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Non-technical summary

Research Question

Scenarios for banking sector stress tests are expected to be severe yet plausible. A scenario

is severe if it puts the banking sector under serious stress, and it is plausible if there is a

non-negligible probability that it materializes. How can we come up with such a scenario?

Contribution

The discussion paper presents an approach to scenario selection. The “severity function

approach” (abbreviated below as SFA) needs two inputs: 1) a probabilistic forecasting

model to assess the plausibility of alternative scenarios, and 2) a severity function to

approximate how stressful a scenario is. The SFA then finds the scenario with the highest

severity among a set of equally plausible scenarios and thus operationalizes the concept

of “severe yet plausible”. The key challenge of the SFA is to come up with a good

severity function: Such a function should approximate the stress test impact of alternative

scenarios.

Results

The present paper uses the SFA to find a stress test scenario for the German banking

sector. This scenario implies a deep recession throughout the first two years of its four-year

horizon and a flat yield curve. It can be expected to raise banks’ credit risk and to lower

their net interest income, thus putting serious pressure on banks’ income.



Nichttechnische Zusammenfassung

Fragestellung

Szenarien für Finanzsektor-Stresstests sollten schwerwiegend und gleichzeitig plausibel sein.

Ein Szenario ist schwerwiegend, wenn es den Finanzsektor vor ernsthafte Schwierigkeiten

stellt, und es ist plausibel, wenn es eine nicht vernachlässigbare Eintrittswahrscheinlichkeit

aufweist. Wie lassen sich derartige Szenarien generieren?

Beitrag

Dieser Artikel stellt einen Ansatz zur Generierung von Stresstest-Szenarien vor. Der soge-

nannte “Severity Function Approach” (kurz SFA) benötigt 1) ein Prognosemodel, das hilft

die Plausibilität unterschiedlicher Szenarien zu beurteilen, und 2) eine “Severity Funktion”,

um abzuschätzen, wie nachteilig sich ein Szenario auf den Finanzsektor auswirken würde.

Der SFA wählt auf dieser Basis das Szenario mit dem höchsten Wert der Severity-Funktion,

das gleichzeitig eine vorgegebene Eintrittswahrscheinlichkeit nicht unterschreitet. Der

Ansatz operationalisiert folglich die Idee, dass Szenarien schwerwiegend und gleichzeitig

plausibel sein sollten. Die entscheidende Herausforderung des SFA ist die Wahl einer

geeigneten Severity-Funktion.

Ergebnisse

Im Artikel wird der SFA eingesetzt, um ein Stresstest-Szenario für den deutschen Banken-

sektor zu generieren. Das vorgestellte Szenario beschreibt eine Rezession, die sich über

die ersten zwei Jahre des vierjährigen Szenariohorizonts erstreckt, und ein Abflachen der

Zinsstrukturkurve. Das Szenario stellt eine aus Sicht des Bankensektors schwerwiegende

Verschlechterung des makrofinanziellen Umfelds dar: Durch die Rezession steigen die

Kreditausfälle und die flache Zinsstrukturkurve schmälert das Zinsergebnis der Banken.
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The severity function approach (abbreviated SFA) is a method of selecting adverse
scenarios from a multivariate density. It requires the scenario user (e.g. an agency
that runs banking sector stress tests) to specify a “severity function”, which maps
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1 Introduction

Central banks and other institutions such as the IMF regularly apply stress tests to assess
the resilience of the banking sector. Such stress tests consider a range of questions, such
as by how much an adverse shock would reduce capital buffers, the credit supply or
the provision of services to other agents in the economy; whether there is evidence of
increasing banking sector resilience over time; or to what extent higher capital buffers -
for just a few selected banks or the whole sector - would reduce the level of stress induced
by an adverse scenario. With regard to methodology, stress tests come in two varieties,
taking either a bottom-up or top-down approach. In a bottom-up stress test, the stress
testing agency provides a scenario and banks report their impact estimates. By contrast,
in top-down stress tests, the stress testing agency uses its own models to estimate the
impact of a scenario on the banking sector.1 Whether the approach is bottom-up or
top-down, stress tests require scenarios. Such scenarios are multi-period paths for the
risk factors of the stress test. In typical banking sector stress tests, these risk factors
are headline macroeconomic and financial figures such as different interest rates or bond
yields (important drivers of banks’ net interest income), measures of economic activity
(important for credit risk), and metrics for stock market valuations (important for trading
income). Stress scenarios are commonly required to be “severe yet plausible” (see, for
example, Borio, Drehmann, and Tsatsaronis, 2014). In this context, “severe” means that
the scenario should be stressful for the banking sector, and “plausible” means that the
scenario should materialize with a non-negligible probability.

In this article, I present a method of finding adverse scenarios for stress tests, called the
“severity function approach” (SFA). The SFA requires two inputs: a severity function and
a probabilistic forecasting model. The severity function’s purpose is to map each scenario
into a scalar measure of its severity, and the probabilistic forecasting model’s purpose is
to provide a metric of scenario plausibility (through its predictive density function). The
SFA then chooses the most plausible scenario from among all the scenarios for which the
severity function value exceeds a given hurdle. In doing this, the hurdle value is chosen
indirectly through the parameter α. α = 0.99, for example, means that the hurdle is
such that, according to the predictive density, 99% of all scenarios have a lower severity
function value, i.e. are less severe. By choosing a higher value for α, a more extreme but
also less plausible scenario is obtained. The SFA can be seen as an operationalization
of the requirement that stress scenarios should be “severe yet plausible”: it maximizes
plausibility (as measured by the probability density of the scenario) subject to a minimum
severity side condition (that less severe scenarios occur with probability α).

