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Abstract: This paper considers testing procedures for the null hypothesis of a unit root process
against the alternative of a fractional process, called a fractional unit root test. We extend the Lagrange
Multiplier (LM) tests of Robinson (1994) and Tanaka (1999), which are locally best invariant and
uniformly most powerful, to allow for a slope change in trend with or without a concurrent level shift
under both the null and alternative hypotheses. We show that the limit distribution of the proposed
LM tests is standard normal. Finite sample simulation experiments show that the tests have good
size and power. As an empirical analysis, we apply the tests to the Consumer Price Indices of the
G7 countries.
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1. Introduction

Non-stationarity in economic time series is a pervasive feature. In order to carry proper inference,
it is important to find the exact features that lead to this non-stationarity. A unit root process is
a well-known example of non-stationary processes, and testing for a unit root against stationarity has
been a topic of substantial interest from both theoretical and empirical perspectives. Perron (1989) [1],
however, showed that the Dickey and Fuller (1979) [2] type unit root test is biased in favor of a
non-rejection of the unit root null hypothesis when the process is trend stationary with a structural
change in slope. Perron (1989, 1990) [1,3] proposed testing procedures in which a structural break
is allowed under both the null and alternative hypotheses. Later, Christiano (1992) [4] and Zivot
and Andrews (1992) [5] criticized the assumption that the date of the structural break is known a
priori. In succeeding research, Zivot and Andrews (1992) [5], Perron (1997) [6], and Vogelsang and
Perron (1998) [7] treated the break date as unknown and proposed testing procedures for a unit
root. In much work, especially that of Zivot and Andrews (1992) [5], it was common to allow for
a structural break only under the alternative hypothesis, not under the null hypothesis of a unit
root. This is very restrictive, and can lead to misleading results. Recent advances in testing for and
estimating a structural break in a trend function have made possible the development of unit root
tests that allow for a change in trend under both the null and alternative hypotheses. Perron and Zhu
(2005) [8] established the consistency, rate of convergence, and limiting distribution of the parameter
estimates when there is a break in a trend function with or without a concurrent level shift. Perron
and Yabu (2009) [9] suggested a testing procedure for structural changes in the trend function of a
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time series without any prior knowledge of whether the noise component is stationary or has an
autoregressive unit root. Building on this work, Kim and Perron (2009) [10] proposed unit root testing
procedures which allow for a structural change under both the null and alternative hypotheses; see also
Carrion-i-Silvestre et al. (2009) [11] for an extension to the case with multiple changes.

Fractional processes with the order of integration d ≥ 0.5 are also non-stationary. Standard unit
root tests often reject the null hypothesis when the true process is fractionally integrated with
d ∈ (0.5, 1). This can lead to the misleading conclusion that the process of interest is stationary.
This motivated researchers to introduce unit root tests which are powerful against the alternative
hypothesis of a fractional process. Robinson (1991) [12] derived a Lagrange Multiplier (LM) test
for fractional white noise disturbances in a linear regression, while Robinson (1994) [13] proposed
tests for unit root, and actually any real values of d in both the frequency and the time domain.
Tanaka (1999) [14] suggested an LM test in the time domain, and showed that it is locally best
invariant and uniformly most powerful. Dolado et al. (2002) [15] introduced a Wald-type unit root test
against the alternative of fractional integration. This test is based on the Dickey and Fuller (1979) [2]
type test using an auxiliary regression with a consistent estimate of the integration order. Lobato
and Velasco (2007) [16] established a Wald-type test which is more efficient and is asymptotically
equivalent to the LM test. Recently, Cho et al. (2015) [17] suggested combining the test of Kwiatkowski
et al. (1992) [18] and a unit root test to test the null of integer integration, i.e., I(0) or I(1) against
the alternative of fractional integration, i.e., I(d), d ∈ (0, 1). In this line of work, the process of
interest has been limited to either a random walk or a purely fractional process. Lobato and Velasco
(2007) [16] considered short-run dynamics in the process. Dolado et al. (2008) [19] extended the work
of Dolado et al. (2002) [15] and Lobato and Velasco (2007) [16] to incorporate some deterministic
components; for instance, a constant and a linear trend function.

Our main contribution is to extend the LM test for a fractional unit root to allow for a structural
change in a trend function under both the null and alternative hypotheses. This extension has some
advantages, as follows: (i) it imposes a symmetric treatment of the nature of the deterministic trend
under both the null and alternative hypotheses; (ii) it does not require long memory to be distinguished
from structural change;1 (iii) the power of fractional unit root tests can be substantially improved when
a break is actually present. We consider linear trend models in which a structural change in slope
occurs with or without a concurrent level shift.

The rest of this paper is organized as follows. In Section 2, we first introduce fractional processes
and the Lagrange Multiplier test of Tanaka (1999) [14] along with preliminary results to be used
subsequently. In Section 3, the LM tests are generalized to allow for a structural break in trend
under both the null and alternative hypotheses. Extensions to processes with short-run dynamics are
discussed in Section 4. The results of simulation experiments about the size and power of the tests are
presented in Section 5. As an empirical application, we test for a fractional unit root in the Consumer
Price Indices (CPIs) of the G7 countries in Section 6. Concluding remarks are provided in Section 7.
All mathematical proofs are relegated to the Appendix A.

2. Lagrange Multiplier Test

For an integer d = 1, 2, . . ., the operator ∆d = (1− L)d denotes the differencing operator with the
usual lag operator L; i.e., LXt ≡ Xt−1, ∆Xt = Xt−Xt−1, ∆2Xt = (1− 2L+ L2)Xt = Xt− 2Xt−1 + Xt−2,

1 Given that unit root and long memory processes share similar features, distinguishing between long memory processes
and short memory processes with structural changes has been an important topic in econometrics and financial economics.
Along the lines of Perron (1989) [1], it is well known that short memory processes with level shifts exhibit properties that
lead standard tools to conclude that long memory is present (e.g., Diebold and Inoue (2001) [20], Granger and Hyung
(2004) [21], Lu and Perron (2010) [22], Perron and Qu (2010) [23], Qu and Perron (2013) [24], Xu and Perron (2014) [25], and
Varneskov and Perron (2016) [26], among many others). On the other hand, it has been also documented that long memory
processes induce a rejection of the null hypothesis of no structural change when using conventional structural change tests
(see Wright (1998) [27] and Krämer and Sibbertsen (2002) [28]).
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and so on. For a non-integer real number d > −1, the difference operator ∆d = (1− L)d is defined by
means of the binomial expansion

∆d =
∞

∑
k=0

(
d
k

)
(−L)k =

∞

∑
k=0

πk(d)Lk,

where (
d
k

)
≡ d!

k!(d− k)!
=

d× (d− 1)× · · · × (d− k + 1)
k× (k− 1)× · · · × 2× 1

,

πk(d) ≡ (−1)k
(

d
k

)
=

k

∏
s=1

s− 1− d
s

=
Γ(k− d)

Γ(k + 1)Γ(−d)
,

with Γ(·) the gamma function, so that πk(d) = (k−d−1
k ) and π0(d) = 1. Recall that x! ≡ Γ(x + 1),

x = 0, 1, . . ., and for k = 1, 2, · · · , 0 < x < 1, Γ(x− k) is defined as Γ(x) = (x− 1)Γ(x− 1) = · · · =
(x− 1) · · · (x− k)Γ(x− k). To define a fractional process, we use the notation of Robinson (2005) [29].
Let {ηt, t = 0,±1, . . .} be a short-memory zero-mean covariance stationary process, with spectral
density that is bounded and bounded away from zero. For d ∈ (−0.5, 0.5),

ζt = ∆−dηt, t = 0,±1, . . . , (1)

is covariance stationary and invertible. The truncated version of ζt is defined as

ζ#
t = ζt1t≥1, t = 0,±1, . . . , (2)

where 1A is the indicator function for the event A. For an integer m ≥ 0,

ut = ∆−mζ#
t , t = 0,±1, . . . (3)

is called a type I I(m + d) process. Let D[0, 1] be the space of functions on [0, 1] which are right

continuous and have left limits, equipped with the Skorohod topology. Let
p→ denote convergence in

probability and d→ convergence in distribution. Denote by [a] the integer part of a ∈ R. The order of
integration is d0 = d + m, with d ∈ (−0.5, 0.5) and m ∈ {0, 1}.2

Remark 1. Marinucci and Robinson (1999) [30] defined type I and type II fractional Brownian motions with
d ∈ (−0.5, 0.5) onD[0, 1], respectively, as follows:

BI(t) =
1

Γ(d + 1)

{ ∫ 0

−∞
[(t− s)d − (−s)d]dB(s) +

∫ t

0
(t− s)dB(s)

}
,

BII(t) =
1

Γ(d + 1)

{ ∫ t

0
(t− s)dB(s)

}
,

where B(·) denotes the standard Brownian motion. Furthermore, Robinson (2005) [29] and Davidson and
Hashimzade (2009) [31] pointed out that asymptotic results vary depending on the definition of fractional
Brownian motions considered, which requires one to design simulation experiments in accordance with the
particular type used.

