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ABSTRACT 

 

Many male and first-generation college-goers struggle in their first year of postsecondary 

education. Mentoring programs have been touted as a potential solution to help such students 

acclimate to college life, yet causal evidence on the impact of such programs, and the factors that 

influence participation in them, is scant. This study leverages a natural experiment in which peer 

advisors (PAs) were quasi-randomly assigned to first-year university students to show that 1) 

male students were significantly more likely to voluntarily meet with their assigned PA when the 

PA was also male and 2) these compliers were significantly more likely to persist into the second 

year of postsecondary schooling. We find no effect of being assigned to a same-sex PA on 

female students’ use of the PA program, nor do we find any evidence that the PA program 

affected subsequent academic performance (GPAs).    
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 Females now attend and complete college at significantly higher rates than males, and a 

similar gap exists between students from high- and low-income backgrounds (Bailey and 

Dynarski 2011; Bound and Turner 2011). These gaps concern policymakers who desire equal 

educational, social, and economic opportunities for all students (e.g., Rodríguez-Planas 2012b), 

as mounting evidence suggests that education, particularly postsecondary education, improves a 

host of long-term socioeconomic outcomes, including earnings (Blundell, Dearden, and Sianesi 

2005; Card 1999), civic engagement (Dee 2004a; Milligan, Moretti, and Oreopoulos 2004), 

health (Grossman 2006), and crime (Lochner and Moretti 2004; Machin, Marie, and Vujic 2011). 

Moreover, there are social benefits (i.e., positive externalities) to a more educated population 

(Moretti 2004a,b).  

It is important, then, to identify the cost-effective interventions available to policymakers 

and college and university administrators that might close sociodemographic gaps in 

postsecondary educational success, particularly once students have matriculated, since male and 

first-generation college students often struggle in their first year of postsecondary education. 

Indeed, conditional on matriculation, there are similar sociodemographic gaps in college 

completion (Bound and Turner 2011). Advising and mentoring programs constitute one class of 

potentially beneficial interventions, as such programs that provide information, guidance, and 

general support to students who lack these resources in their familial and social networks 

(Angrist, Lang, and Oreopoulos 2009; Avery and Kane 2004; Bettinger, Boatman, and Long 

2013; Deming and Dynarski 2009; Dynarski 2016; Rodríguez-Planas 2012b). Indeed, mentoring 

and advising programs offered to high school seniors have been shown to increase high school 

graduation and college matriculation rates among socioeconomically disadvantaged populations 

(Castleman and Page 2015; Castleman, Page, and Schooley 2014; Stephan and Rosenbaum 
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2013), and colleges and universities now offer a wide array of voluntary and nonvoluntary 

advising and support services (Carlstrom and Miller 2013).  

However, there is relatively little causal evidence on the efficacy of postsecondary 

voluntary advising and mentoring interventions, and most observational studies are plagued by 

endogenous take-up of support services (Bettinger, Boatman, and Long 2013).1 Moreover, the 

handful of credibly designed studies that randomize access to support services yield mixed 

evidence (Rodríguez-Planas 2012b). One plausible explanation for these mixed results is low 

takeup rates of voluntary advising, mentoring, and support services (Angrist, Oreopoulos, and 

Williams 2014). Interventions that proactively engage students tend to have larger impacts on 

students’ academic success than those that do not, which supports this hypothesis: for example, 

Bettinger and Baker (2014) investigate InsideTrack, a program in which coaches repeatedly 

reach out to nontraditional college students by phone, email, text, and social media, and find that 

the program significantly increased retention and degree completion.  

An open question of first-order importance to both the design and evaluation of such 

programs, then, is what malleable, cost-effective policy levers that affect students’ take-up and 

engagement of on-campus advising, mentoring, and support programs are available to 

postsecondary institutions? Currently, little is known about the causal determinants of student 

take-up of such programs. We contribute to this gap in knowledge by providing novel evidence 

on how assignment to a same-sex peer advisor affects students’ engagement with a voluntary 

peer-advising program at a selective, midsized, private, non-for-profit university.2 We do so by 

                                                 
1 The directions of selection and the resulting bias are ambiguous, as there could be both positive and 

negative selection into advising. 
2 This analysis is motivated by, and also contributes to, an extensive literature that documents the impact of 

student-instructor demographic match on student success in both the K–12 (Dee 2004b, 2007) and postsecondary 

contexts (e.g., Bettinger and Long 2005; Carrell et al. 2011; Fairlie et al. 2014; Hoffman and Oreopoulos 2009).  
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exploiting the quasi-random assignment of peer advisors to first-year, first-semester university 

students and find that male students assigned to male peer advisors are significantly more likely 

to engage their peer advisor than are males assigned to female peer advisors. 

 A related policy-relevant question is whether students induced to engage their assigned 

peer advisor benefit from the encounter. We address this question using an instrumental variables 

strategy to provide causal estimates of the local average treatment effect (LATE) of meeting with 

the peer advisor on students’ grade point averages (GPAs) and retention rates.3 Specifically, our 

identification strategy exploits quasi-random assignments of peer advisors to students, which 

creates exogenous variation in assignment to same-sex advisors. These quasi-random 

assignments to same-sex peer advisors can then be used as instruments for students’ participation 

in the peer advising program. Intuitively, analyses of the impact of peer advisors’ sex on 

students’ take-up of the peer advising program described above constitute valid first-stage 

regressions for instrumental variables analyses of the relationship between meeting with the 

assigned peer advisor and student outcomes. Therefore, the identification of credible estimates of 

the effect of a voluntary peer-advising program on students induced to participate by being 

assigned to a same-sex peer advisor is a second contribution of the current study.    

 We address these research questions using rich administrative data from two cohorts of 

first-year undergraduate students at American University. We find evidence of a strong first-

stage relationship—primarily driven by the behavior of male students—between being assigned 

a same-sex peer advisor and students’ participation in the peer advising program. Similarly, we 

find evidence of a causal reduced-form relationship between being assigned a same-sex peer 

advisor and students’ second-year retention rates, but no such impact on GPAs in the following 

                                                 
3 In future work, we will estimate the impact on degree completion, once the analytic sample’s cohorts 

reach the necessary four- and six-year milestones. 
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spring semester. The reduced-form findings are strongly suggestive of a positive, causal impact 

of the peer advising program on compliers’ persistence at the university, as there is no channel 

through which the sex of the randomly assigned peer advisor should affect outcomes other than 

from engagement with the peer advising program. Indeed, this is confirmed by 2SLS and 

bivariate-probit estimates that show meeting with assigned peer advisors significantly increased 

compliers’ likelihood of persisting at the university. Qualitative evidence from exit surveys of 

program participants comport with the quantitative results and provide additional insights into 

students’ reasons for engaging the peer advisor and the channels through which peer advising 

increased student persistence.          

 The paper proceeds as follows: The next section briefly reviews the relevant theoretical 

and empirical literatures on the efficacy of advising and mentoring programs and the role that 

student-instructor demographic mismatch plays in the education production function. The third 

and fourth sections describe the institutional details and data, respectively. The fifth section 

describes the identification strategy. The sixth section presents the first stage and reduced-form 

estimates of the impact of being assigned a same-sex peer advisor on students’ participation in 

the peer advising program, spring quarter GPA, and retention. The seventh section presents 

instrumental variables estimates of the impact of meeting with a peer advisor on educational 

outcomes. The eighth section briefly reviews two sources of qualitative data on students’ 

perceptions of the program. The ninth section concludes.    

THEORETICAL BACKGROUND AND LITERATURE REVIEW 

Peer advising might be a particularly important form of mentoring intervention for 

addressing sociodemographic gaps in postsecondary success, for several reasons. First, peer 
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advisors are cheaper than professional full-time advisors, so they might be particularly cost-

effective (Karcher et al. 2006; Sanchez, Bauer, and Paronto 2006; Self 2008). Second, peer 

advising might serve as a gateway that increases students’ engagement with the full array of 

advising and support services on campus, and with the postsecondary institution more generally 

(Colvin and Ashman 2010; Habley, Bloom, and Robbins 2012). Finally, peer advisors might be 

especially well-positioned to improve the academic performance and engagement of male 

students and students from socioeconomically disadvantaged backgrounds, who often struggle in 

their first year of postsecondary schooling, since peer advisors provide an informal, low-stakes 

environment for students to openly address their concerns, study habits, and expectations (Shook 

and Keup 2012). Arguments about the likely importance of peer effects in postsecondary settings 

make similar points about how high-quality peers might act as role models and affect college 

students’ study habits and time use (Stinebrickner and Stinebrickner 2006). 

The current investigation of the determinants and impacts of participation in a voluntary 

peer-advising program contributes to two distinct literatures. The first is made up of first-stage 

analyses of how the sex match between students and assigned peer advisors contributes to the 

literature on the relationship between student-instructor demographic mismatch and student 

outcomes. Seminal studies by Dee (2004b, 2005, 2007) use a variety of data sources and 

identification strategies to show that, on average, when primary and secondary school students 

are assigned to teachers of different races and genders, students perform worse on standardized 

exams and teachers have lower perceptions of student performance and behavior. Ouazad (2014) 

finds similar effects on teachers’ perceptions of ability in a nationally representative survey of 

U.S. kindergarteners.  
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Similar effects of student-instructor demographic mismatch have been documented in the 

context of postsecondary education. For example, Hoffman and Oreopoulis (2009) find positive 

effects of having a same-sex professor on a variety of academic outcomes among undergraduates 

at the University of Toronto, and Carrell, Page, and West (2010) find that this is particularly true 

for undergraduate female science and math students. Fairlie, Hoffman, and Oreopoulos (2014) 

find similar effects of being assigned a same-race instructor on several measures of minority 

students’ academic success, including course grades, future course selection, and degree 

completion, at a community college in Northern California. 

There is also growing evidence that student-instructor demographic match improves 

students’ engagement with school: Holt and Gershenson (2015) find significant effects of having 

a white primary-school classroom teacher on black students’ likelihood of being chronically 

absent or suspended from school, and Lusher, Campbell, and Carrell (2015) find similar effects 

of having a racially mismatched teaching assistant (recitation leader) on college students’ 

attendance at optional discussion sections and office hours. The latter result is particularly 

germane to the current study because teaching assistants are similar to peer advisors in that they 

are relatively close in age and have had similar experiences to undergraduate students, and 

because engaging in the peer advising program is optional, as is attending office hours. For these 

reasons, we hypothesize that students will be more likely to engage with same-sex peer 

advisors.4 In testing this hypothesis, we contribute to the literature on the impacts of student-

instructor demographic mismatch by providing evidence that increased engagement is likely one 

channel through which student-instructor demographic mismatch affects academic achievement. 

Moreover, to the extent that there are benefits of peer advising, the finding that take-up is higher 

                                                 
4 There is insufficient variation in peer advisors’ race to study the effects of racial mismatch on 

engagement.   
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when students are matched to a same-sex peer advisor has implications for the optimal design 

and implementation of voluntary peer-advising programs, as well as for similar support services. 

Second, by providing causal estimates of the impact of engagement with a peer advisor, 

the current study furthers our understanding of the efficacy of such programs and more generally 

of the sorts of interventions that might improve postsecondary success. Academic advising has 

long served the administrative and clerical function of helping students with the mechanics of 

scheduling and registering for courses (Frost 2000), and student development theory posits that 

academic advising can provide high-quality on-campus interactions for students (Light 2004; 

Tinto 1999; Wyckoff 1999). High-quality, frequent interactions with staff, faculty, and peers 

likely increase student satisfaction and persistence (Astin 1993; Bean 1980; Tinto 1987).  

