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Abstract: Estimation of the I(2) cointegrated vector autoregressive (CVAR) model is considered.
Without further restrictions, estimation of the I(1) model is by reduced-rank regression
(Anderson (1951)). Maximum likelihood estimation of I(2) models, on the other hand, always
requires iteration. This paper presents a new triangular representation of the I(2) model. This is the
basis for a new estimation procedure of the unrestricted I(2) model, as well as the I(2) model with
linear restrictions imposed.
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1. Introduction

The I(1) model or cointegrated vector autoregression (CVAR) is now well established. The model
is developed in a series of papers and books (see, e.g., Johansen (1988), Johansen (1991),
Johansen (1995a), Juselius (2006)) and generally available in econometric software. The I(1) model is
formulated as a rank reduction of the matrix of ‘long-run’ coefficients. The Gaussian log-likelihood is
estimated by reduced-rank regression (RRR; see Anderson (1951), Anderson (2002)).

Determining the cointegrating rank only finds the cointegrating vectors up to a rank-preserving
linear transformation. Therefore, the next step of an empirical study usually identifies the cointegrating
vectors. This may be followed by imposing over-identifying restrictions. Common restrictions,
i.e., the same restrictions on each cointegrating vector, can still be solved by adjusting the RRR
estimation; see Johansen and Juselius (1990) and Johansen and Juselius (1992). Estimation with
separate linear restrictions on the cointegrating vectors, or more general non-linear restrictions, requires
iterative maximization. The usual approach is based on so-called switching algorithms; see Johansen
(1995b) and Boswijk and Doornik (2004). The former proposes an algorithm that alternates between
cointegrating vectors, estimating one while keeping the others fixed. The latter consider algorithms
that alternate between the cointegrating vectors and their loadings: when one is kept fixed, the other
is identified. The drawback is that these algorithms can be very slow and occasionally terminate
prematurely. Doornik (2017) proposes improvements that can be applied to all switching algorithms.

Johansen (1995c) and Johansen (1997) extend the CVAR to allow for I(2) stochastic trends.
These tend to be smoother than I(1) stochastic trends. The I(2) model implies a second reduced rank
restriction, but this is now more complicated, and estimation under Gaussian errors can no longer
be performed by RRR. The basis of an algorithm for maximum likelihood estimation is presented in
Johansen (1997), with an implementation in Dennis and Juselius (2004).

Econometrics 2017, 5, 19; doi:10.3390/econometrics5020019 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://dx.doi.org/10.3390/econometrics5020019
http://www.mdpi.com/journal/econometrics


Econometrics 2017, 5, 19 2 of 20

The general approach to handling the I(2) model is to create representations that introduce
parameters that vary freely without changing the nature of the model. This facilitates both the
statistical analysis and the estimation.

The contributions of the current paper are two-fold. First, we present the triangular representation
of the I(2) model. This is a new trilinear formulation with a block-triangular matrix structure at its core.
The triangular representation provides a convenient framework for imposing linear restrictions on
the model parameters. Next, we introduce several improved estimation algorithms for the I(2) model.
A simulation experiment is used to study the behaviour of the algorithms.

Notation

Let α (p × r) be a matrix with full column rank r, r ≤ p. The perpendicular matrix
αx (p× p−r) has α′xα = 0. The orthogonal complement α⊥ has α′⊥α = 0 with the additional property
that α′⊥α⊥ = Ip−r. Define α̃ = α(α′α)−1/2 and α = α(α′α)−1. Then, (α̃ : α⊥) is a p× p orthogonal
matrix, so Ip = α̃α̃′ + α⊥α′⊥ = αα′ + α⊥α′⊥ = αα′ + α⊥α′⊥.

The (thin) singular value decomposition (SVD) of α is α = UWV′, where U(p× r), V(r× r) are
orthogonal: U′U = V′V = VV′ = Ir, and W is a diagonal matrix with the ordered positive singular
values on the diagonal. If rank(α) = s < r, then the last r− s singular values are zero. We can find
α⊥ = U2 from the SVD of the square matrix (α : 0) = (U1 : U2)WV′ = (U1W1V′1 : 0).

The (thin) QR factorization of α with pivoting is αP = QR, with Q(p× r) orthogonal and R upper
triangular. This pivoting is the reordering of columns of α to better handle poor conditioning and
singularity, and is captured in P, as discussed Golub and Van Loan (2013, §5.4.2).

The QL decomposition of A can be derived from the QR decomposition of JAJ: JAJ = QR,
so A = J JAJ J = JQJ JZJ = Q′L. J is the exchange matrix, which is the identity matrix with columns
in reverse order: premultiplication reverses rows; postmultiplication reverses columns; and J J = I.

Let α = Ω−1α
(
α′Ω−1α

)−1, then α′⊥Ωα = 0.
Finally, a← b assigns the value of b to a.

2. The I(2) Model

The vector autoregression (VAR) with p dependent variables and m ≥ 1 lags:

yt = A1yt−1 + ... + Amyt−m + ΦxU
t + εt, εt ∼ IINp[0p, Ω],

for t = 1, ..., T, and with yj, j = −m + 1, ..., 0 fixed and given, can be written in equilibrium correction
form as:

∆yt = Πyyt−1 + Γ1∆yt−1 + ... + Γm−1∆yt−m+1 + ΦxU
t + εt,

without imposing any restrictions. The I(1) cointegrated VAR (CVAR) imposes a reduced rank
restriction on Πy(p× p): rankΠy = r; see, e.g., Johansen and Juselius (1990), Johansen (1995a).

With m ≥ 2, the model can be written in second-differenced equilibrium correction form as:

∆2yt = Πyyt−1 − Γy∆yt−1 + Ψ1∆2yt−1 + ... + Ψm−2∆2yt−m+2 + ΦxU
t + εt. (1)

The I(2) CVAR involves an additional reduced rank restriction:

rank(α′⊥Γyβy,⊥) = s,

where α′⊥α = 0. The two rank restrictions can be expressed more conveniently in terms of products of
matrices with reduced dimensions:

Πy = αβ′y, (2)

α′⊥Γyβy,⊥ = ξη′y, (3)
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where α and βy are p× r matrices. The second restriction needs rank s, so ξ and ηy are a (p− r)× s.
This requires that the matrices on the right-hand side of (2) and (3) have full column rank. The number
of I(2) trends is s2 = p− r− s.