The SFA is closely related to a (financial) portfolio risk metric known as “Maximum
Loss”, which has been proposed by Studer (1997) and refined by Breuer, Jandacka,
Rheinberger, and Summer (2009) and Breuer and Csiszár (2013). Maximum Loss assumes
that portfolio losses are driven by stochastic risk factors. The risk metric is then defined
as the worst case loss subject to the condition that these risk factors lie inside a specified
“trust region”. In the case of an elliptical risk factor distribution, this trust region is

1A well-known bottom-up stress test is the EBA stress test (see http://www.eba.europa.eu/

risk-analysis-and-data/eu-wide-stress-testing). The Bank of England’s “Risk Assessment Model
of System Institutions” (RAMSI) is an example of a top-down stress test (see Aikman, Alessandri, Eklund,
Gai, Kapadia, Martin, Mora, Sterne, and Willison, 2009).
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the closed subset of risk factor realizations that have Mahalanobis distance from the
unconditional mean which is smaller than a given hurdle value. As a by-product, the
Maximum Loss approach gives the corresponding realization of the risk factors, i.e. a risk
factor scenario. Replacing the portfolio loss concept with the severity function used in this
paper, it turns out that the two approaches do similar things: In a region that is bounded
by a plausibility constraint, they both search for the most harmful scenario. Indeed,
analytically, the two approaches are identical as may be seen, for example, by comparing
the analytical results in Studer (1997, p. 43) and section 2.1 of this paper. The difference
between the two approaches thus lies in the reference function: whereas Maximum Loss
considers the value of a portfolio at a specified point in time, this paper uses the more
general concept of a severity function. This severity function is usually user-specified
rather than an (estimated) model of the determinants of a portfolio. Additionally, the
severity function will typically depend on the realizations of risk factors across a number
of periods rather than just one specified horizon as in the case of portfolio losses.

An alternative approach to obtaining adverse scenarios is conditional forecasting (see
Waggoner and Zha (1999) and Camba-Mendez (2012) for the method, and Baumeister
and Kilian (2014) for an application). The corresponding conditional predictive density
is the distribution of the forecast path under the specified conditions. These conditions
can refer to the observed variables and to unobserved (structural) shocks. Examples of
questions that conditional forecasting can answer are:

• How would a monetary policy that holds the short-term interest rate constant at 0.0
percent for the next 8 quarters affect the economic system?

• How would an oil supply shock that reduces the global flow volume by 10 percent
for a full quarter affect the global economy?

More generally, conditional forecasting is applicable if we have an idea of what could
happen and we want to know the way in which this would affect the other variables in
our empirical model. By contrast, the SFA assumes that we can quantify the severity of
a scenario. It then searches in a plausibility-constrained set of candidates for the most
severe scenario.

The paper is organized as follows: Section 2 introduces the SFA, while section 3
presents an application of the method. This empirical application also contrasts the SFA
and conditional forecasting. Moreover, it considers a synthesis of both, where the SFA is
applied to a conditional predictive density. This application suggests that the SFA is a
very useful approach for finding a scenario that is severe yet plausible, especially when
combined with conditional forecasting.

2 Methodology

First of all, it is important to clarify the term ‘scenario’: A scenario is a forecast path for
the multivariate random variable yt (dimension k × 1, k ≥ 1) covering the periods T + 1

to T + h. Let ŷt denote the scenario forecast of yt, and let Ŷ :=
[
ŷ′T+1 . . . ŷ′T+h

]′
collect

the full scenario path. Analogously, YT+h :=
[
y′T+1 . . . y′T+h

]′
collects the corresponding
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random variables.2

The basic inputs to the severity function approach are a predictive density function
fY (YT+h), and a scalar severity function s(YT+h) that measures the extent to which a
forecast path is adverse. The SFA scenario at severity level α is then defined as

Ŷα := argmaxŶ fY (Ŷ) s.t. Pr
[
s(YT+h) < s(Ŷ)

]
= α (1)

Thus, Ŷα is the scenario with maximal probability density (plausibility) such that the
probability of observing more severe scenarios is α (severity). Put differently, among the

(1− α)× 100% of the most severe scenarios, Ŷα is the scenario with maximal probability
density.3 Section 2.1 considers the special case of a linear severity function coupled with a
multivariate normal predictive density. In this special case, the optimization problem of
equation (1) can be solved analytically.

The first input to the optimization problem, the predictive density function fY (YT+h),
will typically come from a time series model or an estimated DSGE model. If the scenario
is supposed to satisfy one or more hard conditions on the path of the risk factor, then it is
possible to use a conditional forecast density (for details on conditional forecasting see,
for example, Waggoner and Zha (1999) and Camba-Mendez (2012)). Such conditions can
refer to observable variables or to unobserved structural shocks (provided the model is
structurally identified). In the following application, I use a Bayesian VAR to produce
both a standard (unconditional) predictive density and a conditional predictive density
that satisfies a hard condition on the path of real GDP growth.

