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Abstract: This paper considers the algorithmic implementation of the heteroskedasticity and
autocorrelation consistent (HAC) estimation problem for covariance matrices of parameter
estimators. We introduce a new algorithm, mainly based on the fast Fourier transform, and show
via computer simulation that our algorithm is up to 20 times faster than well-established alternative
algorithms. The cumulative effect is substantial if the HAC estimation problem has to be solved
repeatedly. Moreover, the bandwidth parameter has no impact on this performance. We provide a
general description of the new algorithm as well as code for a reference implementation in R.

Keywords: GMM; HAC estimation; Newey-West estimator; Toeplitz matrices; discrete Fourier
transformation (DFT); R

JEL Classification: C01; C55; C58; C63; G17

1. Introduction

This paper considers the heteroskedasticity and autocorrelation consistent (HAC) estimation
of covariance matrices. This estimation problem arises in the construction of large-sample tests
for the parameters in linear and nonlinear models. The HAC estimator for the covariance matrix
of parameter estimators applies to a variety of model frameworks and estimation methods. Some
examples are ordinary least squares (OLS), maximum likelihood, generalized method of moments
(GMM) or instrumental variables (see Andrews [1], and Zeileis [2]). It also corresponds to
the so-called sandwich estimator in the context of quasi-maximum likelihood (QML) estimation
technique (cf. White [3], Chapter 8.3). In this connection we combine two essential topics to
applied econometrics: robust covariance matrix estimation and fast computation of covariance
matrix estimators.

In the last decades, several techniques for HAC covariance matrix estimation have been
proposed in the literature, e.g., Andrews [1], Newey and West [4], White [5], MacKinnon and
White [6]. These statistical methods go back to earlier literature, such as Jowett [7], Hannan [8],
Brillinger [9]. Nowadays, these methods are widely used in econometric analysis. Beyond that,
researchers require covariance matrices not only for the purpose of some hypothesis tests, but
also as stand-alone functions which can be used in various statistical methods. This is becoming
more and more relevant as pointed out in Cribari-Neto and Zarkos [10]. In spite of the vast
econometric literature on this subject, little econometric software is available for the computation
of HAC covariance matrix estimators.

The aim of this paper is to show that the computing time for HAC covariance matrix estimators
can be decreased massively by using given information about the structure of the HAC covariance
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matrix estimators together with some matrix algebra. Particularly, we exploit the evaluation of
a circulant matrix product, which can be efficiently calculated using the fast Fourier transform. The
same calculation idea is employed by Wood and Chan [11] for the simulation of stationary Gaussian
processes with prescribed covariance matrix as well as by Jensen and Nielsen [12] for the calculation
of fractional differences.

We compare our new algorithm with two popular statistic algorithms: the algorithm by
Roncalli [13], which is written for the statistical software GAUSS (cf. Aptech Systems [14]) and
the algorithm by Zeileis [15] written for R (cf. R Development Core Team [16]), as well as with
the lesser-known algorithm by Kyriakoulis [17] for MATLAB (cf. MathWorks [18]). According to
our results, our new algorithm is up to ~20 times faster than the algorithms by Roncalli and Zeileis.
The saved time can increase up to a few minutes for only one HAC estimation depending on the
settings of the estimation problem. This is particularly relevant for the QML estimation of generalized
autoregressive conditional heteroskedastic (GARCH) models (cf. Zivot [19]) and the estimation of
stochastic volatility (SV) models via QML (cf. Ruiz [20]) or GMM (cf. Renault [21]) based on large
financial datasets with high frequency sampling or multivariate structure. Another application area
is the GMM estimation of multifractal volatility models (cf. Bacry et al. [22], Lux [23]), which proves
to be a time consuming issue even in the univariate case with daily data. Thus reliable estimation
results for the Multifractal Random Walk model require a data sample of size N > 2000, all the more
the asymptotic normality of the GMM estimates can be reached only for sample sizes not less than
ca. 16,000 data points (cf. Bacry et al. [24]). The cumulative effect is substantial if the HAC estimation
problem has to be solved repeatedly (e.g., in the case of an iterated GMM estimation or for the purpose
of simulation and forecast studies.).

Moreover, our algorithm does not employ the bandwidth parameter explicitly. Its performance
is independent of the value of the bandwidth parameter as contrasted with the algorithms by Roncalli
and Zeileis.