Now we consider a fractional unit root test. Under the null hypothesis, {ut} is a unit root process;
that is, H0 : d0 = 1 (i.e., d = 0 and m = 1). The alternative hypothesis can be either one-sided

2 The restriction that d0 6= 0.5 is standard in the long memory literature. Tanaka (1999) [14] showed that the case with d0 = 0.5
needs to be treated separately from the case with d0 6= 0.5.
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(H1 : d0 > 1 or H1 : d0 < 1) or two-sided (H1 : d0 6= 1). Robinson (1994) [13] and Tanaka (1999) [14]
considered the Lagrange Multiplier test in the frequency and time domain. It is well known that
the LM test is locally best invariant. Further, Tanaka (1999) [14] showed that the LM test is locally
uniformly most powerful invariant because it achieves the power envelope of all the invariant tests
against local alternatives. The test statistic suggested in Tanaka (1999) [14] is

LM =
√

T

√
6

π2

T−1

∑
k=1

1
k

ρk,

where ρk = (∑T
j=k+1 ∆uj−k∆uj)/ ∑T

j=1(∆uj)
2 is the kth order autocorrelation of the residuals ∆ut.

Local alternatives to the null hypothesis are often considered in the literature, with the integration
order defined as d0 = 1+ δT−1/2 with δ fixed, often referred to as Pitman drifts. We state the limiting
distribution of the LM test under local alternatives, as it will be relevant for subsequent derivations.

Lemma 1 (Theorem 3.1 in Tanaka (1999) [14]). Under the assumption that ut is generated by (3) with

d0 = 1+ δT−1/2 and δ fixed, it holds that, as T→ ∞, LM d→N (δ
√

π2/6, 1).

3. Deterministic Components Allowing for a Structural Change

In this section, we extend the LM test for a fractional unit root to allow for a structural change in
trend with or without a concurrent level shift. We consider the time series of interest yt as consisting of
a deterministic component ( ft) and fractionally integrated errors. The data-generating process (DGP)
is specified as

yt = ft + ut.

For ut, we impose E(ut) = 0 and the following assumption.

Assumption 1. ut is a type I I(m + d) process which is defined in (1)–(3). Moreover, the short-memory
zero-mean covariance stationary process ηt is assumed to be independent and identically distributed (i.i.d.) with
zero mean and finite variance.

The i.i.d. assumption on the short-memory process ηt will be relaxed later to allow for short-run
dynamics. The unit root null hypothesis corresponds to the case with m = 1 and d = 0, which implies
that ut is a weighted sum of ηt.

3.1. Change in Mean

We first consider the case where yt experiences a level shift at an unknown time Tb. The DGP is
specified as

yt = µ1 + µbCt + ut, µb 6= 0, (4)

where Ct is a dummy variable for a level shift defined by:

Ct =

{
0 if t ≤ Tb,
1 if t > Tb,

where Tb = [Tλb] is the true break date with the corresponding true break fraction λb ∈ (0, 1).

Theorem 1 (Change in Mean). Under Assumption 1, suppose that the process {yt} is generated under the
null hypothesis of (4). Consider the Lagrange Multiplier test LMM defined by:

LMM =
√

T

√
6

π2
∑T

t=1 (− log ∆∆yt)∆yt

∑T
t=1 (∆yt)

2 .
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Under the null hypothesis H0 : d0 = 1, it holds that as T → ∞, LMM
d→ N (0, 1).

Theorem 1 implies that Tanaka’s (1999) [14] LM test is robust to the presence of a level shift.
In the following subsection, we consider the LM test in the context of trending series.

3.2. Slope and Intercept Change in Trending Series

We now introduce a deterministic time trend in the models. We follow the notation in Kim
and Perron (2009) [10] (henceforth KP) from which we will use some relevant results. The DGPs are
specified as

1. Model A0: (Deterministic time trend without a structural change)

yt = µ1 + β1t + ut, (5)

2. Model A1: (Level shift)
yt = µ1 + µbCt + β1t + ut, (6)

3. Model A2: (Joint broken trend)

yt = µ1 + β1t + βbBt + ut, (7)

where Bt is a dummy variable for a slope change in trend given by

Bt =

{
0 if t ≤ Tb,
t− Tb if t > Tb,

4. Model A3: (Locally disjoint broken trend)

yt = µ1 + µbCt + β1t + βbBt + ut.

Following KP, we can rewrite Models A1–A3 as follows:

yt = z(Tb)
′
tφ + ut = z′t,1φ1 + z(Tb)

′
t,2φ2 + ut,

where zt,1 = (1, t)′, φ1 = (µ1, β1)
′,

z(Tb)t,2 =


Ct

Bt

(Ct, Bt)′
, φ2 =


µb for Model A1
βb for Model A2
(µb, βb)

′ for Model A3.

In matrix notation, the models defined previously can be specified as Y = ZTb φ + U, where
Y = [y1, . . . , yT ]

′, ZTb = [z(Tb)1, . . . , z(Tb)T ]
′, φ = (φ′1, φ′2)

′, and U = [u1, . . . , uT ]
′.

Consider first Model A0, where no structural change is allowed. By taking first differences, we can
rewrite (5) as follows:

∆yt = β1 + ∆ut = β1 + ∆1−d0 ηt1t≥1. (8)

The ordinary least squares (OLS) estimate of β1 is β̂1 = T−1 ∑T
t=1 ∆yt, which is consistent under both

H0 and H1.3 We define ∆̃yt = ∆yt − β̂1, the OLS residuals from the regression model (8).

3 Under H0, β̂1 is a T1/2-consistent estimator of the slope coefficient β1. Hosking (1996) [32] considered a stationary ARFIMA
(p, d, q) process {yt} and showed the weak convergence of the sample mean for d ∈ (−0.5, 0.5). It is not difficult to
generalize the result to the case where d ∈ (0.5, 1), for which β̂1 is a T3/2−d-consistent estimator.
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Theorem 2 (Linear Trend). Under Assumption 1, suppose that the process {yt} is generated under the null
hypothesis of (5). Consider the Lagrange Multiplier test LMT defined by:

LMT =
√

T

√
6

π2

∑T
t=1

(
− log ∆∆̃yt

)
∆̃yt

∑T
t=1

(
∆̃yt

)2 .

Under the null hypothesis H0 : d0 = 1, it holds that as T → ∞, LMT
d→ N (0, 1).

In what follows, the aim is to devise Lagrange Multiplier tests allowing for a slope change in
trend with or without a concurrent level shift. The following assumption is essential to that effect.

Assumption 2. βb 6= 0 and λb ∈ (π, 1− π) for some π ∈ (0, 1/2).

Assumption 2 ensures that there is a single slope change in trend, and that the pre- and post-break
samples are not asymptotically negligible, which is a standard assumption needed to derive useful
asymptotic results. Model A1 (level shift only) will be revisited later.

The break date can be estimated by using a global least-squares criterion:

T̂b = arg min
T1∈Λ

Y′(I − PT1)Y,

where PT1 is the matrix that projects on the range space of ZT1 ; i.e., PT1 = ZT1(Z′T1
ZT1)

−1Z′T1
and

Λ = [πT, (1− π)T], 0 < π < 1/2. Note that ZT1 is the same as ZTb , except Tb is replaced with a
generic break date T1. Perron and Zhu (2005) [8] (henceforth, PZ) established the consistency, rate of
convergence, and limiting distribution of parameter estimates when the error is an I(1) process. With
ZT̂b

constructed using the estimate T̂b, the OLS estimate of φ is φ̂ = (Z′
T̂b

ZT̂b
)−1Z′

T̂b
Y, and the resulting

sum of squared residuals is, for an estimated break fraction λ̂s = T̂b/T (the subscript s refers to the
fact that we consider a static regression; a dynamic regression with lagged dependent variables will be
considered later):

S(λ̂s) =
T

∑
t=1

û2
t =

T

∑
t=1

(
yt − z(T̂b)

′
tφ̂
)2

= Y′(I − PT̂b
)Y,

where PT̂b
is the projection matrix associated with XT̂b

. The rate of convergence of λ̂s for Models A2
and A3 is λ̂s − λb = Op(T−1/2) with I(1) errors (see Theorem 3 in PZ). Chang and Perron (2016) [33]
derived the consistency and rate of convergence of λ̂s when the noise component is a fractional
process with the differencing parameter d0 ∈ (−0.5, 0.5)∪ (0.5, 1.5). Specifically, for Models A2 and A3,
λ̂s − λb = Op(T−1/2+d) if m = 1 and d ∈ (−0.5, 0.5). With the consistent estimates (λ̂s, µ̂1, µ̂b, β̂1, β̂b),
we can construct the detrended process {ỹt}, and the Lagrange Multiplier test statistic LMT,λ̂s

is
given by

LMT,λ̂s
=
√

T

√
6

π2
∑T

t=1 (− log ∆∆ỹt)∆ỹt

∑T
t=1 (∆ỹt)

2 .