The most relevant model in terms of deterministics allows for linearly trending behaviour:
ΦxU

t = µ0 + µ1t . Using the representation theorem of Johansen (1992) and assuming
E[yt] = a + bt imply:

µ1 = −αβ′yb, (4)

µ0 = −αβ′ya + Γyb, (5)

which restricts and links µ0 and µ1; we see that α′⊥µ1 = 0 and α′⊥µ0 = α′⊥Γyb.

2.1. The I(2) Model with a Linear Trend

The model (1) subject to the I(1) and I(2) rank restrictions (2) and (3) with ΦxU
t = µ0 + µ1t,

subject to (4) and (5) can be written as:

∆2yt = αβ′
(

yt−1

t

)
− Γ

(
∆yt−1

1

)
+ Ψ1∆2yt−1 + ... + Ψm−2∆2yt−m+2 + εt, (6)

subject to:
α′⊥Γβ⊥ = ξη′, (7)

where β is p1 × r, Γ is p× p1 and η is (p1 − r)× s. In this case, p1 = p + 1. Because α is the leading
term in (4), we can extend βy by introducing β′c = −β′yb, so β′ = (β′y : β′c). Furthermore, Γ has been
extended to Γ = (Γy : Γc) = (Γy : −µ0).

To see that (6) and (7) remains the same I(2) model, consider α′⊥Γc and insert Ip = βyβ
′
y + βy⊥β′y⊥:

α′⊥Γc = −α′⊥Γyβyβ′yb− α′⊥Γyβy⊥β′y⊥b = α′⊥Γyβyβ′c − ξη′yβ′y⊥b = α′⊥Γyβyβ′c + ξη′c.

Using the perpendicular matrix:

βx =

(
βy⊥ −βyβ′c

0 1

)
we see that the rank condition is unaffected:

α′⊥Γβx =
(
α′⊥Γyβy⊥ : ξη′c

)
=
(

α′⊥Γyβy⊥ : α′⊥[−Γyβyβ′c + Γc]
)
= ξ

(
η′y : η′c

)
.

A more general formulation allows for restricted deterministic and weakly exogenous variables
xR

t and unrestricted variables xU
t :

∆2yt = Π

(
yt−1

xR
t−1

)
− Γ

(
∆yt−1

∆xR
t

)
+ Ψ1∆2yt−1 + ... + Ψm−2∆2yt−m+2 + ΦxU

t + εt,

= Πw2t − Γw1t + Ψw3t + εt,

where ∆2xR
t , and its lags are contained in xU

t ; this in turn, is subsumed under w3t = (∆2y′t−1, ..., xU′
t )′.

The number of variables in xR
t is p1− p, so Π and Γ always have the same dimensions. Ψ is unrestricted,

which allows it to be concentrated out by regressing all other variables on w3t:

z0t = αβ′z2t − Γz1t + εt, εt ∼ IINp[0p, Ω]. (8)
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To implement likelihood-ratio tests, it is necessary to count the number of restrictions:

restrictions on Π : (p− r)(p1 − r) restrictions,
restrictions on Γ : (p− r− s)(p1 − r− s) = s2s∗2 restrictions,

defining s∗2 = p1 − r− s. The restrictions on Π follow from the representation. Several representations
of the I(2) model have been introduced in the literature to translate the implicit non-linear restriction (3)
on Γ into an explicit part of the model. These representations reveal the number of restrictions imposed
on Γ, as is shown below.

First, we introduce the new triangular representation.

2.2. The Triangular Representation

Theorem 1. Consider the model:
z0t = Πz2t − Γz1t + εt,

with rank restrictions Π = αβ′ and α′⊥Γβ⊥ = ξη′ where α is a p× r matrix, β is p1 × r, ξ is (p− r)× s, η is
(p1 − r)× s. This can be written as:

z0t = AWB′z2t − AVB′z1t + εt, (9)

where:

W =

 0 0 0
0 0 0

W11 0 0

 , V =

 V31 0 0
V21 V22 0
V11 V12 V13

 . (10)

A, B, W11, V22 are full rank matrices. A is p× p, and B is p1 × p1; moreover, A, B and the nonzero blocks in
W and V are freely varying. A and B are partitioned as:

A = (A2 : A1 : A0) , B = (B0 : B1 : B2) ,

where the blocks in A have s2, s, r columns respectively; for B, this is: r, s, s∗2 ; p1 = r + s + s∗2 . W and V are
partitioned accordingly.

Proof. Write α̃ = α(α′α)−1/2, such that α̃′α̃ = Ir. Construct A and B as:

A =
(

α⊥ξ⊥ : α⊥ ξ̃ : α̃
)

, B =
(

β̃ : β⊥η̃ : β⊥η⊥
)

.

Now, A′A = I and B′B = I. A(p× p) and B(p1 × p1) are full rank by design. Define V = A′ΓB:

V =

 ξ ′⊥α′⊥Γβ̃ ξ ′⊥α′⊥Γβ⊥η̃ ξ ′⊥α′⊥Γβ⊥η⊥
ξ̃ ′α′⊥Γβ̃ ξ̃ ′α′⊥Γβ⊥η̃ ξ̃ ′α′⊥Γβ⊥η⊥

α̃′Γβ̃ α̃′Γβ⊥η̃ α̃′Γβ⊥η⊥

 =

 V31 0 0
V21 V22 0
V11 V12 V13

 .

V22 = (ξ ′ξ)
1
2 (η′η)

1
2 is a full rank s× s matrix. The zero blocks in V arise because, e.g., ξ ′⊥α′⊥Γβ⊥ =

ξ ′⊥ξη′ = 0. Trivially:

Π = αβ′ = A

 0 0 0
0 0 0

W11 0 0

 B′ = AWB′.

W11 = (α′α)
1
2 (β′β)

1
2 is a full rank r× r matrix. Both W and V are p× p1 matrices. Because A and B

are each orthogonal: Γ = AA′ΓBB′ = AVB′.
The QR decomposition shows that a full rank square matrix can be written as the product of an

orthogonal matrix and a triangular matrix. Therefore, AVB′ = ALaL−1
a VLbL−1

b B′ = A∗V∗B′∗ preserves
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the structure in V∗ when La, Lb are lower triangular, as well as that in W∗. This shows that (9) holds for
any full rank A and B, and the orthogonality can be relaxed.

Therefore, any model with full rank matrices A and B, together with any W, V that have the zeros
as described above, satisfies the I(2) rank restrictions. We obtain the same model by restricting A and
B to be orthogonal.