The paper is organized as follows. In Section 2 we give an overview on the HAC estimation
problem and some of its application fields and introduce the notation we use. Section 3 combines
some matrix algebra results and the structure of HAC estimators in order to introduce the new
algorithm. In Section 4 we discuss the alternative algorithms. Section 5 investigates the performance
issues of our new algorithm as compared with the alternative algorithms. We replicate the HAC
computation steps in Chaussé and Xu [25] for the estimation of a SV model with high frequency data
as well as in Lux et al. [26] for the purpose of a forecast study and report the computing time. We show
that the new algorithm outperforms the other algorithms in the majority of cases we analyse. There
are some isolated cases where our algorithm performs more slowly. However the computational cost
is below 1 millisecond, which should be irrelevant in practice. The R-Codes for the different HAC
covariance matrix estimators are given in the Appendix.

2. HAC Covariance Matrix Estimation

2.1. The Estimation Problem

We consider (at)t∈Z a stationary ergodic q-dimensional stochastic process of mean zero and
(Γτ)τ∈Z its autocovariance matrices

Γτ = E
[
ata′t+τ

]
. (1)

We want to estimate the quantity

SN =
1
N

N

∑
s=1

N

∑
t=1

E
[
ata′s

]
, (2)
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where N denotes the number of given observations. SN can be also written as (cf. Smith [27])

SN = Γ0 +
N−1

∑
τ=1

N − τ

N
(Γτ + Γ−τ) . (3)

This estimation problem can be solved in the limit for N → ∞, i.e.,

S = lim
N→∞

SN =
∞

∑
τ=−∞

Γτ = f (0) (4)

with f (0) the spectral density matrix of the process (at) in 0. The estimation of S is a nonparametric
spectral estimation problem with the corresponding lag window spectral estimator

ŜN = Γ̂0 +
N−1

∑
τ=1

ωτ,N

(
Γ̂τ + Γ̂′τ

)
. (5)

Γ̂τ denotes the empirical autocovariance matrix of lag τ

Γ̂τ =
1
N

N−τ

∑
t=1

ata′t+τ (6)

with 0 ≤ τ ≤ N − 1 and ωτ,N is a function of weights (cf. Newey and West [4]). ŜN is
weakly consistent for given choice of ωτ,N and it is called a Heteroskedasticity and Autocorrelation
Consistent (HAC) covariance matrix estimator for reasons to be explained below.

Let the bandwidth parameter bN control the number of nonzero weights, ωτ,N = 0 for τ > bN .
Then we can also write Equation (5) as follows

ŜN = Γ̂0 +
bN

∑
τ=1

ωτ,N

(
Γ̂τ + Γ̂′τ

)
. (7)

Note that the algorithm considered in this paper does not require the specification of a bandwidth
parameter. In the following we suppress the index N for reasons of simplicity and write ωτ and
b, respectively.

2.2. Application

This estimation problem can be applied to various econometric fields depending on the choice
of (at). Its main interest resides in the construction of large-sample tests. Many parameter estimators
θ̂N in nonlinear dynamic models satisfy

√
N
(

θ̂N − θ0

)
d→ N

(
0, MSM′

)
(8)

with θ0 the true parameter value to be estimated, M a non-random matrix and S given in (4). See
Andrews [1] on the estimation of M. One can construct tests about the value of θ0 based on the
approximate distribution of θ̂N in large samples

θ̂N
·∼ N

(
θ0,

1
N

MSM′
)

(9)

where S can be estimated by ŜN in (5). It is now obvious why we call ŜN a covariance matrix estimator.
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2.3. The Case of the OLS Estimator

Consider the linear model Y = Xθ + u with the OLS estimator θ̂ = (X′X)−1X′Y and

Cov
[
θ̂
]
= (X′X)−1X′ Cov [Y]X(X′X)−1 (10)

= (X′X)−1X′ E [uu′]X(X′X)−1. (11)

In the case of homoskedastic and uncorrelated errors, E [uu′] = σ2 I, the covariance matrix of θ̂

simplifies to
Cov

[
θ̂
]
= σ2(X′X)−1 (12)

and it can be easily estimated by
Ĉov

[
θ̂
]
= s2(X′X)−1 (13)

with s2 an unbiased estimator for σ2. In the general case of heteroskedasticity and dependence of
unknown forms of the error term u one can estimate the following asymptotic covariance matrix

lim
N→∞

Cov
[√

N
(

θ̂N − θ0

)]
= lim

N→∞
N(X′X)−1X′ E [uu′]X(X′X)−1 (14)

= lim
N→∞

(
1
N

X′X
)−1

SN

(
1
N

X′X
)−1

(15)

= lim
N→∞

(
1
N

X′X
)−1

S lim
N→∞

(
1
N

X′X
)−1

(16)

with

S = lim
N→∞

SN = lim
N→∞

1
N

X′ E [uu′]X = lim
N→∞

1
N

N

∑
t=1

N

∑
s=1

E
[
X′tut(X′sus)

′] . (17)

This estimation can be performed using the HAC covariance matrix estimator (cf. formula (5)) based
on the process (at) = (X′tut).