The fastest growing source of on-campus advising has been from professional advisors, 

as institutions are becoming increasingly aware of the extent and depth of the nonacademic 

issues students contend with while in college, and as faculty members face increased demands 

that limit their ability to advise and mentor students (Hemwall 2008; Kennedy and Ishler 2008; 

Self 2008). This increase in mentoring and advising services spurred research on the 

effectiveness of such interventions. However, much of this research is correlational and fails to 

adequately account for selection bias (Bettinger, Boatman, and Long 2013; Crisp and Cruz 

2009). A handful of exceptions to this critique, which exploit experimental or quasi-experimental 

research designs, generally find positive, modest impacts of academic advising services, at least 

for certain student populations. 

For example, Kot (2014) uses a propensity score matching procedure to compare 

observationally similar first-year university students who engaged with a centralized academic 

advising program to those who did not and finds positive effects on retention and grades. Of 
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course, these estimates may be biased by selection on unobservables, which several authors 

avoid by conducting randomized experiments. Bettinger and Baker (2013) examine one such 

experiment designed to evaluate the effectiveness of a unique type of advising. The authors find 

that students who are assigned individualized student coaching from a private firm are more 

likely to remain enrolled at the university throughout the treatment period and one year after 

coaching had concluded. In reviewing the literature, Rodriguez-Planas (2012b) notes that most 

credible evaluations of formal postsecondary advising programs find small, positive gains for 

females but no such gains for males. One plausible explanation for this discrepancy is that 

females are more likely to engage with such programs, a point to which we return below. 

Just as increased demands on faculty led to professional advisors, so too have increased 

demands on professional advisors led to the establishment of peer-advising programs. However, 

rather than replacing professional advising, peer advising is usually supplementary to core 

offerings (Carlstrom and Miller 2013; Self 2008). Students likely benefit from interacting with 

peer advisors, whose experiences more closely resemble those of students (Newton and Ender 

2010). Additionally, peer advisors are a cost-effective way to maintain support in response to 

increased student demand or cuts to funding (Shook and Keup 2012). 

Despite the growing popularity of peer-advising offerings at postsecondary institutions in 

the United States and abroad, literature examining the impact of such programs is sparse. Two 

important exceptions are experimental studies of programs implemented at a less-selective 

Canadian public university. The first study, Angrist, Lang, and Oreopoulos (2009), finds that 

female students randomized into a combined treatment condition of peer advising and financial 

incentives have higher GPAs and better academic outcomes than females who received only the 

financial incentive, and that this effect persists for two years. Importantly, the authors also find 



 

9 

 

suggestive evidence that student participation in the program is positively correlated with 

students who happened to be matched with a same-sex peer advisor, although peer advisors were 

not randomly assigned to students. The second study, Angrist, Oreopoulos, and Williams (2014), 

offers a variation of the most effective treatment arm from Angrist, Lang, and Oreopoulos and 

examines whether the chance to earn merit aid, combined with the offer of peer advising, 

improves academic outcomes. While their main findings regarding financial incentives are 

outside the scope of the present discussion, it is notable that the intervention intentionally and 

unanimously matched students to peer advisors of the same sex. Over 75 percent of students 

interacted with the peer advisor over the course of the year, which suggests a benefit to same-sex 

matches between peer advisors and students, as there were fewer overall student interactions 

with peer advisors in the 2009 study, which did not strictly enforce same-sex pairings, 

particularly among mismatched pairs.  

The current study contributes to the literature on the take-up and efficacy of 

postsecondary academic advising programs, particularly of peer-advising programs, in three 

general ways. First, we extend the analysis of Angrist, Lang, and Oreopoulos (2009) and Angrist, 

Oreopoulos, and Williams (2014) to a new context: a selective, private university in the United 

States, which serves a quite different student population than the less-selective commuter 

campus of a large Canadian public university. Second, we provide novel causal evidence on a 

low-cost, malleable determinant of students’ engagement with peer advisors: the sex-match 

between students and assigned peer advisors. Third, we provide novel causal evidence on the 

impact of a voluntary peer advising program, in the absence of financial incentives, on 

postsecondary student outcomes. 
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INSTITUTIONAL DETAILS 

 The current study investigates student behavior at American University—a midsized, 

selective, private, nonprofit university in the Mid-Atlantic Region. It enrolls between 1,500 and 

1,700 first-year, first-time college students each fall. The university offers doctoral, masters, and 

undergraduate programs. For the two-year period of this study, the university had federally 

reported first-year retention rates of nearly 90 percent and six-year graduation rates of about 80 

percent. The university is made up of five academic units, the largest of which is the College of 

Arts and Sciences (CAS). 

Distinctly from the other four units, CAS has offered peer advising to its first-year 

undergraduate students since 2008, though administrative data are only available for the 2013 

and 2014 cohorts.5 The program provides free one-on-one support services during students’ first 

semester on campus. Peer advisors aim to bridge the developmental gap from high school to 

college and increase the first-to-second-year retention rates of students.6 Peer advisors complete 

a competitive application process, receive extensive training on working with students and 

handling sensitive issues, must maintain a GPA of 3.0 or higher, and commit to working the 

entire academic year. During the period under study, eight unique peer advisors (four in each 

year) staffed the program, each working about 8–10 paid hours a week.  

                                                 
5 Data from 2012 are available, but there was no variation in peer advisor sex in this year. We occasionally 

use 2012 data in sensitivity analyses, though not in the main analytic sample. The peer-advisor assignment 

mechanism changed in 2015, so our identification strategy cannot be applied to this cohort. 
6 Crisp and Cruz (2009) note that much current research about mentoring and advising fails to provide 

operational definitions of the service(s) provided by the programs under study. In reviewing program planning 

documents, peer selection criteria, and training materials, the peer advising program of interest has the goals of 

psychological and emotional support, degree and career support, and academic subject knowledge and support. It is 

not explicitly noted that the program addresses the fourth goal, existence of a role model; however, it could be that 

many students view their peer advisor in this way. The program does not provide academic support services. 
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A full-time professional academic advisor coordinated the program as part of her 

assigned job responsibilities. The coordinator created advising caseloads by sorting new first-

year students alphabetically by surname, dividing the alphabetized list into four similarly sized 

groups, and then arbitrarily assigned one peer advisor to each quartile (group) of students.7 

Importantly, the letters included in each quartile changed from year to year, meaning that there 

was within-letter variation in quartile assignment. While students may choose whether or not to 

meet with their assigned peer advisor, they do not choose which advisor they meet with. In fact, 

the program’s coordinator confirmed that that there were no instances of students meeting with 

(or attempting to meet with) nonassigned peer advisors. In practice, the software students use to 

schedule appointments enforces this restriction. As a result, conditional on student sex and the 

first letter of his or her surname, this assignment mechanism creates exogenous variation in 

assignment to same-sex peer advisors. 

Students learn about the program via two emailed invitations, seemingly sent from their 

assigned peer advisor. However, it is the coordinator who schedules and sends the emails from a 

central account after verifying the roster of eligible students and splitting them into the caseloads 

described above. These email invitations, regardless of which peer advisor they were “sent” by, 

were sent to all students at the same time in September, during the third or fourth week of the fall 

semester. The only variation between emails is the assigned peer advisor’s first name, surname, 

and contact information.  

                                                 
7 The coordinator did not split letters between advisors. For example, in 2013, each of the four peer 

advisors was assigned to one of the following portions of the alphabetically sorted list: A–E, F–L, M–R, and S–Z. 
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Our identification strategy, formalized below, assumes that students are able to infer the 

sex of the assigned peer advisor from the name provided in the email invitation.8 This 

assumption is likely valid for at least two reasons. First, a well-established literature in 

phonology provides convincing descriptive and experimental evidence that English language 

speakers predictably and reliably identify names they read as male or female (Barry and Harper 

1995; Cassidy et al. 1999; Slater and Feinman 1985).9 Second, the names of the peer advisors in 

2013 and 2014 are unambiguously sex-specific. All seven unique peer-advisor names are 

approximately among the top 500 most common names for their sex for the 1995–2013 birth 

cohorts, and none appear among the top 1,000 most common opposite-sex names; that is, there 

are no names such as Morgan, which appears among the most common male and female 

names.10 The two male names are in the top 10 and top 100 most common male names, 

respectively, and are similar to names such as Thomas and Nathan. One top-10 female name 

appears twice among the group and is similar to a name such as Natalie. The other female names 

are in the range of the top 50, top 100, or top 500 most common female names and are 

comparable to names such as Sara, Tiffany, and Alyssa, respectively. 

                                                 
8 Of course, it is also possible that students searched for their assigned peer advisor’s name on social media 

or the Internet and inferred the peer advisor’s sex from a photograph or other additional information. Nonetheless, 

such behavior does not violate the key identifying assumption. 
9 This is one of several reasons we exclude international students from the main analytic sample, as 

international students may be less familiar with common male and female names in the U.S. context. 
10 We go back to the 1995 birth cohort because this is, on average, when the students in the analytic sample 

were born. The Social Security Administration provides lists of the most popular first names for boys and girls by 

birth year at https://www.ssa.gov/oact/babynames. 

https://www.ssa.gov/oact/babynames
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DATA 

The current study relies on administrative data on first-year domestic CAS students in 

two consecutive cohorts (Fall 2013 and 2014).11 Table 1 summarizes these students. Column 1 

shows that overall, a little more than half of students voluntarily met with their assigned peer 

advisor, and 87 percent were retained by the college into their second year. Students performed 

well in the spring semester of their first year, earning an average GPA of 3.26 (on a 4.0 scale). 

About one-quarter of these students were male, which is slightly smaller than the university’s 

campus-wide sex ratio of about 1:3. About one-quarter of these students were assigned a male 

peer advisor; this is consistent with the fact that each year only one of the four peer advisors was 

male and about one-quarter of students were uniquely assigned to each peer advisor. Given that 

the majority of both students and peer advisors are female, it is unsurprising that almost two-

thirds of students were assigned a same-sex peer advisor. This is a majority white student body, 

though a variety of other race and ethnic groups are represented. Students have strong 

admissions credentials, which is unsurprising given the university’s selectivity, and tend to come 

from wealthy zip codes. 

Columns 2 and 3 of Table 1 summarize students separately by sex. Consistent with past 

research (e.g., Angrist et al. [2009, 2014]), females were marginally more likely to meet with 

their peer advisor and had marginally higher retention rates and spring GPAs. Males and females 

were about equally likely to be assigned a male advisor and were approximately evenly 

distributed across quartiles of the alphabet, which reassures us that the peer advisor assignments 

                                                 
11 We exclude about 50 international students because a separate support system is in place for these 

students. However, international students are eligible for peer advising and do receive the email invitation. The main 

results are robust to including these students, but we exclude them from the main analytic sample because they are 

not the target population for peer advising.  
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were in fact exogenous. Nonetheless, we conduct a formal balancing test below, which provides 

further assurances. Finally, males and females had very similar preadmission credentials, 

including similar SAT/ACT scores, though females had slightly higher high school GPAs. 

Finally, columns 4 and 5 of Table 1 compare students who did meet with their assigned 

peer advisor to those who did not. Those who did attend advising were more likely to be retained 

and had higher spring GPAs, though these differences could be driven by positive selection into 

advising. Overall, students who met their peer advisor were significantly more likely to have 

been assigned a same-sex peer advisor, which is consistent with our hypothesized first-stage 

relationship. We delve into this relationship in greater detail below. Regarding selection on 

observables into meeting with the peer advisor, students who did and did not meet with their 

assigned peer advisor tend to have similar sociodemographic characteristics and preadmissions 

credentials, though those who did meet with their peer advisor had marginally higher high-school 

GPAs.   

