaluation of the 

empirical coverage of any given interval is not sufficient, since it would be necessary to 

establish that both quantiles comprising the interval are unbiased. 

To evaluate the distribution forecast quality, we investigate the complete distribution 

forecast rather than a restricted number of quantiles of said forecast. Let 𝐺௒೟|ஐ೟
=

𝑃𝑟(𝑌௧ ≤ 𝑦|𝛺௧) denote the conditional distribution of a random variable 𝑌௧ given some 

information set 𝛺௧  and let {𝐺௒೟|ఆ೟
}௧ୀଵ

ఛ  denote the sequence of conditional distributions. 

The corresponding sequence of one-step-ahead distribution forecasts is denoted by 

{𝐹௒೟|ஐ೟
}௧ୀଵ

ఛ , where 𝐹 may be of parametric or non-parametric form. If a distribution 

forecast coincides with the true underlying distribution, it is said to be calibrated. We thus 

test for calibration of the distribution forecast sequence. The null and alternative 

hypotheses of interest are: 

 
𝐻௢: {𝐺௒೟|ஐ೟

}௧ୀଵ
ఛ = {𝐹௒೟|ஐ೟

}௧ୀଵ
ఛ , 

𝐻஺: {𝐺௒೟|ஐ೟
}௧ୀଵ

ఛ ≠ {𝐹௒೟|ஐ೟
}௧ୀଵ

ఛ . 
(2-14) 

                                                        
9 This requirement is particularly important if the price simulations are to be used to evaluate the value of storage-
type options.  
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Under the null hypothesis, the sequence of probability integral transforms (PITs)10, 

{𝐹௒೟|ஐ೟
(𝑌௧)}௧ୀଵ

ఛ , is uniformly distributed on [0,1] and independent, given that 𝛺௧  contains 

all relevant information. Diebold et al. (1998), who prove the preceding result, propose to 

test the null hypothesis using a graphical framework, where histograms and correlograms 

are used to assess uniformity and independence, respectively. Yet, Corradi and Swanson 

(2006) show that the PITs are still uniformly distributed on [0,1], while the independence 

result cannot be upheld under the null hypothesis when 𝛺௧  does not contain all relevant 

information. Consequently, formal tests for uniformity of the PITs have to account for 

potential autocorrelation and classic distribution tests, which rely on i.i.d. observations, 

cannot be applied. Various autocorrelation-robust distribution tests have been suggested 

in the literature. Yet, neither of these has been specifically designed for assessment of 

calibration and consequently all suffer major shortcomings in the present context, as 

identified by Knüppel (2015). The latter introduces a specific calibration test based on 

raw moments of the PITs, that is robust to dynamic misspecification under the null 

hypothesis, has power against a variety of distribution misspecifications and is based on 

standard critical values. The probabilistic forecasting literature establishes the uniformity 

of the PITs as a necessary but not sufficient condition for ideal distribution forecasts. Since 

the independence of the PITs is rarely achievable in pure empirical settings, calibration of 

a distribution forecast is considered achieved when the PITs are uniformly distributed. 

Consequently, further assessment criteria have to be considered to distinguish competing 

distribution forecasts that fulfil the necessary condition of uniformity of the PITs. Gneiting 

et al. (2007) propose an evaluation paradigm of maximizing sharpness subject to 

calibration. Sharpness constitutes a property of the distribution forecast only and refers 

to its concentration. It can be assessed using the average width of central prediction 

intervals with prespecified nominal coverage or through so-called sharpness diagrams. 

Additionally, scoring rules such as the Continuous Ranked Probability Score (CRPS) can 

be used to assess calibration and sharpness simultaneously. Competing distribution 

forecasts are ranked by comparing averages of the respective CRPS sequences. Yet, said 

averages may be too close to allow for a reliable decision on differences in forecasting 

performance. Gneiting and Katzfuss (2014) present a Diebold-Mariano-type test based on 

the CRPS sequences, which allows testing the null hypothesis of equal predictive 

performance and identifies the preferred specification, if the null hypothesis is rejected. 