The OLS estimator satisfies

√
N
(

θ̂N − θ0

)
d→ N

(
0, Q−1SQ−1

)
(18)

with Q = limN→∞
1
N X′X a finite nonsingular matrix and respectively in large samples

θ̂N
·∼ N

(
θ0,

1
N

Q−1SQ−1
)

. (19)

2.4. The Case of the GMM Estimator

Consider the model-free GMM estimation of θ0 using q moment conditions. In this case, the
process (at) contains the q-dimensional deviation of the empirical moments mt = (mi,t)1≤i≤q from
their theoretical counterparts Mt(θ) = (Mi,t)1≤i≤q with

at(θ) = Mt(θ)−mt. (20)

The GMM estimator is given by

θ̂ = arg min
θ∈Θ

(
1
N ∑

t
a′t(θ)

)
W

(
1
N ∑

t
at(θ)

)
(21)
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with W some weighting matrix (Hall [28]). Under some regularity conditions the GMM estimator is
weakly consistent and asymptotically normally distributed

√
N
(

θ̂N − θ0

)
d→ N (0, MSM′), (22)

where M is a non-random matrix and

S = lim
N→∞

N · Cov

[
1
N

N

∑
q=1

at

]
(23)

= lim
N→∞

N · E

[
1

N2

N

∑
t=1

at

N

∑
s=1

a′s

]
(24)

= lim
N→∞

1
N

N

∑
t=1

N

∑
s=1

E
[
ata′s

]
. (25)

Again we employ the HAC covariance matrix estimator (cf. formula (5)) in order to estimate S.

3. The Algorithm

In this paper, we introduce a fast algorithm for the computation of the HAC covariance matrix
estimator ŜN in (5). This is based on the equivalent representation (cf. Kyriakoulis [17])

ŜN =
1
N

A′T(ω)A (26)

with A ∈ RN×q and

A =


a′1
a′2
...

a′N

 . (27)

The matrix T(ω) denotes the symmetric N × N Toeplitz matrix with first column ω given by
the weights

ω =
(

1 ω1 ω2 . . . ωN−1

)′
. (28)

For a more memory space-efficient computation of the matrix product T(ω)A we are using a
special circulant matrix (cf. Van Loan [29]). Therefore, we embed the Toeplitz matrix T(ω) in a
symmetric circulant matrix C(ω∗) ∈ R2N×2N with

ω∗ =
(

1 ω1 ω2 . . . ωN−1 0 ωN−1 ωN−2 . . . ω1

)′
. (29)

Furthermore, we construct the 2N × q matrix A∗

A∗ =

(
A

0N×q

)
(30)

by adding a N × q matrix containing only zeros at the bottom of A.

Remark 1.

• The Toeplitz matrix T(ω) is given by the first N rows and first N columns of C(ω∗), i.e.,

T(ω) = C1:N,1:N(ω
∗). (31)
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Generally we denote with Ma:b,c:d ∈ Rm×n a sub-matrix of M containing the rows from a to b and the
columns from c to d (a, b, c, d ∈ N, 1 ≤ a ≤ b ≤ m and 1 ≤ c ≤ d ≤ n).

• The necessary product T(ω)A is given by

C1:N,•(ω
∗)A∗ = C1:N,1:N(ω

∗)A = T(ω)A. (32)

Thus, the fast evaluation of C(ω∗)A∗ permits fast evaluation of T(ω)A.

The following theorem explains how the matrix product T(ω)A (cf. formula (26)) can be
computed in a fast way by means of the discrete Fourier transform (DFT) and its inverse transform.
It provides the basis for our new algorithm.