The convergence rate of the estimate λ̂s is not fast enough to guarantee that LMT,λ̂s
has

the standard normal limit under H0. KP faced a similar issue in dealing with unit root tests.
They introduced a heuristic explanation of the issue involved, which we briefly review. Let λ̂ = T̂b/T
denote an estimate of the break fraction such that λ̂− λb = Op(T−κ) for some κ ≥ 0. The detrended
series {ỹt} is given by

Ỹ = M̂zY = M̂zZ(Tb)φ + M̂zU = M̂zZ(Tb)2φ2 + M̂zU, (9)
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where Z(Tb) and Z(Tb)2 are matrices stacking {z(Tb)
′
t} and {z(Tb)

′
t,2}, respectively, and the idempotent

matrix M̂z = I − P̂z = I − Z(T̂b)[Z(T̂b)
′Z(T̂b)]

−Z(T̂b)
′. It is obvious that M̂zZ(Tb)2φ2 = 0 only if the

true break date is used in M̂z. In finite samples, λ̂ 6= λb in general; thereby, M̂zZ(Tb)2φ2 will not be
zero. It turns out that a fast rate of convergence for the estimate of the break date is needed for the effect
of M̂zZ(Tb)2φ2 on the Lagrange Multiplier test to become negligible asymptotically. The following

proposition provides a sufficient condition under which LMT,λ̂
d→ N (0, 1) under H0.

Proposition 1. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3, and

that Assumptions 1 and 2 hold. Then, it holds that, as T → ∞, LMT,λ̂
d→ N (0, 1) if λ̂− λb = op(T−1/2).

Proposition 1 implies that the estimate of the break fraction should converge at a rate faster than
T1/2. As shown above, λ̂s does not satisfy this condition. Hence, we need to consider alternative
ways to accelerate the rate of convergence of the estimate of the break fraction. KP suggested two
possible approaches. The first is based on minimizing the sum of squared residuals (SSR) of a dynamic
regression model. This method is similar to that in Hatanaka and Yamada (1999) [34]. The relevant
dynamic regressions are specified as follows:

yt = αyt−1 + ν1D(Tb)t + ν21t≥Tb + z(Tb)
′
tφ + ut, (Model A2)

yt = αyt−1 + νD(Tb)t + z(Tb)
′
tφ + ut, (Models A1 and A3) (10)

where D(Tb)t = 1 for t = Tb + 1 and 0 otherwise. Under the null hypothesis, we obtain an estimate of
the break fraction λ̂d which has a faster rate of convergence, such that λ̂d − λb = Op(T−1) for Models
A2 and A3 (see Proposition 1 in KP). Let LMT,λ̂d

denote the Lagrange Multiplier test statistic with

λ̂d replacing λ̂s. It is worth noting that, as discussed by Hatanaka and Yamada (1999) [34] and KP,
the estimate λ̂d has a negative bias in finite samples, especially for Model A3. As we shall see, this will
affect the finite sample properties of the tests.

The second approach is to use a trimmed data set using a window whose length depends on the
sample size and which contains the estimated break date. The trimmed series then consists of the
original one with the data points in the window excluded. KP showed that the rate of convergence
of λ̂s can be increased with the trimmed data set. Suppose that the estimate of the break fraction
satisfies λ̂− λb = Op(T−a) for some 0 < a < 1, and the trimming window has length 2w(T) with
w(T) ≡ c1Tδ, c1 > 0, and −1 < −a < δ < 0. With this specification, the length of the window is
negligible in the limit compared to the sample size T, but is still large enough to include the true break
date asymptotically. Following KP’s suggestion, one proceeds as follows:

• Estimate the break fraction λ̂s from the original data set and form a window that ranges from
Tl ≡ T(λ̂s − w(T)) to Th ≡ T(λ̂s + w(T)).

• A trimmed data set is constructed by removing the original data from Tl + 1 to Th and then
shifting down the data after the window by D(T) = yTh − yTl . After the trimming and connecting
procedures, we now have a new series {y∗t }, for t = 1, . . . , T∗(≡ T − 2w(T)T), defined by:

y∗t =

{
yt if t ≤ Tl ,
yt+Th−Tl − D(T) if t > Tl .

• Test the null hypothesis H0 : d0 = 1 using Tl as the break date (i.e., λ̂tr = Tl/T∗). The Lagrange
Multiplier test statistic is then given by

LMT,λ̂tr
=
√

T

√
6

π2
∑T

t=1 (− log ∆∆ỹ∗t )∆ỹ∗t
∑T

t=1 (∆ỹ∗t )
2 ,
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where ỹ∗t is the detrended version of y∗t using the estimate of the break date Tl (or break
fraction λ̂tr).

Remark 2. If the window contains either end of the data, then the process {y∗t } turns out to be Model A0
(no structural break), and the statistic in Theorem 2 should be applied to the trimmed data {y∗t }.

The trimmed process {y∗t } will satisfy the properties of Model A2 regardless of the specification
of the original data {yt}, which implies that we can use a common limit distribution. The following
proposition states the limiting distribution of the Lagrange Multiplier test based on the trimmed data,
which is the same as would be obtained if the break date was known in Model A2.

Proposition 2. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3, and

that Assumptions 1 and 2 hold. Then, it holds that as T → ∞, LMT,λ̂tr

d→ N (0, 1).

As shown in KP, under the null hypothesis of a unit root, the estimate of the break fraction
λ̂tr = Tl/T∗ converges in probability to the true break fraction at some rate greater than T. Hence, the
sufficient condition in Proposition 1 is satisfied, so that the proof of Proposition 2 is trivial and omitted.

In concluding this section, we consider the case where there is a change in mean; that is, µb 6= 0,
as in Models A1 and A3. In Model A1, we assume that there is a level shift only; that is, µb 6= 0
and βb = 0. Under the null hypothesis, a stochastic trend generated by the I(1) error process tends
to dominate a level shift. Hence, we cannot estimate the break fraction λb consistently, because the
magnitude of the level shift is asymptotically negligible. In finite samples, we can ignore the level shift
if the magnitude of the break is small. Then, Model A1 can be treated as Model A0, and we can follow
the testing procedure pertaining to Theorem 2. However, a loss of power is inevitable if a large change
in mean is ignored.

On the other hand, the level shift can be specified as an increasing function of the sample size;
i.e., µb = c2T1/2+α for some c2 > 0 and α > 0. As addressed in Harvey et al. (2001) [35], PZ, and KP,
this specification provides better approximations of the properties of the tests in finite samples when
the level shifts are not very small. The models with µb = c2T1/2+α are labeled as Models A1b and
A3b, respectively.

Proposition 3. Suppose that the process {yt} is generated under the null hypothesis of Model A1b or A3b.
Then, LMT,λ̂ diverges as T → ∞.

Although the rate of convergence of the estimate of the break fraction is faster than in the case of
a change in slope (see Proposition 7 in KP), Proposition 3 states that the LM tests cannot obtain the
standard normal limiting distribution. Hence, the LM test LMT,λ̂, using the critical values from the
standard normal distribution, suffers from some liberal size distortions, even when |µb| is large.4

3.3. Using a Pre-Test for a Break in Slope

The results of Theorem 2 and Proposition 2 show that the limit distribution of the test is the same
whether there is a break in slope introduced as a regressor or not, even when the DGP specifies that no
break is present. Hence, unlike the case of testing for a unit root as in KP, theoretically there is no need
to carry a pre-test to improve the power of the test. However, Chang and Perron (2016) [33] considered
Models A2 and A3 with fractionally integrated errors and showed that the so-called spurious break
issue occurs with the order of fractional integration d0 ∈ (0, 0.5) ∪ (0.5, 1.5). This extended the results
on Nunes et al. (1995) [36], who considered the unit root case. This means that under both the null

4 Simulation results related to this issue are available upon request.
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and alternative hypotheses, if a break in slope is not present and one is allowed in the regression,
the fitted model will with large probability suggests the presence of a break. This could have an effect
on both the size and power of the test. On one hand, the slope change regressor may induce added
liberal size distortions in finite samples because of the overfit. On the other hand, since when no break
exists in the DGP it is a superfluous regressor, power maybe be reduced. Hence, it may be the case
that in finite samples it is beneficial to use a pre-test for a change in slope and try to choose between
models (5) and (7). Since a test for a change in mean will be inconsistent, there is no point in trying to
distinguish between models (5) and (6) or between model (4) and the corresponding one without the
change in mean.