To evaluate the distribution forecasts of the presented methodology, we use histograms 

and the formal test by Knüppel (2015) to assess calibration and the CRPS with the 

associated Diebold-Mariano-type test to select the superior distribution forecast among 

the forecasts that fulfil the necessary condition of uniformity of the PITs. 

                                                        
10 The Probability Integral Transform is also known in the literature as Rosenblatt (1952) transformation. 
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3 Results 

3.1 Data 

In the application, we consider the results for hourly electricity spot prices in Germany 

for the year 2015.11  Table 1 summarizes the distributional parameters of the 24 

individual hours.  Figure 10 in the appendix visualizes the shape and causal dependencies 

of the considered panel data. 

Table 1: Descriptive Statistics of Hourly Day-ahead Prices 2015 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Min. -19.98 -23.06 -41.74 -31.41 -46.97 -13.48 -25.02 -16.94 -6.86 -9.11 -10.31 -5.39 

Max. 51.68 40.83 38.90 34.92 35.32 38.97 49.95 66.14 71.92 69.68 66.23 62.97 

Mean. 25.17 23.27 21.90 21.29 21.69 23.79 30.08 36.89 38.87 36.99 34.93 34.21 

SD 9.13 9.33 9.97 9.20 9.19 8.36 11.46 14.14 13.86 12.37 11.84 11.57 

Skewness -1.79 -1.94 -2.24 -1.82 -2.21 -1.43 -1.11 -0.67 -0.42 -0.24 -0.15 -0.03 

Kurtosis 8.46 8.03 10.32 7.75 12.44 5.71 5.06 3.39 3.05 3.30 3.32 3.13 

No. neg.  10 15 19 14 14 9 9 6 2 1 2 2 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Min. -11.05 -65.06 -79.94 -65.02 -19.11 5.24 11.44 10.55 8.49 4.04 7.34 -7.50 

Max. 60.00 59.59 60.04 65.05 70.82 99.77 84.94 98.05 65.05 59.94 61.95 52.49 

Mean. 31.58 30.10 29.41 30.51 32.24 37.80 41.63 42.53 38.69 34.90 33.23 27.35 

SD 11.11 12.32 12.93 12.70 11.81 12.38 12.03 11.39 9.05 8.31 8.03 7.96 

Skewness -0.14 -1.33 -1.88 -1.34 -0.29 0.38 0.42 0.44 -0.25 -0.43 -0.31 -1.08 

Kurtosis 3.64 12.47 17.26 11.70 4.07 4.43 3.70 4.40 3.48 3.94 4.16 5.87 

No. neg.  3 4 5 5 2 0 0 0 0 0 0 4 

 

Generally, all variables of the deterministic part of the regression have to be forecasted in 

order to forecast and simulate electricity prices. In the application, we forecast the next 

24 hours and use publically available day-ahead forecast information of the fundamental 

inputs or use short-term myopic forecasts (notably for the fuel prices) without doing any 

prior simulations of the inputs. Table 2 summarizes the data sources.12  

 

 

 

                                                        
11 To check validity and robustness we applied the methodology and evaluation also for the year 2014. 
12 To calculate the typical variable costs of power plants we use day-ahead gas prices from the TTF and for 
coal prices the API#2 font year notation. We approximate the coal plant’s efficiency to be 0.40 and emission 
intensity to be 0.3 t/MWh. For the gas power plant we assume 0.50 efficiency and 0.2 emission intensity.  
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Table 2: Data Set13 

Data Source Product 

Load ENTSO-E - 

Spot prices EPEX-Spot Info-User (EOD) 

Coal Price Energate.de API#2 Front year 

CO2 EEX EU-CO2-Emission Allowances 

Gas price Spectron TTF-Day-Ahead 

Wind forecast and realization EEX Transparency data service  Info-Vendor 

Solar forecast and realization EEX Transparency data service  Info-Vendor 

 

A commonly used benchmark is the so called Naïve forecast as in Conejo et al. (2005). The 

Naïve forecast are the 24 prices of the last similar day (e. g. last Saturday for next 

Saturday). A forecast method that is unable to outperform the Naïve Benchmark is not 

sufficient. Another common benchmark for electricity price forecasting is a simple 

autoregressive (AR) process. Table 3 summarizes the various specifications considered in 

the present study.  