Theorem 1 (Circulant matrix and its eigenvalues and eigenvectors). Let C(c) ∈ Rn×n be a circulant

matrix with first column c =
(

c1 . . . cn

)′
and let VΛV∗ be the matrix decomposition of C(c), i.e.,

C(c) = VΛV∗. (33)

Thereby, λk (k = 1, . . . , n) are the eigenvalues of C(c) and vk (k = 1, . . . , n) the corresponding eigenvectors.
The matrix Λ is diagonal with Λ = diag(λ1, . . . , λn) and V is a matrix containing the eigenvectors, i.e.,
V =

(
v1 . . . vn

)
. The matrix V∗ is the complex conjugate of V. Then, the following properties hold true:

1. The eigenvalues λk are the discrete Fourier transform (DFT) of the column vector c, i.e.,

λk =
n

∑
j=1

exp
(
−2(j− 1)kπi

n

)
cj (34)

for k = 1, . . . , n.
2. The orthornomal left eigenvectors vk (k = 1, . . . , n) are given by

vk = n−
1
2

(
1 rk r2

k . . . rn−1
k

)
(35)

with rk = exp( 2(k−1)πi
n ).

3. The product V∗x, for any x ∈ Rn, is given by the DFT of x.
4. The product y = Vx ∈ Rn, for any x ∈ Rn, is given by the inverse discrete Fourier Transform (IDFT) of

x, i.e.,

yk =
1
n

n

∑
j=1

exp
(
−2(j− 1)kπi

n

)
xj (36)

for k = 1, . . . , n.

Proof. See Brockwell and Davis [30], Gray [31] or Golub and Van Loan [32].

We now introduce the new algorithm (cf. Algorithm 1) for the computation of HAC covariance
matrix estimators on the basis of Theorem 1. In the following we assume that the weights ωτ

(τ = 1, . . . , N − 1) are known.

Algorithm 1. The algorithm is given in five steps while step three is subdivided into three steps.

1. Compute the eigenvalues λi (i = 1, . . . , 2N) of C(ω∗) using Equation (34) with

ω∗ =
(

1 ω1 ω2 . . . ωN−1 0 ωN−1 ωN−2 . . . ω1

)′
. (37)
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2. Construct the matrix A∗ with dimension 2N × q from

A∗ =

(
A

0N×q

)
(38)

using A from Equation (27).
3. For all j ∈ {1, . . . , q} compute the columns of the matrix C(ω∗)A∗. These columns are written as

C(ω∗)A∗j = VΛV∗A∗j while A∗j is the j-th column of A∗. This computation is done in three steps:

(a) Determine V∗A∗j given by the DFT of A∗j .
(b) Multiply for all i ∈ {1, . . . , 2N} the i-th entry of the vector V∗A∗j with the eigenvalue λi, in order

to construct ΛV∗A∗j .
(c) Determine C(ω∗)A∗j = VΛV∗A∗j given by the IDFT of ΛV∗A∗j .

4. Select the upper N × q block of C(ω∗)A∗. This upper block results in T(ω)A, i.e.,:

(C(ω∗)A∗)1:N,• = T(ω)A (39)

5. Determine ŜN = 1
N A′T(ω)A.

4. Alternative Algorithms

In this paper, we compare our new algorithm with three alternative algorithms currently used.
The first algorithm that we consider was developed by Roncalli [13] and can be found in the
time series library TSM (Time Series and Wavelets for Finance) for the statistical software GAUSS
(cf. Aptech Systems [14]). Here the computation of HAC estimators ŜN is implemented by means of
a for-loop according to expression (7) combined with an ingenious matrix product, which enables the
fast computation of the autocovariance matrices Γ̂τ :

Γ̂τ =
1
N

A′
(

0τ×q

A(1 : (N − τ))

)
(40)

Algorithm 2 (Roncalli).

1. Determine Γ̂0 = 1
N A′A and set L = Γ̂0.

2. For τ from 1 to b determine Γ̂τ according to (40) and update L = L + ωτ

(
Γ̂τ + Γ̂′τ

)
.

3. Determine ŜN = L.

The second algorithm by Zeileis [15] is part of the “sandwich” package for the statistical software
R (cf. R Development Core Team [16]). This algorithm is similar to Roncalli’s algorithm except for the
calculation procedure for Γ̂τ in Step 2. His procedure is less efficient than Roncalli’s as it requires the
sequential updating of two matrices instead of one.

Algorithm 3 (Zeileis).

1. Determine Γ̂0 = 1
N A′A and set L = Γ̂0.

2. For τ from 1 to b determine Γ̂τ = 1
N (A((τ + 1) : N))′ A(1 : (N − τ)) and update

L = L + ωτ

(
Γ̂τ + Γ̂′τ

)
.