Iacone et al. (2013) [37] suggested a sup-Wald type test (SW) for Model A2. In particular, it is
robust to any order of fractional integration d0 located in an interval [0, 1.5) excluding the boundary
case 0.5. More precisely, given their recommended choice for the bandwidth when constructing the
local Whittle estimate of d0, their test is consistent for values of d0 in the interval [0, 1.32], though we
believe the proof can be modified to allow the interval [0, 1.5). It follows the generalized least squares
approach to construct the test statistic for a structural change in trend by taking d0-differences from
the data. To make the test feasible, the fully extended local whittle (FELW) estimator d̂FELW of Abadir
(2007) [38] is considered. While the FELW estimator is constructed under the null hypothesis of no
structural change, Iacone et al. (2013) [37] showed that it also satisfies the necessary condition for
consistency, even with a local break in trend. Since the true break date is unknown a priori, the final
statistic SW uses the sup functional of Andrews (1993) [39] across all admissible break dates. This
test is asymptotically size controlled for all d0’s in the prescribed range. Using this pre-test, we can
then define the alternative estimate of the break fraction λ̃ = λ̂ · 1SW>τ , where τ is the critical value
for the SW test with a nominal size p%. Given that SW is a consistent test, plimT→∞ λ̃ = λb if λ̂ is a
consistent estimate of λb. If there is no break in the DGP, we can expect that p% of the estimates λ̃’s
are nonzero. In order to obtain a consistent estimate of λb under the null of no structural break, we
assume that the critical value τ is a function of the sample size T. Since SW = Op(T$), $ > 0 with a
local break, let τ = cT$−ε for 0 < ε < $. This specification introduced in KP is useful because it does
not have any effect on the consistency of the test SW and does guarantee that plimT→∞ λ̃ = 0 when
no break is present. Hence, based on the consistency of λ̃, it is recommended to use LMT if λ̃ = 0
and LMT,λ̂ if λ̃ 6= 0. The LM test statistics with the pre-test are denoted by LMp

T,λ̂s
, LMp

T,λ̂d
, and

LMp
T,λ̂tr

. Whether using a pre-test is beneficial will be assessed later via simulation experiments about
the size and power of the tests.

4. Short-Run Dynamics

We now relax Assumption 1 to introduce short-run dynamics in the noise component. A zero-mean
short-memory covariance stationary process ηt can be represented as a one-sided moving average:
ηt = ∑∞

j=0 ψjεt−j, t = 0,±1, . . . , where ψ0 = 1, ∑∞
j=0 ψ2

j < ∞, ψ(1) ≡ ∑∞
j=0 ψj, and {εt, t = 0,±1, . . .}

are i.i.d. random variables with mean zero. A special case of interest is an autoregressive moving
average (ARMA(p, q)) process given by φ(L)ηt = θ(L)εt. In order to implement the Lagrange
Multiplier test, we first estimate the parameters Ψ = (φ1, . . . , φp, θ1, . . . , θq) consistently. Then, under
the null hypothesis, we can construct ε̂t = φ̂(L)θ̂(L)−1(1− L)d0 ût, where ût is the OLS residuals from
the model considered, whereas φ̂(L) and θ̂(L) are estimated from φ(L)(1− L)d0 ût = θ(L)εt, using
d0 = 1. With short-run dynamics in the noise component, we consider the following test statistic:

ˆLM =
√

T
T−1

∑
k=1

1
k

ρ̂k,

where ρ̂k is the kth order autocorrelation of residuals ε̂1, . . . , ε̂T . Tanaka (1999) [14] derived an important
result related to this statistic when no break is present.
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Lemma 2 (Theorem 3.3 in Tanaka (1999) [14]). Under local alternatives—that is, d0 = 1 + δT−1/2 with δ

fixed—it holds that as T → ∞, ˆLM d→ N (δω2, ω2), where

ω2 =
π2

6
− (κ1, . . . , κp, ξ1, . . . , ξq)Φ−1(κ1, . . . , κp, ξ1, . . . , ξq)

′,

κi =
∞

∑
j=1

1
j

gj−i, ξi = −
∞

∑
j=i

1
j

hj−i,

with gj and hj the coefficients of Lj in the expansion of 1/φ(L) and 1/θ(L), respectively, and Φ the Fisher
information matrix for φ and θ.

Remark 3. Note that ω2 < π2/6; hence comparing Lemmas 1 and 2, the LM test has lower local asymptotic
power in the presence of short-run dynamics of any kind. As will be shown via simulations, the loss in power
can be substantial. It remains, nevertheless, inevitable.

With the maximum likelihood estimate ω̂, we show that ˆLM/ω̂
d→ N (0, 1) as T → ∞ under the

null hypothesis. In particular, when p = 1 or q = 1, it is easy to compute ω̂. Since vj = ςvj−1 + εj in
both cases, gj = ςj,

κ1 =
∞

∑
j=1

1
j

ςj−1 = −1
ς

log(1− ς), and Φ−1 = 1− ς2.

Hence, we have

ω2 =
π2

6
− 1− ς2

ς2 (log(1− ς))2,

and ω̂ can be computed using ς̂. All these results remain valid for all trending models with a break
considered. The relevant correction needed is a simple scaling by ω̂ so that the test becomes
LM∗

T,λ̂ ≡ LMT,λ̂/ω̂.

Proposition 4. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3,
and that Assumptions 1 and 2 hold with ηt being an ARMA(p,q) process. Then, it holds that as T → ∞,

LM∗
T,λ̂

d→ N (0, 1) if λ̂− λb = op(T−1/2) and ω̂−ω = op(1).

The sufficient conditions in Proposition 4 follow from Lemma 2 and Proposition 1, hence the proof
is omitted. The finite sample performance of LM∗

T,λ̂ with λ̂ ∈ {λ̂s, λ̂d, λ̂tr} allowing for a structural
break under both the null and alternative hypotheses will be examined in the next section.

5. Simulation Experiments

In this section, we present results from simulation experiments to illustrate the various theoretical
results. Throughout the simulations, the true break fraction is set to λb = 0.5.5 The DGP is specified as
yt = ft + ut where

ft =


µ1 + β1t for Model A0,
µbCt for Model A1,
βbBt for Model A2,
µbCt + βbBt for Model A3,

5 Unreported simulation results with λb = {0.3, 0.7} are qualitatively similar to those with λb = 0.5.
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and ut = ∆−1ζ#
t = ∆−1ηt1t≥1, t = 0,±1,±2, . . ., where ηt is a short-memory zero-mean covariance

stationary process that will be specified below. We set some parameters as follows: µ1 = 1.72, β1 = 0.03,
µb = 1, and βb = 1. The configurations are the same as those in PZ, chosen to obtain distributions that
easily reveal the main features of interest. In all cases, the results are obtained via 10,000 replications.
Additionally, 5% nominal size tests are considered.

First, to illustrate the effect of a structural break on the power of the fractional unit root test,
we consider two different models when a structural change in slope is allowed in the DGP: (i) Model
A0 (which ignores a relevant slope change); and (ii) Model A2 (which is well specified). The results
are provided in Table 1. It is clear that the power of LMT is much lower than that of LMT,λ̂d

, which
supports the fact that a structural break in the DGP should be allowed when testing for a fractional
unit root.

Table 1. The effect of a structural break in trend on the Lagrange multiplier (LM) tests.

T = 150

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

LMT 0.767 0.617 0.458 0.290 0.187 0.117 0.070 0.044 0.029 0.020 0.004
LMT,λ̂d

1 1 0.997 0.986 0.949 0.858 0.703 0.485 0.303 0.169 0.036

Note: 5% nominal size tests are used. The data-generating process (DGP) is specified by yt = βbBt + ut and
ut = ∆−m(∆−dηt)1t≥1 with ηt ∼ i.i.d.N (0, 1) where d0 = m + d, d ∈ [−0.5, 0), and m = 1. The values of
model parameters are set to λ0 = 0.5, βb = 0.5. The test LMT , designed for Model A1, ignores a structural
break in the DGP, while the test LMT,λ̂d

, designed for Model A2, is well specified with the estimate of the
break date obtained from the dynamic regression (10).

Tables 2–5 present the rejection probabilities of the tests LMT and LMT,λ̂ at the 5% significance
level when ηt ∼ i.i.d.N (0, 1). In Table 2, no structural change is allowed in the DGP (Model A0);
i.e., yt = µ1 + β1t + ut. The size of LMT is well controlled, which is 0.05 and 0.06 with sample sizes
T = 150, 500, respectively. Table 3 reports the results for Model A1. The break fraction is not estimated
consistently, because the level shift is negligible compared to the stochastic trend induced by the I(1)
errors. Hence, LMT,λ̂s

and LMT,λ̂d
suffer from severe size distortion, while LMT maintains size

close to the nominal level 5%. Table 4 presents the results pertaining to Model A2. We also consider
the test based on trimmed data, LMT,λ̂tr

. The test LMT,λ̂d
is size-controlled, while the others show

minor size distortion. However, the power of LMT,λ̂d
is always lower than that of the other two tests.

Table 5 presents the results pertaining to Model A3. Here, we set µb = 0 to consider the effect of
an irrelevant level shift. Notice that LMT,λ̂s

exhibits liberal size distortion and LMT,λ̂d
also shows

considerable size distortion. As noted by Chang and Perron (2016) [33], the estimate of the break
date shows a pattern of bi-modality when an irrelevant level shift is introduced. This phenomenon is
referred to the “contamination” effect, because the irrelevant level shift can make the estimate of the
true break date less precise. By construction, the contamination effect is marginal on LMT,λ̂tr

, whose
exact size is 6.7% when T = 500.