Table 3: Model specifications (The ‘x’ in each row indicates which model choices are combined) 

 AR(1) AR(2) ARMA(1,1) GARCH(1,1) PCA 

Model 1 x     

Model 2   x x  

Model 3  x    

Model 4 x    x 

Model 5   x x x 

Model 6  x   x 

 

3.2 Estimation results 

The first step in the presented estimation procedure is the transformation of the data (see 

Chapter 2). As indicated by Table 1, the moments of the untransformed prices 2015 are 

already close to those of a normal distribution.  Thus, for our application it is beneficial 

not to apply the transformation. Since this is not generally the case and due to the 

mentioned properties of a log-transformation, we recommend a careful check before the 

application of step (i). The results from the second step are the parameter estimates for 

the deterministic influences. The values for every single hour are summarized in Table 4 

                                                        
13 Treatment of time shift days: in spring (day = 23 hours), hour three was added as missing value (NV). In 
autumn (day = 25 hours), hour 3 b was deleted from the sample. Missing values were filled with their 
previous value (either 1 hour or 24 hours before e. g. in case of solar power production) 
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for the initial rolling window (01.01.2013 until 31.12.2014). Over time, small changes for 

the coefficient estimates occur. Autocorrelation of residuals is accounted for in later steps. 

Table 4: Estimation results of initial rolling window  

Hour 1 2 3 4 5 6 7 8 

 h, -9.79* -19.25* -29.00* -38.86* -43.28* -50.92* -65.69* -66.26* 

Coal h, 0.69* 0.62* 0.85* 0.99* 1.24* 1.68* 1.32* 0.58** 

Gas h, 0.14* 0.16* 0.14* 0.17* 0.19* 0.22* 0.40* 0.63* 

Load h, 0.46* 0.68* 0.78* 0.85* 0.75* 0.61* 0.96* 1.20* 

Wind h, -1.37* -1.52* -1.64* -1.61* -1.47* -1.27* -1.28* -1.54* 

R2  70.70 71.97 68.81 67.22 65.73 66.68 75.22 78.67 

Hour 9 10 11 12 13 14 15 16 

 h, -39.66* -39.49* -37.58* -19.71* -23.41* -27.72* -32.68* -42.21* 

Coal h, -0.24 0.08 0.24 -0.25 0.07 0.02 -0.01 0.23 

Gas h, 0.65* 0.63* 0.55* 0.50* 0.43* 0.42* 0.41* 0.43* 

Load h, 1.13* 1.01* 0.96* 0.92* 0.87* 0.96* 1.05* 1.07* 

Wind h, -1.65* -1.69* -1.63* -1.61* -1.48* -1.53* -1.52* -1.44* 

R2  72.31 73.62 73.26 67.81 70.80 73.09 70.65 71.63 

Hour 17 18 19 20 21 22 23 24 

 h, -60.49* -85.45* -110.18* -72.43* -44.08* -13.10* 13.55* 10.76** 

Coal h, 0.75* 1.12* 2.17* 1.26* 1.03* 0.58* 0.18 0.48** 

Gas h, 0.51* 0.72* 0.80* 0.73* 0.56* 0.39* 0.30* 0.14* 

Load h, 1.06* 1.17* 1.16* 0.98* 0.70* 0.45* 0.19* 0.13* 

Wind h, -1.35* -1.41* -1.59* -1.55* -1.44* -1.38* -1.26* -1.08* 

R2  76.32 72.18 72.55 62.51 61.14 55.80 56.11 45.92 

Significance is computed using standard errors obtained through the Newey-West procedure. Significance at 5% 

level is labeled with ** and at 1% level with *. 

 

The graphical representation of the quantile mapping performed in step (iii) is the Q-Q-

Plot (Figure 1). 