Table 2 compares the mean characteristics of students who were and were not assigned a 

same-sex peer advisor, separately by students’ sex. Pooling the two sexes in one test of covariate 

balance yields similar results, but we perform this analysis separately by student sex since there 

are some fundamental differences between the sexes and females are overrepresented among 

both students and peer advisors. No mean differences are statistically significant at the 95 

percent confidence level. Importantly, none of the mean differences in preadmissions proxies for 

student ability and work ethic (SAT and GPA) between students in the treatment (same-sex peer 

advisor assignment) and control (different-sex peer advisor assignment) conditions are even 

marginally statistically significant, nor are differences in students’ home zip code socioeconomic 

characteristics. Two differences are marginally statistically significant for males: black students 
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and students from New England. While the marginal significance of these differences is likely 

spurious given the number of hypothesis tests conducted in Table 2, the fact that these 

differences are in demographic characteristics that might predict the first letter of the surname, 

and thus might be associated with the sex of the assigned peer advisor, merit further attention. 

We address this concern by estimating models that explicitly control for students’ racial and 

ethnic backgrounds, home region fixed effects (FE), and “first letter of surname FE.” The main 

results are robust to conditioning on these covariates. 

Table 3 provides suggestive evidence of unconditional first-stage and reduced-form 

effects of being assigned to a same-sex advisor on meeting with the peer advisor, and subsequent 

educational outcomes, respectively. Regarding the first-stage relationship between being 

assigned a same-sex peer advisor and the likelihood of meeting with the assigned peer advisor, 

there is a statistically significant positive effect that appears to be entirely driven by the response 

of male students. Specifically, male students assigned to a male peer advisor are, on average, 16 

percentage points more likely to meet with their assigned peer advisor than are males assigned to 

a female peer advisor. From the base take-up rate of males assigned to a female peer advisor, this 

represents a substantively large 38 percent increase in the likelihood of meeting with the peer 

advisor. 

A similar pattern appears in the next panel of Table 3, which shows the unconditional 

reduced-form effect of being assigned a same-sex peer advisor on retention the following fall. 

Specifically, males assigned to a male peer advisor are 9.3 percentage points (11 percent) more 

likely to be retained than males assigned to a female peer advisor. This difference is marginally 

statistically significant and consistent with the first stage results described above. Indeed, 

because it is hard to imagine how an email that provides the name of the assigned peer advisor 
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could affect retention in any way other than through inducing the student to meet with his or her 

peer advisor, this reduced-form result strongly suggests a causal relationship between meeting 

with the assigned peer advisor and persistence at the university. Interestingly, however, the final 

panel of Table 3 provides no evidence that the sex of the assigned peer advisor affected the 

probability that the student earned a spring GPA of 2.0 or higher, which is the threshold for 

academic probation.12 The fifth section formalizes an empirical strategy for identifying and 

interpreting these suggestive effects and for testing the identifying assumptions. 

ECONOMETRIC MODEL AND IDENTIFICATION 

 The current study contributes to our understanding of the role of voluntary peer-advising 

programs in the postsecondary education production function. Specifically, we provide causal 

evidence on the factors that influence participation in peer-advising programs and on the impact 

of participation on student outcomes. A generalized Roy Model (Roy 1951; Heckman 2010), in 

which students choose whether to meet with their assigned peer advisor based on the expected 

net benefits of doing so, articulates these contributions and motivates the econometric model. 

Returns to meeting with the peer advisor are intermediate, in the sense that they are measured in 

terms of human capital accumulation and not wages (e.g., GPA [academic performance] and 

persistence and graduation [attainment]).13 Rational students voluntarily meet with their assigned 

                                                 
12 Nor is there evidence of an effect on any other measure of performance (i.e., a GPA of 3.0 or higher (B 

average), actual GPA on the continuous 0.0-4.0 scale). This is likely because the peer advising program was 

designed to facilitate peer connections and provide academic advising, not to provide tutoring services. Peer 

advisors were trained to direct academic issues to the university’s academic support office and tutoring centers. 
13 We assume that individuals prefer more human capital to less, but remain agnostic as to why. There are 

many reasons why they might, as educational attainment is associated with higher earnings (Blundell, Dearden, and 

Sianesi 2005; Card 1999) and better health (Grossman 2006). Data on graduation are unavailable at the time of 

writing this draft in 2016, as members of the earliest cohort are currently in their third year at the university, but we 

will update the analysis to include graduation results when it is possible to do so.  
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peer advisor (select into treatment) if the expected net benefit of doing so is positive. This 

decision rule is characterized by three random variables: two potential outcomes (Y1, Y0) and the 

cost of meeting with the peer advisor (C). Formally, 

(1)   

where A is a binary indicator equal to 1 if the student met his or her peer advisor, and 0 

otherwise. Of course, only one of the two potential outcomes is actually observed, so we follow 

the common approach of modeling each potential outcome as a unique linear function of 

observed student characteristics (X) and additively separable stochastic errors.14 Finally, in 

addition to the opportunity cost of meeting with a peer advisor, which is also a function of X, we 

hypothesize that C is a function of the sex match between student i and assigned peer advisor j.15 

Specifically, we hypothesize that students, particularly male students, are more likely to interact 

with same-sex peer advisors, based on empirical evidence that students are more likely to attend 

the office hours of demographically matched teaching assistants (Lusher et al. 2015) and the fact 

that Angrist et al. (2009, 2014) find higher rates of interaction with peer advisors when the 

students were assigned to same-sex peer advisors.     

We operationalize Equation (1) by estimating linear and probit models of the form 

(2)  

where X contains observed student characteristics, including a cohort (year) indicator, 

sociodemographic background, admissions profile, and “first letter of surname” FE; male is a 

                                                 
14 As in the additive random utility model (ARUM) (Cameron and Trivedi 2005, p. 477). 
15 It is possible that students expect greater returns to meeting with a same-sex peer advisor, although 

Online Appendix Table A.1 shows no evidence that the impact of A on the ex post outcome Y varies by the type of 

student-peer advisor sex match. Nonetheless, nothing is lost by assuming that the sex-match indicators enter the 

linear equation for Y1 as well.    

   1 0Pr 1| Pr ,A Y C Y    

  0 1 2 3Pr 1| ,ij ij i i j i j ijA X male male male male u            
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binary indicator equal to one if male, and zero if female; and u is an idiosyncratic error term.16 

The parameter of interest in the linear probability model (LPM) is δ, which represents the 

differential effect of being assigned to a male advisor for male students (i.e., same-sex advisor 

match) on propensity to voluntarily meet with the peer advisor.17 The identifying assumption is 

that conditional on a student’s sex and his or her surname’s place in the alphabet, assignment to a 

same-sex advisor is random. As discussed in the third section, this is very likely true, since the 

peer advisors were arbitrarily assigned to subsets of the alphabetically sorted student list and the 

balancing test provided in Table 2 finds no evidence of systematic differences in the observable 

characteristics of students in the treatment and control conditions. Moreover, the alphabetical 

quartile cutoffs varied over time, so that students with surnames starting with E, F, K, and L 

were assigned to male peer advisors in some years and to female peer advisors in others.18 Thus 

OLS estimates of δ in Equation (2) and MLE estimates of the analogous probit model can be 

given causal interpretations. These results contribute to the literature on the impact of 

demographic mismatch on student outcomes. 

The exogenous variation in assignment to a same-sex peer advisor has two additional 

implications for Equation (2). First, Equation (2) can be interpreted as the first stage in an 

instrumental variables analysis of the impact of A on ex post outcome Y, in which the sex and sex 

                                                 
16 Peer advisor sex can also be replaced by a peer advisor fixed effect, which also subsumes the cohort 

indicator. Sensitivity analyses show that there are no statistically significant differences between the six female peer 

advisors, nor between the two male peer advisors. 
17 In the probit model, the parameter of interest is the corresponding average partial effect. The degree of 

student-peer advisor sex match in Equation (1) could be equivalently characterized by a set of four mutually 

exclusive categorical variables, one of which must serve as the omitted base category: male student, same sex 

match; female student, same sex match; male student, nonmatch; female student, nonmatch. We use these 

definitions in the probit model to ease the interpretation of partial effects.  
18 Variation in exposure to treatment within individuals whose surnames begin with the same or adjacent 

letters is arguably exogenous, as randomization in many high-profile randomized control trials was conducted by 

sorting units alphabetically and assigning treatment to every other, or every third, unit in the list (e.g., Glewwe et al. 

[2004]; Miguel and Kremer [2004]).    
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match of the randomly assigned peer advisor instrument for A. Second, the reduced form causal 

effect of being assigned a same-sex peer advisor on Y can be estimated using variants of 

Equation (2) that take Y as the dependent variable. These two implications are related, as 

documenting such reduced-form effects is a useful diagnostic check of the instruments’ validity 

(Angrist and Krueger 2001; Angrist and Pischke 2009; Chernozhukov and Hansen 2008). 

We proceed by jointly modeling Equation (2) and a parameterized version of the 

education production function (outcome equation): 

(3)  

When Equations (2) and (3) are linear, they can be estimated by 2SLS or LIML and τ is the 

parameter of interest, which represents the local average treatment effect (LATE) of meeting 

with the peer advisor on compliers’ outcomes (Imbens and Angrist 1994).19 Since the 

educational outcome Y is binary (i.e., an indicator of retention to the second year of 

postsecondary schooling, of graduation from college, or of GPA being above a certain 

threshold), it is natural to jointly model Equations (2) and (3) as a bivariate probit model, though 

a system of two LPMs may well provide reasonable approximations of the parameters of interest 

(Wooldridge 2010).20 We discuss additional sensitivity analyses and tests for heterogeneity in the 

results section. 

                                                 
19 Compliers are students induced into treatment (meeting with their peer advisor) by the assigned peer 

advisor’s sex. 
20 Of course, Y could also be a continuous measure of GPA that is censored from above at 4.0. Thus 

Equations (2) and (3) can be jointly modeled as a system of probit and tobit equations (Roodman 2011). We find no 

evidence that peer advising affected spring GPA, regardless of how GPA is measured, so we do not report estimates 

of the probit-tobit two-equation system. 

  0 1 2| .ij ij i i i ijE Y X male A         
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IMPACT OF ASSIGNMENT TO A SAME-SEX ADVISOR 

Main Results 

Panel A of Table 4 presents baseline OLS estimates of linear first-stage and reduced-form 

versions of Equation (2).21 Columns 1 and 2 report specifications of the first-stage regression that 

condition only on cohort (year) FE, and on the full set of covariates described in the fourth 

section (including a full set of “first letter of surname” FE), respectively.22 Point estimates on the 

male-student and male-student×male-advisor interaction terms are statistically significant, of the 

expected signs, and remarkably similar in magnitude across the two specifications.23 This 

provides further evidence that same-sex peer advisors (the treatment) were as good as randomly 

assigned. Specifically, males assigned to a female peer advisor are about 13 percentage points 

less likely than female students to meet with their assigned peer advisor. That the male-advisor 

indicator is statistically indistinguishable from zero indicates that female students were equally 

likely to meet with their peer advisor, regardless of the assigned peer advisors’ sex. Male 

students assigned to a male (same-sex) peer advisor, however, were 18 percentage points more 

likely to meet with their peer advisor than males assigned to a female peer advisor. Since only 

about half of male students met their peer advisor, this is a substantively large increase of about 

40 percent. 

                                                 
21 Probit coefficients are reported in Online Appendix Table A.2. Probit average partial effects, which are 

comparable and qualitatively similar to OLS estimates, are reported in Online Appendix Table A.3.  
22 Gelbach (2016) shows that the only relevant comparison is between the base (unconditional) and fully 

specified models, so we eschew the common practice of sequentially adding covariates to the model. 
23 Importantly, the interaction terms remain at least marginally statistically significant (p < 0.10) after 

making inference robust to clustering by peer advisor (eight clusters) using the wild bootstrap procedure proposed in 

Cameron, Gelbach, and Miller (2008). The main results are similarly robust to including a full set of advisor 

indicators. 
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Columns 3 and 4 of Table 4 similarly report estimates of baseline and fully specified 

reduced-form linear retention models, respectively.24 As in the first-stage results described 

above, the reduced-form point estimates are robust to the inclusion of covariates and “first letter 

of surname” FE, again suggesting that same-sex peer advisors were conditionally randomly 

assigned. Consistent with evidence of a gender gap in educational attainment, male students are 

marginally less likely to persist into their second year than females, but males assigned to a male 

peer advisor are 10 percentage points more likely to persist into their second year than male 

students who were assigned to a female peer advisor. Given that students were informed of their 

peer advisor’s sex indirectly by the name included in an email at the start of the fall term, it is 

difficult to imagine how this information could have affected retention in any way other than 

through students’ engagement with the peer advising system. In other words, the sex of the 

assigned peer advisor and the interaction between student and peer-advisor sex are unlikely to 

enter Equation (3) and therefore satisfy the exclusion restriction. Given this exclusion restriction, 

the reduced-form estimates presented in columns 3 and 4 of Table 4 are highly suggestive of a 

causal impact of meeting with the peer advisor on persistence into the second year of 

postsecondary education for male students induced to meet with their peer advisor by the same-

sex match (Angrist and Krueger 2001; Angrist and Pischke 2009; Imbens and Angrist 1994). 