Table 2. Rejection probabilities of the LMT test for Model A0.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

1 1 1 0.997 0.983 0.924 0.778 0.544 0.307 0.154 0.051

T = 500

1 1 1 1 1 1 0.997 0.920 0.608 0.260 0.056

Note: 5% nominal size tests are used. The DGP is defined by yt = µ1 + β1t + ut, and ut = ∆−m(∆−dηt)1t≥1
with ηt ∼ i.i.d.N (0, 1) where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
µ1 = 1.72, β1 = 0.03.
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Table 3. Rejection probabilities of the LMT,λ̂ and LMT tests for Model A1.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.989 0.990 0.969 0.897 0.765 0.589 0.410 0.255

LMT,λ̂d
1 1 1 0.997 0.988 0.946 0.839 0.655 0.445 0.263 0.134

LMT 1 1 1 0.997 0.981 0.927 0.772 0.541 0.309 0.151 0.052

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.999 0.970 0.802 0.494 0.252

LMT,λ̂d
1 1 1 1 1 1 0.996 0.932 0.674 0.330 0.118

LMT 1 1 1 1 1 1 0.997 0.925 0.616 0.250 0.055

Note: 5% nominal size tests are used. The DGP is defined by yt = µbCt + ut, and ut = ∆−m(∆−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, µb = 1.

Table 4. Rejection probabilities of the LMT,λ̂ tests for Model A2.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.998 0.987 0.936 0.820 0.610 0.387 0.211 0.077

LMT,λ̂d
0.998 0.994 0.982 0.951 0.882 0.765 0.606 0.409 0.246 0.130 0.039

LMT,λ̂tr
1 0.999 0.999 0.997 0.981 0.922 0.794 0.587 0.369 0.205 0.072

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.995 0.904 0.567 0.229 0.063

LMT,λ̂d
1 1 1 1 0.997 0.974 0.893 0.717 0.426 0.165 0.048

LMT,λ̂tr
1 1 1 1 1 1 0.997 0.917 0.591 0.244 0.071

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut, and ut = ∆−m(∆−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, βb = 1.

Table 5. Rejection probabilities of the LMT,λ̂ tests for Model A3.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.998 0.990 0.953 0.857 0.679 0.480 0.305 0.175

LMT,λ̂d
1 1 0.999 0.995 0.977 0.921 0.806 0.616 0.419 0.258 0.128

LMT,λ̂tr
1 1 1 0.996 0.981 0.926 0.798 0.587 0.380 0.218 0.083

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.995 0.924 0.659 0.350 0.156

LMT,λ̂d
1 1 1 1 0.999 0.996 0.974 0.851 0.561 0.259 0.101

LMT,λ̂tr
1 1 1 1 1 0.999 0.993 0.899 0.571 0.233 0.067

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut, and ut = ∆−m(∆−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, βb = 1.

In Tables 6–8, we provide simulation results when the errors have short-run dynamics; i.e.,
(1 − ρL)ηt = εt, εt ∼ i.i.d.N (0, 1). We set the value of the autoregressive (AR) parameter at
ρ ∈ {−0.5, 0, 0.3, 0.6, 0.8}. When ρ = 0, we can compare the loss of power caused by allowing
for dynamics when none is present. The other parameters remain unchanged. Table 6 reports the size
and power of the Lagrange multiplier tests pertaining to Model A1, LMT . It is well size-controlled
with less persistent AR parameters ρ ∈ {0, 0.3}, but it is very conservative with a higher AR coefficient
ρ ∈ {0.6, 0.8}, while it shows liberal size distortions with ρ = −0.5. We find some interesting features
in terms of power. First, power is higher when the AR parameter ρ is negative (in part due to the liberal
size distortions). Second, as ρ becomes positive and large, power shrinks considerably. In particular,
the loss of power is substantial when the AR parameter ρ increases from 0.6 to 0.8. This implies that
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a sufficiently large time span is needed to distinguish fractional integration from weak dependence.
Comparing Table 3 with Table 6, for the ρ = 0 case, it is obvious that power is substantially lower
when an irrelevant AR parameter is introduced. This result suggests that selecting the number of lags
in the noise component is crucial to obtain good power. Lastly, with a persistent AR parameter ρ = 0.8,
the LM tests have non-monotonic power; that is, power does not increase when the order of integration
d0 moves away from the null of a unit root. As also discussed in Lobato and Velasco (2007) [16], it is
difficult to distinguish fractional integration from a highly persistent stationary short-memory process.
Table 7 reports the results pertaining to Model A2. They show similar patterns as for Model A1.
It is noticeable that LM∗

T,λ̂d
performs well in terms of size across all cases, while its power is always

lower than that of the other tests. Table 8 presents the results for Model A3. LM∗
T,λ̂d

has size distortion,
even with negative and less persistent AR parameters. This happens because when using the dynamic
regression to estimate the break fraction, the estimate λ̂d is negatively biased for Model A3. Among
the three LM statistics, LM∗

T,λ̂tr
based on the trimmed data performs well in finite samples. The size

of LM∗
T,λ̂tr

is well controlled across various values of ρ, while LM∗
T,λ̂s

and LM∗
T,λ̂d

show liberal size
distortions. Moreover, the power loss of LM∗

T,λ̂tr
is minor relative to the other tests. Hence, LMT,λ̂tr

and LM∗
T,λ̂tr

are the recommended tests in practice.

Table 6. Rejection probabilities of LM∗T,λ̂ and LMT for Model A1 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗T,λ̂s
1 0.999 0.997 0.987 0.965 0.894 0.776 0.618 0.449 0.305 0.187

−0.5 LM∗T,λ̂d
1 0.999 0.997 0.986 0.962 0.891 0.769 0.598 0.429 0.277 0.168

LMT 1 0.999 0.994 0.974 0.928 0.813 0.639 0.442 0.259 0.137 0.059

LM∗T,λ̂s
0.993 0.986 0.967 0.927 0.862 0.774 0.656 0.528 0.424 0.329 0.244

0 LM∗T,λ̂d
0.991 0.981 0.955 0.904 0.824 0.711 0.582 0.435 0.321 0.224 0.143

LMT 0.986 0.969 0.930 0.851 0.728 0.572 0.411 0.267 0.163 0.102 0.046

LM∗T,λ̂s
0.946 0.899 0.839 0.767 0.671 0.553 0.450 0.365 0.272 0.215 0.158

0.3 LM∗T,λ̂d
0.922 0.863 0.788 0.683 0.573 0.441 0.337 0.245 0.168 0.115 0.069

LMT 0.894 0.811 0.707 0.576 0.445 0.303 0.209 0.133 0.077 0.054 0.026

LM∗T,λ̂s
0.558 0.484 0.385 0.296 0.234 0.163 0.127 0.091 0.061 0.048 0.029

0.6 LM∗T,λ̂d
0.456 0.370 0.274 0.197 0.144 0.086 0.060 0.039 0.024 0.020 0.010

LMT 0.361 0.277 0.184 0.121 0.079 0.042 0.029 0.018 0.013 0.013 0.007

LM∗T,λ̂s
0.096 0.074 0.049 0.035 0.025 0.017 0.014 0.010 0.012 0.011 0.008

0.8 LM∗T,λ̂d
0.044 0.033 0.019 0.013 0.014 0.012 0.015 0.022 0.024 0.027 0.036

LMT 0.019 0.016 0.011 0.012 0.018 0.026 0.033 0.041 0.042 0.038 0.026

T = 500

LM∗T,λ̂s
1 1 1 1 1 0.999 0.979 0.856 0.581 0.305 0.129

−0.5 LM∗T,λ̂d
1 1 1 1 1 0.999 0.974 0.829 0.537 0.262 0.100

LMT 1 1 1 1 1 1 0.980 0.830 0.502 0.215 0.066

LM∗T,λ̂s
1 1 1 1 0.999 0.992 0.936 0.781 0.576 0.403 0.263

0 LM∗T,λ̂d
1 1 1 1 0.999 0.985 0.894 0.695 0.451 0.273 0.143

LMT 1 1 1 1 0.999 0.979 0.858 0.595 0.330 0.168 0.058

LM∗T,λ̂s
1 1 1 0.998 0.979 0.920 0.777 0.575 0.394 0.257 0.155

0.3 LM∗T,λ̂d
1 1 1 0.996 0.967 0.869 0.684 0.447 0.261 0.162 0.074

LMT 1 1 1 0.995 0.957 0.837 0.611 0.376 0.205 0.124 0.051

LM∗T,λ̂s
0.984 0.956 0.880 0.736 0.559 0.348 0.195 0.114 0.056 0.033 0.016

0.6 LM∗T,λ̂d
0.977 0.935 0.844 0.673 0.487 0.297 0.171 0.105 0.065 0.045 0.023

LMT 0.974 0.927 0.833 0.670 0.497 0.316 0.199 0.135 0.083 0.058 0.028

LM∗T,λ̂s
0.249 0.148 0.075 0.040 0.024 0.015 0.008 0.007 0.005 0.006 0.004

0.8 LM∗T,λ̂d
0.202 0.133 0.084 0.067 0.066 0.069 0.084 0.091 0.101 0.107 0.103

LMT 0.217 0.159 0.126 0.120 0.142 0.157 0.171 0.163 0.134 0.102 0.043

Note: 5% nominal size tests are used. The DGP is defined by yt = µbCt + ut and ut = ∆−m(∆−dηt)1t≥1 with
(1− ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set µb = 1.
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Table 7. Rejection probabilities of LM∗T,λ̂ for Model A2 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗
T,λ̂s

