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Abstract: Copulas have enjoyed increased usage in many areas of econometrics, including
applications with discrete outcomes. However, Genest and Nešlehová (2007) present evidence
that copulas for discrete outcomes are not identified, particularly when those discrete outcomes
follow count distributions. This paper confirms the Genest and Nešlehová result using a series of
simulation exercises. The paper then proceeds to show that those identification concerns diminish
if the model has a regression structure such that the exogenous variable(s) generates additional
variation in the outcomes and thus more completely covers the outcome domain.

Keywords: ties; Monte Carlo; Gaussian; Clayton; Gumbel

JEL Classification: C35; C52

1. Introduction

The copula approach for constructing joint distributions has gained popularity in recent years
in applied econometric studies, including models with discrete outcomes (Van Ophen (1999) [1];
Cameron et al. (2004) [2]; Zimmer and Trivedi (2006) [3]; Bien et al. (2011) [4]; Winkelmann (2012) [5]).
While copula researchers have long understood that a multivariate discrete distribution does not
possess a unique copula representation (Marshall (1996) [6]), recent research also indicates that
any copula applied to discrete data is not identified. The lack of identification of the copula in a
model for discrete data, as explained by Genest and Nešlehová (2007) [7], arises when one of the
marginal distributions is discontinuous. Although Genest and Nešlehová present findings for other
discontinuous settings, this paper focuses on their main emphasis: count outcomes.

We derive motivation from research in the areas of health economics and demography, where,
due to count outcomes having small means, the empirical support present in the data is far smaller
than the theoretically infinite support of count outcomes. For example, the widely-used Medical
Expenditure Panel Survey, published by a unit of the U.S. Department of Health and Human Services,
asks respondents their number hospital discharges in a calendar year. Not surprisingly, because most
respondents report zero hospital discharges, the mean number of annual discharges is small (e.g., 0.085
discharges in the 2014 wave of the survey). Reflecting our health economic motivation, the remainder
of this paper emphasizes low-mean settings.

This paper shows that the identification problem appears to shrink when the count outcomes
more completely cover the outcome domain. We present two ways in which this might occur. First,
coverage of the domain improves as the means of the outcome variables become larger. Second,
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coverage of the domain also improves if the marginal distributions have regression structures, as the
addition of covariates changes marginal distributions to conditional distributions.

2. Background on Bivariate Copulas

A bivariate copula is a two-dimensional cumulative distribution function (cdf) with uniform
margins [0, 1] and support contained in [0, 1]2. For detailed treatments of copulas, see Joe (1997) [8];
McNeil et al. (2005) [9]; Nelsen (2006) [10]; Trivedi and Zimmer (2007) [11]. The practical usefulness
of copulas follows from Sklar’s (1959) theorem [12], which holds that the copula parameterizes a
multivariate distribution in terms of its marginals. Thus, for random variables y1 and y2 with respective
marginal distributions F1(y1) and F2(y2), the bivariate distribution F(y1, y2) can be expressed as

F(y1, y2) = C(F1(y1), F2(y2); θ), (1)

where, throughout this paper, the copula function C is assumed to be indexed by a scalar-valued
dependence parameter θ.

Equation (1) provides a fairly general approach to modeling complex joint distributions.
By plugging the known marginal distributions (F1, F2) into a copula function, the right hand
side of Equation (1) provides a parametric representation of the unknown, or difficult to work
with, joint distribution on the left hand side. Results in this paper rely on the following three
commonly-employed copulas.

θ domain Kendall’s τ

Gaussian ΦG
(
Φ−1(F1(y1)), Φ−1(F2(y2)); θ

)
(−1 , 1) 2

π arcsin (θ)

Clayton
(

F1(y1)
−θ + F2(y2)

−θ − 1
)−1/θ

(0, ∞) θ
θ+2

Gumbel exp
(
−(ũθ

1 + ũθ
2)
)1/θ

[1, ∞) 1− 1
θ

In this notation, the symbol Φ represents the cdf of the standard normal distribution, ΦG(·, ·) is the
standard bivariate normal distribution with Pearson correlation θ, and ũj = − ln Fj(yj). The Gaussian
copula has a symmetric shape, owing to its reliance on the normal distribution. The Clayton and
Gumbel copulas, by contrast, are symmetric in their arguments, but asymmetric in their tail dependence
patterns, with Clayton dependence stronger in the lower tail, and Gumbel dependence concentrated in
the upper tail. Because magnitudes of dependence parameters are not comparable across copulas, it is
standard to convert those to measures of concordance, such as Kendall’s τ.