When Γ is restricted only by the I(2) condition: rankΓ = r + s + min(r, s2). Then, V varies freely,
except for the zero blocks, and the I(2) restrictions are imposed through the trilinear form of (9). Γ = 0
implies V = 0. Another way to have s = 0 is Γ = (α : 0)G; in that case, V 6= 0.

The s2 restrictions on the intercept (5) can be expressed as A′2(µ0 − µc) = 0, using µc = Γyβyβ′c,
or µ0 = (A1 : A0)v + µc, for a vector v of length r + s.

2.3. Obtaining the Triangular Representation

The triangular representation shows that the I(2) model can be written in trilinear form:

z0t = AWB′z2t − AVB′z1t + εt,

where A and B are freely varying, provided W and V have the appropriate structure.
Consider that we are given α, β, Γ of an I(2) CVAR with rank indices r, s and wish to obtain the

parameters of the triangular representation. First compute α′⊥Γβ⊥ = ξη′, which can be done with the
SVD, assuming rank s. From this, compute A and B:

A = (A2 : A1 : A0) =
(

α⊥ξ⊥ : α⊥ ξ̃ : α
)

, B = (B0 : B1 : B2) = (β : β⊥η̃ : β⊥η⊥) .

Then, V = A−1ΓB−1′. Because Γ satisfies the I(2) rank restriction, V will have the corresponding
block-triangular structure.

It may be of interest to consider which part of the structure can be retrieved in the case where
rank(Π) = r, but rank(α′⊥Γβ⊥) = p− r, while it should be s. This would happen when using I(1)
starting values for I(2) estimation. The off anti-diagonal blocks of zeros:

V∗ =

 V∗31 V∗32 V∗33
V21 V22 V∗23
V11 V12 V∗13

 →

 V31 0 V33

V21 V22 0
V11 V12 V13

 = V (11)

can be implemented with two sweep operations: Is2 −V∗32V−1
22 0

0 Is 0
0 0 Ir

V∗

 Ir 0 0
0 Is −V−1

22 V∗23
0 0 Is∗2

 .

The offsetting operations affect A1 and B1 only, so Π and Γ are unchanged. However, we cannot
achieve V33 = 0 in a similar way, because it would remove the zeros just obtained. The V33 block has
dimension s2s∗2 and represents the number of restrictions imposed on Γ in the I(2) model. Similarly, the
anti-diagonal block of zeros in W captures the restrictions on Π.

Note that the r× s∗2 block V13 can be made lower triangular. Write the column partition of V as
(V·1 : V·2 : V·3), and use V13 = LQ to replace V·3 by V·3Q′ and B2 by B2Q′. When r < s∗2 , the rightmost
s∗2 − r columns of L will be zero, and the corresponding columns of B2 are not needed to compute Γ.
This part can then be omitted from the likelihood evaluation. This is an issue when we propose an
estimation procedure in §4.2.1.
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2.4. Restoring Orthogonality

Although A and B are freely varying, interpretation may require orthogonality between column
blocks. The column blocks of A are in reverse order from B to make V and W block lower triangular.
As a consequence, multiplication of V or W from either side by a lower triangular matrix preserves
their structure. This allows for the relaxation of the orthogonality of A and B, but also enables us to
restore it again.

To restore orthogonality, let Γ = A∗V∗B′∗, where A∗, B∗ are not orthogonal, but with V∗
block-triangular. Now, use the QL decomposition to get A∗ = AL, with A orthogonal and L lower
triangular. Use the QR decomposition to get B∗ = BR, with B orthogonal and R upper triangular. Then,
A∗V∗B′∗ = ALV∗R′B′ = AVB′ with the blocks of zeros in V preserved. A∗W∗B′∗ must be adjusted
accordingly. When β is restricted, B0 cannot be modified like this. However, we can still adjust
(A2 : A1) = A∗ to get A′∗A∗ = Ip−r and A′0 A∗ = 0; with similar adjustments to (B1 : B2).

The orthogonal version is convenient mathematically, but for estimation, it is preferable to use
the unrestricted version. We do not distinguish through notation, but the context will state when the
orthogonal version is used.

2.5. Identification in the Triangular Representation

The matrices A and B are not identified without further restrictions. For example, rescaling α and
β as in αW11β′ = α′c−1cW11dd−1β = α∗cW11dβ∗′ can be absorbed in V: V31d 0 0

V21d V22 0
cV11d cV12 cV13

 .

When β is identified, W11 remains freely varying, and we can, e.g., set c = W−1
11 . However, it is

convenient to transform to W11 = I, so that A0 and B0 correspond to α and β. This prevents part of the
orthogonality, in the sense that A′0 A0 6= I and B′0B0 6= I.

The following scheme identifies A and B, under the assumption that B0 is already identified
through prior restrictions.

1. Orthogonalize to obtain A′0 A1 = 0, A′0 A2 = 0, A′1 A2 = 0.
2. Choose s full rank rows from B1, denoted MB1 , and set B1 ← B1M−1

B1
. Adjust V accordingly.

3. Do the same for B2 ← B2M−1
B2

.
4. Set A1 ← A1V22, V21 ← V−1

22 V21 and V22 ← I.
5. A2 ← A2M−1

A2
.

The ordering of columns inside Ai, Bi is not unique.

3. Relation to Other Representations

Two other formulations of the I(2) model that are in use are the so-called τ and δ representations.
All representations implement the same model and make the rank restrictions explicit. However,
they differ in their definitions of freely-varying parameters, so may facilitate different forms of analysis,
e.g., asymptotic analysis, estimation or the imposition of restrictions. The different parametrizations
may also affect economic interpretations.

3.1. τ Representation

Johansen (1997) transforms (8) into the τ-representation:

z0t = α
(
$′τ′z2t + ψ′z1t

)
+ wκ′τ′z1t + εt, (12)
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where $(p1 × r+s) is used to recover β: β = τ$. The parameters (α, $, τ, ψ, κ) vary freely. If we
normalize on $′ = (Ir : 0) and adjust κ, τ accordingly, then τ = (β : β1), and:

z0t = α
(

β′z2t + ψ′z1t
)
+ wκ′τ′z1t + εt.

We shall derive the τ representation. The first step is to define a transformation of εt ∼ N[0, Ω]:

(
α⊥ α

)′
εt ∼ N

[
0,

(
α′⊥Ωα⊥ 0

0
(
α′Ω−1α

)−1

)]
. (13)

This splits the p-variate systems into two independent parts. The first has any terms with leading α

knocked out, while the second has all leading α’s cancelled. The inverse transformation is given by:
(α⊥ : α)−1 = (α⊥ − αα

′
α⊥ : α)′ = (w : α)′.