The second input to the optimization problem, the severity function s(YT+h), measures
the extent to which a scenario is adverse. Suppose, for example, we have four risk factors,
an interest rate, real GDP growth, an unemployment rate, and a broad based stock market
index, and we search for a scenario that spans 12 quarters. In this setup, the severity
function will have 48 (i.e. 4× 12) arguments that it condenses into a single scalar metric
of severity. If the severity function specification is linear in the elements of the forecast
path, then this amounts to 48 slope parameters. So, how do we choose these parameters?
I can think of three approaches and I will elaborate on these in sections 2.2 and 2.3: (i)
guesstimation, i.e. by guessing the parameters; (ii) empirical estimation of the functional
relationship between the risk factors and a severity metric; (iii) simulation-based estimation
of the functional relationship based on test runs of the stress test. Estimation of the
severity function requires that we decide on a concept of severity and a corresponding
proxy variable that is either empirically observable (case ii) or can be constructed from
stress test output (case iii). This proxy variable will then be the left-hand side variable of
a regression of the severity metric on the risk factors. Suppose, conceptually, we decided
to look at the aggregate level of stress in the banking sector. We could then, for example,
attempt to construct a proxy variable that measures how many banks are either close to

2Note that, below, depending on the context, yt and Yt will be used to denote either random variables
or realizations.

3Whether equation (1) has a unique solution Ŷα depends on the predictive density fY and the severity
function s(·). To give one example, suppose Y ∼ N (µ , Σ ) and s(Y) = (Y − µ)′Σ−1(Y − µ), i.e. we use
the Mahalanobis distance as the severity function. In this case, there is no unique maximum because the
side condition of equation (1) determines a set of candidates, which all have the same probability density.
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undercutting or actually fall short of their regulatory capital ratios. Alternatively, taking
a narrower perspective on severity, we could focus on (a) specific component(s) of banks’
income, for example, on credit impairments, or taking a broader perspective, we could
consider the decline in aggregate credit supply to the real economy as a severity metric.
Evidently, alternative severity concepts and proxy variables will produce different severity
function specifications, and, in turn, will deliver different stress test scenarios. If we decide
to guesstimate the severity function (case i), it still makes sense to think conceptually
about the measurement of severity, as this facilitates coming up with a sensible severity
function specification.

2.1 Special case: linear severity function, multivariate normal
predictive density

Below I consider the special case of a linear severity function coupled with a multivariate
normal predictive density, for which the maximization problem in equation (1) can be
solved analytically. Specifically, suppose

1. the predictive density function fY (YT+h) is multivariate normal with E [YT+h] = µ
and V [YT+h] = Σ,

2. and the severity function is linear with s(YT+h) = Y′T+hβ,

then appendix A.1 shows

(Ŷα − µ) =
Φ−1(α)

(β′Σβ)0.5
Σβ. (2)

Interpretation: (Ŷα − µ), i.e. the extent by which the scenario deviates from the mean µ
of the predictive density, depends

1. on the severity level α via the term Φ−1(α), i.e. the greater α is, the higher this
deviation will be; and

2. on both the variance of the predictive density (Σ) and the slope of the severity
function (β) via the product Σβ:

• Consider β first and assume Σ = I for the ease of exposition. We then have

(Ŷα − µ) = θ × β, where θ := Φ−1(α)
(β′Σβ)0.5

is a positive scalar. Thus, the sign
and size of each element of β determines directly by how much and in which
direction the corresponding element of Ŷα deviates from its mean µ.

• In the case of a non-diagonal Σ, the deviations from µ additionally depend
on covariances. For example, suppose YT+h has two elements with covariance
matrix

Σ =

[
1 −.5
−.5 1

]
and suppose the slope of the severity function is β =

[
1 .1

]′
, i.e. the two

elements of YT+h correlate negatively and the severity function increases in
both elements. Imputing for Σ and β and expanding, we obtain (Ŷα − µ) =
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θ ×
[
.95 −.4

]′
, meaning that the second element of Ŷα deviates negatively

from its mean. This is surprising, as the previous bullet point suggested that
- for a diagonal Σ - the deviation from the mean should be positive for both
elements of YT+h due to the positive sign of both elements of β. The reason for
this surprising result is twofold: First, the negative correlation among the two
elements of YT+h means that there is as greater likelihood of observing both
elements deviating from their mean in opposite directions than of observing
them deviating in the same direction. Second, the severity function favors
positive deviations from the mean much more heavily for the first element than
for the second element of YT+h. In terms of the SFA, it is therefore optimal
to let the first element, which is more important for severity, deviate strongly
from its mean in the direction of higher severity and to add plausibility (to
the strong deviation of the first element) by letting the less important second
element deviate somewhat in the direction of lower severity.

Finally, note that the scalar term (β′Σβ)0.5 is a mere normalizing constant.

2.2 Severity function guesstimation

The idea of the guesstimation approach is that the scenario user specifies the severity
function based on her preferences about the scenario. Section 2.2.1 starts by introducing a
particularly parsimonious parameterization of the linear severity function. Thereafter, in
sections 2.2.2 and 2.2.3, it gives advice on choosing the elements of this parameterization
in a way that is compatible with the scenario user’s preferences.