 

Figure 1: Q-Q-Plot corresponding to the transformation function 𝑇௛  for 𝜀௛,௧  into 𝑢௛,௧ . 
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In step (iv) the PCA is performed. The resulting eigenvalues λ are shown in Figure 2. The 

higher the eigenvalue, the higher is the contribution of the respective factor to explaining 

the variance of 𝑢௛,௧ . The eigenvalues decrease rapidly and the first eigenvalue explains the 

major part of the observed variance. The eigenvalues do not change significantly for the 

different windows when rolling over time. 

 

Figure 2: Eigenvalues λ of the correlation matrix C for the rolling windows of 201514 
 

A potential weakness of the PCA is the lack of interpretation of the obtained factors. 

Sometimes it is difficult or impossible to specifically identify the individual factors or find 

an economic interpretation. Figure 3 shows the first six eigenvectors for all rolling 

windows. 

Factor one exerts a rather similar influence over all hours and can be interpreted as the 

base price component. Furthermore, factor two has high positive loadings on off-peak 

hours and negative loadings on peak hours. It is consequently interpreted as off-peak –

peak spread. Thus, factor two also captures the effect of the sun peak (approx. 11 am to 4 

pm). The increased variability of factor loadings during the sun-peak hours is due to the 

seasonality of solar infeed. Factor three to five also exhibit a somewhat increased 

variability. They all describe the relative strength of some evening hours against some 

morning hours and may be summarized as shape components. For factor six, we again 

establish a rather stable pattern. It exerts strong influence during the morning and 

evening peaks and may thus be interpreted as ramping component. The remaining factors 

are not as readily interpreted fundamentally. However, they do not influence the shape of 

                                                        
14 The figure shows bar plots of the 24 eigenvalues of the correlation matrix C for the rolling windows of 2015. 
Different shades of grey represent estimates of a particular eigenvalue for different rolling windows. 
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hourly prices as strongly, as indicated by the magnitude of the associated eigenvalues in 

Figure 3. 

 

 
Figure 3: Factor loadings of the first six factors for all rolling windows in 2015 

3.3 Forecast results 

Following the testing procedure outlined in chapter 2.3, a first qualitative judgement is 

given by an eyeball investigation of the simulation results (see Figure 4).  

 

Figure 4: Surface of mean simulation results for 2015: model 3 (left) and model 6 (right) 

 

The eyeball investigation for the mean across all Monte Carlo simulations shows that the 

main characteristics of electricity prices, e.g. daily cycles, are captured and no systematic 
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errors occur. The comparison of the specification with PCA (model 6) and without PCA 

(model 3) uncovers a tendency of the PCA to smoothen the daily point forecast curves.  

3.4 Evaluation of forecast quality 

Descriptive statistics and forecast error measures for point forecasts, calculated as 

averages over the simulation paths, are summarized in Table 5 and Table 6. The various 

specifications of the proposed methodology work accurately and exhibit statistical 

behavior that is close to the actual data. Yet, one has to note that extreme prices are not 

well replicated and that all specifications underestimate the kurtosis of the actual data. 

Since the point forecasts are calculated as mean over all Monte Carlo paths, extreme 

events and substantial price changes are rounded off. 

Table 5: Descriptive statistics of point forecasts for 2015 

 Data M1 M2 M3 M4 M5 M6 Naïve 

Min. -79.94 -15.62 -14.54 -10.78 -11.70 -9.93 -9.44 -41.74 

Max. 99.77 78.85 72.79 72.26 74.06 70.01 70.55 99.77 

Mean 31.63 30.97 31.10 31.21 31.20 31.32 31.38 32.58 

SD 12.67 12.86 12.75 12.81 12.88 12.82 12.86 11.72 

Skewness -0.31 -0.12 -0.11 -0.10 -0.13 -0.12 -0.12 0.16 

Kurtosis 5.76 3.13 3.07 3.06 3.07 3.03 3.03 4.54 

 

The point forecast error measures show the proposed methodology to clearly outperform 

the naïve benchmark. The Mean Error (ME) is closer to zero for all considered 

specifications and all Mean Absolute Errors (MAE) are at least 2.70 EUR/MWh below the 

MAE of the naïve benchmark. Furthermore, a much higher share of total price variation is 

explained by the presented methodology as indicated by the much higher R-Squared. The 

considered specifications show little variation in point forecasting although model 1 and 

model 4 appear to lag somewhat behind the results of the other specifications. 

