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Large-Scale Portfolio Allocation Under Transaction Costs and

Model Uncertainty∗

Nikolaus Hautsch Stefan Voigt
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Abstract

We theoretically and empirically study large-scale portfolio allocation problems when

transaction costs are taken into account in the optimization problem. We show that trans-

action costs act on the one hand as a turnover penalization and on the other hand as a

regularization, which shrinks the covariance matrix. As an empirical framework, we propose

a flexible econometric setting for portfolio optimization under transaction costs, which incor-

porates parameter uncertainty and combines predictive distributions of individual models

using optimal prediction pooling. We consider predictive distributions resulting from high-

frequency based covariance matrix estimates, daily stochastic volatility factor models and

regularized rolling window covariance estimates, among others. Using data capturing sev-

eral hundred Nasdaq stocks over more than 10 years, we illustrate that transaction cost

regularization (even to small extent) is crucial in order to produce allocations with positive

Sharpe ratios. We moreover show that performance differences between individual models

decline when transaction costs are considered. Nevertheless, it turns out that adaptive mix-

tures based on high-frequency and low-frequency information yield the highest performance.

Portfolio bootstrap reveals that naive 1/N -allocations and global minimum variance alloca-

tions (with and without short sales constraints) are significantly outperformed in terms of

Sharpe ratios and utility gains.

∗Nikolaus Hautsch (nikolaus.hautsch@univie.ac.at), Department of Statistics and Operations Research,
Faculty of Business, Economics and Statistics, University of Vienna, as well as Vienna Graduate School of
Finance (VGSF) and Center for Financial Studies (CFS), Frankfurt. Stefan Voigt (stefan.voigt@vgsf.ac.at),
Vienna Graduate School of Finance (VGSF). We thank Gregor Kastner, Allan Timmermann and participants
of the Vienna-Copenhagen Conference on Financial Econometrics, 2017, the 3rd Vienna Workshop on High-
Dimensional Time Series in Macroeconomics and Finance, the Conference on Big Data in Predictive Dynamic
Econometric Modeling, Pennsylvania, the Conference on Stochastic Dynamical Models in Mathematical Finance,
Econometrics, and Actuarial Sciences, Lausanne, 2017, the 10th annual SoFiE conference, New York, the FMA
European Conference, Lisbon, the 70th European Meeting of the Econometric Society, Lisbon, the 4th annual
conference of the International Association for Applied Econometrics, Sapporo, and the Annual Conference
2017 of the German Economic Association for valuable feedback. Moreover, we greatly acknowledge the use of
computing resources by the Vienna Scientific Cluster.

mailto:nikolaus.hautsch@univie.ac.at
mailto:stefan.voigt@vgsf.ac.at


JEL classification: C58, C52, C11, G11 Keywords: Portfolio choice, transaction costs,

model uncertainty, regularization, high frequency data

1 Introduction

Optimizing large-scale portfolio allocations remains a challenge for econometricians and prac-

titioners due to (i) the noisiness of parameter estimates in large dimensions, (ii) model uncer-

tainty and time variations in individual models’ forecasting performance, and (iii) the presence

of transaction costs, making otherwise optimal turnover strategies costly and thus sub-optimal.

Though there is a huge literature on the statistics of portfolio allocation, the literature is

widely fragmented and typically only focuses on partial aspects. For instance, a substantial part

of the literature concentrates on the problem of estimating vast-dimensional covariance matrices

by means of regularization techniques, see, e.g., Ledoit and Wolf (2003), Ledoit and Wolf (2004),

Fan et al. (2008) and Ledoit and Wolf (2012), among others. This literature has been boosted by

the availability of high-frequency (HF) data which opens an additional channel to increase the

precision of covariance estimates and forecasts.1 Another segment of the literature studies the

effects of ignoring parameter uncertainty and model uncertainty arising from changing market

regimes and structural breaks.2

Further literature is devoted to the role of transaction costs in portfolio allocation strate-

gies. In fact, in the presence of transaction costs, the benefits of re-allocating wealth may be

smaller than the costs associated with turnover.3 While this aspect is studied theoretically in

mathematical finance, see, e.g., Davis and Norman (1990), there are only very few empirical ap-

1The benefits of high-frequency data to estimate covariances have been documented by a wide range of
studies, e.g., Andersen and Bollerslev (1998), Andersen et al. (2001), Barndorff-Nielsen (2002), Barndorff-Nielsen
and Shephard (2004).

2The effect of ignoring estimation uncertainty is considered, among others, by Jobson et al. (1979), Jorion
(1986), Chopra and Ziemba (1993), Uppal and Wang (2003) and DeMiguel et al. (2009). Model uncertainty is
investigated, for instance, by Wang (2005), Garlappi et al. (2007) and Pflug et al. (2012).

3See Brandt et al. (2009) for an excellent review on common pitfalls in portfolio optimization.
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proaches, which explicitly account for transaction costs, see, for instance, Acharya and Pedersen

(2005) and Gârleanu (2009).

In fact, in most empirical studies, transaction costs are incorporated ex post by analyzing

to which extent a certain portfolio strategy would have survived in the presence of transaction

costs of given size, see, e.g., Hautsch et al. (2015) or Bollerslev et al. (2016). In financial practice,

however, the costs of portfolio re-balancing are taken into account ex ante and thus are part of

the optimization problem.

The objective of this paper is to theoretically and empirically analyze large-dimensional

portfolio allocation problems under transaction costs and model uncertainty. Our contribu-

tion is twofold: On the one hand, we show that the explicit inclusion of transaction costs in

the optimization problem implies a regularization of the estimation problem. In particular,

quadratic transaction costs can be interpreted as shrinkage towards a diagonal matrix, implying

a trade-off between transaction costs and potential diversification benefits. Transaction costs

proportional to the amount of re-balancing imply a regularization of the variance-covariance,

which acts similarly as the least absolute shrinkage and selection operator (Lasso) by Tibshirani

(1996) in a regression problem. It thus implies to put more weight on a buy-and-hold strategy.

The regulatory effect of transaction costs results in better conditioned covariance estimates

and moreover implies a turnover penalization, which significantly reduces the amount (and fre-

quency) of re-balancing. These mechanisms imply strong improvements of portfolio allocations

in terms of Sharpe ratios or utility-based measures compared to the case where transaction

costs are neglected.

On the other hand, we perform a reality check by empirically analyzing the role of trans-

action costs in a high-dimensional and preferably realistic setting. We take the perspective

of an investor who is monitoring the portfolio allocation on a daily basis while accounting for

the (expected) costs of re-balancing. The underlying portfolio optimization setting accounts

for parameter uncertainty and model uncertainty, while utilizing not only predictions of the
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covariance structure but also of higher-order moments of the asset return distribution. Model

uncertainty is taken into account by considering time-varying combinations of predictive distri-

butions resulting from competing models using optimal prediction pooling according to Geweke

et al. (2011). In this way, we analyze to which extent the predictive ability of individual mod-

els changes over time and how suitable forecast combinations may result into better portfolio

allocations.

We are particularly interested in the question whether the power of HF data for global min-

imum variance (GMV) allocations, as recently documented by Liu (2009), Hautsch et al. (2015)

and Lunde et al. (2016), among others, still pays out in such a framework. The high respon-

siveness of HF-based predictions is particularly beneficial in high-volatility market regimes, but

may create (too) high turnover. Our framework allows us to analyze to which extent HF data

are still useful when transaction costs are explicitly taken into account.

The downside of such generality is that the underlying optimization problem cannot be

solved in closed form and requires (high-dimensional) numerical integration. We therefore pose

the econometric model in a Bayesian framework, which allows us to integrate out parameter un-

certainty and to construct posterior predictive asset return distributions based on time-varying

mixtures. Optimality of the portfolio weights is ensured with respect to the predicted out-

of-sample utility net of transaction costs. The entire setup is complemented by a portfolio

bootstrap by performing the analysis based on randomized sub-samples out of the underlying

asset universe. In this way, we are able to gain insights into the statistical significance of various

portfolio performance measures.

We analyze a large-scale setting based on all constituents of the S&P500 index, which are

continuously traded on Nasdaq between 2007 and 2017, corresponding to 308 stocks. Forecasts

of the daily asset return distribution are produced based on three major model classes. On the

one hand, utilizing HF message data, we compute estimates of daily asset return covariance

matrices using blocked realized kernels according to Hautsch et al. (2012). The kernel estimates
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are equipped with a Gaussian-Wishart mixture in the spirit of Jin and Maheu (2013) to capture

the entire return distribution. Moreover, we compute predictive distributions resulting from a

daily multivariate stochastic volatility factor model in the spirit of Chib et al. (2006). Due to

recent advances in the development of numerically efficient simulation techniques by Kastner

et al. (2017), it is possible to estimate such a model based on high-dimensional data and makes

it one of the very few sufficiently flexible parametric models for return distributions covering

several hundreds of assets.4 As a third model class, representing traditional estimators based on

rolling windows, we utilize the sample covariance and the (linear) shrinkage estimator proposed

by Ledoit and Wolf (2004).

To our best knowledge, this paper provides the first study evaluating the predictive power of

state-of-the-art high-frequency and ”low-frequency” models in a large-scale portfolio framework

under such generality, while utilizing data of 2409 trading days and more than 73 Billion high-

frequency observations. Our approach brings together concepts from (i) Bayesian estimation

for portfolio optimization, ii) regularization and turnover penalization, (iii) predictive model

combinations in high dimensions and (iv) HF-based covariance modeling and prediction.5

We can summarize the following findings: First, none of the underlying (state-of-the-art)

predictive models is able to produce positive Sharpe ratios when transaction costs are not taken

into account ex ante. This is mainly due to high turnover implied by (too) frequent re-balancing.

Second, when incorporating transaction costs into the optimization problem, performance dif-

ferences between competing predictive models for the return distribution become smaller than

in the case without an explicit inclusion of transaction costs. It is shown that none of the under-

4So far, stochastic volatility models have been shown to be beneficial in portfolio allocation by Aguilar and
West (2000) and Han (2006) for just up to 20 assets.