2.2.1 A parsimonious parameterization of the severity function

In the case of a linear severity function s(YT+h) = Y′T+hβ, specifying the severity function
amounts to choosing β. Instead of specifying each element of β separately, i.e. a total of
k × h free parameters, this section uses the following, more parsimonious parametrization
with only k + h free parameters

β =
[
w1 . . . wh

]′︸ ︷︷ ︸
h=forecast-horizon

⊗
[
b1 . . . bk

]′︸ ︷︷ ︸
k=#elements(yt)

. (3)

By imputing this parameterization into the linear severity function, we obtain s(YT+h) =∑h
i=1

∑k
j=1 wi·bj ·yT+i(j), where yT+i(j) is the jth element of yT+i. In this parameterization,

w1, . . . , wh govern how much weight the severity function gives to each forecast horizon,
and b1, . . . , bk govern the behavior of the severity function across the k scenario variables.
Example: We can set w1 = 1, w2 = 0.01, w3 = . . . = wh = 0 to express that only forecast
horizon 1 and, to a lesser extent, also forecast horizon 2 matter for the severity function.
And we can set b1 = 1, b2 = −0.25, b3 = . . . = bk = 0 to express that the severity function
increases in the value of the first variable in yt, decreases with a smaller slope in the second
variable, and does not depend on the other variables. Imputing these values into the
severity function gives s(YT+h) = yT+1(1)− 0.25yT+1(2) + 0.01yT+2(1)− 0.0025yT+2(2).
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2.2.2 Choice of b1, . . . , bk

The table below shows how certain “scenario preferences” can be modeled using the
proposed parametrization in equation (3). If the scenario user wants to combine several

scenario user wishes to express that scenario severity increases choice of b

. . . as variable j obtains higher (lower) values bj = 1 (= −1)

. . . as variable j rises relative to variable j∗ bj = −bj∗ = 1

. . . as variable j and variable j∗ rise (fall) jointly bj = bj∗ = 1 (= −1)

severity function properties as specified in the table above, she can aggregate these
properties in the following way: b =

∑L
l=1 vl · bl, where L is the number of properties to

be combined, vl is the relative weight given to property l, and bl is a k × 1 vector that
represents the lth property.

Let me clarify the approach with an example. Suppose the scenario variables are
yt =

[
i3m i10y rgdp

]
, i.e. a short-run interest rate, a long-run interest rate and the

level of real GDP. Suppose that according to the scenario users evaluation, the following
three properties characterize a severe scenario: (1) a flattening or inversion of the yield
curve, (2) a rise in the overall level of interest rates, and (3) low real GDP growth. Let us
first specify a severity function for each of these three properties separately:

1.
[
b1
i3m b1

i10y b1
rgdp

]′
=
[
1 −1 0

]′
provokes inversion of the yield curve

2.
[
b2
i3m b2

i10y b2
rgdp

]′
=
[
1 1 0

]′
provokes a high interest rate level

3.
[
b3
i3m b3

i10y b3
rgdp

]′
=
[
0 0 −1

]′
provokes low real GDP growth

Additionally, assume that we choose the relative weights of the three properties as v1 =
1, v2 = .5, v3 = .5 to reflect the fact that a flattening of the yield curve is of first-order
importance, whereas a high overall level of interest rates and low real GDP growth are of
second-order importance. By aggregation, we obtain[

bi3m bi10y brgdp
]′

=
[
1.5 −.5 −.5

]′
. (4)

2.2.3 Choice of w1, . . . , wh

In choosing the horizon weights w1, . . . , wh, it should be kept in mind that the variance of
the predictive density tends to rise with the forecast horizon, i.e. elements of Σ that refer
to more distant forecast horizons will typically be greater.4 Thus, equation (2), which can

be restated as (Ŷα − µ) = %Σβ (where % is a scalar), implies that the extent to which the

scenario path Ŷα deviates from the mean of the predictive density µ will tend to increase
with the forecast horizon.

One way of counteracting this tendency is to let the elements of β decay at a sufficiently
rapid pace. Suppose the scenario user has a preference for a scenario in which “shocks”

4There are two reasons for this: unknown shocks that accumulate and the impact of estimation
uncertainty.
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(i.e. deviations from the mean µ of the predictive density) occur relatively early. In this
case, the elements of β have to decline at a pace that is somewhat faster than the pace
at which the variance of the predictive density rises. A parsimonious parametrization
is wh̃ = h̃−κ, where κ > 0 governs how quickly the elements of the slope vector β (see
equation 3) decrease with the forecast horizon. If the preference for early shocks is very
strong, a possible refinement is wh̃ = h̃−κ × 1(h̃≤h∗), where 1(h̃≤h∗) = 1 if h̃ ≤ h∗ and
1(h̃≤h∗) = 0 otherwise, i.e. anything that happens after period T + h∗ does not matter for
the severity function.

2.3 Severity function estimation

As outlined in section 2, estimation can either be based on empirical data or on test runs of
the stress test, i.e. simulation-based estimation. Suppose we consider a linear specification
of the severity function, i.e. s(YT+h) = Y′T+hβ, where β could either be left unrestricted
or be replaced with the parsimonious parameterization of section 2.2.1. The empirical
estimation approach would then draw on time series data on the risk factors collected
in YT+h and on an observed severity metric so(YT+h) (see section 2 for suggestions) to
estimate the functional relationship between the risk factors and the severity metric, i.e.
the elements of β. The simulation-based estimation approach would instead rely on a
sufficiently large number of simulated scenarios, for each of which a severity metric would
be obtained from test runs of the stress test.