Table 6: Error measures of point forecasts for 2015 

 

 

 

 

 

The point forecast error measures for individual hours (Figure 5) support the preceding 

conclusion. Again, the naïve benchmark is outperformed by all other specifications, which 

do not diverge significantly for individual hours. The MWEs indicate equal point forecast 

performance (see Table 12 in the appendix). 

 M1 M2 M3 M4 M5 M6 Naïve 

Mean Error (ME) 0.65 0.52 0.42 0.42 0.30 0.24 -0.96 

Mean Absolute Error (MAE) 4.27 4.06 4.05 4.25 4.09 4.08 7.03 

Root Mean Square Error 5.74 5.48 5.47 5.71 5.52 5.50 9.84 

R-Squared (R2) 79.47 81.25 81.38 79.66 81.00 81.15 39.70 
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It is important to adequately account for cross-correlation between the hours under the 

considered panel approach in order to generate smooth price paths. Table 7 summarizes 

the introduced smoothness indicator for all specifications. The actual price series of 2015 

exhibits a smoothness indicator of 77.00. Clearly, accounting for cross-correlation 

patterns through a PCA substantially improves the smoothness of the simulated price 

paths (models 4 to 6). Additionally, allowing for conditional heteroscedasticity through 

GARCH-effects (model 5) leads to a smoothness indicator that is nearly identical to that of 

the actual prices series. 

 
Figure 5: Point forecast errors per hour of 2015 

 
Table 7: Smoothness indicator for 2015 

 Data M1 M2 M3 M4 M5 M6 

Smooth 77.00 155.28 117.72 150.65 91.03 77.97 91.20 

 

Table 8 summarizes the empirical coverage for central prediction intervals with nominal 

coverage of 50, 90, 95 and 99 per cent, respectively.15 

 

                                                        
15 We have argued in Section 2.3 that the evaluation of interval forecasts is not sufficient to assess the presented 
probabilistic forecasts and that specific evaluation techniques for distribution forecasts have to be considered. The 
results of interval evaluation are nevertheless included to assess to what extent they support the conclusions drawn 
using distribution forecast validation techniques. 
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Table 8: Interval forecasting results for the whole sample (# Inc. = number of observations in the CI) 

 

The results show that the specifications with conditional heteroscedasticity effects 

(model 2 and model 5) fail to deliver unbiased interval forecasts, as indicated by the 

substantial deviation between nominal and empirical coverage, which does not bode well 

for their ability to deliver reliable distribution forecasts. Considering the prediction 

intervals with 50 and 99 percent nominal coverage for individual hours supports the 

previous findings (Figure 6). Model 2 and model 5 are unable to deliver reliable prediction 

intervals. Furthermore, the remaining specifications appear to have problems to reliably 

forecast the prediction intervals of off-peak hours. 

 

 
Figure 6: Interval forecasting results per hour of 2015 for 50 and 99 percent nominal coverage 

To evaluate the quality of the distribution forecasts directly, we first consider the 

histograms of the PIT values plotted with 95% Wilson Score Confidence Bands for all 

hours of 2015 (Figure 7). Following Gneiting et al. (2007), the number of bins has been 

set to 20. The u-shaped histograms of model 2 and model 5 indicate that these distribution 

forecasts are too narrow with too many realizations falling in the tails of the forecast 

distributions. Based on the remaining histograms, we conclude that the required 

uniformity of PIT values is best achieved by model 3 and model 6, which thus constitute 

the preferred specifications. 