5Bayesian estimation for portfolio optimization has been applied within a wide range of applications, starting
with Brown (1976) and Jorion (1986). Imposing turnover penalties is related to the ideas of Brodie et al. (2009)
and Gârleanu and Pedersen (2013). Tu and Zhou (2010), Tu and Zhou (2011) and Anderson and Cheng (2016)
emphasis the benefits of model combination in portfolio decision theory. Sequential learning in a two-dimensional
asset horizon is performed by Johannes et al. (2014). However, none of these approaches is focusing on mixtures
of HF and lower frequencies approaches and aims at large dimensional allocation problems.
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lying approaches does produce significant utility gains on top of each other. We thus conclude

that the respective pros and cons of the individual models in terms of efficiency, predictive ac-

curacy and stability of covariance estimates are leveled out under turnover regularization. We

moreover conclude that the benefits of HF-based covariance predictions are smaller than in case

of daily GMV allocations.

Third, despite of a similar performance of individual predictive models, mixing high-frequency

and low-frequency information is beneficial and yields significantly higher Sharpe ratios. This

is due to time variations in the individual model’s predictive ability. Taking this into account

when constructing (time-varying) combination weights, the relative contribution of HF-based

return predictions is on average approximately 40%. The remaining 60% are provided by both

the multivariate stochastic volatility model (approximately 30%) and predictions based on the

shrunken sample covariances. HF-based predictions are particularly superior in volatile mar-

ket periods, but are dominated by SV-based predictions in more calm periods. Fourth, naive

strategies or GMV strategies are statistically and economically significantly outperformed.

The structure of this paper is as follows: Section 2 theoretically studies the effect of transac-

tion costs on the optimal portfolio structure. Section 3 gives the econometric setup accounting

for parameter and model uncertainty. Section 4 presents the underlying predictive models. In

Section 5, we describe the data and present the empirical results. Finally, Section 6 concludes.

2 The Role of Transaction Costs

2.1 Decision Framework

We consider an investor equipped with power utility function Uγ(r) := r1−γ

1−γ depending on return

r and risk aversion parameter γ > 1. At every period t, the investor allocates her wealth among

N distinct risky assets with the aim to maximize expected utility at t + 1 by choosing the
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allocation vector ωt+1 ∈ RN . We impose the constraint
N∑
i=1

ωt+1,i = 1.

The choice of ωt+1 is based on drawing inference from observed data. The information set at

time t consists of the time series of past returns Rt = (r′1, . . . , r
′
t)
′ ∈ Rt×N , where rt := pt−pt−1

pt−1
∈

RN are the gross returns computed using end-of-day asset prices pt := (pt,1, . . . , pt,N ) ∈ RN .

The set of information may contain additional variables Ht, as, e.g., intra-day data.

We define an optimal portfolio as the allocation, which maximizes expected utility of the

investor after subtracting transaction costs arising from re-balancing. We denote transaction

costs as νt(ω), depending on the desired portfolio weight ω and reflecting broker fees and

implementation shortfall.

Transaction costs are a function of the distance between the new allocation ωt+1 and the

allocation right before readjustment, ωt+ := ωt◦rt
ι′(ωt◦rt) , where ι is a vector of ones and the operator

◦ denotes element-wise multiplication. The vector ωt+ builds on allocation ωt, which has been

considered as being optimal given expectations in t− 1, but effectively changed due to returns

between t− 1 and t.

At time t, the investor monitors her portfolio and solves a static maximization problem

conditional on the current beliefs on the distribution of returns pt (rt+1|D) := p(rt+1|D, Rt,Ht)

of the next period and the current portfolio weights ωt+ :

ω∗t+1 := arg max
ω∈RN , ι′ω=1

E
(
Uγ
(
ω′rt+1 − νt(ω)

)
|D, Rt,Ht

)
= arg max

ω∈RN , ι′ω=1

∫
RN

Uγ
(
ω′rt+1 − νt(ω)

)
pt(rt+1|D)drt+1. (EU)

Note that optimization problem (EU) reflects the problem of an investor who constantly

monitors her portfolio and exploits all available information, but re-balances only if the costs

implied by deviations from the path of optimal allocations exceed the costs of re-balancing. This

form of myopic portfolio optimization ensures optimality (after transaction costs) of allocations
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at each point in time. Accordingly, the optimal wealth allocation ω∗t+1 from representation

(EU) is governed by i) the structure of turnover penalization νt(ω), and ii) the return forecasts

pt(rt+1|D).

2.2 Transaction Costs in Case of Gaussian Returns

In general, the solution to the optimization problem (EU) cannot be derived analytically but

needs to be approximated using numerical methods. However, assuming pt(rt+1|D) being a

multivariate log-normal density with known parameters Σ and µ, problem (EU) coincides with

the initial Markowitz (1952) approach and yields an analytical solution, resulting from the

maximization of the certainty equivalent (CE) after transaction costs,

ω∗t+1 = arg max
ω∈RN ,ι′ω=1

ω′µ− νt (ω)− γ

2
ω′Σω. (1)

2.2.1 Quadratic transaction costs

We model the transaction costs νt (ωt+1) := ν (ωt+1, ωt+ , β) for shifting wealth from allocation

ωt+ to ωt+1 as a quadratic function given by

ν (ωt+1, ωt+ , β) =
β

2
(ωt+1 − ωt+)′ (ωt+1 − ωt+) , (2)

with cost parameter β > 0. The allocation ω∗t+1 according to (1) can then be restated as

ω∗t+1 = arg max
ω∈RN ,ι′ω=1

ω′µ− β

2
(ωt+1 − ωt+)′ (ωt+1 − ωt+)− γ

2
ω′Σω (3)

= arg min
ω∈RN , ι′ω=1

γ

2
ω′Σ∗ω − ω′µ∗,
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with

Σ∗ :=
β

γ
I + Σ, (4)

µ∗ := µ+ βωt+ , (5)

where I denotes the identity matrix. The optimization problem with quadratic transaction

costs can be thus interpreted as a classical mean-variance problem without transaction costs,

where (i) the covariance matrix Σ is regularized towards the identity matrix (with β
γ serving

as shrinkage parameter) and the mean is shifted by βωt+ . Hence, if β increases, Σ∗ is shifted

towards a diagonal matrix representing the case of uncorrelated assets. Higher transaction

costs are therefore equivalent to a setup with less diversification benefits. The shift from µ to

µ∗ = µ + βωt+ can be alternatively interpreted by exploiting ω′ι = 1 and reformulating the

problem as

ω∗t+1 = arg min
ω∈RN , ι′ω=1

γ

2
ω′Σ∗ω − ω′

(
µ+ β

(
ωt+ −

1

N
ι

))
.

From this representation it becomes obvious that the shift of the mean vector is proportional to

the deviations of the current allocation to the 1/N -setting. This can be interpreted as putting

more weight on assets with (already) high exposure. Proposition 1 shows the effect of rising

transaction costs on optimal re-balancing.

Proposition 1.

lim
β→∞

ω∗t+1 =

(
I − 1

N
ιι′
)
ωt+ +

1

N
ι = ωt+ . (6)

Proof. See Appendix A.

Hence, if the transaction costs are prohibitively large, the investor may not implement the

efficient portfolio despite her knowledge of the true return parameters µ and Σ. The effect of
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transaction costs in the long-run can be analyzed in more depth by considering the well-known

representation of the mean-variance efficient portfolio,

ω(µ,Σ) :=
1

γ

Σ−1 − 1

ι′Σ−1ι
Σ−1ιι′Σ−1︸ ︷︷ ︸

:=A(Σ)

µ+
1

ι′Σ−1ι
Σ−1ι. (7)

If ω0 denotes the initial allocation, sequential re-balancing allows us to study the long-run effect,

given by

ωT =

T−1∑
i=0

(
β

γ
A(Σ∗)

)i
ω(µ,Σ∗) +

(
β

γ
A(Σ∗)

)T
ω0. (8)

Hence, ωT can be interpreted as a weighted average of ω(µ,Σ∗) and the initial allocation ω0,

where the weights depend on the ratio β/γ. The following proposition shows, however, that a

range for β exists (with critical upper threshold), for which the initial allocation can be ignored

in the long-run.

Proposition 2. ∃β∗ > 0 ∀β̃ ∈ [0, β∗) :
∥∥∥( β̃γA(Σ∗)

)∥∥∥
F
< 1, where ‖ · ‖F denotes the Frobenius

norm ‖A‖F :=

√
N∑
i=1

N∑
i=1

a2
i,j.

Proof. See Appendix A.

Using Proposition 2 for T → ∞ and β < β∗, the series
∑T

i=0

(
β
γA(Σ∗)

)i
converges to(

I − β
γA(Σ∗)

)−1
and limi→∞

(
β
γA(Σ∗)

)i
= 0. In the long-run, we then obtain

ω∞ =

(
I − β

γ
A(Σ∗)

)−1

ω(µ,Σ∗).

Note, that the location of the initial portfolio ω0 itself does not play a role on the upper threshold

β∗ which ensures the long-run convergence towards ω∞. Instead, β∗ is affected only by the risk
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aversion γ and the eigenvalues of Σ.

2.2.2 Proportional (L1) transaction costs

Although attractive from an analytical perspective, transaction costs of quadratic form may

represent an unrealistic proxy of costs associated with trading in real financial markets. Instead,

in literature there is widespread use of transaction cost measures proportional to the sum of

absolute re-balancing (L1-norm of re-balancing), which impose stronger penalization on turnover

and arguably are more realistic, see, for instance DeMiguel et al. (2009). Transaction costs

proportional to the L1 norm of ωt+1 − ωt+ yield the form

ν (ωt+1, ωt+ , β) = β||ωt+1 − ωt+ ||1 := β
N∑
i=1

|ωt+1,i − ωt+,i|, (9)

with cost parameter β > 0. Although the effect of L1 transaction costs on the optimal portfolio

cannot be derived in closed-form comparable to the quadratic (L2) case, the impact of turnover

penalization can still be interpreted as a form of regularization. If we assume for simplicity of

illustration µ = 0, the optimization problem (1) corresponds to

ω∗t+1 := arg min
ω∈RN , ι′ω=1

γ

2
ω′Σω + β||ωt+1 − ωt+ ||1 (10)

= arg min
∆∈RN , ι′∆=0

γ∆′Σωt+ +
γ

2
∆′Σ∆ + β||∆||1. (11)

The first-order conditions for the constrained optimization are

γΣ (∆ + ωt+)︸ ︷︷ ︸
ω∗t+1

+βg̃ − λι = 0, (12)

∆′ι = 0, (13)
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where g̃ is the vector of sub-derivatives of ||ωt+1 − ωt+ ||1, i.e., g̃ := ∂||ωt+1 − ωt+ ||1/∂ωt+1,

consisting of elements which are 1 or −1 in case ωt+1,i − ωt+,i > 0 or ωt+1,i − ωt+,i < 0,

respectively, or ∈ [−1, 1] in case ωt+1,i − ωt+,i = 0. Solving for ω∗t+1 yields

ω∗t+1 =

(
1 +

β

γ
ι′Σ−1g̃

)
ωmvp −

β

γ
Σ−1g̃, (14)

where ωmvp := 1
ι′Σ−1ι

Σ−1ι corresponds to the weights of the GMV portfolio. Proposition 3

shows that this optimization problem can be formulated as a (regularized) minimum variance

problem.