1 0.999 0.996 0.985 0.949 0.861 0.713 0.515 0.354 0.215 0.100
−0.5 LM∗

T,λ̂d
0.993 0.982 0.955 0.908 0.816 0.680 0.521 0.350 0.233 0.136 0.054

LM∗
T,λ̂tr

1 0.996 0.990 0.969 0.926 0.822 0.671 0.478 0.335 0.203 0.098

LM∗
T,λ̂s

0.991 0.978 0.943 0.885 0.795 0.652 0.507 0.364 0.268 0.189 0.097
0 LM∗

T,λ̂d
0.912 0.851 0.779 0.668 0.562 0.425 0.311 0.205 0.153 0.104 0.046

LM∗
T,λ̂tr

0.988 0.965 0.931 0.868 0.774 0.645 0.496 0.373 0.280 0.205 0.113

LM∗
T,λ̂s

0.907 0.848 0.761 0.662 0.533 0.429 0.319 0.239 0.170 0.129 0.071
0.3 LM∗

T,λ̂d
0.691 0.602 0.502 0.409 0.311 0.230 0.163 0.115 0.076 0.056 0.027

LM∗
T,λ̂tr

0.868 0.792 0.696 0.594 0.467 0.369 0.271 0.198 0.141 0.109 0.055

LM∗
T,λ̂s

0.436 0.360 0.282 0.215 0.157 0.119 0.083 0.061 0.050 0.038 0.027
0.6 LM∗

T,λ̂d
0.230 0.176 0.130 0.092 0.058 0.044 0.028 0.020 0.019 0.016 0.012

LM∗
T,λ̂tr

0.421 0.344 0.269 0.211 0.156 0.118 0.082 0.062 0.054 0.043 0.030

LM∗
T,λ̂s

0.057 0.040 0.038 0.038 0.044 0.053 0.061 0.063 0.058 0.044 0.028
0.8 LM∗

T,λ̂d
0.022 0.012 0.013 0.017 0.025 0.032 0.044 0.047 0.044 0.034 0.023

LM∗
T,λ̂tr

0.040 0.026 0.024 0.025 0.034 0.039 0.049 0.053 0.051 0.038 0.024

T = 500

LM∗
T,λ̂s

1 1 1 1 1 0.999 0.963 0.785 0.445 0.197 0.068
−0.5 LM∗

T,λ̂d
1 1 1 1 0.993 0.952 0.824 0.594 0.311 0.129 0.039

LM∗
T,λ̂tr

1 1 1 1 1 1 0.975 0.825 0.490 0.221 0.081

LM∗
T,λ̂s

1 1 1 1 0.998 0.969 0.831 0.575 0.329 0.169 0.076
0 LM∗

T,λ̂d
1 1 0.993 0.968 0.907 0.793 0.617 0.408 0.225 0.108 0.050

LM∗
T,λ̂tr

1 1 1 1 0.998 0.978 0.865 0.617 0.362 0.190 0.099

LM∗
T,λ̂s

1 1 0.999 0.994 0.950 0.826 0.614 0.382 0.233 0.145 0.081
0.3 LM∗

T,λ̂d
0.993 0.974 0.929 0.846 0.746 0.613 0.427 0.255 0.149 0.081 0.049

LM∗
T,λ̂tr

1 1 0.999 0.994 0.957 0.836 0.625 0.391 0.236 0.145 0.079

LM∗
T,λ̂s

0.975 0.930 0.828 0.687 0.521 0.366 0.257 0.178 0.125 0.099 0.065
0.6 LM∗

T,λ̂d
0.788 0.709 0.596 0.475 0.340 0.222 0.144 0.091 0.060 0.040 0.030

LM∗
T,λ̂tr

0.976 0.933 0.834 0.690 0.514 0.353 0.240 0.161 0.113 0.090 0.067

LM∗
T,λ̂s

0.245 0.187 0.161 0.169 0.191 0.218 0.238 0.226 0.176 0.122 0.067
0.8 LM∗

T,λ̂d
0.143 0.104 0.087 0.085 0.084 0.092 0.101 0.117 0.103 0.082 0.048

LM∗
T,λ̂tr

0.235 0.165 0.130 0.124 0.127 0.142 0.161 0.190 0.191 0.199 0.226

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut and ut = ∆−m(∆−dηt)1t≥1 with
(1− ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set βb = 1.
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Table 8. Rejection probabilities of LM∗T,λ̂ for Model A3 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗
T,λ̂s

1 0.999 0.996 0.986 0.952 0.880 0.749 0.561 0.403 0.272 0.149
−0.5 LM∗

T,λ̂d
1 0.999 0.996 0.983 0.946 0.871 0.738 0.549 0.390 0.258 0.139

LM∗
T,λ̂tr

1 0.996 0.989 0.970 0.925 0.832 0.686 0.491 0.339 0.219 0.096

LM∗
T,λ̂s

0.992 0.980 0.946 0.897 0.813 0.697 0.569 0.441 0.344 0.262 0.183
0 LM∗

T,λ̂d
0.991 0.973 0.939 0.881 0.786 0.670 0.537 0.401 0.303 0.229 0.149

LM∗
T,λ̂tr

0.983 0.963 0.919 0.848 0.740 0.609 0.473 0.343 0.250 0.184 0.095

LM∗
T,λ̂s

0.919 0.868 0.785 0.695 0.587 0.488 0.377 0.302 0.230 0.183 0.137
0.3 LM∗

T,λ̂d
0.899 0.835 0.747 0.646 0.518 0.425 0.307 0.236 0.167 0.121 0.083

LM∗
T,λ̂tr

0.877 0.809 0.710 0.607 0.483 0.381 0.274 0.208 0.158 0.119 0.069

LM∗
T,λ̂s

0.481 0.396 0.318 0.251 0.191 0.150 0.115 0.086 0.072 0.055 0.039
0.6 LM∗

T,λ̂d
0.407 0.317 0.241 0.173 0.125 0.088 0.063 0.046 0.032 0.026 0.016

LM∗
T,λ̂tr

0.385 0.298 0.242 0.175 0.127 0.092 0.071 0.051 0.042 0.032 0.021

LM∗
T,λ̂s

0.082 0.059 0.052 0.039 0.036 0.033 0.032 0.033 0.027 0.024 0.019
0.8 LM∗

T,λ̂d
0.045 0.028 0.023 0.015 0.014 0.014 0.016 0.019 0.024 0.026 0.030

LM∗
T,λ̂tr

0.040 0.030 0.030 0.026 0.031 0.042 0.044 0.050 0.044 0.039 0.026

T = 500

LM∗
T,λ̂s

1 1 1 1 1 0.999 0.970 0.807 0.501 0.243 0.103
−0.5 LM∗

T,λ̂d
1 1 1 1 1 0.993 0.936 0.741 0.434 0.199 0.079

LM∗
T,λ̂tr

1 1 1 1 1 0.999 0.972 0.801 0.476 0.212 0.073

LM∗
T,λ̂s

1 1 1 1 0.999 0.979 0.876 0.674 0.439 0.286 0.164
0 LM∗

T,λ̂d
1 1 1 1 0.991 0.953 0.829 0.622 0.379 0.226 0.124

LM∗
T,λ̂tr

1 1 1 1 0.998 0.970 0.835 0.591 0.326 0.177 0.077

LM∗
T,λ̂s

1 1 0.999 0.995 0.962 0.859 0.673 0.468 0.307 0.192 0.123
0.3 LM∗

T,λ̂d
1 1 0.997 0.978 0.925 0.792 0.580 0.372 0.215 0.124 0.076

LM∗
T,λ̂tr

1 1 0.999 0.992 0.945 0.812 0.590 0.371 0.222 0.131 0.078

LM∗
T,λ̂s

0.978 0.935 0.843 0.697 0.521 0.348 0.220 0.140 0.091 0.070 0.050
0.6 LM∗

T,λ̂d
0.942 0.864 0.739 0.572 0.393 0.240 0.138 0.080 0.050 0.035 0.025

LM∗
T,λ̂tr

0.971 0.917 0.818 0.667 0.493 0.343 0.231 0.162 0.108 0.087 0.063

LM∗
T,λ̂s

0.232 0.153 0.114 0.097 0.095 0.099 0.105 0.093 0.071 0.052 0.052
0.8 LM∗

T,λ̂d
0.162 0.101 0.067 0.049 0.041 0.039 0.039 0.047 0.057 0.071 0.067

LM∗
T,λ̂tr

0.225 0.173 0.144 0.145 0.154 0.176 0.203 0.190 0.155 0.105 0.055

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut and ut = ∆−m(∆−dηt)1t≥1 with
(1− ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set βb = 1.