The next step is to apply (13) to (8) to create two independent systems and insert Ip = ββ′ + β⊥β′⊥
in the ‘marginal’ equation:

(
α⊥ α

)′
z0t =

{
−α′⊥Γ(ββ′ + β⊥β′⊥)z1t + ε1t = κ′(β : β⊥η)′z1t + ε1t,
β′z2t − α

′Γz1t + ε2t = β′z2t + ψ′z1t + ε2t.
(14)

where ψ′ = −α
′Γ and κ′ = −(α′⊥Γβ : ξ) are freely varying. Removing the transformation:

z0t = w′κ′(β : β⊥η)′z1t + α′(β′z2t + ψ′z1t) + εt

and introducing the additional parameters τ = (β : β⊥η) and $ completes the τ-representation (12).
Table 1 provides definitions of the parameters that are used (cf. Johansen (1997, Tables 1 and 2)).

Table 1. Definitions of the symbols used in the τ and δ representations of the I(2) model.

Definition Dimension

τ = (β : β⊥η) when $′ = (I : 0) p1 × (r + s)
τ⊥ = β⊥η⊥ p1 × s∗2
ψ = −(α′Γ)′ p1 × r
κ′ = −α′⊥Γτ = −(α′⊥Γβ : ξ) = (κ1 : κ2)

′ (p− r)× (r + s)
δ = −α′Γτ⊥ r× s∗2
ζ = −Γτ = (ζ1 : ζ2) p× (r + s)
w = α⊥ − αα

′
α⊥ = Ωα⊥

(
α′⊥Ωα⊥

)−1
= α⊥ p× (p− r)

d = τ⊥δ′ p1 × r
e = τζ ′ p1 × p

Corollary 1. Triangular representation (9) is equivalent to the τ-representation (12) when A′0(A2 : A1) = 0.

Proof. Write A∗ = (A2 : A1), so A = (A∗ : A0). First, the system (9) is premultiplied by A−1 = A′

and subsequently with a lower triangular matrix L to create two independent subsystems. The matrix
L and its inverse are given by:

L =

(
Ip−r 0
−A′0w∗ Ir

)
, L−1 =

(
Ip−r 0

A′0w∗ Ir

)
,
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where w∗ = ΩA∗(A′∗ΩA∗)−1, cf. (14). Because A′0 A∗ = 0, we have
that A∗ + A0 A′0w∗ = A∗ + (I − A∗A∗)′w∗ = w∗, so AL−1 = (w∗ : A0). Furthermore: LW = W.
The identity matrix L−1L can also be inserted directly in (9):

z0t = A0W11B′0z2t − (w∗ : A0)LVB′z1t + εt

= A0W11B′0z2t − w∗

(
V31 0
V21 V22

)
(B0 : B1)

′z1t + A0 A′0w∗(V11 : V12 : V13)B′z1t + εt

= α
[
β′z2t + ψ′z1t

]
+ wκ′τ′z1t + εt,

where ψ′ = −A′0w∗(V11 : V12 : V13)B′ and wκ′ = −w∗

(
V31 0
V21 V22

)
.

3.2. δ Representation

Paruolo and Rahbek (1999) and Paruolo (2000a) use the δ representation:

z0t = α
(

β′z2t + δτ′⊥z1t
)
+ ζτ′z1t + εt. (15)

Here, (α, δ, ζ, τ = [β : β1]) vary freely. To derive the δ representation, use ττ′ + τ⊥τ′⊥ = Ir+s:

−Γττ′ = −(Γβ : Γβ⊥η)τ′ = (ζ1 : ζ2)τ
′ = ζτ′,

−Γτ⊥τ′⊥ = −αα′Γτ⊥τ′⊥ − α⊥α′⊥Γτ⊥τ′⊥ = αδτ′⊥,

and insert in (8). The term with α′⊥Γτ⊥ disappears because τ⊥ = β⊥η⊥, so α′⊥Γτ⊥ = ξη′η⊥ = 0.
When β is identified both δτ′⊥ and ζτ′ are unique, but not yet ζ or δ. In the τ representation,

the variable ψ is also unique with $ chosen as (I : 0)′ and β identified. Table 2 relates the τ, δ and
triangular representations.

Table 2. Links between symbols used in the representations of the I(2) model, assuming W11 = Ir

and a′⊥a⊥ = I.

−Γ = αψ′ + wκ′τ′ = αδτ′⊥ + ζτ′ = αd′ + e′

ζ = αψ′τ + wκ′ ( from Γτ)
d′ = ψ′τ⊥τ′⊥ ( from Γτ⊥)
κ′ = α′⊥ζ ( from α′⊥Γ)
ψ′ = d′ + α

′
ζτ′ ( from α

′Γ)

α = A0
β = B0
d′ = −V13B′2
e′ = −A(V.1 : V.2)(B0 : B1)

′

τ = (B0 : B1)

Corollary 2. Triangular representation (9) is equivalent to the δ-representation (15) when B′2(B0 : B1) = 0.

Proof. Write B2 = τx and (B0 : B1) = τ. Using the column partitioning if V = (V.1 : V.2 : V.3):
Γτ = AVB′τ = A(V.1 : V.2). From (9):

z0t = A0
[
W11B′0z2t −V13τ′xz1t

]
− A(V.1 : V.2)τ

′z1t + εt

= A0
[
W11B′0z2t −V13τ′xz1t

]
− Γττ′z1t + εt = α

[
β′z2t + δτ′⊥z1t

]
+ ζτ′z1t + εt.
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4. Algorithms for Gaussian Maximum Likelihood Estimation

Algorithms to estimate the Gaussian CVAR are usually alternating over sets of variables. In the
cointegration literature, these are called switching algorithms, following Johansen and Juselius (1994).

The advantage of switching is that each step is easy to implement, and no derivatives are required.
Furthermore, the partitioning circumvents the lack of identification that can occur in these models
and which makes it harder to use Newton-type methods. The drawback is that progress is often slow,
taking many iterations to converge. Occasionally, this will lead to premature convergence. Although
the steps can generally be shown to be in a non-downward direction, this is not enough to show
convergence to a stationary point. The work in Doornik (2017) documents the framework for the
switching algorithms and also considers acceleration of these algorithms; both results are used here.

Johansen (1997, §8) proposes an algorithm based on the τ-representation, called τ-switching here.
This is presented in detail in Appendix B. Two new algorithms are given next, the first based on the
δ-representation, the second on the triangular representation. Some formality is required to describe
the algorithms with sufficient detail.