Proposition 3. Portfolio optimization problem (10) is equivalent to the minimum variance

problem with

ω∗t+1 = arg min
ω∈RN , ι′ω=1

ω′Σβ
γ
ω, (15)

where Σβ
γ

= Σ + β
γ (g∗ι′ + ιg∗), and g∗ is the subgradient of ||ω∗t+1 − ωt+ ||1.

Proof. See Appendix A.

The interpretation of this result is straightforward: the effect of imposing transaction costs

proportional to the L1 norm of re-balancing can be interpreted as a standard GMV setup with

a regularized version of the variance-covariance matrix. The form of the matrix Σβ
γ

implies

that for high transaction costs β, more weight is put on those pairs of assets, whose exposure

is re-balanced in the same direction. The result is similar to Fan et al. (2012), who show that

the risk minimization problem with constrained weights

ω∗t+1 = arg min
ω∈RN , ι′ω=1, ||ω||1≤ϑ

ω′Σω (16)
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can be interpreted as the minimum variance problem

ω∗t+1 = arg min
ω∈RN , ι′ω=1

ω′Σ̃ω, (17)

with Σ̃ = Σ + λ (gι′ + ιg′) , where λ is a Lagrange multiplier and g is the subgradient vector of

the function ||ω||1 evaluated at the the solution of optimization problem (16). Note, however,

that the transaction cost parameter β is given to the investor, whereas ϑ is an endogenously

imposed restriction with the aim to decrease the impact of estimation error.

Investigating the long-run effect of the initial portfolio ω0 in the presence of L1 transaction

costs in the spirit of Proposition 1 is complex as analytically tractable representations are not

easily available. General insights from the L2 benchmark case, however, can be transferred to

the setup with L1 transaction costs: First, a high cost parameter β may prevent the investor to

implement the efficient portfolio. Second, as the L2 norm of any vector is bounded from above

by its L1 norm, L1 penalization is always stronger than in the case of quadratic transaction

costs. Therefore, we expect that the convergence of portfolios from the initial allocation ω0

towards the efficient portfolio is generally slower, but qualitatively similar.

2.2.3 Empirical implications

To empirically illustrate the effects discussed above, we compute the performance of portfo-

lios after transaction costs based on N = 308 assets and daily readjustments based on data

ranging from June 2007 to March 2017.6 The unknown variance-covariance matrix Σt is esti-

mated in two ways: We compute the sample variance-covariance estimator St and the shrinkage

estimator Σ̂t,Shrink by Ledoit and Wolf (2004) with a rolling window of length h = 500 days.

We refrain from estimating the mean and set µt = 0. The initial portfolios weights are set

to 1
N ι, corresponding to the naive portfolio. Then, for a fixed β and daily estimates of Σt,

6A description of the dataset and the underlying estimators is given in more detail in Section 5.
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portfolio weights are re-balanced as solutions of optimization problem (3) using γ = 4. This

yields a time series of optimal portfolios ωβt and realized portfolio returns rβt := r′tω
β
t . Sub-

tracting transaction costs then yields the realized portfolio returns net of transaction costs

rβ,nTC
t := rβt − β

(
ωβt+1 − ω

β
t+

)′ (
ωβt+1 − ω

β
t+

)
.

Figure 1 displays annualized Sharpe ratios7 after subtracting transaction costs for both the

sample covariance and the shrinkage estimator for a range of different values of β, measured in

basis points. The purple line represents Sharpe ratios implied by the naive allocation.

We observe that the naive portfolio is clearly outperformed. This is remarkable, as it is

well-known that parameter uncertainty especially in high dimensions often leads to superior

performance of the naive allocation (see, e.g. DeMiguel et al. (2009)). We moreover find

that already very small positive values of β have a strong regulatory effect on the covariance

matrix. Recall that quadratic transaction costs directly affect the diagonal elements and thus the

eigenvalues of Σt. Inflating then each of the 308 eigenvalues already by a small magnitude has

a substantial effect on the conditioning of the covariance matrix. We observe that transaction

costs of just 1 bp significantly increase the conditioning number and strongly stabilize St and

particularly its inverse, S−1
t . In fact, the optimal portfolio based on the sample variance-

covariance matrix which adjusts ex-ante for transaction costs of β = 1bp leads to a net-of-

transaction-costs Sharpe ratio of 0.37, whereas neglecting transaction costs in the optimization

yields a Sharpe ratio of only 0.12. This effect is to a large extent a pure regularization effect.

For rising values of β, this effect marginally declines and leads to a declining performance for

values of β between 10 and 50bp. We therefore observe a dual role of transaction costs. On the

one hand, they improve the conditioning of the covariance matrix by inflating the eigenvalues.

On the other hand, they reduce the mean portfolio return. Both effects influence the Sharpe

ratio in opposite direction causing the concavity of graphs for values of β up to approximately

50bp.

7Computed as the ratio of the annualized sample mean and standard deviation of rβ,nTC
t .
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For higher values of β we observe a similar pattern: Here, a decline in re-balancing costs

due to the implied turnover penalization kicks in and implies an increase of the Sharpe ratio.

If the cost parameter β, however, gets too high, the adverse effect of transaction costs on the

portfolio’s expected returns dominate. Hence, as predicted by Proposition 1, the allocation is

ultimately pushed back to the initial portfolio (the 1/N portfolio in this case). This is reflected

by the lower panel of Figure 1, showing the distance to the initial allocation in terms of the

average L1 distance.

Moreover, the described effects are much more pronounced for the sample covariance than

for its shrunken counterpart. As the latter is already regularized, additional regulation implied

by turnover penalization obviously has a lower impact. Nevertheless, turnover regularization

implies that forecasts even based on the sample covariance generate reasonable Sharpe ratios,

which tend to perform equally well than those implied by a (linear) shrinkage estimator. Hence,

we observe that differences in the out-of-sample performance between the two approaches decline

if the turnover regularization becomes stronger.

Figure 2 visualizes the effect of L1 transaction costs. Note that L1 transaction costs imply a

regulation which acts similarly to a Lasso penalization. Such a penalization is less smooth than

that implied by quadratic transaction costs and implies a stronger dependence of the portfolio

weights on the previous day’s allocation. This strong path-dependence implies that the plots

in Figure 2 are less smooth than in the case of quadratic transaction costs. This affects our

evaluation, as the paths of the portfolio weights may differ substantially over time if the cost

parameter β is slightly changed.

However, we find similar effects as for quadratic transaction costs. For low values of β,

the Sharpe ratio increases in β. Here, the effects of covariance regularization and reduction of

turnover overcompensate the effect of declining portfolio returns (after transaction costs). For

larger values of β, we observe the expected convergence towards the performance of the naive

portfolio. For this range of β, the two underlying approaches perform rather en par. Hence,
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additional regularization as implied by the shrinkage estimator is not (very) effective and does

not generate excess returns on top of the sample variance-covariance matrix.

3 Basic Econometric Setup

3.1 Parameter Uncertainty and Model Combination

The optimization problem (EU) posses the challenge of providing a sensible density pt(rt+1|D)

of future returns. The predictive density should reflect dynamics of the return distribution in

a suitable way, which opens many different dimensions on how to choose a model Mk. The

model Mk reflects assumptions regarding the return generating process in form of a likelihood

function L (rt|Θ,Ht,Mk) depending on unknown parameters Θ. Assuming that future returns

are distributed as L
(
rt|Θ̂,Ht,Mk

)
, where Θ̂ is a point estimate of the parameters Θ, however,

would imply that the uncertainty perceived by the investor ignores estimation error.8 Conse-

quently, the resulting portfolio weights would be sub-optimal and the exposure of the investor

to risky assets would be unreasonably high.

To accommodate such parameter uncertainty and to pose a setting, where the optimization

problem (EU) can be naturally addressed by numerical integration techniques, we employ a

Bayesian approach. Hence, by defining a model Mk implying the likelihood L (rt|Θ,Ht,Mk)

and choosing a prior distribution π(Θ), the posterior distribution

π(Θ|Rt,Ht) ∝ L(Rt|Θ,Ht,Mk)π(Θ) (18)

reflects beliefs about the distribution of the parameters after observing the set of available

8See e.g. Brown (1976), Kan and Zhou (2007) or Avramov and Zhou (2010) for detailed treatments of the
impact of parameter uncertainty on optimal portfolios.
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information, (Rt,Ht). The (posterior) predictive distribution of the returns is then given by

rMk,t+1 ∼ p(rt+1|Rt,Ht,Mk) :=

∫
L(rt+1|Θ,Ht,Mk)π(Θ|Rt,Ht)dΘ. (19)

If the parameters cannot be estimated with high precision, the posterior distribution π(Θ|Rt,Ht)

yields a predictive return distribution with more mass in the tails than focusing only on

L(rt+1|Θ̂,Ht,Mk). Therefore, parameter uncertainty automatically leads to a higher predicted

probability of tail events, implying the fat-tailedness of the posterior predictive asset return

distribution.