3 Empirical Application

Below I use the severity function approach to find a stress test scenario for the German
banking sector. This scenario will have a 16-quarter horizon and refers to the following risk
factors: a 3-month interbank rate (i3m), the current yields on German government bonds
with two and ten years to maturity (i2y, i10y), the gross domestic product in real terms
(rgdp), an unemployment rate (unemp), a consumer price index (cpi), and a broad-based
stock index (cdax ). Table 1 collects more details on the data, how they are used in the
empirical model, and on the estimation sample. Briefly, the next steps are

1. Present the econometric method used to obtain a predictive density for Y2016:Q1+16 =[
y2016:Q2 . . . y2020:Q1

]′
- a Bayesian VAR (Vector Auto-Regression);

2. Turn to the structural identification of the model. The paper will use the structural
VAR (SVAR) representation to back out a path of structural (i.e. economic) shocks
for any scenario. This step is not necessary in an application of the severity function
approach. The upside of having a structurally identified model is that we can use
the corresponding structural shock series to construct a scenario narrative;

3. Specify the severity function;

4. Present the SFA-based scenarios and contrast them with an alternative scenario
generated using conditional forecasting methodology;

7



Table 1: Data, Transformations and Estimation Sample

Variable

(xt)

Seasonally

and calendar

adjusted?

Transformation

used in VAR

(yt)

Original data

frequency1

Description

i3m no xt monthly 3-month EURIBOR

i2y no xt monthly Estimated current yield on Ger-

man government bonds with two

years to maturity

i10y no xt monthly Current yield on German govern-

ment bonds with 9–10 years to

maturity

rgdp yes ln(xt) quarterly German real GDP (chain-linked

index)

unemp yes xt monthly German unemployment rate

(section 16 Social Security Code

III)

cpi yes ln(xt) monthly Consumer price index

cdax no ln(xt) monthly CDAX price index

Additional information: The estimation sample extends from 1992:Q1 to
2016:Q1. The data have been downloaded from http://www.bundesbank.de/

SiteGlobals/Forms/Suche_Statistik/EN/Statistiksuche_Text_Formular.html

using the following mnemonics: BBK01.SU0316; BBK01.WZ9810; BBK01.WX3950;
BBNZ1.Q.DE.Y.H.0000.A; BBDL1.M.DE.Y.UNE.UBA000.A0000.A01.D00.0.R00.A;
BBDP1.M.DE.Y.VPI.C.A00000.I10.L; BBK01.WU001A
1 Quarterly series were obtained from monthly data by averaging.
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Let me first turn to the method employed to obtain a predictive density for the
scenario path. Given its great success in forecasting applications, I opt for a VAR estimated
using Bayesian methods with a natural conjugate variant of the well-known Litterman
Prior.5 The estimated VAR regression equation reads

yt = c+
4∑
i=1

Biyt−i + εt, (5)

where yt =
[
i3mt i2yt i10yt ln(rgdpt) unempt ln(cpit) ln(cdaxt)

]′
and εt ∼ N ( 0 , Σ ).

The Bayesian approach has the additional advantage (relative to frequentist approaches) of
providing predictive densities that incorporate parameter estimation uncertainty. Details
can be found in Appendix A.2.

In the next step, structural identification, I recover the SVAR representation of the
VAR from its reduced-form (5). The structural representation reads

A0yt = a+
4∑
i=1

Aiyt−i + ut, (6)

where a = A0 × c, Ai = A0 × Bi, i = 1, . . . , 4 and ut = A0 × εt with V [ut] = Ik. Unlike
the reduced-form representation (5), the structural representation has a matrix A0 which
spells out the contemporaneous relationships between the variables in yt and a vector ut
of orthogonal “structural” (economic) shocks. Knowledge of A0 suffices to map between
the two representations. This implies that, given the residuals from the reduced-form
regression εt, we can recover the structural shocks as ut = A0 × εt and use them to
construct a scenario narrative. To obtain the SVAR representation, I use an approach
based on sign restrictions on the structural impulse response functions.6 Specifically,
I use the restrictions outlined in table 3, to identify shocks to aggregate supply (AS ),
aggregate demand (AD) and to monetary policy (MP). Impulse response functions and
decompositions of the forecast error variance can be found in Appendix A.3. Note that
the SFA does not require structural identification, but that the structurally identified
model provides some interesting options: First, as outlined above, its structural shocks
can provide the basis for a scenario narrative; see section 3 for an example. Second, it
facilitates generating scenarios that condition on certain structural shocks. We could, for
example, consider a conditional predictive density that assumes a demand shock of the
same magnitude as the biggest shock observed over the last 20 years. Third, we could use
the structural representation to specify a severity function that loads on structural shocks.
In this way we could come up with a more economically motivated SFA scenario.

The severity function specification closely resembles the one presented in section
2.1, i.e. severity falls in the term spread, increases with the interest rate level and decreases
with real GDP. Similar to equation (4), I choose[

bi3m bi2y bi10y brgdp bunemp bcpi bcdax
]′

=
[
1.5 0 −.5 −.5 0 0 0

]′
. (7)

5See Doan, Litterman, and Sims (1984) for the original approach and Banbura, Giannone, and Reichlin
(2010) for the variant used in this paper

6For details, see Canova and De Nicolo (2002) and Uhlig (2005)

9



The severity function specification is completed by defining wh̃ = h̃−2 i.e. the slope
elements decay at a quadratic rate.