3. Determine ŜN = L.

Finally, the algorithm by Kyriakoulis [17] for MATLAB (cf. MathWorks [18]) excels in terms
of its elegance and simplicity. This algorithm avoids the resource-intensive recursive summations
employed above using instead expression (26) and is the basis for the new algorithm introduced in
the previous section. It consists of only two steps:
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Algorithm 4 (Kyriakoulis).

1. Construct the symmetric Toeplitz matrix T (ω) with the first column

ω =
(

1 ω1 ω2 . . . ωN−1

)′
. (41)

2. Determine ŜN = 1
N A′T (ω) A.

A big drawback of this algorithm is the memory space-inefficient handling of the N × N matrix
T (ω). On account of this the program runs out of memory and fails to compute ŜN for series longer
than N = 10,000 data points. This problem could be solved within the scope of our algorithm, which
does not employ the matrix T (ω) explicitly.

5. Comparing Different Algorithms for the Computation of HAC Covariance Matrix Estimators

In this section we present the gains in absolute and relative computing times that are achieved by
our new algorithm compared with the three alternative algorithms discussed in the previous section.

All four algorithms were programmed and run in R (cf. R Development Core Team [16]) for
reasons of comparability.

Remark 2.

• We used the “fftwtools”-package of R for the fft-function. The four algorithms run a little bit faster when
using the “compiler”-package of R, but relative computing times are nearly the same.

• There is a little difference in the results between the algorithms {Roncalli [13], Zeileis [15]} and {NEW,
Kyriakoulis [17]}. The difference is somewhere near machine precision (∼ exp(−16)) and the practical
relevance should be very little.

We used the following hard- and software:

• Intel i5 2.90 GHz
• 8GB RAM
• R 3.3.2
• Windows 10 Professional 64bit

We measured the computing time for different values of b, N and q. The matrix A was randomly
generated for every set of (b, N, q), using a normally distributed random number generator with
mean 0 and standard deviation 10. Nonetheless neither the distribution nor the parameters of the
random number generator influenced the results significantly. All four algorithms were applied to
the same matrix A (given b, N and q). After each application all variables in R except for A, b, N and
q were deleted.

We used the weights ωτ for the quadratic spectral kernel function, since this kernel function is
probably most frequently used in the literature (cf. Zeileis [15]). An overview of different weights
can be found in Andrews [1]. The results of the computing times are given in Table 1 in absolute time
(in milliseconds) and in Table 2 in relative time (compared with our new algorithm).

Obviously, in Table 1 one can see that our new algorithm has the advantage that the bandwidth
b has no impact on its performance, while it has for the Roncalli and Zeileis algorithms. The saved
time can increase up to a few minutes for only one HAC estimation depending on the settings of the
estimation problem.

Figure 1 shows a plot of absolute computation times of our new algorithm against the algorithms
of Roncalli [13] and Zeileis [15] for different bandwidths b (N = 106 and q = 10). One can see
again that our new algorithm is independent of the bandwidth b while the algorithms of Roncalli [13]
and Zeileis [15] are not. This encouraging performance opens up new possibilities of using large
bandwidths in combination with large datasets. We leave this issue for future exploration.
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Table 1. Absolute computing time (in milliseconds) for different values of b, N and q (Note: R runs
out of memory in the “blank”-cases.).

New Algorithm Roncalli Zeileis Kyriakoulis

N q q q q

10 20 30 10 20 30 10 20 30 10 20 30

b = 30

5000 11 24 31 21 76 156 24 89 165 1404 1603 1806
10,000 25 54 74 49 166 334 54 173 340 5654 6827 7398
50,000 125 319 447 267 905 1738 291 947 1797

100,000 287 642 892 571 1893 3521 635 2066 3685
200,000 628 1195 1768 1185 3855 7313 1280 4321 7538
500,000 1523 3006 4485 2963 9628 18,145 3260 9849 18,929

1,000,000 3201 6727 9809 5862 18,497 36,687 6545 19,627 37,678

b = 60

5000 9 22 31 46 149 320 56 160 342 1388 1606 1807
10,000 27 49 75 95 324 646 108 344 672 6067 6526 7375
50,000 121 319 446 547 1850 3530 595 1950 3704

100,000 330 579 851 1108 3746 6971 1238 4016 7242
200,000 626 1254 1823 2326 7765 14,474 2550 8255 14,974
500,000 1502 2977 4682 6081 19,021 36,469 6427 19,807 37,544