Moreover, potential structural changes in the return distribution and time-varying parame-

ters make it hard to identify a single predictive model which consistently outperforms all other

models. Therefore, an investor may instead combine predictions of K distinct predictive mod-

els D := {M1, . . . ,MK}, reflecting either personal preferences, data availability or theoretical

considerations.9 Stacking the predictive distributions yields

rvec
D,t+1 := vec ({rM1,t+1, . . . , rMK ,t+1}) ∈ RNK×1. (20)

The joint predictive distribution pt(rt+1|D) is computed conditional on combination weights

ct ∈ RK , which can be interpreted as discrete probabilities over the set of models D. The

probabilistic interpretation of the combination scheme is justified by enforcing that all weights

take positive values and add up to one:

ct ∈ ∆[0,1]K :=

{
c ∈ RK : ci ≥ 0 ∀i = 1, . . . ,K and

K∑
i=1

ci = 1

}
. (21)

9Model combination in the context of return predictions has a long tradition in econometrics, starting from
Bates and Granger (1969). In finance, Avramov (2003), Uppal and Wang (2003), Garlappi et al. (2007), Johannes
et al. (2014) and Anderson and Cheng (2016), among others, apply model combinations and investigate the effect
of model uncertainty on financial decisions.
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This yields the joint predictive distribution

pt(rt+1|D) := p(rt+1|Rt,Ht,D) =

∫
(ct ⊗ I)′ p

(
rvec
D,t+1|Rt,Ht,D

)
drvec
D,t+1, (22)

corresponding to a mixture distribution with time-varying weights.

Depending on the choice of the combination weights ct, the scheme balances how much

the investment decision is driven by each of the individual models. Well-known approaches to

combine different models are, among many others, Bayesian model averaging (Hoeting et al.,

1999), optimal prediction pooling (Geweke et al., 2011) and decision-based model combinations

(Billio et al., 2013).

We choose ct conditional on the past data (Rt,Ht) as a solution to the maximization problem

ct = arg max
c∈∆

[0,1]K

f (c|Rt,Ht) . (23)

In line with Geweke et al. (2011) and Durham and Geweke (2014) we focus on evaluating the

goodness-of-fit of the predictive distributions as a measure of predictive accuracy based on

rolling-window maximization of the predictive log score

c*
t = arg max

c∈∆
[0,1]K

t∑
i=t−h

log

[
K∑
k=1

ckp (ri|Ri−1,Hi−1,Mk)

]
, (24)

where h is the window size and p (ri|Ri−1,Hi−1,Mk) is defined as in (19).10 If the predictive

density concentrates around the observed return values, the predictive likelihood is higher. Al-

ternatively, we implemented utility-based model combination in the spirit of Billio et al. (2013)

and Pettenuzzo and Ravazzolo (2016) by choosing ct as a function of past portfolio-performances

10In our empirical application we set h = 250 days.
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net of transaction costs.11 Though it is appealing to include combination procedures targeted

to the objective function of the investor, the combination scheme results in very instable com-

bination weights, putting unit mass in the most successful strategies of the recent past. This

results in low portfolio performances due to high turnover and the neglectance of a majority of

the information. We therefore refrain from reporting results based on this procedure.

3.2 MCMC-based inference

In general, the objective function of the portfolio optimization problem (EU) is not available in

closed form. Furthermore, the posterior predictive distribution may not arise from a well-known

class of probability distributions. Therefore, the computation of portfolio weights depends on

(Bayesian) computational methods. First, we compute L sample draws θ
(1)
k , . . . , θ

(L)
k from the

posterior distribution π(Θk|Rt,Ht,Mk) for every model Mk ∈ D using Markov Chain Monte

Carlo algorithms.12 Then, L draws from the posterior predictive distribution are generated by

sampling r
(l)
Mk,t+1 from L(rt+1|θ(l)

k ,Ht,Mk), ∀l = 1, . . . , L. Obtaining the combination weights

based on the past predictive performance requires the computation of the predictive scores of

every model Mk as input to the optimization problem (24). This value can be approximated

by computing

p(rOt |Rt−1,Ht−1,Mk) ≈
1

L

L∑
l=1

L
(
rOt |θ

(l)
k , Rt−1,Ht−1,Mk

)
, (25)

where rOt are the observed returns at time t. After updating the combination weights ct, samples

from the joint predictive distribution p(rD,t+1|Rt,Ht,D) are generated by using the K×L draws

11The combination weights for the utility-based approach can be computed by choosing

cUt = arg max
c∈∆

[0,1]K

t∑
i=t−h

K∑
k=1

[
ck(ωk

′
i ri − ν(ωki , ω

k
i−1+))1−γ

]
,

where ωki are the optimal portfolio weights at day i of strategy k.
12See Hastings (1970) and Chib and Greenberg (1995).
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from the posterior models r
(l)
Mk,t+1. Samples from r

(l)
D,t+1 are obtained by computing

r
(l)
D,t+1 = (ct ⊗ I)′ vec

({
r

(l)
M1,t+1, . . . , r

(l)
MK ,t+1

})
. (26)

The integral in optimization problem (EU) can be approximated for any given weight ω ∈ RN

by Monte-Carlo techniques using the draws r
(l)
D,t+1 by computing

E
((
ω′rD,t+1 − νt(ω)

)1−γ |Rt,Ht,D) ≈ 1

L

L∑
l=1

(
ω′r

(l)
D,t+1 − νt(ω)

)1−γ
. (27)

The vector
{
ω′r

(l)
D,t+1 − νt(ω)

}
l=1,...,L

represents draws from the posterior predictive portfolio

return distribution (after subtracting transaction costs) for allocation weight vector ω. The

numerical solution ω̂t+1 of the allocation problem (EU) is then obtained by choosing ω such

that the sum in (27) is maximized, i.e.,

ω̂t+1 := arg max
ω∈RN ,ι′ω=1

1

L

L∑
l=1

(
ω′r

(l)
D,t+1 − νt(ω)

)1−γ
. (28)

4 Predictive Models

As predictive models we choose representatives of three major model classes. First, we include

covariance forecasts based on high-frequency data utilizing blocked realized kernels as proposed

by Hautsch et al. (2012). Second, we employ predictions based on parametric models for Σt

using daily data. An approach which is sufficiently flexible, while guaranteeing well-conditioned

covariance forecasts, is a stochastic volatility factor model according to Chib et al. (2006).

Thanks to the development of numerically efficient simulation techniques by Kastner et al.

(2017), (MCMC-based) estimation is tractable even in high dimensions. This makes the model

becoming one of the very few parametric models (with sufficient flexibility) which are feasible for
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data of these dimensions. Third, as a candidate representing the class of shrinkage estimators,

we employ the approach by Ledoit and Wolf (2004).

The choice of models is moreover driven by computational tractability in a large-dimensional

setting requiring numerical integration through MCMC techniques and in addition a portfolio

bootstrap procedure as illustrated in Section 5. We nevertheless believe that these models yield

major empirical insights, which can be easily transfered to modified or extended approaches.

4.1 A Wishart Model for Blocked Realized Kernels

Realized measures of volatility based on HF data have been shown to provide accurate estimates

of daily covariances.13 To produce forecasts of covariances based on HF data, we employ blocked

realized kernel (BRK) estimates as proposed by Hautsch et al. (2012) to estimate the quadratic

variation of the price process based on irregularly spaced and noisy price observations.

The major idea is to estimate the covariance matrix block-wise. Accordingly, stocks are

ordered according to their average number of daily mid-quote observations. By separating the

stocks into 4 equal-sized groups, the resulting covariance matrix is then decomposed into b = 10

blocks representing pair-wise correlations within each group and across groups.14 We denote

the set of indexes of the assets associated with block b ∈ 1, . . . , 10 by Ib. For each asset i, τ
(i)
t,l

denotes the time stamp of mid-quote l on day t. The so-called refresh time is the time it takes

for all assets in one block to observe at least one mid-quote update and is formally defined as

rτ bt,1 := max
i∈Ib

{
τ

(i)
t,1

}
, rτ bt,l+1 := max

i∈Ib

{
τ

(i)

t,N(i)(rτbt,l)

}
, (29)

where N (i)(τ) denotes the number of midquote observations of asset i before time τ . Hence,

refresh time sampling synchronizes the data in time with rτ bt,l denoting the time, where all of

13See, e.g., Andersen and Bollerslev (1998), Andersen et al. (2003), Barndorff-Nielsen et al. (2009), Liu (2009)
and Hautsch et al. (2015), among others.

14Hautsch et al. (2015) find that 4 liquidity groups constitutes a reasonable (data-driven) choice for a similar
data set. We implemented the setting for up to 10 groups and find similar results in the given framework.
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the assets belonging to group b have been traded at least once since the last refresh time rτ bt−1,l.

Synchronized returns are then obtained as r
(i)
t,l := p

(i)

rτbt,l
− p(i)

rτbt,l−1

, with p
(i)

rτbt,l
denoting the log

mid-quote of asset i at time rτ bt,l.

Refresh-time-synchronized returns build the basis for the multivariate realized kernel estima-

tor by Barndorff-Nielsen et al. (2011), which allows (under a set of assumptions) to consistently

estimate the quadratic covariation of an underlying multivariate Brownian semi-martingale price

process which is observed under noise. Applying the multivariate realized kernel on each block

of the covariance matrix, we obtain

Kb
t :=

Lbt∑
h=−Lbt

k

(
h

Lbt + 1

)
Γh,bt , (30)

where k(·) is the Parzen kernel, Γh,bt is the h-lag auto-covariance matrix of the assets belonging

to block Ib, and Lbt is a bandwidth parameter, which is optimally chosen according to Barndorff-

Nielsen et al. (2011).

The estimates of the correlations between assets in block b take the form

Ĥb
t =

(
V b
t

)−1
Kb
t

(
V b
t

)−1
, V b

t = diag
[
Kb
t

]1/2
. (31)

The blocks Ĥb
t are then stacked as described in Hautsch et al. (2012) to obtain the correlation

matrix Ĥt.

The diagonal elements of the covariance matrix, σ̂2
t,i, i = 1, . . . , N , are estimated based on

univariate realized kernels according to Barndorff-Nielsen et al. (2008). The resulting variance-

covariance matrix is then given by

Σ̂BRK
t = diag

(
σ̂2
t,1, . . . , σ̂

2
t,N

)1/2
Ĥtdiag

(
σ̂2
t,1, . . . , σ̂

2
t,N

)1/2
. (32)
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We stabilize the covariance estimates by smoothing over time and computing simple averages

of the last 5 days, i.e., Σ̂BRK
S,t := (1/5)

∑5
s=1 Σ̂BRK

t−s+1. A (smoothed) correlation matrix is then

obtained as

ĤS,t := (VS,t)
−1 Σ̂BRK

S,t (VS,t)
−1 , VS,t = diag [KS,t]

1/2 , (33)

with KS,t := 1/S
∑S

s=1Kt−s+1. In Section 5, we illustrate that such smoothing of estimates

improves the predictive performance of the model as the impact of extreme intra-daily activities

is reduced.