Table 2 presents the baseline forecast and three alternative scenarios, which are
also depicted in figure 1. The annual forecasts found in the table have been constructed
by averaging the corresponding quarterly level forecasts. The table considers the following
scenarios / forecasts:

1. Baseline Forecast is the mean of the unconditional predictive density. This fore-
cast path implies a moderate continued decline in the short-term interest rate
(2019-forecast : −.55), which is expected to take place at a relative constant term
spread of roughly 60 basis points, along with subdued real GDP growth, a continued
but mild trend towards lower unemployment (2019-forecast : 5.83%), CPI inflation
below the ECB target, and a stable level of the broad-based stock price index.

2. Conditional Forecast is the mean of the conditional predictive distribution under
the assumption that real GDP eight quarters ahead, i.e. in 2018:Q1, will be six
percent below its level in the baseline forecast.7 It is thus a deep recession scenario
by assumption.8

In this scenario, the German economy experiences a deep recession in 2017 and
2018, followed by a partial recovery in 2019. During the recession, the short-term
interest rate dives deep into negative territory, whereas the term spread expands
continuously (2018 forecast : 2.00%), inflation is close to zero, and the stock price
index initally dips by more than 20% but recovers to its initial level towards the end
of the scenario path.

Is this an adverse scenario for the banking sector? On the one hand, subdued
economic activity raises credit risks (as default rates tend to be counter cyclical). On
the other hand, the steep yield curve can be expected to boost net interest income,
which for most banks is the single most important component of income.9 These
two counteracting channels suggest that the scenario only implies a moderate stress
level for banks.

3. SFA-Scenario I uses the severity function specification outlined above in conjunction
with the unconditional predictive density to find the corresponding scenario at the
α = .99 severity level.

In this scenario, the yield curve inverts, which is unsurprising given the severity
function specification (see equation 7). At the same time, the path for real activity
(rgdp, unemp) is somewhat more expansive than in the baseline, and inflation is a
bit higher.

7Note that no assumptions are made on the level of real GDP at horizons from one to seven quarters
or beyond the eight-quarter horizon.

8Conditional forecasting considers the conditional distribution of a forecast path subject either to
restrictions on individual elements of the forecast path or, provided that the underlying forecast model is
structurally identified, on implicit shocks. Details on the approach used in this paper can be found in
Camba-Mendez (2012).

9To understand why, note that most banks supply long-term loans, which are financed by short-term
debt, i.e. they engage in maturity transformation. Naturally, the income from maturity transformation
rises with long-term interest rates and falls with short-term interest rates.
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Table 2: Scenarios

Year I3M I10Y RGDP UNEMP CPI CDAX

2015 -0.02 0.50 107.75 6.40 106.88 520.28

Baseline Forecast (Levels)

2016 -0.30 0.30 109.26 6.15 106.97 469.96

2017 -0.33 0.36 110.40 6.01 107.99 476.10

2018 -0.38 0.24 111.23 5.91 109.07 469.80

2019 -0.55 0.07 111.94 5.83 110.17 466.84

Conditional Forecast (RGDP(T+8) = .94× E
[
RGDP(T )

]
)

2016 -0.34 (-0.03) 0.40 (+0.09) 108.66 (-0.54%) 6.19 (+0.04) 106.89 (-0.08%) 449.64 (-4.32%)

2017 -1.10 (-0.77) 0.18 (-0.17) 106.52 (-3.52%) 6.52 (+0.51) 107.17 (-0.76%) 398.17 (-16.37%)

2018 -1.90 (-1.52) -0.10 (-0.34) 105.69 (-4.97%) 7.02 (+1.11) 107.08 (-1.82%) 460.32 (-2.02%)

2019 -1.09 (-0.54) 0.03 (-0.04) 109.29 (-2.37%) 6.62 (+0.79) 107.52 (-2.40%) 566.71 (+21.39%)

SFA-Scenario I (based on unconditional forecast density)

2016 0.27 (+0.57) 0.27 (-0.04) 109.75 (+0.45%) 6.07 (-0.08) 107.18 (+0.19%) 492.65 (+4.83%)

2017 0.90 (+1.22) 0.30 (-0.05) 111.33 (+0.84%) 5.65 (-0.37) 108.73 (+0.69%) 510.39 (+7.20%)

2018 0.90 (+1.29) 0.21 (-0.03) 112.14 (+0.82%) 5.21 (-0.70) 110.32 (+1.14%) 486.82 (+3.62%)

2019 0.60 (+1.15) 0.01 (-0.07) 112.74 (+0.71%) 4.87 (-0.96) 111.90 (+1.57%) 464.40 (-0.52%)

SFA-Scenario (based on conditional forecast density)

2016 0.27 (+0.57) 0.38 (+0.08) 109.11 (-0.13%) 6.11 (-0.04) 107.10 (+0.12%) 470.60 (+0.14%)

2017 0.04 (+0.37) 0.09 (-0.26) 106.93 (-3.14%) 6.23 (+0.21) 107.85 (-0.13%) 419.28 (-11.93%)

2018 -0.91 (-0.52) -0.18 (-0.42) 105.81 (-4.87%) 6.50 (+0.59) 108.06 (-0.93%) 473.28 (+0.74%)

2019 -0.11 (+0.44) -0.01 (-0.08) 109.78 (-1.93%) 5.80 (-0.03) 108.83 (-1.21%) 574.63 (+23.09%)

Notes: Baseline forecast = mean of unconditional predictive density; Value in parentheses:
% or PP (percentage point) deviation of scenario from the Baseline Forecast
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Figure 1: Scenarios
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Note: forecast horizon is plotted on the horizontal axis; forecast horizon 0 is the
last data point used for forecasting, i.e. 2016:Q1.
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From a banking-sector perspective, the yield curve inversion puts serious pressure
on net interest income, especially since the term spreads stays low for a relatively
long time. Nonetheless, the scenario is not very adverse because the path for real
activity is somewhat too expansive, thus putting little pressure on credit risk.