4.1. δ-Switching Algorithm

The free parameters in the δ-representation (15) are (α, δ, ζ, τ) with symmetric positive definite Ω.
The algorithm alternates between estimating τ given the rest and fixing τ. The model for τ given the
other parameters is linear:

1. To estimate τ = [β : β1], rewrite (15) as:

z0t = αβ′z2t + ζ1β′z1t + ζ2β′1z1t + αdz1t + εt,

where d replaces δτ′⊥. Then, vectorize, using αβ′z2t = vec(z′2tβα′) = (α⊗ z′2t)vecβ:

z0t = (α⊗ z′2t + ζ1 ⊗ z′1t)vecβ + (ζ2 ⊗ z′1t)vecβ1 +
(
α⊗ z′1t

)
vec(d′) + εt. (16)

Given α, ζ1, ζ2, Ω, we can treat β, β1 and d as free parameters to be estimated by generalized least
squares (GLS). This will give a new estimate of τ.

We can treat d as a free parameter in (16). First, when r ≥ s∗2 , δ has more parameters than
τ⊥. Second, when r < s∗2 , then Γ is reduced rank, and s∗2 − r columns of τ⊥ are redundant.
Orthogonality is recovered in the next step.

2. Given τ and derived τ⊥, we can estimate α and δ by RRR after concentrating out τ′z1t.
Introducing ρ with dimension (r+s∗2)× r allows us to write (15) as:

z0t = α∗ρ′
(

β′z2t
τ′⊥z1t

)
+ ζτ′z1t + εt. (17)

RRR provides estimates of α∗ and ρ′. Next, α∗ρ′ is transformed to α(Ir : δ), giving new estimates
of α and δ. Finally, ζ can be obtained by OLS from (17) given α, δ, τ, and hence, Ω.

The RRR step is the same as used in Dennis and Juselius (2004) and Paruolo (2000b). However,
the GLS step for τ is different from both. We have found that the specification of the GLS step can have
a substantial impact on the performance of the algorithm.

For numerical reasons (see, e.g. Golub and Van Loan (2013, Ch.5)), we prefer to use the QR
decomposition to implement OLS and RRR estimation rather than moment matrices. However,
in iterative estimation, there are very many regressions, which would be much faster using
precomputed moment matrices. As a compromise, we use precomputed ‘data’ matrices that are
transformed by a QR decomposition. This reduces the effective sample size from T to 2p1. The
regressions (16) and (17) can then be implemented in terms of the transformed data matrices; see
Appendix A.
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Usually, starting values of α and β are available from I(1) estimation. The initial τ is then obtained
from the marginal equation of the τ-representation, (14a), written as:

α′⊥z0t = κ′τ′z1t + ε1t = κ′1β′z1t + ξη′β′⊥z1t + ε1t. (18)

RRR of α′⊥z0t on β′⊥z1t corrected for β′z1t gives estimates of η, and so, τ.

δ-switching algorithm:
To start, set k = 1, and choose starting values α(0), β(0), tolerance ε1 and the maximum number of
iterations. Compute τ

(0)
c from (18) and α(0), δ(0), ζ(0), Ω(0) from (17). Furthermore, compute f (0) =

− log |Ω(0)|.

1. Get τ
(k)
c from (16); get the remaining parameters from (17).

2. Compute f (k)c = − log |Ω(k)
c |.

3. Enter a line search for τ.

The change in τ is ∇ = τ
(k)
c − τ(k−1) and the line search find a step length λ with τ(k) = τ(k−1) +

λ∇. Because only τ is varied, a GLS step is needed to evaluate the log-likelihood for each trial τ.
The line search gives new parameters with corresponding f (k).

T. Compute the relative change from the previous iteration:

c(k) =
f (k) − f (k−1)

1 +
∣∣ f (k−1)

∣∣ .

Terminate if:

|c(k)| ≤ ε1 and max
i,j

∣∣∣Π(k)
ij −Π(k−1)

ij

∣∣∣
1 +

∣∣∣Π(k−1)
ij

∣∣∣ ≤ ε1/2
1 . (19)

Else increment k, and return to Step 1. �

The subscript c indicates that these are candidate values that may be improved upon by the line
search. The line search is the concentrated version, so the I(2) equivalent to the LBeta line search
documented in Doornik (2017). This means that the function evaluation inside the line search needs
to re-evaluate all of the other parameters as τ changes. Therefore, within the line search, we effectively
concentrate out all other parameters.

Normalization of τ prevents the scale from growing excessively, and it was found to be beneficial
to normalize in the first iteration every hundredth or when the norm of τ gets large. Continuous
normalization had a negative impact in our experiments. Care is required when normalizing: if an
iteration uses a different normalization from the previous one, then the line search will only be effective
if the previous coefficients are adjusted accordingly.

The algorithm is incomplete without starting values, and it is obvious that a better start will lead
to faster and more reliable convergence. Experimentation also showed that this and other algorithms
struggled more in cases with s = 0. To improve this, we generate two initial values, follow three
iterations of the τ-switching algorithms, then select the best for continuation. The details are in
Appendix C.

4.2. MLE with the Triangular Representation

We set W11 = I. This tends to lead to slower convergence, but is required when both α and β are
restricted. V22 is kept unrestricted: fewer restrictions seem to lead to faster convergence. All regressions
use the data matrices that are pre-transformed by an orthogonal matrix as described in Appendix A.
In the next section, we describe the estimation steps that can be repeated until convergence.
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4.2.1. Estimation Steps

Equation (9) provides a convenient structure for an alternating variables algorithm. We can solve
three separate steps by ordinary or generalized least squares for the case with orthogonal A:

1. B-step: estimate B, and fix A, V, W, Ω at Ac, Vc, Wc, Ωc. The resulting model is linear in B:

z0t = AcWcB′z2t − AcVcB′z1t + εt. (20)

Estimation by GLS can be conveniently done as follows. Start with the Cholesky decomposition
Ωc = PP′, and premultiply (20) by P−1. Next take the QL decomposition of P−1 A as P−1 A = HL
with L lower diagonal and H orthogonal. Now, premultiply the transformed system by H′:

H′P−1z0t = LWcB′z2t − LVcB′z1t + ut = W̃cB′z2t − ṼcB′z1t + ut,

which has the unit variance matrix. Because the structures of W and V are preserved, this approach
can also be used in the next step.