To produce not only forecasts of the asset return covariance, but of the entire density,

we parametrize a suitable return distribution, which is driven by the dynamics of Σ̂BRK
t in the

spirit of Jin and Maheu (2013). The dynamics of the predicted return process conditional on the

latent covariance Σt are modeled as multivariate Gaussian. To capture parameter uncertainty,

integrated volatility is modeled as a Wishart distribution.15 Thus, the model is defined by:

L(rt+1|Σt+1) ∼ N(0,Σt+1), (34)

Σt+1|κ,Bt ∼WN (κ,Bt), (35)

κBt = Σ̂BRK
S,t , (36)

κ ∼ exp (100) Iκ>N−1. (37)

Although we impose a Gaussian likelihood conditional on Σt+1, the posterior predictive dis-

tribution of the returns exhibit fat tails after marginalizing out Σt+1 due to the choice of the

prior.

15This represents a multivariate extension of the normal-inverse-gamma approach, applied, for instance, by
Barndorff-Nielsen (1997), Andersson (2001), Jensen and Lunde (2001) and Forsberg and Bollerslev (2002).
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4.2 Stochastic Volatility Factor Models

Parametric models for return distributions in very high dimensions accommodating time vari-

ations in the covariance structure are typically either highly restrictive or computationally (or

numerically) not feasible. Even dynamic conditional correlation (DCC) models as proposed by

Engle (2002) are not feasible for processes including several hundreds of assets.16 Likewise,

stochastic volatility models allow for flexible (factor) structures but have been computationally

not feasible for high-dimensional processes either. Recent advances in MCMC sampling tech-

niques, however, make it possible to estimate stochastic volatility factor models even in very high

dimensions while keeping the numerical burden moderate. Employing interweaving schemes to

overcome well-known issues of slow convergence and high autocorrelations of MCMC samplers

for SV models, Kastner et al. (2017) provide means to considerably boost up computational

speed.

We therefore assume a stochastic volatility factor model in the spirit of Shephard (1996),

Jacquier et al. (2002) and Chib et al. (2006) as given by

rt = ΛV (ξt)
1/2ζt +Q(ξt)

1/2εt, (38)

where Λ is a N × j matrix of unknown factor loadings, Q(ξt) = diag (exp(ξ1,t), . . . , exp(ξN,t))

is a N × N diagonal matrix of N latent factors capturing idiosyncratic effects, and V (ξt) =

diag (exp(ξN+1,t), . . . , exp(ξN+j,t)) is a j × j diagonal matrix of common latent factors. The

innovations εt ∈ RN and ζt ∈ Rj are assumed to follow independent standard normal distribu-

tions. The model thus implies that the covariance matrix of rt is driven by a factor structure

cov (rt|ξt) = Σt(ξt) = ΛVt(ξt)Λ
′ +Qt(ξt), (39)

16One notable exception is a shrinkage version of the DCC model as recently proposed by Engle et al. (2017).
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with Vt(ξt) capturing common factors and Qt(ξt) capturing idiosyncratic components. The

covariance elements are thus parametrized in terms of the N × j unknown parameters, whose

dynamics are triggered by j common factors. All N + j latent factors are assumed to follow

AR(1) processes,

ξit = µi + φi(ξt−1,i − µi) + σiηt,i i = 1, . . . , N + j, (40)

where the innovations ηt follow independent standard normal distributions and ξi0 is an unknown

initial state. The AR(1) representation captures the persistence in idiosyncratic volatilities

and correlations. The assumption that all elements of the covariance matrix are driven by

identical dynamics is obviously restrictive, however, yields parameter parsimony even in high

dimensions. Estimation errors can therefore be strongly limited and parameter uncertainty

can be straightforwardly captured by choosing appropriate prior distributios for µi, φi and

σi. The approach can be seen as a strong parametric regularization of the covariance matrix

which, however, still accommodates important empirical features. Furthermore, though the

joint distribution of the data is conditionally Gaussian, the stationary distribution exhibits

thicker tails.

The priors for the univariate stochastic volatility processes are chosen independently in line

with Aguilar and West (2000) and Pati et al. (2014), i.e.,

p(µi, φi, σi) = p(µi)p(φi)p(σi). (41)

The level µi is equipped with a normal prior, the persistence parameter φi is chosen such that

(φi + 1)/2 ∼ B(a0, b0), which enforces stationarity, and for σ2
i we assume σ2

i ∼ G
(

1
2 ,

1
2Bσ

)
.17

For each element of the factor loadings matrix, a hierarchical zero-mean Gaussian distribution is

17In the empirical application we set the prior hyper-parameters to a0 = 20, b0 = 1.5 and Bσ = 1 as proposed
by Kastner et al. (2017).
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chosen. Choosing hierarchical priors for the factor loadings allows us to enforce sparsity reducing

parameter uncertainty especially in very high dimensions, see e.g. Griffin and Brown (2010)

and Kastner (2016). Kastner (2016) proposing interweaving strategies in the spirit of Yu and

Meng (2011) to reduce the enormous computational burden for high dimensional estimations of

SV objects.

4.3 Covariance Shrinkage

The most simple and natural covariance estimator is the rolling window sample covariance

estimator,

St :=
1

h− 1

t∑
i=t−h

(ri − µ̂t) (ri − µ̂t)′ , (42)

with µ̂t := 1
h−1

∑t
i=t−h ri, and estimation window of length h. It is well-known that St is highly

inefficient and yields poor asset allocations as long as h does not sufficiently exceed N . To

overcome this problem, Ledoit and Wolf (2004) propose shrinking St towards a more efficient

(though biased) estimator of Σt.
18 The classical linear shrinkage estimator is given by

Σ̂t,Shrink = δ̂Ft + (1− δ̂)St, (43)

where Ft denotes the sample constant correlation matrix and δ̂ minimizes the Frobenius norm

between Ft and St. For more details, see Ledoit and Wolf (2004). Ft is based on the sample

correlations ρ̂ij :=
sij√
siisjj

, where sij is the i-th element of the j-th column of the sample

covariance matrix St. The average sample correlations are given by ρ̄ := 2
(N−1)N

N∑
i=1

N−1∑
j=i+1

ρ̂ij

yielding the ij-th element of Ft as Ft,ij = ρ̄
√
ρ̂iiρ̂jj .

Finally, the resulting predictive return distribution is obtained by assuming pt(rt+1|Σ̂t,Shrink) ∼
18Instead of shrinking the eigenvalues of St linearly, an alternative approach would be the implementation of

non-parametric shrinkage in the spirit of Ledoit and Wolf (2012), which is left for future research.
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N(0, Σ̂t,Shrink). Equivalently, a Gaussian framework is implemented for the sample variance-

covariance matrix pt(rt+1|St) ∼ N(0, St) . Hence, parameter uncertainty is only taken into

account through the imposed regularization of the sample variance-covariance matrix. We

refrain from imposing additional prior distributions to study the effect of a pure covariance

regularization and to facilitate comparisons with the sample covariance matrix.

5 Empirical Analysis

5.1 Data and General Setup

In order to obtain a representative sample of US-stock market listed firms, we select all con-

stituents from the S&P 500 index, which were traded during the complete time period starting

in June 2007, the earliest date for which corresponding HF-data from the LOBSTER database

is available. This results in a total dataset containing N = 308 stocks listed at Nasdaq.19

The data covers the period from June 2007 to March 2017, corresponding to 2,409 trading

days after excluding weekends and holidays. Daily returns are computed based on end-of-day

prices. All the computations are performed after adjusting for stock splits and dividends. As

of March 2017, the total market capitalization of the stocks included in our setup exceeds

17,000 Billion USD, which comes close to the S&P 500 capitalization of 21,800 Billion USD.

We extend our data set by HF data extracted from the LOBSTER database, which provides

tick-level message data for every asset and trading day.20 Utilizing midquotes amounts to more

than 73 Billion observations.

19Exclusively focusing on stocks, which are continuously traded through the entire period, is a common pro-
ceeding in the literature and implies some survivorship bias and the negligence of younger companies with IPO’s
after 2007. In our allocation approach, this aspect could be in principle addressed by including all stocks from
the outset and a priori imposing zero weights to stocks in periods, when they are not (yet) traded. Such a
proceeding, however, would further increase the dimension of the asset space, implying additional computational
burden. Moreover, the conclusions drawn from our empirical study are not critically dependent on this aspect.
We therefore refrain from further extensions of the asset space.

20See https://lobsterdata.com.
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Panel a) of Figure 3 visualizes the cross-sectional average of annualized realized volatilities

estimated based on univariate realized kernels according to Barndorff-Nielsen et al. (2008) for

each trading day. Panel b) of Figure 3 shows the average correlations computed using blocked

realized kernel estimates based on 4 groups on a daily basis. We observe generally positive

correlations revealing (partly) substantial and persistent fluctuations.

In order to investigate the prediction power and resulting portfolio performance of our

models, we sequentially generate forecasts on a daily basis and compute the corresponding paths

of portfolio weights. Table 1 summarizes the distinct steps of the estimation and forecasting

procedure. We implement K = 4 different models as of Section 4. The HF approach is based

on the BRK-Wishart model with 4 groups and the t + 1 covariance matrix is predicted as the

average of estimates over the most previous 5 days. The SV model is based on j = 3 common

factors21, while forecasts based on the sample variance-covariance matrix St and its shrunken

version Σ̂Shrink are based on a rolling window size of 500 days.

Every model is based on a Gaussian likelihood, where parameter uncertainty, as taken into

account in the HF model and SV model, leads to fat-tailed predictive return distributions.

Moreover, in line with a wide range of studies utilizing daily data, we refrain from predicting

mean returns but assume µt = 0 in order to avoid excessive estimation uncertainty. There-

fore, we effectively perform global minimum variance optimization under transaction costs and

parameter uncertainty as well as model uncertainty. In order to quantify the robustness and

statistical significance of our results, we perform a bootstrap analysis by re-iterating the proce-

dure described in Table 1 in total 200 times for random subsets of N = 250 stocks out of the

total 308 assets.22

21The predictive accuracy is very similar for values of j between 1 and 5, but declines when including more
factors.