With the focus of this paper being count outcomes, the marginals (F1, F2) both follow Poisson
distributions, a common distributional choice in applied econometric work. (Another common
choice is the closely-related negative binomial distribution, which is a Poisson with exchangeable iid
heterogeneity. Due to the exchangeable iid nature of that heterogeneity, the main message of this paper
also applies to negative binomial marginals).

A number of approaches to estimating copulas appear in the literature. In fully parametric
settings, such as those considered in this paper, one may maximize the full likelihood function,
or first maximize the marginals and then treat them as given while maximizing the likelihood for
θ (Joe (2005) [13]). Genest et al. (1995) [14], Shih and Louis (1995) [15], and Kim et al. (2007) [16]
advocate a two-step approach in which the marginals are estimated nonparametrically using empirical
distributions. McNeil et al. (2005) [9] (Chapter 5) discuss an approach that involves first calculating
Kendall’s τ and then converting it to θ.
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This paper opts for the aforementioned full maximum likelihood approach based on the
probability mass function (pmf) version of the copula, which can be computed so long as the researcher
knows (or assumes) specific forms for the marginal distributions and copula. The pmf is calculated as

c(F1(y1), F2(y2); θ) = C(F1(y1), F2(y2); θ)− C(F1(y1 − 1), F2(y2); θ)

− C(F1(y1), F2(y2 − 1); θ) + C(F1(y1 − 1), F2(y2 − 1); θ).
(2)

Then taking the natural logarithm of expression (2) and summing over all observations gives the log
likelihood function.

3. Drawbacks of Copulas for Discrete Outcomes

If the margins (F1, F2) are continuous, then the corresponding copula in Equation (1) is unique.
If (F1, F2) are not both continuous, the joint distribution function can always be expressed as (1),
although in such a case the copula lacks uniqueness (see Schweizer and Sklar (1983) [17] (Chapter 6)).
This usually does not pose a problem in applied settings, as researchers use copulas because the joint
distribution F(y1, y2) is either not known or is difficult to work with. Genest and Nešlehová (2007) [7]
state “The fact that there exist (infinitely many) copulas for the same discrete joint distribution does
not invalidate models of this sort.”

A much more serious problem is that estimates of the dependence parameter θ are biased when
either F1 or F2 is noncontinuous. Consider two variables (y1, y2) that arise from copula C (·, ·; θ).
Each observation (y1i, y2i), where i indexes observations, can be viewed as arising from a latent pair
(u1i, u2i) where y1i = F−1

1 (u1i) and y2i = F−1
2 (u2i), and (u1, u2) is a random sample from the copula.

When F1 or F2 are continuous, Genest and Nešlehová (2007) [7] show that estimates of dependence are
identical for both (y1, y2) and (u1, u2). Thus, an unbiased estimate of the dependence parameter θ̂ can
be obtained.

However, when F1 or F2 is discontinuous, then the marginal distributions have jumps that
cause the inverses F−1

1 and F−1
2 to have plateaus. Genest and Nešlehová (2007) [7] show that those

plateaus potentially lead to biased estimates of θ. To illustrate, we borrow from their Definition 1
and Example 1 (pp. 477–479). First, Sklar’s Theorem asserts that, when F1 and F2 are continuous,
the functions F(F−1

1 (u1) , F−1
2 (u2)) and F(F−1

1 (u1←) , F−1
2 (u2←)) are the same, which is one of the

important foundations of copula inference (Genest and Favre (2007) [18]). The notation uj← indicates
the limit of uj as it approaches from above. But if F1 or F2 is discontinuous, then transformations that
lead to a unique copula in the continuous case now lead to different objects, some of which are copulas,
and some of which are not.