Nominal coverage M1 M2 M3 M4 M5 M6 
# Inc. CI-Level #Inc. % #Inc. % #Inc. % #Inc. % #Inc. % #Inc. % 
4'380 50 4’144 47 3’020 34 4’235 48 4’125 47 3’211 37 4’183 48 
7'884 90 7’710 88 6’325 72 7’769 89 7’651 87 6’696 76 7’715 88 
8'322 95 8’165 93 6’967 80 8’206 94 8’146 93 7’353 84 8’180 93 
8'672 99 8’615 98 7’790 84 8’601 98 8’576 98 8’108 93 8’571 98 
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Continuing with the preferred specifications only, the evaluation of the distribution 

forecasts of model 3 and model 6 for each individual hour allows for a more rigorous 

assessment of distribution forecast accuracy. They are presented in Figure 8 and Figure 

9. We conclude that the uniformity of the PIT values is achieved for model 3, although too 

many observations fall into the right tail of the distribution for hours 1 to 7. The results 

for model 6, which extends model 3 by the PCA, are identical. 

 

 

 
Figure 7: PIT histograms for all 8760 hours of 2015 (with 95% Wilson score confidence bands) 
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Figure 8:: PIT histograms per hour of 2015 for model 3 (with 95% Wilson score confidence bands) 
 

In addition to the graphical assessment, we consider the formal test for calibration 

proposed by Knüppel (2015). Table 9 shows the results of the formal test at 1% 

significance level, where a 1 indicates the failure to reject the null hypothesis of 

calibration of the distribution forecast sequence for a particular hour. The test results for 

model 2 and model 5 underscores the forecast deficiencies that have been identified 

through the graphical assessment with only one hour where the null hypothesis cannot 

be rejected. Furthermore, the formal test confirms the conclusions of the preceding 

graphical analysis. We fail to reject the null hypothesis of calibration for 22 and 20 hours 

of 2015 for model 3 and model 6, respectively. Thus, we conclude that our presented 

econometric-stochastic approach delivers distribution forecasts that coincide with the 

actual price distribution in the vast majority of hours. Note that the presented results 

support the interval forecast evaluation to the extent that the hours for which the null 

hypothesis of calibration is rejected are mostly among the off-peak hours, which showed 

the greatest deviation between nominal and empirical coverage. 
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Figure 9: PIT histograms per hour of 2015 for model 6 (with 95% Wilson score confidence bands) 
 
Table 9: Knüppel (2015) test per hour of 2015 (α=1%) 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Model 1 0 0 0 0 0 0 0 0 1 1 1 1 

Model 2 0 0 0 0 0 0 0 0 0 0 0 0 

Model 3 1 1 0 1 1 0 1 1 1 1 1 1 

Model 4 0 0 0 0 0 0 0 0 1 1 1 1 

Model 5 0 0 0 0 0 0 0 0 0 0 0 0 

Model 6 1 0 0 0 1 1 1 1 1 1 1 1 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Model 1 1 1 1 1 1 1 1 1 1 1 1 1 

Model 2 0 0 0 0 0 0 0 0 0 0 0 1 

Model 3 1 1 1 1 1 1 1 1 1 1 1 1 

Model 4 1 1 1 1 1 1 1 1 1 1 1 1 

Model 5 0 0 0 0 0 1 0 0 0 0 0 0 

Model 6 1 1 1 1 1 0 1 1 1 1 1 1 

Failure to reject the null hypothesis of calibration of the distribution forecast sequence is indicated by 1. 

 

Model 3 and model 6 provide uniformly distributed PIT values and thus meet the 

necessary condition for calibrated distribution forecasts. We have established that model 

6 provides forecasts that are superior with respect to the smoothness measure. To assess 
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whether to prefer model 3 or model 6, we consider the mean CRPS values presented in 

Table 10. Clearly, the differences between the mean CRPS values for the individual hours 

of 2015 are small. 