That the sex of a randomly assigned peer advisor can significantly affect not only student 

engagement with the peer advising program but, ultimately, student persistence at the university 

is striking. Since each cohort was exposed to only one male peer advisor, one possible 

explanation is that these results were driven by one particularly popular, charismatic, or effective 

male peer advisor. We investigate this hypothesis in Panel B of Table 4 by reporting estimates of 

                                                 
24 Grade-threshold and GPA-reduced forms are not reported because, as shown in Table 3, there is no 

reduced-form effect of being assigned a same-sex advisor on spring semester grades. 
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an augmented model that includes interaction terms that allow the effects of student and peer-

advisor sex to vary across cohorts. The estimated coefficients in columns 1 and 2 of Panel B on 

the male-student indicator are nearly identical to those in Panel A, and the corresponding male-

student interaction term in Panel B is both small and statistically insignificant. Together, these 

two results indicate that male students assigned to female peer advisors were equally likely to 

engage their peer advisor across the two cohorts. The male-advisor coefficient and interaction 

term are similarly insignificant in columns 1 and 2 of Panel B, which indicates that female 

students were indifferent to the sex of their assigned peer advisor in both cohorts. Finally, in 

Panel B of Table 4, the male-student/male-advisor/2014-cohort triple interaction term is 

statistically indistinguishable from zero, while the male-student/male-advisor interaction term is 

positive and similar in magnitude to that in Panel A, indicating that male students were more 

likely to engage male peer advisors than female peer advisors in both cohorts. In sum, the 

estimates reported in columns 1 and 2 of Panel B of Table 4 suggest that the male preference for 

male peer advisors was not unique to one specific cohort or peer advisor. Given that these cohort 

interaction terms are jointly insignificant at traditional confidence levels, we prefer the more 

parsimonious baseline specifications reported in Panel A. The reduced form estimates reported in 

columns 3 and 4 of Panel B reinforce the general finding that while average effects of being 

assigned a same-sex male peer advisor were larger in 2013 than in 2014, the differences are not 

statistically significant at traditional confidence levels. And, as in the first-stage regressions 

presented in columns 1 and 2, the cohort interaction terms are jointly insignificant in the 

reduced-form regressions reported in columns 3 and 4 of Table 4. Since the main results are 

unlikely to have been driven by one unique peer advisor, subsequent analyses focus on the 
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baseline model that assumes constant effects across cohorts in the interest of parsimony and 

statistical power. 

Heterogeneous Effects 

Of course, there could also be heterogeneity along other dimensions, such as students’ 

sociodemographic backgrounds, since policy debates surrounding the importance of peer effects 

hypothesize that socioeconomically disadvantaged and underrepresented minority students stand 

to benefit the most from positive peer effects (Stinebrickner and Stinebrickner 2006). Table 5 

investigates four possible sources of heterogeneity in both the first-stage and reduced-form 

impacts of the sex of assigned peer advisors. Columns 1 and 2 test for heterogeneity by the 

educational attainment of the parents of students. The idea is that first-generation college-goers 

may benefit more from advising and mentoring interventions than the children of college-

educated parents, since college-educated parents are more familiar with postsecondary 

institutions, but first-generation students may also be more apprehensive about engaging with 

advisors. Indeed, these dual concerns are the motivation for informal peer-advising programs 

(Shook and Keup 2012). Columns 1 and 2 provide no evidence of significant differences by 

students’ first-generation status in the relationship between peer-advisor sex and student 

outcomes, as the first-generation interaction terms are individually and jointly statistically 

insignificant. Columns 3 and 4 of Table 5 report similar analyses for another measure of 

students’ socioeconomic status: whether or not the student received a Pell Grant.25 These 

estimates are generally similar to those for first-generation status, with one exception: the male-

                                                 
25 Pell grants were established in 1972 to provide federal funds directly to college students with financial 

need. Pell grants depend on the individual student’s financial need, cost of attendance, and enrollment 

status. Maximum awards were $5,645 and $5,730 in 2013 and 2014, respectively (Dynarski and Scott-Clayton 

2013). 
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advisor/Pell-recipient interaction in column 3 is large, positive, and statistically significant. This 

suggests that female Pell recipients assigned to male peer advisors are significantly more likely 

to meet with the peer advisor than are non-Pell females assigned to male peer advisors. This 

result is reflected in a marginally significant bump in retention for Pell-recipient females 

assigned to male peer advisors, seen in column 4. Columns 5 and 6 similarly allow for 

heterogeneous effects by student race. Specifically, race is measured by a crude “nonwhite 

minority” indicator that equals 1 if the student is black or nonwhite Hispanic and 0 otherwise. 

There is no evidence of significant differences by students’ race in the relationship between peer-

advisor sex and student outcomes, as the nonwhite interaction terms are individually and jointly 

statistically insignificant.26 

Together, the estimates in columns 1 to 6 of Table 5 indicate that the sizable male-

student/male-peer-advisor match effect documented in Table 4 does not vary by students’ 

socioeconomic or racial backgrounds. Nonetheless, it is interesting that the point estimates on the 

male-male-X triple interaction terms are systematically negative and similar in magnitude to the 

corresponding point estimates on the male-male interaction terms, suggesting that the male-male 

match effect is marginally larger among relatively advantaged white students. Finally, columns 7 

and 8 of Table 5 test for heterogeneity by students’ home locales, since students far from home 

might be more likely to utilize campus support services when they feel homesick or have less 

access to friends and family. We find no evidence for this, however, regardless of how distance 

from home is operationalized. In sum, Table 5 suggests a general lack of heterogeneity in the 

impact of male-student/male-peer-advisor sex match on take-up of the program and retention.  

                                                 
26 The lack of significant differences by race is robust to allowing for race-specific differences (e.g., a full 

set of black, Hispanic, Asian, and Other categorical indicators).  
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IMPACT OF PEER ADVISING ON ACADEMIC SUCCESS  

Main Results 

Table 6 reports estimates of Equation (3). Columns 1 and 2 report naïve OLS and probit 

estimates of the relationship between meeting with the peer advisor and the probability of 

persisting into the second year of postsecondary education. The models in column 1 condition 

only on student sex and cohort FE, while the models in column 2 condition on the full set of 

covariates and “first letter of surname” FE. These estimates show a modest, positive, marginally 

significant association between engagement with the peer advising system and retention. 

However, even the estimates in column 2 cannot be given a causal interpretation, as they are 

likely biased by unobserved factors that jointly determine retention and meeting with the peer 

advisor.27 We therefore prefer instrumental variables (IV) approaches that jointly estimate 

Equations (2) and (3), which are reported in columns 3 and 4 of Table 6. 

We prefer the linear IV and bivariate probit estimates of the fully specified model 

reported in column 4 of Table 6 to the unconditional models reported in column 3 for two 

reasons. First, conditioning on the exogenous student-background controls (e.g., race, SES, 

preadmissions academic performance) increases precision, particularly in the bivariate-probit 

models. This is useful, given the relatively small sample size and the general imprecision of IV 

estimators. Second, controlling for the “first letter of surname” FE is particularly important in the 

IV setting, since it is possible that the spot in the alphabet for a student’s surname is weakly 

correlated with academic success, perhaps because of the advantage early-letter students receive 

from being assigned to the front row of seating charts. Still, while we focus our discussion on the 

results in column 4, it is reassuring that the estimates in column 3 are quite similar. 

                                                 
27 Control-function endogeneity tests in columns 3 and 4 of Table 6 suggest that OLS estimates are biased. 
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The first panel of column 4 reports linear (2SLS) IV estimates. The 2SLS estimate is 

positive, quite large, and marginally statistically significant. It suggests that for students who 

were on the margin of meeting their peer advisor, and ultimately did because their assigned peer 

advisor was of the same sex, meeting with the peer advisor increased their probability of 

persisting into the second year of postsecondary schooling by about 67 percentage points. This is 

perhaps implausibly large, given that the average retention rate is between 80 and 90 percent. 

Given the LATE interpretation of this estimate, it could be that compliers had very low ex ante 

likelihoods of persisting and the peer advisors really helped these students. An alternative 

interpretation is that this point estimate is imprecise: the lower end of the 90 percent confidence 

interval is an impact of only about 5 percentage points, which also happens to be nearly identical 

to the naïve OLS estimate. While dramatically lower than 67, a 5 percentage point increase in the 

probability that a student is retained is arguably policy-relevant, as it is similar in size to the 

impact of merit awards (e.g., West Virginia’s PROMISE Scholarship) and the Open Doors 

bundle of small scholarships and enhanced student services (Deming and Dynarksi 2009). 

We also report the LIML estimate of the same linear specification, which has better 

small-sample properties than 2SLS and might perform better given our relatively small sample 

size (Angrist and Pischke 2009). The LIML estimate is nearly identical to the 2SLS estimate, 

which in addition to relaxing concerns about finite sample bias, suggests there is no weak IV 

problem (Angrist and Pischke 2009). Together, the linear estimates reported in the top panel of 

column 4 of Table 6 suggest that meeting with peer advisors had a positive impact on retention 

rates, at least for compliers who were induced to meet with their peer advisor by the randomly 

assigned peer advisor’s sex. The magnitude of this effect is less clear, however, both because of 
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the imprecision of the 2SLS and LIML estimates and the fact that both the endogenous and 

outcome variables are binary. 

The bivariate-probit models estimated in the bottom panel of Table 6 address both 

concerns, as the bivariate probit estimates are more efficient and restrict predicted probabilities 

to the unit interval (Wooldridge 2010). Indeed, the bivariate-probit coefficient estimate and 

associated average partial effects (APE) in column 4 are both statistically significant, and the 

APE, which is directly comparable to the linear estimates, has a standard error that is about one-

third the size of the linear 2SLS and LIML standard errors. The APE is smaller, but still positive, 

and suggests that compliers who met with their peer advisor were about 28 percentage points 

more likely to be retained. Once again, the bivariate probit estimates strongly suggest that, for at 

least a subset of students, voluntary peer advising programs can significantly increase retention.  

Heterogeneous Effects 

For the same reasons that the first-stage and reduced-form effects discussed in the sixth 

section might vary by students’ sociodemographic backgrounds, so too could the impact of 

actually meeting with the assigned peer advisor vary with observed student characteristics. We 

test this hypothesis by augmenting Equation (3) to include interactions between A and X, and by 

using interactions between the instruments and X as additional instruments. As in Table 5, Table 

7 tests for heterogeneity along four observable dimensions: first-generation, Pell recipient, 

underrepresented minority (black or Hispanic), and distance from home (Mid-Atlantic region). 

For each of these outcomes, naïve OLS and IV 2SLS estimates are reported, and in all but one 

case the control function is statistically significant, indicating a significant difference between 

the OLS and 2SLS estimates. None of the 2SLS estimates of the interaction terms are statistically 

significant at traditional confidence levels, though the first-generation and Pell-recipient 
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interaction terms are negative and relatively large in magnitude. Overall, like the reduced-form 

results in Table 5, Table 7 suggests that there is little variation by observable student 

characteristics in compliers’ benefits of meeting with the assigned peer advisor. 