As a simple example, let y1 and y2 be binary variables with Pr(y1 = 0) = p, Pr(y2 = 0) = q,
and Pr(y1 = 0, y2 = 0) = r < min(p, q). Then,

F(F−1
1 (u1) , F−1

2 (u2)) =



0
r
q
p
1

i f u = 0 or v = 0
i f (u, v) ∈ (0, p]× (0, q]
i f (u, v) ∈ (p, 1]× (0, q]
i f (u, v) ∈ (0, p]× (q, 1]
i f (u, v) ∈ (p, 1]× (q, 1]

while

F(F−1
1 (u1←) , F−1

2 (u2←)) =


r
q
p
1

i f (u, v) ∈ [0, p)× [0, q)
i f (u, v) ∈ [p, 1)× [0, q)
i f (u, v) ∈ [0, p)× [q, 1]
i f (u, v) ∈ [p, 1)× [q, 1]

such that the two no longer coincide (see Proposition 1 in Genest and Nešlehová (2007) [7] (p. 479) for
an elaboration on this idea).
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Various methods have been proposed to accommodate discrete margins, including Bayesian data
augmentation (Smith and Khaled (2012) [19]) and continuous extensions of discrete variables (Denuit
and Lambert (2005) [20]). The remainder of this paper illustrates that, in count data settings, the
identification problem diminishes if the count outcomes more completely cover the outcome domain,
such as when means increase or the model has a regression structure.

4. “Ties” in Count Variables

For count variables, one way to think about the identification problem is in terms of “ties”,
where multiple observations of an outcome measure assume the same value (Li et al. (2016) [21];
Pappadà et al. (2016) [22]). Naturally, a count outcomes with many ties also tends to have poor coverage
of the outcome domain. Denuit and Lambert (2005) [20] provide the formula for the probability of a tie
for arbitrary discrete marginals. In the following notation yj,k denotes an observation other than yj,i.
Re-expressing the formula for count outcomes, the probability that any two independent observations
are tied is

Pr(tie) = Pr(y1,i = y1,k) + Pr(y2,i = y2,k)− Pr(y1,i = y1,k , y2,i = y2,k)

= ∑∞
y1=0[ f1(y1)]

2 + ∑∞
y2=0[ f2(y2)]

2

−∑∞
y1=0 ∑∞

y2=0

[
C(F1(y1), F2(y2); θ) + C(F1(y1 − 1), F2(y2 − 1); θ)

−C(F1(y1), F2(y2 − 1); θ)− C(F1(y1 − 1), F2(y2); θ)

] (3)

For simplicity, assume that y1 and y2 share the same mean µ. Table 1 calculates this formula for the
three aforementioned copulas, each with dependence set to τ = 0.25, 0.50, or 0.75, and each with
Poisson marginals. (Applying the formula requires replacing the infinities with large finite numbers.)
Keeping an eye toward our health economics motivation, the table intentionally focuses on small
values for µ. As highlighted by Denuit and Lambert (2005) [20], the probabilities of ties appear to
diminish as the means of y1 and y2 increase. And because the partition of the unit interval induced
by the quantile functions becomes finer as µ increases, the lack of identification of θ likewise should
diminish as µ increases.

Table 1. Probabilities that any two independent observations are tied, based on Equation (3).

τ = 0.25 τ = 0.50 τ = 0.75
µ

Gaussian Clayton Gumbel Gaussian Clayton Gumbel Gaussian Clayton Gumbel

0.5 0.92 0.92 0.92 0.91 0.91 0.90 0.88 0.89 0.87
0.6 0.82 0.82 0.82 0.81 0.81 0.80 0.78 0.79 0.77
0.7 0.74 0.74 0.74 0.73 0.73 0.72 0.70 0.70 0.69
0.8 0.68 0.68 0.68 0.66 0.66 0.66 0.63 0.64 0.62
0.9 0.63 0.62 0.62 0.61 0.61 0.61 0.58 0.58 0.57
1.0 0.58 0.58 0.58 0.57 0.57 0.56 0.53 0.53 0.52
1.1 0.55 0.54 0.54 0.53 0.53 0.53 0.50 0.49 0.49
1.2 0.51 0.51 0.51 0.50 0.50 0.50 0.46 0.46 0.46
1.3 0.49 0.49 0.49 0.47 0.47 0.47 0.44 0.43 0.42
1.4 0.46 0.46 0.46 0.45 0.45 0.45 0.42 0.41 0.41
1.5 0.45 0.44 0.44 0.43 0.43 0.43 0.40 0.39 0.39
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Monte Carlo Evidence
This concept is illustrated by several Monte Carlo experiments. Experiments 1−4 are as follows:

• Step 1: Randomly draw simulated Poisson variates y1 and y2 with means µ1 and µ2 from the three
aforementioned copulas, each with dependence set to τ = 0.25, 0.50, or 0.75. The experiments
consider sample sizes of N = 100 and N = 2500.