2. V-step: estimate W, V,, and fix A, B, Ω. This is a linear model in (W, V), which can be solved by
GLS as in the B step.

3. A-step: estimate A, Ω and fix W, V, B at Wc, Vc, Bc:

z0t = A
(
WcB′cz2t −VcB′cz1t

)
+ εt

This is the linear regression of z0t on WcB′cz2t −VcB′cz1t.

The likelihood will not go down when making one update that consists of the three steps given
above, provided V is full rank. If that does not hold, as noted at the end of §2.3, some part of B2 or A2

is not identified from the above expressions. To handle this, we make the following adjustments to
steps 1 and 3:

1a. B-step: Remove the last s∗2 −min{r, s∗2} columns from B, V and W, as they do not affect the
log-likelihood. When iteration is finished, we can add columns of zeros back to W and V and the
orthogonal complement of the reduced B to get a rectangular B.

3a. A-step: we wish to keep A invertible and, so, square during iteration. The missing part of A2 is
filled in with the orthogonal complement of the remainder of A after each regression. This requires
re-estimation of V.1 by OLS.

4.2.2. Triangular-Switching Algorithm

The steps described in the previous section form the basis of an alternating variables algorithm:

Triangular-switching algorithm:
To start, set k = 1, and choose α(0), β(0) and the maximum number of iterations. Compute A(0), B(0),
V(0), W(0) and Ω(0).

1.1 B-step: obtain B(k) from A(k−1), V(k−1), W(k−1), Ω(k−1).
1.2 V step: obtain W(k), V(k) from A(k−1), B(k), Ω(k−1).
1.3 A step: obtain A(k), Ω(k) from B(k), V(k), W(k).
1.4 V.1 step: if necessary, obtain new V(k)

.1 from A(k), B(k), V(k)
.2 , V(k)

.3 , W(k).
2... As steps 2,3,T from the δ-switching algorithm. In this case, the line search is over all of the

parameters in A, B, V. �

The starting values are taken as for the δ-switching algorithm; see Appendix C. This means that
two iterations of δ-switching are taken first, using only restrictions on β.
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4.3. Linear Restrictions

4.3.1. Delta Switching

Estimation under linear restrictions on β or τ of the form:

β = (H1φ1 : ... : Hrφr) or τ = (H1φ1 : ... : Hr+sφr+s)

can be done by adjusting the GLS step in §4.1. However, estimation of α is by RRR, which is not
so easily adjusted for linear restrictions. Restricting δ requires replacing the RRR step by regression
conditional on δ, which makes the algorithm much slower. Estimation under δ = 0, which implies
d = 0, is straightforward.

4.3.2. Triangular Switching

Triangular switching avoids RRR, and restrictions on β = B0 or τ = (B0 : B1) can be implemented
by adjusting the B-step. In general, we can test restrictions of the form:

B =
(

H1φ1 : ... : Hp1 φp1

)
and A =

(
G1θ1 : ... : Gpθp

)
.

Such linear restrictions on the columns of A and B are a straightforward extension of the GLS steps
described above.

Estimation without multi-cointegration is also feasible. Setting δ = 0 corresponds to V13 = 0 in
the triangular representation. This amounts to removing the last s∗2 columns from B, V, W. Boswijk
(2010) shows that the test for δ = 0 has an asymptotic χ2(rs∗2) distribution.

Paruolo and Rahbek (1999) derives conditions for weak exogeneity in (15). They decompose
this into three sub-hypotheses: H0: b′α = 0,H1: b′(α⊥ξ) = 0,H2: b′ζ1 = 0. These restrictions, taking
b = ep,i, where ep,i is the i-th column of Ip, correspond to a zero right-hand side in a particular equation
in the triangular representation. First is e′p,i A0 = 0 creating a row of zeros in AWB′. Next is e′p,i A1 = 0,
which extends the row of zeros. However, A must be full rank, so the final restriction must be imposed
on V as e′p,i AV = (e′p,i A2 : 0 : 0)V = 0, expressed as e′p,i A2V31 = 0. Paruolo and Rahbek (1999) shows
that the combined test for a single variable has an asymptotic χ2(2r + s) distribution.

5. Comparing Algorithms

We have three algorithms that can be compared:

1. The δ-switching algorithm, §4.1, which can handle linear restrictions on β or τ.
2. The triangular-switching algorithm proposed in §4.2.2. This can optionally have linear restrictions

on the columns of A or B.
3. The improved τ-switching algorithm, Appendix B, implemented to allow for common restrictions

on τ.

These algorithms, as well as two pre-existing ones, have been implemented in Ox 7 Doornik (2013).
The comparisons are based on a model for the Danish data (five variables: m3 = log real money,

y = log real GDP, ∆p = log GDP deflator, and rm, rb, two interest rates); see Juselius (2006, §4.1.1).
This has two lags in the VAR, with an unrestricted constant and restricted trend for the deterministic
terms, i.e., specification Hl . The sample period is 1973(3) to 2003(1). First computed is the I(2) rank
test table.

Table 3 records the number of iterations used by each of the algorithms; this is closely related
to the actual computational time required (but less machine specific). All three algorithms converge
rapidly to the same likelihood value. Although τ switching takes somewhat fewer iterations, it tends to
take a bit more time to run than the other two algorithms. The new triangular I(2) switching procedure
is largely competitive with the new δ-switching algorithm.
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Table 3. Estimation of all I(2) models by τ, δ and triangular switching; all using the same starting value
procedure. Number of iterations to convergence for ε1 = 10−14.

τ Switching δ Switching Triangular Switchingr\s2
4 3 2 1 4 3 2 1 4 3 2 1

1 19 25 36 34 15 24 37 30 31 31 39 32
2 18 32 25 18 32 34 22 27 50
3 37 23 42 38 50 59
4 29 28 85

To illustrate the advances made with the new algorithms, we report in Table 4 how the original
τ-switching, as well as the CATS2 version of δ-switching performed. CATS2, Dennis and Juselius
(2004), is a RATS package for the estimation of I(1) and I(2) models, which uses a somewhat different
implementation of an I(2) algorithm that is also called δ-switching. The number of iterations of that
CATS 2 algorithm is up to 200-times higher than that of the new algorithms, which are therefore much
faster, as well as more robust and reliable.

Table 4. Estimation of all I(2) models by old versions of τ, δ switching. Number of iterations to
convergence for ε1 = 10−14.