 
Table 10: Mean CRPS Values per Hour of 2015 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Model 3 2.60 2.55 2.74 2.56 2.55 2.35 2.66 3.15 3.70 3.41 3.18 3.24 

Model 6 2.55 2.50 2.70 2.53 2.58 2.44 2.60 3.20 3.76 3.40 3.21 3.28 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Model 3 3.01 3.14 3.19 2.90 2.73 2.94 3.37 3.24 2.77 2.75 2.46 3.08 

Model 6 3.05 3.15 3.19 2.89 2.77 3.12 3.42 3.29 2.81 2.66 2.42 3.05 

 

We thus use the Diebold-Mariano-type test to assess whether the mean CRPS differentials 

are statistically significant. Table 11 summarizes the results of the test at 5% and 1% 

significance level, respectively, and indicates the preferred model in case of non-equal 

forecast performance. At 5% significance level, there are five instances where the null 

hypothesis of equal predictive performance is rejected. In three of these five cases the test 

maintains model 6 to exhibit better predictive performance. Since model 6 additionally 

provides smoother price paths and is only marginally underperformed by model 3 in 

terms of calibration, we conclude that model 6 constitutes the preferred specification. 

 
Table 11: Diebold Mariano test of equal predictive performance per hour of 2015 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

Diebold Mariano test (α = 5%) 0 0 1 1 1 0 1 1 1 1 1 1 

DM test preferred model (α = 5%) M6 M6 - - - M3 - - - - - - 

Diebold Mariano test (α = 1%) 1 1 1 1 1 0 1 1 1 1 1 1 

DM test preferred model (α = 1%) - - - - - M3 - - - - - - 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Diebold Mariano test (α = 5%) 1 1 1 1 1 0 1 1 1 0 1 1 

DM test preferred model (α = 5%) - - - - - M3 - - - M6 - - 

Diebold Mariano test (α = 1%) 1 1 1 1 1 0 1 1 1 1 1 1 

DM test preferred model (α = 1%) - - - - - M3 - - - - - - 

Failure to reject the null hypothesis of equal predictive performance is indicated by 1. 
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4 Discussion and Conclusion  

Forecasting electricity spot prices has to address different issues: (1) Handle the 

idiosyncratic influences on electricity prices, (2) capture the main characteristics of prices 

dynamics, (3) deliver not only point forecasts but also distribution forecasts and (4) 

establish an estimation and simulation procedure that keeps time and effort small.  

Therefore, this works presents an approach that improves day-ahead electricity price 

distribution forecasting by accounting for cross correlation patterns between individual 

hours. In a stepwise procedure of testing point, interval and distribution forecast 

accuracy, it is shown that our approach is able to capture the main characteristics of 

hourly electricity prices and produces reliable point, interval and distribution forecasts 

for decision support. Among the considered specifications, we find little variation in point 

forecasting ability. Yet, we argue that an investigation of point forecasts only is not 

sufficient to consider a particular model to be superior. The same is true for interval 

forecasts. Rather, an evaluation of distribution forecast ability is required to assess a 

forecasting model fully. Consequently, only additional tests for calibration and the 

consideration of the CRPS and associated tests facilitate said evaluation (see section 2.3 

and 3.4). The specifications accounting for conditional heteroscedasticity (model 2 and 

model 5) do not provide reliable distribution forecasts, despite possessing good point 

forecasts. It is shown that an AR(2) specification without PCA or with PCA (model 3 and 

model 6) produces smoother simulation paths and reliable distribution forecasts. Our 

method is flexible in the sense that it can be combined with different point-forecasting 

approaches for electricity prices and that it can be easily applied to different data 

exhibiting within-day correlation structures like electricity, e. g. electricity load or heating 

demand. In combination with a simple regression model, it is appropriate to update the 

estimation basis using a rolling window because distributional characteristics of energy 

prices change over time. The length of the rolling window includes a trade-off between 

robustness of estimation and changes of distributional properties (especially due to the 

increasing share of renewables). Apart from simple regression models, more 

sophisticated supply stack modelling approaches are expected to improve the point-

forecast quality and eventually the accuracy of the distributional forecasts. Especially a 

fundamental model that accounts for non-linear dependencies in spot price formation 

could be considered. Stochastic approaches in general cannot capture fundamental 

changes, thus detailed fundamental models tend to outperform the pure time series 

approaches. The combination of the factor decomposition for cross-sectional panels and 

the quantile mapping improve the forecast ability by smoothing the forecast results and 

eventually enabling accurate distributional forecasting. 
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6 Appendices 

Figure 10 shows German electricity prices orders for every hour separately in 2015. The 

visible dependency of every hour of one day to its predecessor of the previous day 

highlights the relevance of the panel approach (see section 2.2).  