• Step 2: Estimate the copulas using the log likelihood function generated from Equation (2).
• Step 3: Replicate steps 1 and 2 1000 times, and report the mean and standard deviation of θ̂.

The experiments are then repeated several times after increasing the means, all the while focusing on
small-mean settings, in keeping with our health economics motivation.

Results for this set of experiments appear in the top panels of Tables 2–10. Those results show
that copulas for discrete count outcomes fail to capture the true dependence magnitudes at extremely
small means, which suggests lack of identification of the dependence parameter in such settings. Only
in Experiment 4, where the means are larger than 1, do the estimates of θ̂ fall closer to their true values.
But even in Experiment 4, the Clayton and Gumbel copulas still appear to miss their true values.

Experiments 1−4 confirm the Genest and Nešlehová word of caution regarding copulas applied to
discrete outcomes. The experiments also suggest that identification problems diminish as probabilities
of ties decrease. However, what recourse do practitioners have who apply copulas to count data in
small-mean settings? The following section provides evidence that the introduction of covariates
facilitates identification.

Table 2. Gaussian with true θ = 0.38 (such that τ = 0.25).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 0.844 0.048 0.844 0.009
Experiment 2 0.45 0.50 0.604 0.079 0.604 0.016
Experiment 3 0.75 0.80 0.436 0.099 0.434 0.021
Experiment 4 1.05 1.10 0.370 0.095 0.372 0.023

Discrete covariate

Experiment 5 0.15 0.20 0.382 0.186 0.378 0.037
Experiment 6 0.45 0.50 0.378 0.131 0.379 0.026
Experiment 7 0.75 0.80 0.385 0.111 0.380 0.027
Experiment 8 1.05 1.10 0.376 0.097 0.380 0.020

Continuous covariate

Experiment 9 0.15 0.20 0.390 0.227 0.380 0.039
Experiment 10 0.45 0.50 0.379 0.131 0.380 0.025
Experiment 11 0.75 0.80 0.384 0.110 0.380 0.025
Experiment 12 1.05 1.10 0.376 0.097 0.380 0.029
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Table 3. Gaussian with true θ = 0.71 (such that τ = 0.50).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 0.918 0.036 0.914 0.008
Experiment 2 0.45 0.50 0.805 0.048 0.802 0.010
Experiment 3 0.75 0.80 0.734 0.058 0.735 0.012
Experiment 4 1.05 1.10 0.704 0.057 0.705 0.011

Discrete covariate

Experiment 5 0.15 0.20 0.705 0.123 0.711 0.023
Experiment 6 0.45 0.50 0.711 0.079 0.711 0.015
Experiment 7 0.75 0.80 0.713 0.064 0.711 0.012
Experiment 8 1.05 1.10 0.713 0.058 0.712 0.011

Continuous covariate

Experiment 9 0.15 0.20 0.711 0.128 0.710 0.024
Experiment 10 0.45 0.50 0.715 0.076 0.711 0.015
Experiment 11 0.75 0.80 0.715 0.063 0.710 0.013
Experiment 12 1.05 1.10 0.712 0.057 0.711 0.011

Table 4. Gaussian with true θ = 0.92 (such that τ = 0.75).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 0.975 0.014 0.977 0.003
Experiment 2 0.45 0.50 0.942 0.022 0.944 0.005
Experiment 3 0.75 0.80 0.925 0.023 0.926 0.005
Experiment 4 1.05 1.10 0.918 0.024 0.917 0.005

Discrete covariate

Experiment 5 0.15 0.20 0.911 0.053 0.921 0.010
Experiment 6 0.45 0.50 0.921 0.032 0.921 0.006
Experiment 7 0.75 0.80 0.921 0.027 0.920 0.005
Experiment 8 1.05 1.10 0.924 0.023 0.920 0.004

Continuous covariate

Experiment 9 0.15 0.20 0.913 0.057 0.921 0.010
Experiment 10 0.45 0.50 0.921 0.031 0.921 0.006
Experiment 11 0.75 0.80 0.922 0.026 0.920 0.005
Experiment 12 1.05 1.10 0.922 0.023 0.920 0.004
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Table 5. Clayton with true θ = 0.67 (such that τ = 0.25).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 2.76 0.596 2.67 0.110
Experiment 2 0.45 0.50 1.05 0.331 1.00 0.060
Experiment 3 0.75 0.80 0.676 0.282 0.650 0.054
Experiment 4 1.05 1.10 0.737 0.299 0.709 0.054