This deficiency could either be cured by specifying a severity function that puts more
weight on a decline in real GDP or, alternatively, by using a different predictive density,
which puts more weight on dampened real activity. SFA-Scenario II demonstrates
the second option.

4. SFA-Scenario II uses the conditional predictive density from the second scenario
(Conditional Forecast), which imposes that real GDP declines by six percent over the
following eight quarters, in conjunction with the same severity function and severity
level used in the third scenario (SFA-Scenario I ).

As a banking sector stress test scenario, SFA-Scenario II is the best choice among
the three candidates: It combines a relatively flat term structure with a (temporary)
serious recession. At the same time, the short-term interest rate does not dive too
deeply into negative territory, thus making the scenario economically more plausible
than SFA-Scenario I.

Figure 2 presents series of the identified structural shocks for the three scenarios Conditional
Forecast, SFA-Scenario I and SFA-Scenario II. The shock series for Conditional Forecast
and SFA-Scenario II both tell similar stories: A series of adverse supply shocks (e.g.
an unexpected rise in commodity prices), combined with adverse demand shocks (e.g.
low export demand from other euro area countries, EMEs or the USA) and a monetary
policy that turns out to be more restrictive than expected (for example, as it runs out of
instruments to further loosen the monetary policy stance). SFA-Scenario I, which has a
more expansive path for real activity, differs most markedly with respect to the series of
the aggregate demand shock, which turns out to be mildly expansive at all horizons.10

4 Concluding remarks

This paper presents a method - the Severity Function Approach (SFA) - of finding suitable
adverse scenarios for stress testing applications. The SFA searches for the scenario with
maximal plausibility subject to a constraint on the severity of the scenario. This constraint
is expressed in terms of the probability of more severe scenarios. The paper shows that
the optimization problem has an analytical solution if the severity function is linear and
the predictive density is multivariate normal, and it gives advice on alternative approaches
to coming up with a suitable severity function. In turn, the paper applies the SFA in order
to find a scenario for macro-prudential stress testing of the German banking sector. This
application shows that the SFA is a valuable alternative and/or complement to conditional
forecasting, which is a well-known and widespread approach in scenario analysis.

10Note that I have only identified three shock in my seven-variable SVAR. This implies that the shock
series presented here do not “tell the full story”, i.e. the remaining four unidentified shocks also matter
for the scenario, i.e. they are non-zero. As we cannot attach any economic meaning to these shocks, they
are not presented here.
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Figure 2: Corresponding structural shocks
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Note: The forecast horizon is plotted on the horizontal axis; The first depicted
point refers to the one-quarter horizon, i.e. to 2016:Q2; To obtain the depicted series, I
draw repeatedly from the posterior distribution of the parameters of the structural VAR
(see Arias et al., 2014). For each single draw, I recover the series of structural shocks that
would have led to the respective scenario path of the observables. The depicted structural
shocks are obtained by averaging across these draws.
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A Appendix

A.1 SFA scenario in the special case of section 2.1

First, note that the general optimization problem of equation (1) can be restated in terms
of the natural logarithm of the predictive density:

Ŷα = argmaxŶ ln fY (Ŷ) s.t. Pr
[
s(Yt+h) > s(Ŷ)

]
= α

Next, set up the corresponding Lagrangian:

L(Ŷ, λ) = −1

2

[
k · h · ln 2π + ln |Σ|+

(
Ŷ − µ

)′
Σ−1

(
Ŷ − µ

)]
−λ

α− 1 + Φ

a′
(
Ŷ − µ

)
√
a′Σa

 ,

where I have (i) imputed the functional form of the multivariate normal predictive density
(remember: Yt+h ∼ N (µ , σ )) and (ii) made use of the fact that s(Yt+h) = a′Yt+h ∼
N ( a′µ , a′Σa ). The solution for Ŷα in equation (2) can now be obtained by the standard
procedure, i.e. setting up first-order conditions, solving for the Lagrange multiplier λ,
imputing this solution and finally solving for Ŷ.

A.2 Bayesian estimation of the reduced-form VAR &

its predictive density

Bayesian estimation of the reduced-form VAR loosely follows Banbura et al. (2010) and
Giannone, Lenza, and Primiceri (2015), who present a natural-conjugate variant of the
well-known Litterman prior (see Doan et al., 1984).

To facilitate presentation of the prior, consider the following matrix representation
of the reduced-form VAR in equation (5):

Y = XB + E,

where Y =
[
y1 . . . yT

]′
, B =

[
c B1 . . . Bp

]′
, X =

[
x1 . . . xT

]′
, xt =

[
1 y′t−1 · · · y′t−p

]′
,

E =
[
ε1 . . . εT

]′
and εt ∼ N ( 0 , Σ ).