 

Figure 10: Surface of day-ahead prices 2015 
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Table 12: MWEs 
MWE M1 M2 M3 M4 M5 M6 

1 0.271 0.279 0.278 0.265 0.267 0.269 
2 0.140 0.131 0.130 0.132 0.131 0.131 
3 0.139 0.134 0.135 0.132 0.132 0.131 
4 0.089 0.088 0.088 0.083 0.085 0.085 
5 0.116 0.113 0.113 0.114 0.112 0.111 
6 0.101 0.098 0.099 0.095 0.098 0.098 
7 0.109 0.104 0.101 0.105 0.102 0.101 
8 0.095 0.096 0.097 0.093 0.095 0.095 
9 0.117 0.109 0.109 0.110 0.108 0.106 

10 0.125 0.119 0.120 0.129 0.126 0.125 
11 0.098 0.093 0.093 0.094 0.091 0.090 
12 0.115 0.104 0.104 0.124 0.116 0.114 
13 0.086 0.084 0.085 0.083 0.083 0.083 
14 0.187 0.176 0.176 0.192 0.180 0.178 
15 0.113 0.108 0.107 0.105 0.105 0.104 
16 0.162 0.156 0.156 0.160 0.155 0.154 
17 0.138 0.128 0.127 0.140 0.132 0.132 
18 0.168 0.163 0.162 0.170 0.169 0.168 
19 0.242 0.237 0.232 0.245 0.238 0.239 
20 0.217 0.202 0.201 0.213 0.207 0.206 
21 0.176 0.175 0.176 0.179 0.174 0.174 
22 0.193 0.178 0.174 0.187 0.176 0.175 
23 0.183 0.178 0.178 0.184 0.179 0.18 
24 0.149 0.139 0.137 0.144 0.138 0.138 
25 0.167 0.156 0.156 0.169 0.161 0.161 
26 0.139 0.136 0.135 0.137 0.134 0.135 
27 0.129 0.125 0.125 0.135 0.131 0.13 
28 0.125 0.120 0.119 0.125 0.120 0.121 
29 0.101 0.100 0.100 0.104 0.102 0.102 
30 0.139 0.134 0.133 0.137 0.131 0.131 
31 0.163 0.160 0.160 0.161 0.159 0.16 
32 0.158 0.144 0.143 0.156 0.144 0.144 
33 0.130 0.124 0.124 0.124 0.119 0.121 
34 0.140 0.127 0.128 0.139 0.130 0.129 
35 0.138 0.131 0.132 0.133 0.126 0.127 
36 0.143 0.127 0.126 0.145 0.130 0.129 
37 0.117 0.113 0.113 0.113 0.111 0.111 
38 0.161 0.15 0.151 0.166 0.155 0.154 
39 0.107 0.095 0.095 0.115 0.102 0.103 
40 0.167 0.154 0.152 0.166 0.156 0.152 
41 0.114 0.101 0.102 0.116 0.105 0.105 
42 0.136 0.125 0.124 0.140 0.132 0.130 
43 0.117 0.108 0.109 0.120 0.110 0.111 
44 0.124 0.121 0.119 0.129 0.123 0.121 
45 0.106 0.099 0.099 0.106 0.100 0.101 
46 0.140 0.132 0.128 0.143 0.135 0.134 
47 0.136 0.132 0.134 0.136 0.132 0.133 
48 0.101 0.103 0.100 0.099 0.098 0.097 
49 0.111 0.109 0.111 0.114 0.115 0.116 
50 0.119 0.119 0.118 0.116 0.11 0.11 
51 0.106 0.106 0.105 0.113 0.110 0.111 
52 0.321 0.305 0.307 0.313 0.302 0.301 
53 0.116 0.119 0.119 0.119 0.120 0.121 

Mean 0.142 0.135 0.135 0.141 0.136 0.136 



 

 

 

 

 