QUALITATIVE EVIDENCE 

In order to better understand why students utilized the peer-advising program and the 

potential channels through which peer advising affected students, program staff conducted two 

qualitative surveys of program participants. First, all students who attended peer advising during 

the 2013 fall semester were invited to participate in an online, anonymous survey. Second, 10 of 

these students were randomly selected to participate in in-depth discussions about their 

experiences in the program with program staff. Both surveys were subject to severe limitations 

that prevent us from making causal inferences from these data: low (less than 50 percent) 

response rates, only program participants were sampled, and individual student responses cannot 

be linked to the administrative data analyzed above. Still, these data shed some light on students’ 

reasons for participating in the program, and on what they got out of it. We summarize the 

results below. 

Online Survey 

 All students who met with a peer advisor during the 2013 fall semester were emailed a 

link to take an exit survey on www.surveymonkey.com at the end of the semester. Only 71 

(about 32 percent) of eligible students responded, of whom 69 answered every question.28 

Unfortunately, the anonymous survey did not ask about students’ demographic backgrounds, so 

                                                 
28 Each of the 71 entries did come from a unique IP address.   

http://www.surveymonkey.com/
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we cannot examine the representativeness of the respondents, nor can we investigate 

heterogeneity in responses. However, the survey did ask about the student’s major, and 31 

percent of respondents reported being undecided. This is similar to the overall percentage (27 

percent) of 2013 cohort CAS students who had yet to declare a major at the end of the fall 2013 

semester, which suggests that, at least on this dimension, survey respondents resemble the full 

2013 CAS cohort.  

The survey contained 13 multiple choice questions and concluded with an option to write 

an open-ended comment. Responses to the first five multiple-choice questions are summarized in 

Panel A of Table 8. These five questions ask students about their perceptions of their peer 

advisor. Respondents’ perceptions of the peer advisors were unanimously positive, as about one-

quarter agreed and three-quarters strongly agreed with each positively framed statement. 

Panel B of Table 8 reports each of the 11 responses in the open-comment form. Once 

again, the responses are uniformly positive. Some of the responses hint at why students engaged 

with the program. For example, students commented “it’s much less intimidating to ask 

questions . . . of a peer advisor than of a faculty member” and “The informal setting and meeting 

with your peers is the perfect place for students to let down their guard and get help and learn 

new things.” These sentiments are consistent with theories that predict that the informality and 

shared experiences of peer advisors make them an attractive source of support. Responses about 

the efficacy of the program are too generic to provide much insight into the specific channels 

through which peer advisors affected student outcomes, though the responses seem to indicate 

that the program was beneficial: five comments included the word “helped” or “helpful.” One 

student suggested that the program be more widely advertised. 
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In an effort to evaluate the program’s efficacy, the online survey also included four pairs 

of ex post “before” and “after” questions about students’ awareness of various campus resources 

and procedures. Again, these questions are imperfect, because there is no control group of 

students who did not meet with a peer advisor, and the questions were asked at the same time, 

after the respondents had met with a peer advisor. Nonetheless, we examine these data to 

confirm that they are consistent with the reduced-form and IV estimates reported in Sections 6 

and 7 that suggest that participating in the program significantly increased retention. Responses 

to each of the four pairs of questions are reported in transition matrices in Table 9. Diagonal 

elements measure the percentage of students whose awareness remained the same after 

participating in the program, and the bold numbers to the right of the diagonal measure those 

whose awareness increased. Overall, 51, 39, 62, and 48 percent of respondents reported 

increased awareness along the four dimensions measured by the before-and-after questions, 

respectively. These significant self-reported increases are consistent with the positive impact on 

retention documented above.               

25-Minute In-Depth Interviews 

Motivated by the generally positive results of the online survey and a desire to better 

understand students’ experiences, program staff randomly selected 10 attendees to invite to 

participate in an in-depth conversation about their experience with the peer-advising program. 

Four of the invited students agreed to participate in the one-on-one interviews, which lasted 

about 25 minutes. All four were female, unfortunately, which prevents probing the thought 

process behind the first-stage effects of sex-match among males. Nonetheless, the interview 

transcripts reveal a few patterns that generally comport with the exit-interview results. First, 

students were attracted to the program because it was a safe environment to ask informational 
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and procedural questions about registration and advising that they feared would be judged 

negatively if asked to a nonpeer. One student commented about reaching out to faculty, “I think 

that people don’t feel, I guess, worthy, to talk to their professors. Or they don’t feel like they 

have something to offer.” Another student commented, “I’m not comfortable going to an adult 

with something I don’t think they think is very important.”  

A second draw of the peer advising program was the opportunity to meet with a peer 

whom they felt could relate to—and help process and navigate—issues they were experiencing 

as a new college student. One student felt pressure to compete for internships and career-related 

opportunities. Another felt out of place because he perceived himself to be of a different 

socioeconomic background from his peers. Another student was struggling socially and noted 

being frustrated because the student thought “college would automatically be great because it is 

college.” For these students, the invitation to meet with a peer advisor came as a timely and 

useful offer of support in a time of need. Overall, the interview transcripts demonstrate that 

respondents perceived peer advising to be effective, timely, and delivered by a member of the 

campus community equipped to relate to the experiences of new college students.   

DISCUSSION 

 Using unique administrative records from a selective, midsized, private, not-for-profit 

university, we leverage quasi-random assignments of peer advisors to first-year arts and sciences 

undergraduate students to investigate two aspects of a voluntary peer advising program. First, we 

show that the sex of the randomly assigned peer advisor has a significant and substantively large 

impact on male students’ engagement with the peer advising program. This result is consistent 

with a large literature in the economics of education that finds significant effects of student-
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teacher demographic match on a host of student outcomes and behaviors (e.g., Carrell et al. 

2010; Dee 2004, 2007; Fairlie et al. 2014; Lusher et al. 2015). This finding has policy 

implications as well, given the relatively low take-up rates for voluntary support services, 

particularly among males, in postsecondary education settings (Angrist et al. 2014). Indeed, 

manipulating the sex of assigned peer advisors, or providing peer advisors of both sexes, is a 

scalable, low-cost policy lever available to many postsecondary institutions. To our knowledge, 

the current study provides the first causal evidence of a malleable policy lever that can increase 

male students’ engagement with university support services. Moreover, we show that 

engagement with the peer advisor is beneficial, as reduced-form estimates indicate that 

assignment to a male peer advisor significantly increased male students’ retention rates. 

 Second, using an instrumental variables strategy, we formally show that engaging with an 

assigned peer advisor significantly increased compliers’ likelihoods of persisting at the 

university. This finding is consistent with qualitative data from online exit surveys and in-depth 

interviews. Compliers are males who would not have engaged with the peer advising program if 

assigned to a female peer advisor and were not definitely going to engage regardless of peer 

advisor assignment. The LATE here is a policy-relevant parameter for administrators, educators, 

and policymakers seeking to increase retention rates among first-year students, particularly 

among male students, as the policy lever (assigning a choice or same-sex advisor) is very low-

cost and not controversial for institutions already offering voluntary peer advising. Moreover, the 

“always compliers” who engage with the support infrastructure no matter the peer advisor 

assignment do better, on average, than compliers in the absence of treatment. This is low-

hanging fruit that can be collected in the short run, while institutions and researchers continue to 
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search for the policy tools that might improve the engagement, and ultimately the academic 

success and persistence, of the “never compliers.”  

 That no effect is found on spring-semester academic performance (GPA) is consistent 

with the stated mission of the university’s peer advising program. This nonfinding is also 

consistent with the peer effects literature, which generally finds modest effects of high-achieving 

peers on postsecondary students’ academic performance, which Stinebrickner and Stinebrickner 

(2006) attribute to peer effects primarily operating through the transmission of study habits and 

time-management skills. Together with social skills, these are exactly the types of skills that 

comprise the mission of the peer advising program, and are likely to improve retention. Indeed, 

Stinebrickner and Stinebrickner (2006) find positive, significant peer effects on the probability 

that female students return for a second year of postsecondary schooling.       

One caveat of the current study is that these findings may not generalize to larger public 

institutions or to less selective institutions. Conducting a similar analysis in other postsecondary 

contexts would be straightforward and would be useful in furthering our understanding of the 

factors that influence student engagement with voluntary support services such as peer advising, 

as well as the impact of such services on compliers who are induced to engage by the 

demographic representation of mentors, support staff, and peer advisors. It would also be useful 

to determine whether there are similar race-match effects. Unfortunately, we were unable to 

investigate the impact of race and ethnicity matching in the current study because there was only 

one nonwhite peer advisor. We hope to investigate such questions in the future, and to conduct a 

randomized experiment in which some students are offered a choice between one male and one 

female peer advisor, and so on, both in arts and sciences and in other units at the institution, as 

the peer advising program is scaled up to the university level.  



 

34 

 

REFERENCES 

Angrist, Joshua D., and Alan B. Kreuger. 2001. “Instrumental Variables and the Search for 

Identification: From Supply and Demand to Natural Experiments.” Journal of Economic 

Perspectives 15(4): 69–85. 

 

Angrist, Joshua D., Daniel Lang, and Philip Oreopoulos. 2009. “Incentives and Services for 

College Achievement: Evidence from a Randomized Trial.” American Economic 

Journal: Applied Economics 1(1): 136–163. 

 

Angrist, Joshua, Philip Oreopoulos, and Tyler Williams. 2014. “When Opportunity Knocks, 

Who Answers? New Evidence on College Achievement Awards.” Journal of Human 

Resources 49(3): 572–610. 

 

Angrist, Joshua D., and Jörn-Steffen Pischke. 2009. Mostly Harmless Econometrics: An 

Empiricist's Companion. Princeton, NJ: Princeton University Press. 

 

Astin, Alexander. 1993. What Matters in College? Four Critical Years Revisited. Vol. 1. San 

Francisco, CA: Jossey-Bass Publishers. 

 

Avery, Christopher, and Thomas J. Kane. 2004. “Student Perceptions of College Opportunities: 

The Boston COACH Program.” In College Choices: The Economics of Where to Go, 

When to Go, and How to Pay for It, Caroline Hoxby, ed. Chicago, IL: University of 

Chicago Press, pp. 355–394. 

 

Bailey, Martha J., and Susan M. Dynarski. 2011. “Gains and Gaps: Changing Inequality in U.S. 

College Entry and Completion.” NBER Working Paper No. 17633. Cambridge, MA: 

National Bureau of Economic Research. 

 

Barry, Herbert, and Aylene S. Harper. 1995. “Increased Choice of Female Phonetic Attributes in 

First Names.” Sex Roles 32(11–12): 809–819. 

 

Bean, John P. 1980. “Dropouts and Turnover: The Synthesis and Test of a Causal Model of 

Student Attrition.” Research in Higher Education 12(2): 155–187. 

 

Bettinger, Eric P., and Rachel P. Baker. 2014. “The Effects of Student Coaching in College: An 

Evaluation of a Randomized Experiment in Student Mentoring.” Educational Evaluation 

and Policy Analysis 36(1): 3–19. 

 

Bettinger, Eric P., Angela Boatman, and Bridget Terry Long. 2013. “Student Supports: 

Developmental Education and Other Academic Programs.” Future of Children 23(1): 93–

115. 

 

Bettinger, E. P., and B. T. Long. 2005. “Do Faculty Serve as Role Models? The Impact of  

Instructor Gender on Female Students.” American Economic Review 95(2): 152–157. 

 



 

35 

 

Bloom, Dan., and Colleen Sommo. 2005. “Building Learning Communities: Early Results from 

the Opening Doors Demonstration at Kingsborough Community College.” New York: 

MDRC. 