The prior belongs to the natural conjugate normal-inverse Wishart family with

Σ ∼ IW (Σ, k + 2), (A.1)

vec(B)|Σ ∼ N ( vec(B) , Σ⊗ Ω ) , (A.2)

implying the posterior distribution

Σ|Y,X ∼ IW (Σ + Ê ′Ê + (B̂ −B)′Ω−1(B̂ −B), T + k + 2), (A.3)

vec(B)|Σ, Y,X ∼ N
(
vec(B̂) , Σ⊗

(
X ′X + Ω−1

)−1
)
, (A.4)
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where B̂ = (X ′X + Ω−1)−1(X ′Y + Ω−1B) and Ê = Y −XB̂.
Below, I outline the parameterization of the prior, i.e. of the elements of Σ, B and Ω:

• Σ = diag(σ2
1 . . . σ2

k), where σ2
i is the residual variance of a univariate AR(p)

autoregression with a constant for the ith element of yt
11

• B =
[
0(1×k) Ik 0(k×k) · · · 0(k×k)

]′
• Ω = diag

(
ν−2, λ2

[
1, 1/22, . . . , 1/p2

]
⊗
[
1/σ2

1, . . . , 1/σ2
k

])
, with ν → 012

This prior is diffuse about the vector of intercepts c (as κ → 0), but informative about
the matrices of slope parameters {B1, . . . , Bp}. The prior mean of the slope B expresses
the belief that each variable is generated from a univariate random walk process. In the
specification of the prior variances in equation (A.2), the hyperparameter λ governs the
overall tightness of the prior for B1, . . . , Bp: If λ = 0, the prior expresses that we are
absolutely certain that the true data-generating process is a set of univariate random
walks. If, by contrast, λ → ∞, the prior becomes diffuse. In my application, I choose
λ = .1, which is somewhat more informative than suggested by Carriero, Clark, and
Marcellino (2015), who find an optimal value of λ close to .2. My choice is motivated
by two factors: the relatively short estimation sample and the relatively large number
of parameters induced by a model with p = 4 lags. The series

[
1, 1/22, . . . , 1/p2

]
in the parameterization of Ω implies that the prior gets tighter, the greater the lag we
consider. It thus reflects the belief that more distant lags play a minor role. Finally, in
Σ⊗ Ω, the terms Σ and

[
1/σ2

1, . . . , 1/σ2
k

]
(see parameterization of Ω) result in a prior

that accommodates differences in the scale and variability of the different variables.
It is well known that for horizons greater than one period the predictive density

of the Bayesian VAR described above is not available in closed form. Simulated draws
can, however, be obtained by drawing a sequence of Σ and B (from equations A.3-A.4)
and shocks (remembering εt ∼ N ( 0 , Σ )) and then assembling the implied draw of
YT+h (see Carriero et al., 2015). In my application, for each draw of a total of 1,000
draws from the posterior of Σ and B, I draw ten paths of shocks (i.e. of εT+1, . . . , εT+h)
and thus arrive at a total of 10,000 draws from the predictive density. To be able to
apply the results of Appendix A.1 for the SFA, I assume that the predictive density
comes from a multivariate normal distribution with mean and variance given by the
respective statistics of the simulated draws. Note that the true predictive density is non-
Gaussian. The approximation of the true predictive density could potentially be improved
by mixture-type distributions. Focusing on univariate forecast distributions, Krüger,
Lerch, Thorarinsdottir, and Gneiting (2016) show that a mixture-type approximation to a
Bayesian forecast distribution outperforms the Gaussian approximation on theoretical and
empirical grounds. Empirical evidence by Warne, Coenen, and Christoffel (2017) suggests
that similar results may apply in the multivariate case; however, the difference between
the mixture versus Gaussian approximations seems rather small in their case.13

11diag(x) generates a diagonal matrix with the vector x on its main diagonal (and zeros everywhere
else)

12In my application, I use ν = .01
13I wish to thank a referee for making this point.

18



A.3 Structural identification

The structural identification of the VAR (i.e. of the parameters of equation 6) uses the
algorithm outlined in Arias et al. (2014) with the sign restrictions specified in table 3.
Figures 3, 4, and 5 show the impulse responses to an aggregate demand, an aggregate
supply and a monetary policy shock, respectively. Figure 6 shows the aggregated forecast
error variance decompositions for the three shocks, which - as measured by its median -
ranges for most variables between 35% and 50%. This number indicates that beyond the
three identified shocks, there are other major drivers of unexpected variations in the seven
endogenous variables. This fact should be kept in mind when predicted shock series are
used as a basis for a scenario narrative.

Table 3: Sign Restrictions

i3m i2y i10y ln(rgdp) unemp ln(cpi) ln(cdax)

AS - - + -

AD + + +

MP - - + +

These restrictions are common choices, resembling, for example, those used by Eickmeier
et al. (2009). All sign restrictions are imposed contemporaneously and for the following
two quarters. Note that the identification scheme for the MP shock is problematic: Since
1999, the euro area has had a single currency and a single monetary policy under the
responsibility of the European Central Bank (ECB). Given this new monetary policy
regime, it is hard to justify an identification scheme in which policy choices depend only on
German economic data, but not on the economic data of other Euro area countries. The
monetary policy shock that I identify can therefore be interpreted, at best, as monetary
policy choices that are unexpected from the perspective of German economic data alone.
My reason for deciding against identifying the MP shock based on euro area variables is
that I am interested in a solid scenario narrative with structural shocks that are strong
drivers of the scenario variables of interest.
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Figure 3: Aggregate demand shock - impulse responses
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Figure 4: Aggregate supply shock - impulse responses
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Figure 5: Monetary policy shock - impulse responses
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Figure 6: AD, AS & MP shock - aggregated forecast error variance decomposition
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variance decomposition.
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