The Size and Power When a Pre-Test Is Used

In Figures 1–4, we present the size and power of the LM tests as the slope change parameter
(βb) changes in Models A2 and A3 with and without the use of a pre-test. As a pre-test, we use the
SW test of Iacone et al. (2013) [37] at the nominal 5% level. We only consider the version of the
LM statistics based on the trimmed estimate of the break fraction, denoted LMT,λ̂tr

and LMp
T,λ̂tr

when no short-run dynamics is allowed, and by LM∗
T,λ̂tr

and LM∗p
T,λ̂tr

when an AR(1) structure is
allowed. To assess the extent of the differences in the size distortion and power, we also report the
infeasible LM test based on the true value of break fraction, denoted LMT,λb and LM∗

T,λb
. The

results are presented in Figure 1 for Model A2 (no short-run dynamics), Figure 2 for Model A2, and in
Figures 3 and 4 for Models A2 and A3 with short-run dynamics of the form (1 − 0.3L)ηt = εt,
εt ∼ i.i.d.N (0, 1). For LMp

T,λ̂tr
and LM∗p

T,λ̂tr
, the trimming window contains six observations (the

simulation results are not sensitive to the length of the window). The magnitude of break in the slope
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of the trend βb varies from −4 to 4 in increments of 0.2. We set µb = 0 for Model A3. The sample sizes
are T = 150, 300, and the number of replications is 10,000 for each value of the parameters. One-sided
tests against the alternative hypothesis H1 : d0 < 1 are constructed at the nominal 5% level. For power,
d0 is set to 0.8.
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Figure 1. Null rejection probabilities in Model A2, λb = 0.5 [− + − : LMT,λ̂tr
, − ∗ − : LMp

T,λ̂tr
,

−�− : LMT,λb
]

The results for Model A2 (presented in Figure 1) show first that the version without the pre-test
exhibits some liberal size distortions when βb is near 0, which reduce when T increases, though remain
noticeable even with T = 300. On the other hand, the version with the pre-test exhibits conservative
size-distortions when βb is near but not equal to 0, which again reduce but remain noticeable when
T = 300. The most drastic differences occur when considering the power of the tests. The power of the
version without the pre-test is slightly below but near to the power of the version with the true break
fraction when T = 150 for all values of βb. When T = 300, the power functions are nearly the same.
Things are very different when the version with the pre-test is used. When βb is near but not equal
to zero, the power reduces drastically, creating pronounced power valleys. This reduction in power
alleviates somewhat when T = 300, but remains important. This is due to the fact that for low values
of βb, the SW test of Iacone et al. (2013) [37] is not powerful enough, so a change in slope regressor is
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not included. Yet, the magnitude of the change in slope is large enough to induce a considerable loss
in power. This is akin to the problem faced by the Kim and Perron (2009) [10] test in the context of
testing for a unit root.

The results for Model A3 (presented in Figure 2) show a similar picture. This is also the case when
considering the tests LM∗

T,λ̂tr
and LM∗p

T,λ̂tr
with serial correlation in the DGP (Figures 3 and 4), though

here the size distortions of both tests are somewhat higher, liberal for LM∗
T,λ̂tr

, and conservative for

LM∗p
T,λ̂tr

. The power losses of LM∗p
T,λ̂tr

is severe, especially when T = 150.
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Figure 2. Null rejection probabilities in Model A3, λb = 0.5 [− + − : LMT,λ̂tr
, − ∗ − : LMp

T,λ̂tr
,

−�− : LMT,λb
]
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Figure 3. Null rejection probabilities in Model A2, where (1− 0.3L)ηt = εt, λb = 0.5 [−+− : LMT,λ̂tr
,

− ∗− : LM∗p
T,λ̂tr

, −�− : LMT,λb
].

Based on the simulation results, it is recommended to use the LMT,λ̂tr
or LM∗

T,λ̂tr
tests without

the pre-test. In our view, the reduction in power when using a pre-test considerably outweighs the
differences in size distortions. The SW test of Iacone et al. (2013) [37] is nevertheless still useful to
assess the presence of large breaks.
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Figure 4. Null rejection probabilities in Model A3, where (1− 0.3L)ηt = εt, λb = 0.5 [−+− : LMT,λ̂tr
,

− ∗− : LM∗p
T,λ̂tr

, −�− : LMT,λb
].

6. An Empirical Application

We analyze the aggregate price indices of the G7 countries. Monthly seasonally-adjusted CPI
series were obtained from the OECD Main Economic Indicators. All series are analyzed with a
logarithm transformation and are plotted in Figure 5, where the vertical line is the break date estimated
by minimizing the sum of squared residuals from Model A2.
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Figure 5. (log) CPI for the G7 Countries.
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The results are presented in Table 9. We only consider Model A2, and use the test for a slope
change of Iacone et al. (2013) [37]. Based on the simulation results, we recommend using the LM
tests with λ̂tr. We present results with and without short-run dynamics. When dynamics is allowed,
an AR(1) specification is used. The time span is from January 1969 to December 2007 (T = 468). First,
the augmented Dickey-Fuller type test (ADF) cannot reject the null of a unit root against the alternative
of trend stationarity for all G7 countries. On the other hand, the SW test of Iacone et al. (2013) [37]
detects a change in the slope of the trend. Allowing for a structural change in trend, the fractional unit
root tests LMT,λ̂tr

and LM∗
T,λ̂tr

lead to a rejection of the unit root in favor of fractional integration.
Specifically, the test results state that the order of fractional integration is greater than unity for all G7
countries. We apply the two-step feasible exact local Whittle estimator d̂ELW of Shimotsu (2010) [40]
to the residuals from the fitted trend equipped with the estimate of the break date T̂b. This result is
compatible with that in Gil-Alana (2008) [41], where he estimated the order of fractional integration
for the U.S. CPI and found that the confidence intervals were located above unity. Hassler and Wolters
(1995) [42] considered the inflation rates for various countries, and found that the order of fractional
integration was located in an interval (0, 0.5); that is, the inflation rate is a long-memory process.

Table 9. Empirical results for the logarithmic price indices of the G7 countries.

ADF SW Break Date d̂ELW LMT ,λ̂tr
LM∗

T ,λ̂tr

Canada −0.16 (4) 19.40 *** 1986 May [0.45] 1.30 9.44 *** 9.37 *** 〈0.13〉
France −1.47 (6) 28.19 *** 1985 Nov [0.43] 1.69 34.65 *** 7.54 *** 〈0.62〉
Germany −1.59 (1) 10.78 ** 1982 Oct [0.35] 1.32 18.98 *** 8.01 *** 〈0.41〉
Italy −0.61 (7) 16.37 *** 1986 Jul [0.45] 1.54 29.55 *** 11.64 *** 〈0.52〉
Japan −2.50 (11) 18.86 *** 1980 Nov [0.31] 1.65 18.93 *** 8.73 *** 〈0.42〉
U.K. −1.47 (7) 16.50 *** 1983 Nov [0.38] 1.51 9.46 *** 4.39 *** 〈0.5〉
U.S.A. −0.44 (2) 15.75 ** 1984 Jun [0.40] 1.29 12.71*** 3.48 *** 〈0.38〉

Note: (1) The numbers in parentheses are the values of the autoregressive order selected by the Bayesian
information criterion when constructing the ADF test; (2) the numbers in brackets [·] denote the estimated
break fractions; (3) the numbers in 〈·〉 are the estimates of the AR coefficient in the noise component. *, **, and
*** denote a statistic significant at the 10%, 5%, and 1% level, respectively.

7. Conclusions

We established testing procedures for a fractional unit root, allowing for a structural change under
both the null and alternative hypotheses. Following Robinson (1994) [13], Tanaka (1999) [14] derived
a Lagrange multiplier test in the time domain, and Dolado et al. (2002, 2008) [15,19] and Lobato
and Velasco (2007) [16] considered Wald-type tests for a unit root null hypothesis against fractional
integration. Although Dolado et al. (2008) [19] introduced deterministic components, the case with a
structural break in trend has not been considered in the literature. In contrast to the large amount of
work related to testing the null hypothesis of long-memory against the alternative of stationarity with
level shifts, and vice versa, work related to a fractional unit root test allowing for a structural break in
trend is more scarce. To the best of our knowledge, this paper is the first that addresses testing for a
fractional process allowing a structural break under both the null and alternative hypotheses.

Fractional unit root tests allowing for a structural break under both the null and alternative
hypotheses have some desirable features: (i) given that economic variables are often subject to structural
changes, our approach imposes a symmetric treatment of the change under both the null and alternative
hypotheses; (ii) it is not required to distinguish long memory from structural change; (iii) the power of
fractional unit root tests can be substantially improved when a break is actually present. Under some
conditions, the proposed LM test statistics have the standard normal limit under the null hypothesis.
Simulation experiments confirmed that the tests have good size and power. Hence, we believe that our
procedures offer useful complements to existing tests and should be used in practical applications.