 

Blundell, Richard, Lorraine Dearden, and Barbara Sianesi. 2005. “Evaluating the Effect of 

Education on Earnings: Models, Methods and Results from the National Child 

Development Survey.” Journal of the Royal Statistical Society: Series A (Statistics in 

Society) 168(3): 473–512. 

 

Bound, John, and Sarah Turner. 2011. “Dropouts and Diplomas: The Divergence in Collegiate 

Outcomes.” In Handbook of the Economics of Education, Vol. 4, Eric A. Hanushek, 

Stephen Machin, and Ludger Woessman, eds. Amsterdam: North Holland, pp. 573–613. 

 

Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. “Bootstrap-Based  

Improvements for Inference with Clustered Errors.” The Review of Economics and 

Statistics 90(3): 414–427. 

 

Cameron, A. Colin, and Pravin K. Trivedi. 2005.  Microeconometrics:  Methods and 

Applications.  Cambridge:  Cambridge University Press. 

 

Card, David. 1999. “The Causal Effect of Education on Earnings.” In Handbook of Labor 

Economics 3A, Orley Ashenfelter and David Card, eds.  Amsterdam: Elsevier, pp. 1801–

1863. 

 

Carlstrom, Aaron, and Marsha A. Miller. 2013. NACADA National Survey of Academic Advising 

(Monograph No. 25). Manhattan, KS: National Academic Advising Association. 

http://www.nacada.ksu.edu/Resources/Clearinghouse/View-Articles/2011-NACADA-

National-Survey.aspx (accessed February 22, 2016). 

 

Carrell, Scott E, Marianne E. Page, and James E. West. 2010. “Sex and Science: How Professor 

Gender Perpetuates the Gender Gap.” Quarterly Journal of Economics 125(3): 1101–

1144. 

 

Cassidy, Kimberly Wright, Michael H. Kelly, and Lee’at J. Sharoni. 1999. “Inferring Gender 

from Name Phonology.” Journal of Experimental Psychology: General 128(3): 362–381. 

 

Castleman, Benjamin L., and Lindsay C. Page. 2015. “Summer Nudging: Can Personalized Text 

Messages and Peer Mentor Outreach Increase College Going among Low-Income High 

School Graduates?” Journal of Economic Behavior and Organization 115(1): 144–160. 

 

Castleman, Benjamin L., Lindsay C. Page, and Korynn Schooley. 2014. “The Forgotten 

Summer: Does the Offer of College Counseling after High School Mitigate Summer Melt 

among College‐Intending, Low‐Income High School Graduates?” Journal of Policy 

Analysis and Management 33(2): 320–344. 

 



 

36 

 

Chernozhukov, Victor, and Christian Hansen. 2008. “The Reduced Form: A Simple Approach to 

Inference with Weak Instruments.” Economics Letters 100(1): 68–71. 

 

Colvin, Janet W., and Marinda Ashman. 2010. “Roles, Risks, and Benefits of Peer Mentoring 

Relationships in Higher Education.” Mentoring and Tutoring: Partnership in Learning 

18(2): 121–134. 

 

Crisp, Gloria, and Irene Cruz. 2009. “Mentoring College Students: A Critical Review of the 

Literature between 1990 and 2007.” Research in Higher Education 50(6): 525–545. 

 

Dee, Thomas S. 2004a. “Are There Civic Returns to Education?” Journal of Public Economics 

88(9): 1697–1720. 

 

———. 2004b. “Teachers, Race, and Student Achievement in a Randomized Experiment.” 

Review of Economics and Statistics 86(1): 195–210. 

 

———. 2005. “A Teacher Like Me: Does Race, Ethnicity, or Gender Matter?” American 

Economic Review 95(2): 158–165. 

 

———. 2007. “Teachers and the Gender Gaps in Student Achievement.” Journal of Human 

Resources 42(3): 528–554. 

 

Deming, David, and Susan Dynarski. 2009. “Into College, Out of Poverty? Policies to Increase 

the Postsecondary Attainment of the Poor.” NBER Working Paper No. 15387. 

Cambridge, MA: National Bureau of Economic Research. 

 

Dynarski, Susan. 2016. “How to Help More College Students Graduate.”  The Upshot (blog). 

New York Times, February 19. http://www.nytimes.com/2016/02/21/upshot/how-to-help-

more-college-students-graduate.html?_r=0 (accessed August 10, 2016). 

 

Dynarski, Susan, and Judith Scott-Clayton. 2013. “Financial Aid Policy: Lessons from 

Research.” Future of Children 23(1): 67–91. 

 

Fairlie, Robert W., Florian Hoffmann, and Philip Oreopoulos. 2014. “A Community College 

Instructor Like Me: Race and Ethnicity Interactions in the Classroom.” American 

Economic Review 104(8): 2567–2591. 

 

Frost, Susan H. 2000. “Historical and Philosophical Foundations for Academic Advising.” In  

Academic Advising: A Comprehensive Handbook, Virginia N. Gordon, Wesley R. 

Habley, et al., eds. San Francisco, CA: Jossey-Bass, pp. 3–17. 

 

Fryer Jr., Ronald G. 2011. “Racial Inequality in the 21st Century: The Declining Significance of 

Discrimination.” In Handbook of Labor Economics, Vol. 4B, David Card and Orley C. 

Ashenfelter, eds. Amsterdam: North Holland, pp. 855–971.  

 



 

37 

 

Gelbach, Jonah B. 2016. “When Do Covariates Matter? And Which Ones, and How Much?” 

Journal of Labor Economics 34(2): 509–543. 

 

Glewwe, Paul, Michael Kremer, Sylvie Moulin, and Eric Zitzewitz. 2004. “Retrospective vs. 

Prospective Analyses of School Inputs: The Case of Flip Charts in Kenya.” Journal of 

Development Economics 74(1): 251–268. 

 

Grossman, Michael. 2006. “Education and Nonmarket Outcomes.” In Handbook of the 

Economics of Education, Vol. 1, Eric A. Hanushek and Finis Welch, eds. Amsterdam: 

North Holland, pp. 577–633. 

 

Habley, Wesley R., Jennifer L. Bloom, and Steve Robbins. 2012. Increasing Persistence: 

Research-Based Strategies for College Student Success. San Francisco, CA: John Wiley 

and Sons. 

Habley, Wes, Michael Valiga, Randy McClanahan, and Kurt Burkum. 2010. What Works in 

Student Retention? Report for All Colleges and Universities. Iowa City, IA: ACT.  

Hanna, Rema N., and Leigh L. Linden. 2012. “Discrimination in Grading.” American Economic 

Journal: Economic Policy 4(4): 146–168. 

 

Heckman, James J. 2010. “Building Bridges between Structural and Program Evaluation 

Approaches to Evaluating Policy.” Journal of Economic Literature 48(2): 356–398. 

 

Hemwall, Martha K. 2008. “Advising Delivery: Faculty Advising.”  In Academic Advising: A 

Comprehensive Handbook. 2nd ed., Virginia N. Gordon, Wesley R. Habley, and Thomas 

J. Grites, eds. San Francisco, CA: Jossey-Bass, pp. 253–266. 

 

Hoffmann, Florian, and Philip Oreopoulos. 2009. “A Professor Like Me: The Influence of 

Instructor Gender on College Achievement.” Journal of Human Resources 44(2): 479–

494.   

 

Holt, Stephen B., and Seth Gershenson. 2015. “The Impact of Student-Teacher Racial Mismatch 

on Student Attendance and Suspensions.” IZA Discussion Paper No. 9554. Bonn, 

Germany: Institute for the Study of Labor. 

 

Hoxby, Caroline, and Sarah Turner. 2013. “Expanding College Opportunities for High-

Achieving, Low Income Students.” SIEPR Discussion Paper No. 12-014. Stanford, CA: 

Stanford Institute for Economic Policy Research.  

 

Imbens, Guido W., and Joshua D. Angrist. 1994. “Identification and Estimation of Local 

Average Treatment Effects.” Econometrica 62(2): 467–475. 

 

Karcher, Michael J., Gabriel P. Kuperminc, Sharon G. Portwood, Cynthia L. Sipe, and Andrea S. 

Taylor. 2006. “Mentoring Programs: A Framework to Inform Program Development, 

Research, and Evaluation.” Journal of Community Psychology 34(6): 709–725. 



 

38 

 

 

Kennedy, Kirsten, and Jennifer Crissman Ishler. 2008. “The Changing College Student.”  In 

Academic Advising: A Comprehensive Handbook, 2nd ed., Virginia N. Gordon, Wesley 

R. Habley, and Thomas J. Grites, eds. San Francisco, CA: Jossey-Bass, pp. 123–141. 

 

Kot, Felly Chiteng. 2014. “The Impact of Centralized Advising on First-Year Academic 

Performance and Second-Year Enrollment Behavior.” Research in Higher Education 

55(6): 527–563. 

 

Light, Richard J. 2004. Making the Most of College: Students Speak Their Minds. Cambridge, 

MA: Harvard University Press. 

 

Lochner, Lance, and Enrico Moretti. 2004. “The Effect of Education on Crime: Evidence from 

Prison Inmates, Arrests, and Self-Reports.” American Economic Review 94(1): 155–189. 

 

Lusher, Lester, Doug Campbell, and Scott Carrell. 2015. “TAs Like Me: Racial Interactions 

between Graduate Teaching Assistants and Undergraduates.” NBER Working Paper No. 

21568. Cambridge, MA: National Bureau of Economic Research.  

 

Machin, Stephen, Olivier Marie, and Suncica Vujic. 2011. “The Crime Reducing Effect of 

Education.” Economic Journal 121(552): 463–484. 

 

Miguel, Edward, and Michael Kremer. 2004. “Worms: Identifying Impacts on Education and 

Health in the Presence of Treatment Externalities.” Econometrica 72(1): 159–217. 

 

Milligan, Kevin, Enrico Moretti, and Philip Oreopoulos. 2004. “Does Education Improve 

Citizenship? Evidence from the United States and the United Kingdom.” Journal of 

Public Economics 88(9): 1667–1695. 

 

Moretti, Enrico. 2004a. “Workers’ Education, Spillovers, and Productivity: Evidence from Plant-

Level Production Functions.” American Economic Review 94(3): 656–690. 

 

———. 2004b. “Estimating the Social Return to Higher Education: Evidence from Longitudinal 

and Repeated Cross-Sectional Data.” Journal of Econometrics 121(1): 175–212. 

 

Newton, Fred B., and Steven C. Ender. 2010. Students Helping Students: A Guide for Peer 

Educators on College Campuses. 2nd ed. San Francisco: John Wiley and Sons. 

 

Ouazad, Amine. 2014. Assessed by a Teacher Like Me: Race and Teacher Assessments. 

Education Finance and Policy 9(3): 334–372. 

 

Rodríguez-Planas, Nuría. 2012a. “Longer-Term Impacts of Mentoring, Educational Services, and  

Learning Incentives: Evidence from a Randomized Trial in the United States.” American 

Economic Journal: Applied Economics 4(4): 121–139. 

 



 

39 

 

———. 2012b. “Mentoring, Educational Services, and Incentives to Learn: What Do We Know 

about Them?” Evaluation and Program Planning 35(4): 481–490. 

 

Roodman, David. 2011. “Fitting Fully Observed Recursive Mixed-Process Models with CMP. 

Stata Journal 11(2): 159–206. 

 

Roy, A. D. 1951. “Some Thoughts on the Distribution of Earnings.” Oxford Economic Papers 

3(2): 135–146. 

 

Sanchez, Rudolph J., Talya N. Bauer, and Matthew E. Paronto. 2006. “Peer-Mentoring 

Freshmen: Implications for Satisfaction, Commitment, and Retention to Graduation.” 

Academy of Management Learning and Education 5(1): 25–37. 

 

Self, Casey. 2008. “Advising Delivery: Professional Advisors, Counselors, and Other Staff.” In 

Academic Advising: A Comprehensive Handbook, 2d ed. Virginia N. Gordon, Wesley R. 