Discrete covariate

Experiment 5 0.15 0.20 1.04 0.981 0.675 0.252
Experiment 6 0.45 0.50 0.758 0.421 0.668 0.083
Experiment 7 0.75 0.80 0.713 0.322 0.677 0.063
Experiment 8 1.05 1.10 0.716 0.279 0.671 0.053

Continuous covariate

Experiment 9 0.15 0.20 1.24 1.18 0.675 0.290
Experiment 10 0.45 0.50 0.752 0.435 0.677 0.089
Experiment 11 0.75 0.80 0.719 0.318 0.670 0.060
Experiment 12 1.05 1.10 0.714 0.296 0.672 0.053

Table 6. Clayton with true θ = 2 (such that τ = 0.50).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 3.35 0.834 3.18 0.136
Experiment 2 0.45 0.50 1.92 0.492 1.88 0.092
Experiment 3 0.75 0.80 1.86 0.501 1.78 0.089
Experiment 4 1.05 1.10 2.15 0.514 2.10 0.095

Discrete covariate

Experiment 5 0.15 0.20 2.34 1.55 2.00 0.269
Experiment 6 0.45 0.50 2.11 0.763 2.00 0.150
Experiment 7 0.75 0.80 2.14 0.608 2.01 0.103
Experiment 8 1.05 1.10 2.11 0.516 2.01 0.093

Continuous covariate

Experiment 9 0.15 0.20 2.48 1.86 1.97 0.398
Experiment 10 0.45 0.50 2.11 0.726 2.01 0.136
Experiment 11 0.75 0.80 2.08 0.593 2.01 0.114
Experiment 12 1.05 1.10 2.10 0.509 2.01 0.095
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Table 7. Clayton with true θ = 6 (such that τ = 0.75).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 5.15 1.71 4.60 0.221
Experiment 2 0.45 0.50 4.52 1.11 4.27 0.197
Experiment 3 0.75 0.80 5.20 1.26 5.35 0.217
Experiment 4 1.05 1.10 6.63 1.52 6.35 0.254

Discrete covariate

Experiment 5 0.15 0.20 7.38 4.96 6.00 0.689
Experiment 6 0.45 0.50 6.59 2.10 6.03 0.332
Experiment 7 0.75 0.80 6.58 1.88 6.05 0.277
Experiment 8 1.05 1.10 6.48 1.61 6.07 0.258

Continuous covariate

Experiment 9 0.15 0.20 7.53 7.53 5.97 0.810
Experiment 10 0.45 0.50 6.58 1.98 6.03 0.338
Experiment 11 0.75 0.80 6.46 1.73 6.03 0.276
Experiment 12 1.05 1.10 6.34 1.56 6.05 0.279

Table 8. Gumbel with true θ = 1.33 (such that τ = 0.25).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 3.58 0.789 3.39 0.120
Experiment 2 0.45 0.50 1.88 0.222 1.85 0.041
Experiment 3 0.75 0.80 1.47 0.150 1.46 0.028
Experiment 4 1.05 1.10 1.32 0.113 1.31 0.021

Discrete covariate

Experiment 5 0.15 0.20 1.40 0.238 1.33 0.038
Experiment 6 0.45 0.50 1.35 0.146 1.33 0.028
Experiment 7 0.75 0.80 1.35 0.128 1.33 0.025
Experiment 8 1.05 1.10 1.36 0.120 1.33 0.024

Continuous covariate

Experiment 9 0.15 0.20 1.43 0.230 1.33 0.040
Experiment 10 0.45 0.50 1.35 0.149 1.33 0.027
Experiment 11 0.75 0.80 1.36 0.135 1.33 0.025
Experiment 12 1.05 1.10 1.35 0.123 1.33 0.024
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Table 9. Gumbel with true θ = 2 (such that τ = 0.50).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 5.98 1.86 5.46 0.379
Experiment 2 0.45 0.50 2.92 0.445 2.85 0.086
Experiment 3 0.75 0.80 2.28 0.300 2.22 0.053
Experiment 4 1.05 1.10 1.97 0.204 1.95 0.040

Discrete covariate

Experiment 5 0.15 0.20 2.21 0.620 2.01 0.088
Experiment 6 0.45 0.50 2.06 0.327 2.01 0.057
Experiment 7 0.75 0.80 2.04 0.267 2.00 0.048
Experiment 8 1.05 1.10 2.05 0.236 2.01 0.044

Continuous covariate

Experiment 9 0.15 0.20 2.30 1.51 2.02 0.092
Experiment 10 0.45 0.50 2.07 0.310 2.01 0.059
Experiment 11 0.75 0.80 2.05 0.261 2.00 0.050
Experiment 12 1.05 1.10 2.05 0.230 2.01 0.044

Table 10. Gumbel with true θ = 4 (such that τ = 0.75).