An extension of practical interest is to allow I(d0) processes under the null hypothesis, where
I(1) processes are included as a special case. The sufficient condition for the LM test statistic to have
the standard normal limit may be different from that in Proposition 1. Recently, Chang and Perron
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(2016) [33] extended PZ’s analysis to cover the more general case of fractionally integrated errors for
values of d0 in the interval (−0.5, 1.5) excluding the boundary case 0.5. In particular, they established
the rate of the convergence of λ̂s from the static regression [33] (Theorem 2). It is also important to
examine the performance of λ̂d and λ̂tr under the null of I(d0) processes. Such investigations, and
others, are the object of the ongoing subject.
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Appendix A

Proof of Theorem A1. The DGP is specified by (4), that is, for t = 1, . . . , T,

yt = µ1 + µbCt + ut, µb 6= 0.

Under H0, take first differences of yt and define D(Tb)t = 1 if t = Tb + 1 and 0 otherwise. Then,

T−1 ∑T
t=1(∆yt)2 = T−1 ∑T

t=1(µbD(Tb)t + ηt)2
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∑
k=1

1
k

µ2
bD(Tb)j−k

)
D(Tb)j + T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

µbD(Tb)j−k

)
ηj

+ T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
µbD(Tb)j + T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
ηj

≡ A1 + A2 + A3 + A4.

It is easy to show that A1 = 0. For A2, we have

(A2)
2 = µ2

b
1

T2

(
T−(Tb+1)

∑
k=1

1
k

ηT1+1+k

)2

≤ µ2
b

1
T2

(
T−(Tb+1)

∑
k=1

1
k2

)(
T−(Tb+1)

∑
k=1

η2
T1+1+k

)

≤ µ2
b

π2

6
1

T2

(
T−(Tb+1)

∑
k=1

η2
T1+1+k

)
= µ2

b
π2

6

(
1
T

T−(Tb+1)

∑
k=1

η2
T1+1+k

)
1
T

= Op(T−1) = op(1),

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
holds because ∑∞

k=1 k−2 = π2/6 (see Tanaka (1999) [14]). Because ηt is a short-memory zero-mean
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covariance stationary process, it is straightforward to show that T−1 ∑
T−(Tb+1)
k=1 η2

T1+1+k = Op(1). By
the continuous mapping theorem, |A2| = op(1), which implies that A2 = op(1). Similarly,

(A3)
2 = µ2

b
1

T2

(
Tb

∑
k=1

1
k

ηTb+1−k

)2

≤ µ2
b

1
T2

(
Tb

∑
k=1

1
k2

)(
Tb

∑
k=1

η2
Tb+1−k

)

≤ µ2
b

π2

6

(
1
T

Tb

∑
k=1

η2
Tb+1−k

)
1
T

= op(1).

Given the results previously,

LMM =
√

T

√
6

π2

T−1 ∑T
j=2

(
∑

j−1
k=1

1
k ηj−k

)
ηj + op(1)

T−1 ∑T
j=2 η2

j + op(1)
=
√

T

√
6

π2

T

∑
k=1

1
k

ρk + op(1),

hence following Lemma A1 and Slutsky’s theorem, we have LMM
d→ N (0, 1).

Proof of Theorem A2. Under H0 : d0 = 1, ∆yt = β1 + ∆ut = β1 + ηt1t≥1. Define ∆̃yt = ∆yt − β̂1.
First, consider the denominator of LMT . Under H0, conditioning on y0 = 0,

T−1
T

∑
t=1

(
∆̃yt

)2
= T−1

T

∑
t=1

(
∆yt − β̂1

)2
= T−1

T

∑
t=1

(
β1 − β̂1 + ηt

)2

= (β1 − β̂1)
2 + 2(β1 − β̂1)T−1

T

∑
t=1

ηt + T−1
T

∑
t=1

η2
t

= Op(T−1) + op(1) + T−1
T

∑
t=1

η2
t = T−1

T

∑
t=1

η2
t + op(1),

where we use the fact that β̂1 − β1 = Op(T−1/2), and T−1 ∑T
t=1 ηt

p→ 0 by the weak law of large
numbers. Second, the numerator of LMT is given by

T−1
T

∑
j=2

(
− log ∆∆̃yj

)
∆̃yj = T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

∆̃yj−k

)
∆̃yj

= T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

(
∆yj−k − β̂1

)) (
∆yj − β̂1

)
= T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

(
β1 − β̂1 + ηj−k

)) (
β1 − β̂1 + ηj

)
=
(

β1 − β̂1
)2 T−1

T

∑
j=2

j−1

∑
k=1

1
k
+
(

β1 − β̂1
)

T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

)
ηj

+
(

β1 − β̂1
)

T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
+ T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
ηj

= B1 + B2 + B3 + T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
ηj,
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where we use the expansion − log ∆ = L + 1
2 L2 + 1

3 L3 + · · · . We show that Bi = op(1) for i = 1, 2, 3.

B1 ≤
(

β1 − β̂1
)2 T−1T (log T + γ + ζT) = Op(T−1) (log T + γ + ζT) = op(1),

B2 =
(

β1 − β̂1
)

T−1
T−1

∑
k=1

1
k

T

∑
j=k+1

ηj

 = Op(T−1/2)op(1) = op(1),

B3 =
(

β1 − β̂1
)

T−1
T−1

∑
k=1

1
k

T−k

∑
j=1

ηj

 = Op(T−1/2)op(1) = op(1),

where γ is the Euler-Mascheroni constant and ζT ∼ 1/(2T) which approaches 0 as T → ∞. The results
for B2 and B3 follow from the arguments used in the proof of Theorem 1 for the terms A2 and A3. Hence,

T−1
T

∑
j=2

(
− log ∆∆̃yj

)
∆̃yj = T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
ηj + op(1).

Then, under H0,

LMT =
T−1 ∑T

j=2

(
∑

j−1
k=1

1
k ηj−k

)
ηj + op(1)

T−1 ∑T
t=1 η2

t + op(1)

=
T−1 ∑T

j=2

(
∑

j−1
k=1

1
k ηj−k

)
ηj

T−1 ∑T
t=1 η2

t
+ op(1).

This completes the proof.

Proof of Propositions A1 and A3. When the estimate of the break date is consistent, the proof is
trivial and omitted. We here focus on having a consistent estimate of the break fraction at some
rate Tκ for 0 < κ ≤ 1. Specifically, suppose that the estimate of the break fraction λ̂ satisfies that
λ̂− λb = op(T−κ) for 0 < κ ≤ 1. For all models A1–A3, we have a detrended sequence {ỹt} based on
the OLS method in PZ. The Lagrange Multiplier test statistic is given by:

LMT,λ̂ =
√

T

√
6

π2
∑T

t=2 (− log ∆∆ỹt)∆ỹt

∑T
t=1 (∆ỹt)

2 =
√

T

√
6

π2

∑T
t=2

(
∑t−1

k=1
1
k ∆ỹt−k

)
∆ỹt

∑T
t=1 (∆ỹt)

2 .

We show that the stochastic orders of terms associated with the deterministic time trend are smaller
than those of terms associated with the error process. We can write (9) as:

Ỹ = M̂zZ(Tb)φ + M̂zU = M̂zZ(Tb)2φ2 + M̂zU = M̃ + Ũ,

and ∆Ỹ = ∆M̃ + ∆Ũ. Since LMT,λ̂ is a functional of ∆Ỹ and subvectors of ∆Ỹ, it suffices to consider
the inner product of ∆Ỹ′∆Ỹ, that is,

∆Ỹ′∆Ỹ = ∆M̃′∆M̃ + 2∆M̃′∆Ũ + ∆Ũ′∆Ũ.

Note that we only need to check the stochastic order of ∆Ỹ′∆Ỹ because the lag of order k is controlled
to be small relative to the sample size T. We want to show that the term ∆Ũ′∆Ũ dominates the
others. It is straightforward to show that ∆Ũ′∆Ũ = Op(T) uniformly over all admissible break
dates Tb ∈ {πT, (1 − π)T} for some π ∈ (0, 1/2) in all models. When ∆M̃′∆M̃ has a smaller
order of magnitude compared to that of ∆Ũ′∆Ũ, so does ∆M̃∆Ũ by the Cauchy-Schwartz inequality.
Further, the order of magnitude of ∆M̃′∆M̃ cannot be greater than that of M̃′∆M̃. The order of
magnitude of M̃′∆M̃ is Op(T2−2κ) for Models A2 and A3, which implies that the break fraction should
be estimated consistently at some rate greater than T1/2. On the other hand, for Model A1b, the
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stochastic order of M̃′∆M̃ is Op(T1+2α). Hence, the orders of magnitude of terms associated with the
deterministic trend are greater than those of the terms associated with the error process, thereby the
LM statistic diverges as T → ∞.
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