Habley, and Thomas J. Grites, eds. San Francisco, CA: Jossey-Bass, pp. 267–278. 

 

Shook, Jaime L., and Jennifer R. Keup. 2012. “The Benefits of Peer Leader Programs: An 

Overview from the Literature.” New Directions for Higher Education 2012(157): 5–16. 

 

Slater, Anne Saxon, and Saul Feinman. 1985. “Gender and the Phonology of North American 

First Names.” Sex Roles 13(7): 429–440. 

 

Stephan, Jennifer L., and James E. Rosenbaum. 2013. “Can High Schools Reduce College 

Enrollment Gaps with a New Counseling Model?” Educational Evaluation and Policy 

Analysis 35(2): 200–219. 

 

Stinebrickner, Ralph, and Todd R. Stinebrickner. 2006. “What Can Be Learned about Peer 

Effects Using College Roommates? Evidence from New Survey Data and Students from 

Disadvantaged Backgrounds.” Journal of public Economics 90(8–9): 1435–1454. 

 

Tinto, Vincent. 1987. Leaving College: Rethinking the Causes and Cures of Student Attrition. 

Chicago: University of Chicago Press. 

 

———. 1999. “Taking Retention Seriously: Rethinking the First Year of College.” NACADA 

Journal 19(2): 5–9. 

 

Tremblay, Paul F., Susan Rodger. 2003. “The Effects of a Peer Mentoring Program on Academic 

Success among First Year University Students.” Canadian Journal of Higher Education 

33(3): 1–17. 

 

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed.  

Cambridge, MA: MIT Press. 

 



 

40 

 

Wyckoff, Susan C. 1999. “The Academic Advising Process in Higher Education: History, 

Research, and Improvement.” Recruitment and Retention in Higher Education 13(1): 1–

3. 

  



 

41 

 

Table 1  Analytic Sample Means 

 
All  

students 

Male 

students 

Female  

students 

Attended 

advising 

Did not attend 

advising  

 (1) (2) (3) (4) (5) 

Attended advising (%) 55 48 57* 100 -- 

Retained (%) 87 84 87 89 84** 

Spring GPA† 3.26 3.11 3.31*** 3.30 3.22* 

Spring GPA ≥ 3.0† (%) 76 66 79*** 80 71*** 

Spring GPA ≥ 2.0† (%) 96 95 96 96 95 

      

Male student (%) 25 100 -- 22 29** 

Male advisor (%) 24 27 23 25 23 

Same-sex advisor (%) 64 27 77*** 68 60** 

      

List quartile 1 (%) 26 26 26 28 24 

List quartile 2 (%) 24 27 23 25 23 

List quartile 3 (%) 25 24 25 21 28** 

List quartile 4 (%) 25 23 26 26 24 

Surname letter 12 11 12 11 12 

      

White (%) 64 64 64 64 64 

Black (%) 6 10 5 7 5 

Asian (%) 7 7 7 7 8 

Hispanic (%) 11 10 11 10 12 

Multiracial (%)_ 6 5 7 6 7 

Not reported (%)  5 5 6 6 4 

Pell recipient (%) 19 21 18 20 18 

First-generation (%) 11 12 11 11 12 

Mid-Atlantic (%) 47 49 46 45 48 

Midwest (%) 8 7 8 7 9 

New England (%) 18 17 19 18 18 

South (%) 12 13 11 13 10 

West (%) 14 13 15 15 13 

Other (%) 1 0 2 1 1 

SAT† 1259 1258 1260 1262 1257 

High school GPA† 3.74 3.66 3.76*** 3.76 3.71 

Home zip income† ($) 89,805 92,480 88,891 88,009 91,966 

Home zip college† (%)  27 27 27 26 28** 

 

N 800 200 600 450 350 

NOTE: Surname letter is the rank of students’ last-name first letter in alphabet (e.g., A = 1, B = 2, and so on). List 

quartile refers to the quartile of the alphabetically sorted list in which the student’s surname falls, which was used to 

make peer advising assignments.  

† This variable is missing for a small share of students. 
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Table 2  Means by Sex (balancing test) 

 Male students  Female students  

 Male adviser Female adviser Female adviser Male adviser 

 (1) (2) (3) (4) 

SAT† 1273 1252 1260 1260 

High school GPA 3.65 3.66 3.77 3.75 

Zip code median income† ($) 91,275 92,930 89,462 86,964 

Zip code % college† (%) 27 27 27 27 

White (%) 67 63 64 64 

Black (%) 4 9* 5 5 

Asian (%) 9 6 8 7 

Hispanic (%) 7 12 11 10 

Multiracial (%) 4 6 6 8 

Not reported (%) 9 3 5 6 

First-generation (%) 11 13 12 9 

Pell recipient (%) 24 20 19 17 

Mid-Atlantic (%) 40 42 46 47 

Midwest (%) 5 8 8 9 

New England (%) 25 14** 19 18 

South (%) 13 14 11 10 

West (%) 16 12 14 15 

Other(%) 0 1 2 0 

 

N 50 150 450 150 

NOTE: † This variable is missing for a small share of students. *** p < 0.01; ** p < 0.05; * p < 0.1 indicate the 

statistical significance of the mean difference between columns 1 and 2, and between columns 3 and 4.  
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Table 3  Unconditional First Stage and Reduced Form Cross Tabs 

 
Same-sex 

advisor 
Different-sex advisor 

Difference 

(1) − (2) 

 (1) (2) (3) 

 

% met advisor 
   

Male student (%) 60.0 43.5 16.5** 

Female student (%) 57.2 55.5 1.7 

All students (%) 57.5 49.3 8.2** 

    

% retained    

Male student 90.9 81.6 9.3* 

Female student 87.7 86.7 0.1 

All students 88.1 84.0 4.0 

    

% ≥ C (2.0) GPA    

Male student (%) 94.3 94.6 −0.3 

Female student (%) 96.1 96.1 −0.0 

All students (%) 95.8 95.3 −0.5 

NOTE: N = 800. Grade point average (GPA) is on a 4.0 point scale. 2.0 is the cutoff for academic probation. *** p < 

0.01; ** p < 0.05; * p < 0.1. 
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Table 4 Effect of Peer Advisor Sex (linear probability models) 

 First stage: met advisor  Reduced form: retention  

 (1) (2) (3) (4) 

A. Baseline model     

Male student −0.136 −0.132 −0.061 −0.054 

 (0.047)*** (0.048)*** (0.036)* (0.035) 

Male advisor −0.017 0.094 −0.010 0.092 

 (0.049) (0.134) (0.033) (0.105) 

Male student × male advisor 0.184 0.183 0.103 0.111 

 (0.092)** (0.096)* (0.060)* (0.062)* 

Wild cluster p value [0.094] [0.074] [0.038] [0.038] 

Adjusted R2 0.008 0.006 0.001 0.021 

     

B. Heterogeneity by Cohort     

Male student −0.132 −0.120 −0.111 −0.106 

 (0.069)* (0.071)* (0.055)** (0.053)** 

Male advisor −0.023 0.081 −0.050 0.077 

 (0.068) (0.142) (0.049) (0.111) 

Male student × male advisor 0.262 0.242 0.183 0.190 

 (0.133)** (0.147) (0.092)** (0.099)* 

Male student × 2014 cohort −0.007 −0.024 0.095 0.098 

 (0.095) (0.097) (0.072) (0.071) 

Male advisor × 2014 cohort 0.011 0.016 0.080 0.023 

 (0.098) (0.103) (0.066) (0.070) 

Male S × Male A × 2014 cohort −0.137 −0.101 −0.155 −0.144 

 (0.183) (0.191) (0.121) (0.127) 

2014 cohort  −0.031 −0.039 −0.026 −0.017 

 (0.047) (0.049) (0.031) (0.031) 

Adjusted R2 0.006 0.003 0.001 0.020 

Join significance of 2014 interaction 

terms (p value) 
0.80 0.88 0.44 0.55 

Cohort fixed effects (FE) Yes Yes Yes Yes 

Sociodemographic controls - Yes - Yes 

High school GPA - Yes - Yes 

Region FE - Yes - Yes 

First letter FE - Yes - Yes 

Zip code controls - Yes - Yes 

NOTE: N = 800. Standard errors in parentheses are robust to heteroscedasticity. Square brackets contain p values that 

are robust to clustering by peer advisor (8 clusters). These p values were computed via 1,000 wild cluster bootstrap 

replications (Cameron, Gelbach, and Miller 2008). Sociodemographic controls include a set of race FE, a Pell 

recipient indicator, and a first-generation college student indicator. Zip code controls include median income and 

percent of adults with a college degree in the student’s home zip code. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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Table 5  Heterogeneity in Effect of Peer Advisor Gender (linear probability models) 

X =  First generation  Pell recipient  Black and Hispanic  Mid-Atlantic  

Y =  Met advisor Retained Met advisor Retained Met advisor Retained Met advisor Retained 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Male student −0.121 −0.061 −0.152 −0.063 −0.117 −0.053 −0.164 −0.027 

 (0.052)** (0.037)* (0.054)*** (0.038)* (0.054)** (0.039) (0.066)** (0.050) 

Male advisor 0.102 0.094 0.021 0.067 0.089 0.096 0.154 0.127 

 (0.135) (0.107) (0.136) (0.108) (0.137) (0.108) (0.141) (0.105) 

Male S × Male A 0.205 0.143 0.220 0.157 0.205 0.121 0.177 0.116 

 (0.102)** (0.062)** (0.109)** (0.068)** (0.104)** (0.067)* (0.127) (0.079) 

Male student × X −0.098 0.046 0.103 0.044 −0.076 −0.010 0.059 −0.056 

 (0.139) (0.113) (0.121) (0.090) (0.119) (0.092) (0.097) (0.071) 

Male advisor × X 0.039 0.058 0.311 0.116 0.124 0.011 −0.126 −0.071 

 (0.164) (0.135) (0.123)** (0.070)* (0.140) (0.096) (0.098) (0.068) 

Male S × Male A × X −0.241 −0.300 −0.253 −0.232 −0.236 −0.096 0.009 −0.031 

 (0.294) (0.262) (0.216) (0.150) (0.275) (0.198) (0.191) (0.125) 

X  −0.039 −0.105 −0.052 −0.001 −0.046 0.021 −0.022 −0.030 

 (0.077) (0.060)* (0.065) (0.042) (0.074) (0.048) (0.157) (0.087) 

Adjusted R2 0.005 0.017 0.020 0.006 0.005 0.020 0.010 0.021 

Join sig. of X interactions 

(p value) 
0.51 0.71 0.08 0.28 0.51 0.94 0.44 0.30 

NOTE: N = 800. Standard errors in parentheses are robust to heteroscedasticity. All models condition on the full sets of sociodemographic controls, cohort FE, 

and “first letter of surname” FE. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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Table 6  The Effect of Peer Advising on Retention 

 Naïve Naïve IV IV 

A. Linear probability model (1) (2) (3) (4) 

Coefficient estimate 0.049 0.049 0.557 0.665 

 (0.025)* (0.025)* (0.363) (0.371)* 

First stage instrument: same sex advisor N/A N/A * * 

First stage instrument: male advisor N/A N/A   

First stage F statistic (joint significance) N/A N/A 2.36* 2.44* 

Control function endogeneity test N/A N/A −0.512 −0.621 

   (0.301)* (0.312)** 

B. LIML      

Coefficient estimate N/A N/A 0.557 0.672 

   (0.363) (0.376)* 

     

C. Probit model     

Coefficient estimate 0.227 0.252 1.016 1.259 

 (0.113)** (0.120)** (0.611)* (0.530)** 

Average partial effect (APE) estimate 0.048 0.050 0.237 0.275 

 (0.024)** (0.024)** (0.165) (0.139)** 

First stage instrument: same sex Advisor N/A N/A ** ** 

First stage instrument: male advisor N/A N/A * * 

First stage ᵡ2 statistic (joint significance) N/A N/A 5.74* 7.85** 

Rho statistic N/A N/A −0.50 −0.64 

Cohort fixed effects (FE) Yes Yes Yes Yes 

Sociodemographic controls - Yes - Yes 

High school GPA - Yes - Yes 

Region FE - Yes - Yes 

First letter FE - Yes - Yes 

Zip code controls - Yes - Yes 

NOTE: N = 800. Standard errors in parentheses are robust to heteroscedasticity (linear models only). 