Old τ Switching CATS2 Switchingr\s2
4 3 2 1 4 3 2 1

1 126 198 338 201 5229 8329 8516 5371
2 79 211 229 7234 709 861
3 483 237 550 432
4 4851 5771

6. A More Detailed Comparison

A Monte Carlo experiment is used to show the difference between algorithms in more detail.
The first data generation process is the model for the Danish data, estimated with the I(1) and I(2)
restrictions r, s imposed. M = 1000 random samples are drawn from this, using, for each case,
the estimated parameters and estimated residual variance assuming normality. The number of
iterations and the progress of the algorithm is recorded for each sample. The maximum number of
iterations was set to 10 000, ε1 = 10−11, and all replications are included in the results.

Figure 1 shows the histograms of the number of iterations required to achieve convergence (or
10,000). Each graph has the number of iterations (on a log 10 scale) on the horizontal axis and the count
(out of 1000 experiments) represented by the bars and the vertical axis. Ideally, all of the mass is to
the left, reflecting very quick convergence. The top row of histograms is for δ switching, the bottom
row for triangular switching. In each histogram, the data generation process (DGP) uses the stated r, s
values, and estimation is using the correct values of r, s.
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Figure 1. Comparison of algorithms: δ-switching (top row) and triangular-switching (bottom row).
Simulating a range of r, s. Number of iterations on the horizontal axis, count (out of 1000) on the
vertical.

The histograms show that triangular switching (bottom row) uses more iterations than δ switching
(top row), in particular when s = 0. Nonetheless, the experiment using triangular switching runs
slightly faster as measured by the total time taken (and τ switching is the slowest).

An important question is whether the algorithms converge to the same maximum. The function
value that is maximized is:

f (θ) = − log |Ω(θ)|.

Out of 10,000 experiments, counted over all r, s combinations that we consider, there is only a single
experiment with a noticeable difference in f (θ̂). This happens for r = 3, s = 0, and δ-switching finds a
higher function value by almost 0.05. Because T = 119, the 0.05 translates to a difference of three in the
log-likelihoods.

A second issue of interest is how the algorithms perform when restrictions are imposed.
The following restrictions are imposed on the three columns of β with r = 3:

m3 y ∆p rm rb t
β′1 a −a 0 1 −1 ∗
β′2 0 ∗ 1 −a a ∗
β′3 0 0 1 ∗ 0 ∗

This specification identifies the cointegrating vectors and imposes two over-identifying restrictions.
For r = 3, s = 0 this is accepted with a p-value of 0.4, while for r = 3, s = 1, the p-value is 0.5 using the
model on the actual Danish data. Simulation is from the estimated restricted model.

In terms of the number of iterations, as Figure 2 shows, δ-switching converges more rapidly in
most cases. This makes triangular switching slower, but only by about 10%–20%.

Figure 3 shows f (θ̂δ)− f (θ̂triangular), so a positive value means that triangular switching obtained
a lower log-likelihood. There are many small differences, mostly to the advantage of δ-switching when
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s = 1 (right-hand plot), but to the advantage of triangular switching on the left, when s = 0. The latter
case is also much more noisy.
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Figure 2. Comparison of algorithms: δ-switching (left two) and triangular-switching (right two).
Simulating a range of r, s. Number of iterations on the horizontal axis, count (out of 1000) on the
vertical.
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Figure 3. δ-switching function value minus the triangular switching function value (vertical axis) for
each replication (horizontal axis). Both starting from their default starting values. The labels are the
cointegration indices (r, s, s2).

6.1. Hybrid Estimation

To increase the robustness of the triangular procedure, we also consider a hybrid procedure,
which combines algorithms as follows:

1. standard starting values, as well as twenty randomized starting values, then
2. triangular switching, followed by
3. BFGS optimization (the Broyden-Fletcher, Goldfarb, and Shanno quasi-Newton method) for a

maximum of 200 iterations, followed by
4. triangular switching.

This offers some protection against false convergence, because BFGS is based on first derivatives
combined with an approximation to the inverse Hessian.

More importantly, we add a randomized search for better starting values as perturbations of the
default starting values. Twenty versions of starting values are created this way, and each is followed
for ten iterations. Then, we discard half, merge (almost) identical ones and run another ten iterations.
This is repeated until a single one is left.
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Figure 4 shows that this hybrid approach is an improvement: now, it is almost never beaten by δ

switching. Of course, the hybrid approach is a bit slower again. The starting value procedure for δ

switching could be improved in the same way.
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Figure 4. δ-switching function value minus the hybrid triangular-switching function value (vertical
axis) for each replication (horizontal axis).

7. Conclusions

We introduced the triangular representation of the I(2) model and showed how it can be used for
estimation. The trilinear form of the triangular representation has the advantage that estimation can
be implemented as alternating least squares, without using reduced-rank regression. This structure
allows us to impose restrictions on (parts of) the A and B matrices, which gives more flexibility than is
available in the δ and τ representations.

We also presented an algorithm based on the δ-representation and compared the performance to
triangular switching in an application based on Danish data, as well as a parametric bootstrap using
that data. Combined with the acceleration of Doornik (2017), both algorithms are fast and give mostly
the same result. This will improve empirical applications of the I(2) model and facilitate recursive
estimation and Monte Carlo analysis. Expressions for the computation of t-values of coefficients will
be reported in a separate paper.

Because they are considerably faster than the previous generation, bootstrapping the I(2) model
can now be considered, as Cavaliere et al. (2012) did for the I(1) model.
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Appendix A. Estimation Using the QR Decomposition

The data matrices in the I(2) model (8) are Z′i = (zi1 : ... : ziT) for i = 0, 1, 2.
Take the QR decomposition of (Z2 : Z1) as (Z2 : Z1)P = QR = Qz(R2 : R1) where Q is a T × T

orthogonal matrix and R a T × 2p1 upper triangular matrix, while Qz are the T × 2p1 leading columns
of Q and (R2 : R1) a 2p1 × 2p1 upper triangular matrix. P is the orthogonal matrix that captures the
column reordering. Then:

Q′z(Z2 : Z1) = (R2 : R1)P′ = (X2 : X1),

where (X2 : X1) is no longer triangular. Introduce:(
X0

X∗0

)
= Q′Z0,
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where X0 = QzZ0 is 2p1 × 2p1, then:

Z′i Zj = Z′i QQ′Zj =

{
X′0X0 + X∗′0 X∗0 if i = j = 0,
X′i Xj otherwise.