22 The forecasting and optimization procedures require substantial computing resources. As the portfolio
weights at t depend on the allocation at day t− 1, parallelization is restricted. Sequentially computing the mul-
tivariate realized kernels for every trading day, running the MCMC algorithm, performing numerical integration
and optimizing in the high-dimensional asset space for all models requires approximately one month computing
time on a strong cluster such as the Vienna Scientific Cluster.
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Bootstrap iteration Randomly choose investment horizon N = 250 out of all 308 assets

Initial Choose predictive models D := (M1, . . . ,MK)

Initialize weights ω̂Mk
0 := 1

N ι ∀k = 1, . . . , 4

At t > 0 For every model Mk

1. MCMC-sampling from posterior distribution π(Θk|Rt,Ht,Mk)

2. Generate L = 100.000 draws from predictive pt(rt+1|Mk)

3. Compute optimal ω̂Mk
t+1 depending on current allocation ωMk

t+

4. Evaluate (predictive) performance p(rt|Rt−1,Ht−1,Mk)

For the mixture model

1. Update weight ct and generate samples from p(rt+1|Rt,Ht,D)

2. Compute allocation vector ω̂Dt+1 (using Equation (EU))

At t = T Evaluate the portfolio performances of bootstrap iteration

Bootstrap iteration Go back to step 1 (and repeat this 200 times)

Table 1: Schematic illustration of the procedure to compute portfolio weights taking into account pa-
rameter uncertainty, transaction costs and model mixing in our framework.

5.2 Evaluation of the Predictive Performance

In a first step, we evaluate the predictive performance of the individual models. This does

not require computing portfolio weights and thus is based on steps 1 and 2 according to Table

1. In order to visualize the model’s forecasts of the high-dimensional return distribution, we

use the generated samples r
Mk,(l)
t+1 from the posterior predictive distribution pt(rt+1|Mk) and

compute samples of the predicted return distribution of the naive portfolio ω′naiver
Mk,(l)
t+1 . Figure

4 visualizes the 95% credibility regions implied by the simulated predictive distribution of the

day t+ 1 (naive) portfolio return. The dots indicate observed returns of the naive portfolio at

day t+ 1, whereas the lines indicate the 95% credible regions of the individual models.

We observe substantial differences between the models. The SV model reveals the highest

fluctuations, reflecting the noisiness in daily returns. On the other hand, the flexibility of the SV

model to capture idiosyncratic changes in volatilities implies fast responses to changing market

28



conditions. During the financial crisis, for instance, the SV model implies a substantial widening

of the credible regions, indicating high market volatility. In contrast, predictions stemming from

the HF model are less volatile. This is partly due to the 5-day smoothing which reduces the

noisiness of forecasts, as it scales down the impact of single days of over-shooting volatility.23

Nevertheless, these forecasts are responsive and obviously quickly react to changing market

conditions. Finally, forecasts implied by the shrinkage estimator change only slowly through

time. This is not surprising as this estimator builds on rolling two-year windows of daily data

and thus updates only very slowly to new information.

Mean SD Best

HF 707.0 117.08 0.171
[702.9,711.0] [113.58,119.81] [0.160,0.181]

Sample 586.5 337.56 0.005
[580.7,591.8] [318.99,353.23] [0.003,0.007]

LW 694.2 165.72 0.197
[689.1,699.1] [161.29,170.00] [0.185,0.211]

SV 705.0 138.30 0.135
[701.6,708.2] [136.11,140.10] [0.126,0.146]

Combination 731.3 97.95 0.484
[727.1,735.6] [96.71,99.34] [0.477,0.491]

Table 2: Predictive accuracy of the models, evaluated using the time series of out-of-sample predictive
log likelihoods, corresponding to log pt(rt+1|Mk). The values in brackets correspond to bootstrapped 95
% confidence intervals. Mean denotes the average posterior predictive log-likelihood. SD is the standard
deviation of the time series and Best is the fraction of total days where the individual model obtained
the highest predictive accuracy among its competitors. Combination corresponds to predictions created
by combining the individual models based on (24).

Evaluating the predictive performance of high-dimensional return distributions is not straight-

forward. A popular metric is the log posterior predictive likelihood log p(rOt |Rt−1,Ht−1,Mk),

where rOt+1 are the observed returns at day t, indicating how much probability mass the predic-

tive distribution assigns to the observed outcomes, see e.g., Weigend and Shi (2000), Amisano

23Without smoothing, HF-data based forecasts would be prone to substantial higher fluctuations, especially on
days with extraordinary intra-daily activity such as on the Flash Crash in May 2010. We find that these effects
reduce the predictive ability.
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and Giacomini (2007) and Bao et al. (2007). Table 2 gives summary statistics of the (daily)

time series of the out-of-sample log posterior predictive likelihood log p(rOt |Rt−1,Ht−1,Mk) for

each model.

In terms of the mean posterior predictive log-likelihood obtained in our sample, the sample

variance-covariance matrix solely is not sufficient to provide accurate forecasts. Shrinking the

covariance matrix, however, significantly increases its forecasting performance. Both estimators,

however, still significantly under-perform the SV and HF model. The fact that the SV model

performs widely similar to the HF model is an interesting finding as it utilizes only daily

data and thus much less information than the HF model. This disadvantage, however, seems

to be overcompensated by the fact that the model captures daily dynamics in the data and

thus straightforwardly produces one-step-ahead forecasts. In contrast, the HF model produces

accurate estimates of Σt, but does not allow for any projections into the future. Our results show

that both the efficiency of estimates Σt and the incorporation of daily dynamics are obviously

crucial for superior out-of-sample predictions. The fact that both the SV model and the HF

model perform widely similar indicates that the respective advantages and disadvantages of the

individual models counterbalance each other. We thus expect that an appropriate dynamic

forecasting model for vast-dimensional covariances, e.g., in the spirit of Hansen et al. (2012)

may perform even better in terms of the mean posterior predictive log-likelihood, but may

contrariwise induce additional parameter uncertainty.24

The last row of Table 2 gives the obtained out-of-sample predictive performance of the

model combination approach as discussed in Section 3. Computing combination weights c∗t as

described in Equation (24) and evaluating the predictive density computing

LSCombination
t+1 = log

(
K∑
k=1

ct,kp
(
rOt+1|Rt,Ht,Mk

))
24Given that it is not straightforward to implement such a model in the given general and high-dimensional

setting, we leave such an analysis to future research.
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reflects a significantly stronger prediction performance through the entire sample. Combining

both high- and low-frequency based approaches thus increases the predictive accuracy and

outperforms all individual models.

Figure 5 depicts the time series of resulting model combination weights, reflecting the relative

past prediction performance of each model at each day. We observe distinct time variations,

which are obviously driven by the market environment. The gray shaded area in Figure 5 shows

the daily averages of the estimated assets’ volatility, computed using univariate realized kernels.

We thus observe that during high-volatility periods, the HF approach produces superior forecasts

and has the highest weight. This is particularly true during the financial crisis and during more

recent periods of market turmoil, where the estimation precision induced by HF data clearly

pays off. Conversely, forecasts based on daily stochastic volatility perform considerably strong

in more calm periods as in 2013/2014. Forecasts implied by the shrinkage estimator have lower

but non-negligible weight, and thus significantly contribute to an optimal forecast combination.

In contrast, predictions based on the sample variance-covariance matrix are negligible and are

always dominated by the shrinkage estimator.

Superior predictive accuracy, however, is not equivalent to superior portfolio performance.

The volatility of the predictive credible regions visualized in Figure 4 underlines that an investor

not adjusting for transaction costs ex ante may re-balance her portfolio unnecessarily often if she

relies on the predictions based on the stochastic volatility factor model and – to less extent – on

the HF-based forecasts. Though the underlying predictions may be quite accurate, transaction

costs can easily offset this advantage compared to the use of the rather smooth predictions

implied by (regularized) forecasts based on rolling windows. This aspect will analyzed in the

following section.
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5.3 Evaluation of Portfolio Performance

To evaluate the performance of the resulting portfolios implied by the individual models’ fore-

casts, we follow the procedure described in Table 1 and construct portfolios based on boot-

strapped portfolio weights. Accordingly, the underlying asset universe consists of 250 assets

which are randomly drawn out of the entire asset space.

Our setup represents an investor using the available information to sequentially update her

beliefs about the parameters and state variables of the return distribution of the 250 selected

assets. Based on the estimates, she generates predictions of the returns of tomorrow and accord-

ingly allocates her wealth by solving (EU), using risk aversion γ = 4. After holding the assets

for a day, she realizes the gains and losses, updates the posterior distribution and re-computes

optimal portfolio weights. This procedure is repeated for each period and allows analyzing

the time series of the realized (”out-of-sample”) returns rkt+1 =
N∑
i=1

ω̂Mk
t+1,ir

O
t+1,i. Bootstrapping

allows us to investigate the realized portfolio performances of 200 different investors, differing

only with respect to the available set of assets.

We assume proportional (L1) transaction costs according to Equation (9). We choose this

parametrization, as it is a popular choice in the literature, see, e.g., DeMiguel et al. (2009),

and is more realistic than quadratic transaction costs as studied in Section 2. As suggested

by DeMiguel et al. (2009), we fix β to 50bp, corresponding to a rather conservative proxy for

transaction costs on the U.S. market. Though such a choice is only a rough approximation to real

transaction costs, which in practice depend on (possibly time-varying) institutional rules and

the liquidity supply in the market, we do not expect that our general findings are specifically

driven by this choice. While it is unavoidable that transaction costs are underestimated or

overestimated in individual cases, we expect that the overall effects of turnover penalization

can be still captured with realistic magnitudes. Our results in Chapter 2 moreover reflect

to which extent the portfolio performance changes in dependence of β and reveals a certain
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robustness of the effects for values of β around 50bp.