Sociodemographic controls include a set of race FE, a Pell recipient indicator, and a first generation college student 

indicator. Zip code controls include median income and percent of adults with a college degree in the student’s 

home zip code. LIML = Limited Information Maximum Likelihood; IV = Instrumental Variables; LPM = Linear 

Probability Model. Control function endogeneity test reports the estimated coefficient and standard error on the first 

stage residual in the control function. Rho is the correlation between the two error terms in the bivariate probit 

model. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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Table 7  Heterogeneous Effects of Peer Advising on Retention 

X First generation  Pell recipient  Black and Hispanic  Mid-Atlantic  

Specification Naïve LPM IV 2SLS Naïve LPM IV 2SLS Naïve LPM IV 2SLS Naïve LPM IV 2SLS 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Attended 0.032 0.692 0.046 0.660 0.043 0.632 0.017 0.476 

 (0.026) (0.373)* (0.028)* (0.378)* (0.026) (0.361)* (0.031) (0.389) 

Attended × X 0.154 −0.663 0.013 −0.398 0.023 −0.197 0.057 0.319 

 (0.090)* (0.820) (0.065) (0.479) (0.040) (0.621) (0.032)* (0.544) 

Net effect of A for X 0.186** 0.029 0.059 0.263 0.0666 0.435 0.074 0.795 

 (0.087) (0.859) (0.059) (0.280) (0.042) (0.634) (0.029)*** (0.417)* 

First stage 1 (attended)         

IV: Male A N/A  N/A  N/A  N/A * 

IV: Same sex A  N/A * N/A ** N/A * N/A * 

IV: Male A × X N/A  N/A * N/A  N/A  

IV: Same sex × X N/A  N/A  N/A  N/A  

F-stat  N/A 1.88* N/A 3.30*** N/A 1.88* N/A 2.29** 

         

First stage 2 (attended × X)         

IV: Male A N/A  N/A  N/A  N/A ** 

IV: Same sex A  N/A * N/A  N/A * N/A  

IV: Male A × X N/A  N/A ** N/A  N/A  

IV: Same sex × X N/A  N/A  N/A  N/A * 

F-stat  N/A 0.94 N/A 1.92* N/A 1.19 N/A 1.62 

         

Control function p value N/A 0.046 N/A 0.085 N/A 0.148 N/A 0.047 

NOTE: N = 800. Standard errors in parentheses are robust to heteroscedasticity. All models condition on the full sets of sociodemographic controls, cohort FE, 

and “first letter of surname” FE. IV = instrumental variables; LPM = linear probability model. Control function p value reports the joint significance of the first 

stage residuals (control function). *** p < 0.01; ** p < 0.05; * p < 0.1. 
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Table 8  Responses to Online Exit Survey 

 
Strongly 

disagree 
Disagree Agree 

Strongly 

agree 

 (1) (2) (3) (4) 

A. Please indicate your level of agreement with each statement: (%) 

I felt comfortable talking with my peer advisor.  0 0 25 72 

I felt welcome in the peer advising office.  0 0 27 70 

My peer advisor listened to my 

questions/concerns/comments.  
0 0 23 75 

My peer advisor was knowledgeable about academic 

advising information and campus resources.  
0 0 27 70 

Overall, my peer advisor provided me with information 

that will be helpful in my transition to AU.  
0 0 27 70 

     

B. Comments (all)     

Comment a little more about how to sign up for classes and plan that out. Other than that the program is really 

good and it helped me out a lot. 

[Female peer advisor] was great and so helpful! I definitely look to her as a resource for CAS specific questions as 

well as any AU questions in general! 

[Female peer advisor] is great! 

[Female peer advisor] is super nice! 

[Female peer advisor] was fantastic! 

I loved meeting with my peer advisor. She was extremely helpful and understanding of my questions and provided 

in depth and helpful responses. 

Make students more aware earlier in the semester that this is available, because it's much less intimidating to ask 

questions about registration of a peer than of a faculty member all the time. 

[Male peer advisor] is a wonderful peer advisor. He is professional, organized, and kind. 

The course book was a very helpful gift. 

The peer advising program was very helpful for me, I was feeling very alone/lost/unsure, but chatting with my 

advisor assured me I was on the right track 

This resource should really be praised! The informal setting and meeting with your peers is the perfect place for 

students to let down their guard and get help and learn new things. The advisors are so kind and considerate and 

I can't wait to go back! 

NOTE: N = 71. Rows do not sum to 100 percent because two students occasionally skipped questions. 
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Table 9. Online Exit Survey Pre-Post Analysis (transition matricies, % responding) 

Before meeting with peer advisor  After meeting with peer advisor  

 
Strongly 

disagree 
Disagree Agree 

Strongly 

agree 
Total 

 (1) (2) (3) (4) (5) 

I understood the General Education Program requirements 

Strongly disagree   0 0 0 0 0 

Disagree  0 0 6 10 16 

Agree  0 0 13 35 48 

Strongly agree   0 0 0 36 36 

Total  0 0 19 81 100 

      

I was/am aware of campus resources (e.g., Writing Center, Tutoring Lab, Support Center, etc.) 

Strongly disagree  0 0 0 0 0 

Disagree  0 1 3 3 7 

Agree  0 0 45 33 78 

Strongly agree  0 0 0 14 14 

Total 0 1 48 51 100 

      

I understood/understand the spring semester registration process (dates, requirements, etc.) 

Strongly disagree  1 3 4 1 10 

Disagree  1 6 20 7 35 

Agree  0 0 19 26 45 

Strongly agree  0 0 0 10 10 

Total 3 9 43 45 100 

      

I feel comfortable with the process of exploring and choosing a major 

Strongly disagree  0 0 4 0 4 

Disagree  0 1 7 4 13 

Agree  0 0 22 32 54 

Strongly agree  0 0 3 26 29 

Total 0 1 36 62 100 

NOTE: N = 69. All questions, including those about preprogram feelings, were asked after students met with their 

peer advisor. Numbers are only reported for students who answered both the pre- and post- questions. Bold cells 

count the percentage of students who reported higher levels of understanding, awareness, and comfort with campus 

resources after meeting with their peer adviser. 
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Online Appendix Table A.1   The Effect of Peer Advising on Retention by Match Status 

 Naïve OLS Naïve OLS IV 2SLS IV 2SLS 

 (1) (2) (3) (4) 

Attended mismatched (IV) 0.013 0.013 0.550 0.774 

 (0.035) (0.039) (0.499) (0.586) 

Attended matched (IV) 0.066 0.066 0.551 0.748 

 (0.026)** (0.026)** (0.448) (0.511) 

P-value (mismatched − matched) 0.120 0.175 0.98 0.81 

First stage 1 (attended mismatched advisor)     

IV: Male advisor mismatched N/A N/A *** *** 

IV: Male advisor matched  N/A N/A *** *** 

F-stat  N/A N/A 140.01*** 130.22*** 

     

First stage 2 (attended matched advisor)     

IV: Male advisor mismatched N/A N/A *** *** 

IV: Male advisor matched  N/A N/A *** *** 

F-stat  N/A N/A 344.61*** 150.92*** 

Control function endogeneity test IV1 N/A N/A −0.539 −0.753 

   (0.418) (0.504) 

Control function endogeneity test IV2 N/A N/A −0.487 −0.691 

   (0.371) (0.442) 

Control function endogeneity joint p value N/A N/A 0.42 0.28 

     

Cohort fixed effects (FE) Yes Yes Yes Yes 

Sociodemographic controls - Yes - Yes 

High school GPA - Yes - Yes 

Region FE - Yes - Yes 

First letter FE - Yes - Yes 

Zip code controls - Yes - Yes 

NOTE: N = 800. Standard errors in parentheses are robust to heteroscedasticity (linear models only). 

Sociodemographic controls include a set of race FE, a Pell recipient indicator, and a first-generation college student 

indicator. Zip code controls include median income and percent of adults with a college degree in the student’s 

home zip code. LIML = Limited Information Maximum Likelihood; IV = Instrumental Variables; LPM = Linear 

Probability Model. Control function endogeneity test reports the estimated coefficient and standard error on the first 

stage residual in the control function. Rho is the correlation between the two error terms in the bivariate probit 

model. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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Online Appendix Table A.2   Effect of Peer Advisor Gender (probit coefficients) 

 First stage: met peer advisor  Reduced form: retention  

 (1) (2) (3) (4) 

1. Female S and Female A Omitted Base Group  

2. Female S and Male A −0.044 0.259 −0.049 0.464 

 (0.123) (0.386) (0.156) (0.515) 

3. Male S and Female A −0.342 −0.342 −0.260 −0.254 

 (0.120)*** (0.124)*** (0.142)* (0.156) 

4. Male S and Male A 0.080 0.389 0.172 0.796 
 (0.181) (0.396) (0.249) (0.536) 

Test 2 = 3  0.047** 0.124 0.246 0.166 

Test 3 = 4 0.035** 0.066* 0.104 0.052* 

Test 2 = 4 0.542 0.541 0.418 0.269 

Pseudo R2 0.01 0.04 0.01 0.10 

Log likelihood −541.1 −521.7 −309.7 −279.8 

Cohort fixed effects (FE) Yes Yes Yes Yes 

Sociodemographic controls - Yes - Yes 

High school GPA - Yes - Yes 

Region FE - Yes - Yes 

First letter FE - Yes - Yes 

Zip code controls - Yes - Yes 

NOTE: N = 800. These specifications are equivalent to those in Table 4 of the main text. Sociodemographic controls 

include a set of race FE, a Pell recipient indicator, and a first-generation college student indicator. Zip code controls 

include median income and percentage of adults with a college degree in the student’s home zip code. 

Corresponding average partial effects (APE) reported in Online Appendix Table A.3. *** p < 0.01; ** p < 0.05; * p 

< 0.1. 
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Online Appendix Table A.3   Effect of Peer Advisor Gender (probit APE) 

 First stage: met peer advisor  Reduced form: retention  

 (1) (2) (3) (4) 

1. Female S and Female A Omitted Base Group  

2. Female S and Male A −0.017 0.098 −0.011 0.091 

 (0.048) (0.146) (0.033) (0.101) 

3. Male S and Female A −0.134 −0.129 −0.056 −0.050 

 (0.046)*** (0.046)*** (0.030)* (0.031) 

4. Male S and Male A 0.031 0.147 0.037 0.157 
 (0.071) (0.149) (0.053) (0.106) 

Test 2 = 3  0.046** 0.122 0.246 0.166 

Test 3 = 4 0.034** 0.066* 0.104 0.052* 

Test 2 = 4 0.542 0.541 0.418 0.269 

Pseudo R2 0.01 0.04 0.01 0.10 

Log likelihood −541.1 −521.7 −309.7 −279.8 

Cohort fixed effects (FE) Yes Yes Yes Yes 

Sociodemographic controls - Yes - Yes 

High school GPA - Yes - Yes 

Region FE - Yes - Yes 

First letter FE - Yes - Yes 

Zip code controls - Yes - Yes 

NOTE: N = 800. These specifications are equivalent to those in Table 4 of the main text. Sociodemographic controls 

include a set of race FE, a Pell recipient indicator, and a first-generation college student indicator. Zip code controls 

include median income and percentage of adults with a college degree in the student’s home zip code. These APE 

are based on probit coefficients reported in Online Appendix Table A.2. *** p < 0.01; ** p < 0.05; * p < 0.1. 
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