Now, e.g., a regression of A′z0t on B′z1t for known A, B:

A′z0t = γB′z1t + εt, t = 1, ..., T, (A1)

has:
γ̂ = (B′Z′1Z1B)−1B′Z′1Z0 A = (B′X′1X1B)−1B′X′1X0 A.

This is a regression of X0 A on X1B. If such regressions need to be done often for the same Z’s, it is
more efficient to do them in terms of the Xi:

A′x0i = γB′x1i + ei, i = 1, ..., 2p1,

with estimated residual variance:

Ω̂e = T−1

(
A′X∗′0 X∗0 A +

2p1

∑
i=1

êi

)
.

This regression has fewer ‘observations’, while at the same time avoiding the creation of moment
matrices. Precomputed moment matrices would be faster, but not as good numerically. For recursive
estimation, it is useful to be able to handle singular regressions because dummy variables can be zero
over a subsample; this happens naturally in the QR approach. This approach needs to be adjusted
when (A1) also has z0t on the right-hand side, as happens for τ-switching in (A3).

Reduced Rank Regression

Let RRR(Z0, Z1|Zx) denote reduced rank regression of z0t on z1t corrected for zxt. Assume that
(Z0, Z1, Zx) have been transformed into (X0, X1, Xx) using the QR decomposition described
above. Concentrating Xx out can be done by regression of (X0, X1) on Xx, with residuals (Y, X).
Form S00 = Y′Y + X∗′0 X∗0 , and decompose using the Cholesky decomposition: S00 = LL′.

We need to solve the matrix pencil:

X′YS−1
00 Y′Xx = λX′Xx.

Start by using the QR decomposition X = QRP′, y = P′x:

R′Q′YL−1′L−1Y′QRy = λR′Ry,

R′W ′WRy = λR′Ry,

W ′Wz = λz,

UΣ2U′z = λz.

The second line introduces W = L−1Y′Q; the next line removes R; and the final line takes the SVD of
W ′. The eigenvalues are the squared singular values that are on the diagonal of Σ2, and the eigenvectors
are PR−1U.

When X is singular, as may be the case in recursive estimation, the upper triangular matrix R will
have rows and columns that are zero at the bottom and end. These are the same on the left and right of
the pencil, so they can be dropped. The resulting reduced dimension R is full rank, and we can set the



Econometrics 2017, 5, 19 18 of 20

corresponding rows in the eigenvectors to zero. When the regressors are singular, their corresponding
coefficients in β will be set to zero, just as in our regressions.

This approach differs somewhat from Doornik and O’Brien (2002) because of the different
structure of S00 as a consequence of the prior QR transformation.

Appendix B. Tau-Switching Algorithm

The algorithm of Johansen (1997, §8) is based on the τ-representation and involves three stages:

1. The estimate of τ is obtained by GLS given all other parameters except ψ. Johansen (1997,
p. 451) shows the GLS expressions using second moment matrices. Define the orthogonal matrix
A = (α⊥ : α), then using κ′τ′z1t = vec(z′1tτκ) = (κ′ ⊗ z1t)vecτ:

A′z0t =

(
κ′ ⊗ z1t
$′ ⊗ z2t

)
vecτ +

(
0

Ir ⊗ z1t

)
vecψ +

(
ε1t
ε2t

)

=

{(
κ′

0

)
⊗ z1t +

(
0
$′

)
⊗ z2t

}
vecτ +

{(
0
Ir

)
⊗ z1t

}
vecψ + ut. (A2)

The error term ut has variance A′ΩA, which is block diagonal. Given α, κ, ρ, Ω, (A2) is linear in τ

and ψ. The estimates of the latter are discarded.
2. Given just τ, reduced-rank regression of z0t corrected for τ′z1t on z0t corrected for z1t, τ′z2t is used

to estimate α. Details are in Johansen (1997, p. 450).
3. Given τ and α, the remaining parameters can be obtained by GLS. The equivalence α

′
= α′− α′wα′⊥

is used to write the conditional equation as:

α′z0t = γ′α′⊥z0t + $′τ′z2t + ψ′z1t + ε2t, (A3)

from which $ and ψ are estimated by regression. Then, κ is estimated from the marginal equation:

α′⊥z0t = κ′τ′z1t + ε1t. (A4)

Together, they give Ω and w. We always transform to set $′ = (I : 0), adjusting κ and τ accordingly.

τ-switching algorithm:
To start, set k = 1, and choose starting values α(0), β(0), tolerance ε1 and the maximum number of
iterations. Compute τ

(0)
c from (18) and κ(0), ψ(0), Ω(0) from (A3) and (A4). Furthermore, compute

f (0) = − log |Ω(0)|.

1. Get τ
(k)
c from (A2). Identify this as follows. Select the non-singular (r + s)× (r + s) submatrix from

τ with the largest volume, say M. We find M by using the first r + s column pivots that are chosen
by the QR decomposition of τ (Golub and Van Loan (2013, Algorithm 5.4.1) ). Set τ

(k)
c ← τ

(k)
c M.

Get α
(k)
c by RRR; finally, get the remaining parameters from (A3) and (A4).

2... As steps 2,3,T from the δ-switching algorithm. �

The line search is only for the p1s∗2 parameters in τ as part of it is set to a unit matrix every time.
The function evaluation inside the line search needs to obtain all of the other parameters as τ changes.

This is the algorithm of Johansen (1997) except for the normalization of τ and the line search.
The former protects the parameter values from exploding, while the latter improves convergence speed
and makes it more robust. Removing $ is largely for convenience: it has little impact on convergence.
The τ-switching algorithm is easily adjusted for common restrictions on τ in the form of τ = Hτ̃.
However, $ gets in the way of more general restrictions.
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Appendix C. Starting Values

The first starting value procedure is:

1. Set α(−1), β(−1) to their I(1) values (i.e., with full rank Γ).
2. Get τ(−1) from (A4), then Ω(−1) from (A3), ignoring restrictions.
3. Take two iterations with the relevant switching algorithm subject to restrictions.

The second starting value procedure is:

1. Get α(−2), β(−2) by RRR from the τ-representation using κ = 0:

z0t = α(β′z2t + ψ′z1t) + εt.

2. Get κ(−2), w(−2) from (A3), (A4).
3. Get α(−1), β(−1) by RRR from the τ-representation:

z0t − wκ′β′z1t = α(β′z2t + ψ′z1t) + εt.

4. Get τ(−1) from (A4), then Ω(−1) from (A3), ignoring restrictions.
5. Take two iterations with the relevant switching algorithm subject to restrictions.

Finally, choose the final starting values as those that have the highest function value.
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