The returns resulting from evaluating realized performances net of transaction costs are then

given by

rk,nTC
t = rkt − νt

(
ω̂Mk
t+1

)
=

N∑
i=1

ω̂Mk
t,i r

O
t,i − νt

(
ω̂Mk
t

)
, t = 1, . . . , T. (44)

We quantify the portfolio performance based on the average portfolio return, its volatility, its

Sharpe ratio and the certainty equivalent for γ = 4:

µ̂
(
rk,nTC

)
:=

1

T

T∑
t=1

rk,nTC
t , (45)

σ̂
(
rk,nTC

)
:=

√√√√ 1

T − 1

T∑
t=1

(
rk,nTC
t − µ̂ (rk,nTC)

2
)
, (46)

SRk :=
µ̂
(
rk,nTC

)
σ̂ (rk,nTC)

, (47)

CEk :=100

(
1

T

T∑
t=1

(
rk,nTC
t

)1−4
− 1

) 1
1−4

. (48)

Moreover, we quantify the portfolio turnover

TOk :=
1

TN

T∑
t=1

N∑
i=1

∥∥∥∥∥ω̂Mk
t,i −

ω̂Mk
t−1,i ◦ rt,i

ι′(ω̂Mk
t−1 ◦ rt)

∥∥∥∥∥
1

, (49)

the average weight concentration,

pck :=
1

T

T∑
t=1

N∑
i=1

(
ω̂Mk
t,i

)2
, (50)
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and the average size of the short positions as given by

spk :=
1

T

T∑
t=1

N∑
i=1

|ω̂t,i|1{ω̂Mk
t,i <0

}. (51)

Finally, we compare the performance of the resulting (optimal) portfolios to those of a number

of benchmark portfolios. First, we implement the naive portfolio allocation ωNaive := 1
N ι based

on daily re-balancing.25

Moreover, we include the ”classical” global minimum variance portfolio based on the Ledoit-

Wolf shrinkage estimator, ωmvp
t+1 :=

(Σ̂t, Shrink)
−1
ι

ι′(Σ̂t, Shrink)
−1
ι
. Furthermore, as proposed by Jagannathan

and Ma (2003), we compute optimal global minimum variance weights with a no-short sale

constraint, ωmvp, no s.
t+1 , computed as solution to the optimization problem:

ωmvp, s
t+1 = arg minω′Σ̂t, Shrinkω s.t. ι′ω = 1 and ωi ≥ 0 ∀i = 1, . . . , N.

We also include the Bayes-Stein estimator as proposed by Jorion (1986), for which we do not

report results as the approach is not able to outperform the naive portfolio in our sample.

Table 3 summarizes the results. The results in the first panel correspond to strategies

ignoring transaction costs in the portfolio optimization by setting vt(ω) = 0 when computing

optimal weights ω∗. These strategies employ the information conveyed by the predictive models,

but ignore transaction costs. However, after re-balancing, the resulting portfolio returns are

computed net of transaction costs. This corresponds to common proceeding, where turnover

penalization is done ex post, but is not incorporated in the decision process.

As indicated by highly negative average portfolio returns, a priori turnover penalizing is

crucial in order to obtain reasonable portfolio performances in a setup with transaction costs.

The major reason is not necessarily the use of a sub-optimal weight vector, but rather the

25We also implemented a weekly and monthly re-balancing, which, however, does not qualitatively alter the
results.
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µ̂ σ̂ SR CE TO pc sp % Trade

ωHF, no TC -96.5 15.90 - - 613.49 0.13 0.08 0.8835

ωSV, no TC -92.3 13.77 - - 401.63 0.54 0.41 0.9362

ωLW, no TC -58.7 16.09 - - 139.51 0.35 0.18 0.8499

ωSample, no TC -48.4 15.92 - - 113.10 0.59 1.50 0.8548

ωHF 6.4 15.77 0.407 6.274 1.70 0.49 1.11 0.0804

ωSV 6.7 16.74 0.400 6.271 0.25 0.44 0.94 0.0367

ωLW 6.6 16.67 0.396 6.251 0.24 0.24 0.13 0.0346

ωSample 5.5 16.47 0.335 5.170 0.47 0.23 0.13 0.0367

ωCombination 6.6 14.83 0.443 6.356 1.22 0.20 0.15 0.1208

ωNaive 5.0 23.48 0.215 4.759 2.76 0.45 0.00 0.9184

ωmvp -59.0 14.10 - - 133.56 0.90 1.21 0.9996

ωmvp no s. 2.7 13.09 0.209 2.468 8.82 0.01 0.00 0.9996

Table 3: Annualized averages of the bootstrapped out-of-sample portfolio performances based on 1904
trading days. Transaction costs are proportional to the L1 norm of re-balancing (as of (9)). µ̂ is the
annualized portfolio return in percent, σ̂ the annualized standard deviation in percent, SR denotes the
(annualized) out-of-sample Sharpe ratio of the individual strategies, CE is the Certainty Equivalent for
an investor with power utility function and risk-aversion factor γ = 4, TO is the average turnover in
percent, pc is the average portfolio concentration (L2 norm of the portfolio weights) and sp is the average
proportion of the sum of negative portfolio weights. % Trade is the fraction of days with trading activity
more than 0.001%.

fact that these portfolio positions suffer from extreme turnover due to a high responsiveness

of the underlying covariance predictions to changing market conditions, thus implying frequent

re-balancing. All four predictive models generate average annualized portfolio turnover of more

than 100%, which sums up to substantial losses during the trading period. If an investor

would have started trading with 100 USD in June 2007 using the HF-based forecasts without

adjusting for transaction costs, she would end up with less than 0.01 USD in early 2017. The

worse performance of HF-based and SV-based predictions compared to the sample covariance

and shrinkage estimators could already have been anticipated by the strong fluctuation of the
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predictions illustrated in Figure 4 as they produce a significantly higher turnover. Moreover,

none of the four approaches is able to outperform the naive portfolio, though the individual

predictive models clearly convey information. We conclude that the adverse effect of high

turnover becomes particularly strong in case of large-dimensional portfolios.26

Explicitly adjusting for transaction costs, however, strongly changes the picture: The imple-

mented strategies produce significantly positive average portfolio returns and reasonable Sharpe

ratios. The turnover is strongly reduced and amounts to less than 1% of the turnover implied by

strategies which do not account for transaction costs. All strategies clearly outperform the naive

and GMV strategies in terms of net-of-transaction-cost Sharpe ratios and certainty equivalents.

Comparing the performance of individual models, the HF-based model, the SV model and

the shrinkage estimator yield the strongest portfolio performances, but perform very similarly

in terms of SR and CE. In line with the theoretical findings in Section 2, we thus observe

that turnover regularization reduces the performance differences between individual models.

Nevertheless, combining forecasts, however, outperforms individual models and yields Sharpe

ratios which are approximately 10% higher. We conclude that the combination of predictive

distributions resulting from HF data with those resulting from low-frequency (i.e., daily) data is

beneficial – even after accounting for transaction costs. Not surprisingly, the sample covariance

performs worse but still provides a reasonable Sharpe ratio. This confirms the findings in Section

2 and illustrates that under turnover regularization even the sample covariance yields sensible

inputs for high-dimensional predictive return distributions.

Imposing restrictions to reduce the effect of estimation uncertainty, such as a no-short sale

constraint in GMV optimization (ωmvp no s.), however, does not yield a competing performance.

26Bollerslev et al. (2016) find reverse results for GMV portfolio optimization based on HF-based covariance
forecasts. For N = 10 assets, they find an over-performance of HF-based predictions even in the presence of
transaction costs. Two reasons may explain the different findings: First, the burden of a high dimensionality
implies very different challenges when working with more than 300 assets. In addition, Bollerslev et al. (2016)
employ methods, which directly impose a certain regularization. In light of our findings in Section 2, this can
be interpreted as making the portfolios (partly) robust to transaction costs even if the latter are not explicitly
taken into account.
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These findings underline our conclusions drawn from Proposition 3: Though gross-exposure

constraints are closely related to a penalization of transaction costs and minimize the effect

of misspecified elements in the variance-covariance matrix, see, e.g., Fan et al. (2012), such a

regularization yields sub-optimal weights in the actual presence of transaction costs.

The last column of Table 3 gives the average fraction of days where the portfolio is re-

balanced.27 We observe that the incorporation of transaction costs reduces this percentage

from approximately 90% to less than 5%. In case of shrinkage-based forecast, for instance, the

portfolio is re-balanced only roughly 9 times a year. Figure 6 shows the time series of daily

turnover activity (TOk, measured as the L1 norm of re-balancing and therefore directly related

to daily transaction costs) for the individual strategies. The HF strategy, for instance, trades

frequently during the financial crisis, but less than 10 times since 2012. Turnover penalization

can be thus interpreted as a Lasso-type mechanism, which enforces buy-and-hold strategies

over longer periods as long as markets do not reveal substantial shifts requiring re-balancing. In

contrast, the benchmark strategies that do not account for transaction costs tend to re-balance

permanently (small fractions of) wealth, thus cumulating an extraordinarily high amount of

transaction costs. For instance, as shown by Figure 6, the naive portfolio re-balances constantly,

causing an average turnover which is higher than for all of the penalized strategies.

5.3.1 Economic significance of the portfolio performance

To interpret the economic significance of out-of-sample portfolio performances, we evaluate the

resulting utility gains using the framework by Fleming et al. (2003). We thus compute the

hypothetical fees, an investor with power utility and a relative risk aversion γ = 4 would be

willing to pay on an annual basis to switch from an individual strategy M1 to strategy M2.28

The fee is computed such that the investor would be indifferent between the two strategies in

27Due to numerical instabilities, we interpret a turnover of less than 0.001% as no re-balancing.
28We also used alternative values of γ with γ = 1, . . . , 10, however, do not find qualitative differences.
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terms of the resulting utility. For rM1,nTC
t and rM2,nTC

t , we thus determine ∆M1,M2 such that

T∑
t=1

(rM1,nTC
t )(1−γ) =

T∑
t=1

(rM2,nTC
t −∆M1,M2)(1−γ). (52)

Figure 7 shows the bootstrap-based distributions of the resulting fees to switch from the indi-

vidual strategies to the model combination strategy. We thus find that on average, investors

would be willing to pay positive amounts to switch to the superior mixing models. For none of

the 6 different strategies, the 5% quantiles of the performance fees are below zero, indicating the

strong performance of the mixing model. Hence, even after transaction costs investors would

gain higher utility by combining forecasts based on high- and low-frequency data.

In our high-dimensional setup, an investor would be willing to pay 7.5 basis points on

average on an annual basis to switch from the naive allocation to the leading model combination

approach. The 1/N allocation is thus not only statistically but also economically inferior.

However, as expected based on the findings in Section 2, switching fees between the individual

penalized models are substantially lower. Table 4 shows the average fees an investor would

be willing to pay to switch from strategy Mi in column i to strategy Mj in row j. Hence,

we observe that the marginal gain of switching from the HF-based approach to the SV model

amounts to just 0.1 bp per year. This result again confirms the finding that relative performance

differences between high-frequency-based and low-frequency-based approaches level out when

transaction costs are accounted for.