N = 100 N = 2500
µ1 µ2 Mean of θ̂ St. dev. of θ̂ Mean of θ̂ St. dev. of θ̂

No covariate

Experiment 1 0.15 0.20 11.7 5.30 10.2 0.772
Experiment 2 0.45 0.50 6.10 1.58 5.79 0.274
Experiment 3 0.75 0.80 4.66 0.988 4.45 0.167
Experiment 4 1.05 1.10 3.98 0.687 3.83 0.120

Discrete covariate

Experiment 5 0.15 0.20 52.6 79.7 4.05 0.340
Experiment 6 0.45 0.50 6.34 17.9 4.03 0.200
Experiment 7 0.75 0.80 4.32 1.01 4.02 0.159
Experiment 8 1.05 1.10 4.19 0.794 4.02 0.133

Continuous covariate

Experiment 9 0.15 0.20 73.3 90.3 4.05 0.349
Experiment 10 0.45 0.50 5.62 14.9 4.03 0.189
Experiment 11 0.75 0.80 4.24 0.923 4.02 0.154
Experiment 12 1.05 1.10 4.19 0.780 4.02 0.133

5. Identification Through Covariates

This section presents evidence that, even with many ties, copulas applied to count data for
which the marginals are conditioned nontrivially upon covariates encounter fewer identification
problems. The reason is that, with covariates, the arguments to the copula functions are expected
means, rather than the outcome variables themselves, and those expected means are continuous.

To illustrate, the Monte Carlo experiments in the previous section are modified: the Poisson
marginals include a single explanatory variable, denoted x, common to each marginal. We consider
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separately experiments in which x is a discrete dummy variable and where it is continuous.
The experiments proceed as follows:

• Step 1: Randomly generate the explanatory variable x. In the discrete case, it assumes values
−2 and −1 with equal probability, so that the mean is −1.5. For purposes of comparison, in the
continuous case x is uniform (−2,−1), so that the mean is also −1.5. The values x are generated
once and held fixed for each replication of the Monte Carlo experiment.

• Step 2: Randomly draw simulated Poisson variates y1 and y2 from the aforementioned copulas.
Rather that setting the means of y1 and y2 directly as in the previous section, the means are
µ1 = exp(b1x) and µ2 = exp(b2x), with coefficients b1 and b2 specified so that µ1 and µ2 are the
same as in Table 2. (Note: in this setup, it is not possible to generate a Poisson variable with mean
smaller than 0.50 when x is a 0/1, which is why x is rescaled to be a −2/− 1 variable, rather than
the traditional 0/1.)

• Step 3: Estimate the copula using the log likelihood function generated from Equation (2).
• Replicate steps 2 and 3 1000 times, and report the mean and standard deviation of θ̂.

These experiments appear in the middle and bottom panels of Tables 2–10. Even in Experiments
5 and 9, which have the smallest means, the addition of an explanatory variable returns an accurate
estimate of dependence for the Gaussian copula. By contrast, findings are somewhat more mixed for
the Clayton and Gumbel copulas. For the large-sample experiments (N = 2500), the Clayton and
Gumbel copulas appear to accurately estimate dependence, even in low-mean settings. But in the
small-sample experiments (N = 100), both the Clayton and Gumbel copulas appear to struggle to find
their true values, although their performances do appear to improve as the means increase.

6. Discussion

Owing to their flexibility and ease of estimation, copulas have enjoyed increased usage in many
areas of econometrics, but questions remain regarding identifiability of the dependence parameter
when modeling discrete outcomes. Genest and Nešlehová (2007) [7] present evidence that copulas are
not identified in discrete settings, particularly when those discrete outcomes follow count distributions.
This paper argues that those concerns diminish if the model has a regression structure and sufficient
variation is induced in E[y | x]. The same could be true in the event that the count outcomes are
influenced by unobserved heterogeneity, which is tantamount to having unobserved regressors.
However, asymmetric copulas, such as Clayton and Gumbel, appear to require larger datasets before
the benefits of large means and/or covariates manifest themselves.
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