6 Conclusions

This paper theoretically and empirically studies the role of transaction costs in large-scale port-

folio optimization problems. We show that the ex ante incorporation of transaction costs regu-

larizes the underlying covariance matrix. The implied turnover penalization improves portfolio
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Naive HF Sample LW SV Combination

mvp no s. - 1.9 2.5 2.1 2.3 2.0 2.7

Naive 6.4 5.9 6.1 5.8 7.5

HF -0.3 0.1 0.1 1.1

Sample 0.0 0.1 1.3

LW 0.4 1.4

SV 2.4

Table 4: Average annual performance fees in basis points for switching between the individual models
based on γ = 4. The table reads: On an annual basis an investor would be willing to pay 7.5 basis point
to switch from the naive portfolio to the combination strategy.

allocations in terms of Sharpe ratios and utility gains. This is on the one hand due to regu-

larization effects improving the stability and conditioning of covariance matrix estimates and

on the other hand due to a significant reduction of the amount (and frequency) of re-balancing

and thus turnover costs.

In contrast to a pure (statistical) regularization of the covariance matrix, in case of turnover

penalization, the regularization parameter is naturally given by the transaction costs prevailing

in the market. This a priori institution-implied regularization reduces the need for exclusive

covariance regularizations (as, e.g., implied by shrinkage), but does not make it superfluous. The

reason is that a transaction cost regularization only partly contributes to a better conditioning of

covariance estimates, but does not guarantee this effect at first place. Accordingly, procedures

which additionally stabilize predictions of the covariance matrix and their inverse, are still

effective but are less crucial as in the case where transaction costs are neglected.

Performing an extensive study utilizing Nasdaq data of more than 300 assets from 2007 to

2017, we empirically show the following results: First, we find that neither high-frequency-based

nor low-frequency-based predictive distributions result into positive Sharpe ratios when trans-

action costs are not taken into account ex ante. This is mainly due to a high turnover implied by

(too) frequent re-balancing. Second, as soon as transaction costs are incorporated ex ante into
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the optimization problem, resulting portfolio performances strongly improve, but differences in

the relative performance of competing predictive models become smaller. In particular, we find

that predictions implied by HF-based (blocked) realized covariance kernels, by a daily factor

SV model and by a rolling window shrinkage approach perform statistically and economically

widely similarly. A portfolio bootstrap reveals that none of these approaches is able to produce

significant utility gains on top of one of the competing models. Third, despite of a similar per-

formance of individual predictive models, mixing HF and low-frequency information is beneficial

as it exploits the time-varying nature of the individual model’s predictive ability. We find that

HF-based predictions are superior in volatile market periods, but are dominated by SV-based

predictions utilizing daily data in calm periods. Finally, we show that in case of an ex-ante

consideration of transaction costs, naive (1/N) strategies or GMV strategies (without turnover

penalization) are significantly outperformed. We moreover show that restrictions on the port-

folio weights as proposed by Jagannathan and Ma (2003) do not yield competing strategies as

they do not imply (sufficient) turnover penalization.

Our paper thus shows that transaction costs play a substantial role for portfolio allocation

and reduce the benefits of individual predictive models. Nevertheless, it pays off to optimally

combine high-frequency and low-frequency information. Allocations generated by adaptive mix-

tures dominate strategies from individual models as well as any naive strategies.
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A Proofs and Derivations

Proof of Proposition 1. First, we proof the following Lemma.

Lemma 1. For β →∞ it holds that

lim
β→∞

βΣ∗−1 = γI (53)

Proof. Note that any N × N matrix Σ cannot have eigenvalues of arbitrary magnitude, so

Σ∗ :=
(
β
γ I + Σ

)−1
is defined for all β in some neighborhood of infinity. We have

β

(
β

γ
I + Σ

)−1

= β

(
β

(
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γ
I +

1

β
Σ

))−1

=

(
1

γ
I +

1

β
Σ

)−1

. (54)

If we define f (h) =
(

1
γ I + hΣ

)−1
, we are interested in the limit limh→0 f (h). f(h) is defined

in a neighborhood around 0 and since taking inverses is continuous, we have

lim
β→∞

βΣ∗−1 = lim
h→0

f (h) = f (0) =

(
1

γ
I + 0 · Σ

)−1

= γI. (55)
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Using the classical mean-variance efficient portfolio representation

ω∗ =
1

γ

(
Σ∗−1 − 1

ι′Σ∗−1ι
Σ∗−1ιι′Σ∗−1

)
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we can derive the following equation based on Lemma 1:

lim
β→∞

ω∗ =

(
I − 1

N
ιι′
)
ωt+ +

1

N
ι (58)

= ωt+ . (59)

For increasing transaction costs optimal re-balancing shrinks to 0.

Proof of Proposition 2. First, we can rewrite
(
β
γA(Σ∗)

)
=
(

Σ̃−1 − 1
ι′Σ̃−1ι

Σ̃−1ιι′Σ̃−1
)

with Σ̃ :=(
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βΣ
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. Let λ1 > . . . > λN > 0 the N eigenvalues of Σ. Then (1 + γ
βλi), i = 1, . . . , N are the

eigenvalues of Σ̃ and the eigenvalues of Σ̃−1 are β
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. Next we derive
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The inequality holds after applying triangle equation and making use of the fact that
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where α := Σ̃−1ι and recognizing that for the rank 1 symmetric matrix ‖αα′‖F = ‖α‖22. Now
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note that
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Also we can derive 1
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. The limits can be computed by decomposing γ
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where κ = Oι. For the ratio ιΣ̃−2ι
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we get

ιΣ̃−2ι

ι′Σ̃−1ι
=

∑N
i=1 κ

2
i /(

1
1+ γ

β
λi

)2∑N
i=1 κ

2
i /(

1
1+ γ

β
λi

)
. (66)

The weights κi are constrained by ‖κi‖22 = ‖ι‖2 = N , which results in the inequalities stated

above. Putting everything together, we get
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The statement in the proposition holds, as for β reaching 0, the term β
γ vanishes,

√
N∑
i=1

(
1

β
γ

+λi

)2
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converges towards a finite constant (as all eigenvalues of Σ are finite), and 1
1+ γ

β
λN

also vanishes.

Thus, ∃β > 0 such that for all β̃ ∈ [0, β) :
∥∥∥( β̃γA(Σ∗)

)∥∥∥
F
< 1.

Proof of Proposition 3. By exploiting that ι′ω∗t+1 = 1 and g∗′ω∗t+1 = ||ω∗t+1 − ωt+ ||1, Σβ
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ω∗t+1

can be written as
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Then, solving for ω∗t+1 yields

ω∗t+1 ∝ Σβ
γ
ι. (72)

Note that ω∗t+1 has the same direction as the solver of a ’classical’ GMV problem ω∗β :=

Σ−1
β
γ

ι/ι′Σ−1
β
γ

ι. The sum-up constraint completes the proof ⇒ ω∗t+1 = ωβ.

51



0.4

0.6

0.8

1 10 50 100 1000 10000

Transaction Cost parameter beta

A
n
n
u
al

iz
ed

S
h
ar

p
e

R
at

io

0.2

0.4

0.6

1 10 50 100 1000 10000

Transaction Cost parameter beta

A
ve

ra
ge
L

1-
w

ei
gh

t
d
iff

er
en

ce
to

N
ai

v
e

P
or

tf
o
li
o

Model Sample LW Naive

Figure 1: Annualized realized Sharpe ratio net of transaction costs for portfolios based on N = 308 assets
with daily re-allocation for the period from June 2007 until March 2017 with quadratic transaction costs.
The portfolio weights are computed as solutions to optimization problem (3) with varying choices of the
transaction cost parameter β (in basis points). The variance-covariance matrix is estimated using the
sample covariance matrix and a regularized version (Ledoit and Wolf, 2004) (both based on a rolling
window of 500 days). The mean of the returns, µt, is set to 0. The second panel corresponds to the
average L1 difference of the estimated weights and the naive (equally weighted) portfolio.
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Figure 2: Annualized realized Sharpe ratio net of transaction costs for portfolios based on N = 308 assets
with daily re-allocation for the period from June 2007 until March 2017 with L1 transaction costs as in
Equation (9). The portfolio weights are computed as solutions to optimization problem (10) with varying
choices of the transaction cost parameter β (in basis points). The variance-covariance matrix is estimated
using the sample covariance matrix and a regularized version (Ledoit and Wolf, 2004) (both based on a
rolling window of 500 days). The mean of the returns, µt, is set to 0. The second panel corresponds to
the average L1 difference of the estimated weights and the naive (equally weighted) portfolio.
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Figure 3: Cross-sectional averages of daily realized volatilities based on intra-daily data for N = 308
assets. Realized volatilities are computed using univariate realized kernels Barndorff-Nielsen et al. (2008).
We report annualized volatilities in percentage points. The second panel denotes the mean of the off-
diagonal elements of the estimated daily correlation based on blocked realized kernel matrices computed
using 4 groups.
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Figure 4: Predictive credible regions of the stochastic volatility factor model with j = 3 factors, the HF
model with 4 liquidity groups and the Ledoit-Wolf (2004) shrinkage, computed as described in Table
1. For every model, a sample of the predicted portfolio return of the 1/N allocation is generated by

first sampling from the predictive return distribution r
Mk,(l)
t+1 and then evaluating the vector 1

N ι
′r

Mk,(l)
t+1 .

Lines indicate the 0.025 and 0.975 quantiles of the predictions. The dots indicate the observed (true)
return of the naive portfolio at time t+ 1.
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Figure 5: Combination weights computed based on (24). The weights are sequentially updated to
maximize the log posterior predictive likelihood of past observed returns based on a rolling-window
of 250 days. The lines correspond to the mean of the bootstrapped combination weights. The gray
confidence bands denote the 2.5% and 97.5% quantiles of the bootstrapped combination weights. The
shaded gray area in the background visualizes a scaled time series of the daily estimated volatility across
all 308 markets and corresponds to the data used in Panel a) of Figure 3.
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Figure 6: Time series of daily turnover implied by each strategy (TOk), measured as the L1 norm of
daily re-balancing. The shaded areas correspond to bootstrapped confidence intervals.
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Figure 7: Bootstrapped distribution of annual switching fees in basis points for switching to the portfolio
implied by model mixing. Computed for an investor with power utility and risk aversion parameter γ = 4
based on the 200 bootstrapped realized portfolio performances net of transaction costs.
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