1,000,000 3150 6398 9833 11,565 36,816 72,326 12,972 39,166 74,822

b = 100

5000 10 25 34 78 248 512 88 266 539 1382 1609 1907
10,000 27 52 76 156 546 1065 178 589 1148 5770 6832 7699
50,000 121 319 454 950 2990 5917 1025 3336 6380

100,000 331 580 927 1832 6204 11,650 2063 6532 12,068
200,000 630 1250 1749 3884 12,687 24,201 4172 13,598 25,489
500,000 1511 2991 4872 9763 31,210 60,453 10,753 33,047 62,455

1,000,000 3177 6441 9855 19,424 62,593 121,815 21,667 65,241 125,517

Table 2. Relative computing times (compared to our new algorithm) for different values of b, N and q
(Note: R runs out of memory in the “blank”-cases.).

Roncalli Zeileis Kyriakoulis

N q q q

10 20 30 10 20 30 10 20 30

b = 30

5000 1.99 3.09 5.09 2.24 3.65 5.38 45.73 74.84 23.89
10,000 1.94 3.08 4.50 2.17 3.22 4.58 76.24 140.40 44.61
50,000 2.14 2.83 3.89 2.33 2.96 4.02

100,000 1.99 2.95 3.95 2.21 3.22 4.13
200,000 1.89 3.23 4.14 2.04 3.61 4.26
500,000 1.95 3.20 4.05 2.14 3.28 4.22

1,000,000 1.83 2.75 3.74 2.04 2.92 3.84

b = 60

5000 4.92 6.90 10.35 6.00 7.39 11.06 44.84 35.22 12.10
10,000 3.51 6.67 8.59 4.01 7.06 8.93 80.65 68.75 22.75
50,000 4.54 5.80 7.92 4.94 6.11 8.31

100,000 3.35 6.47 8.19 3.75 6.93 8.51
200,000 3.72 6.19 7.94 4.08 6.58 8.21
500,000 4.05 6.39 7.79 4.28 6.65 8.02

1,000,000 3.67 5.75 7.36 4.12 6.12 7.61

b = 100

5000 7.85 9.84 15.03 8.78 10.54 15.82 40.56 20.50 7.68
10,000 5.70 10.58 14.08 6.48 11.42 15.17 76.24 43.68 14.11
50,000 7.88 9.37 13.02 8.50 10.45 14.04

100,000 5.54 10.70 12.57 6.24 11.27 13.02
200,000 6.17 10.15 13.83 6.62 10.88 14.57
500,000 6.46 10.44 12.41 7.11 11.05 12.82

1,000,000 6.11 9.72 12.36 6.82 10.13 12.74
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Figure 1. Absolute computation times of our new algorithm against the algorithms of Roncalli [13]
and Zeileis [15] as a function of the bandwidth b. The parameter set was N = 106 and q = 10.

Let us exemplify how Table 2 needs to be read. For example consider the case b = 60, N = 105

and q = 30. Then the algorithm proposed by Roncalli [13] needs 8.19 times more computation time
compared with our new algorithm and the algorithm proposed by Zeileis [15] needs 8.51 times more
computation time compared with our new algorithm.

Table 2 can be summarized as follows:

• Compared with the algorithm proposed by Roncalli [13] our new algorithm is between 1.83 times
and 15.03 times faster.

• Compared with the algorithm proposed by Zeileis [15] our new algorithm is between 2.04 and
15.82 times faster.

• Compared with the algorithm proposed by Kyriakoulis [17] our new algorithm is between 7.68
and 140.40 times faster, while the algorithm proposed by Kyriakoulis [17] runs out of memory
for N > 104.

Overall, our new algorithm is faster than any of the compared algorithms. The time saved while
using the new algorithm can increase considerably, especially if the HAC estimation problem has to
be solved repeatedly. For example, the iterated GMM estimation procedure requires an update of the
estimated covariance matrix in each step. If we consider 50 estimation steps, then our new algorithm
can save up to ~95 min compared with the algorithms proposed by Roncalli [13] or Zeileis [15]
(b = 100, N = 106 and q = 30). Even in the case of a shorter dataset (N = 105) we would still
save up to ~9 minutes as compared with the alternative algorithms (b = 100, N = 105 and q = 30).

Figure 2 shows different relative computing times as a function of the sample size (N ∈ {102,
5 · 102, 103, 5 · 103, 104, 5 · 104, 105, 2 · 105, 5 · 105, 106}). One can see that our new algorithm
outperforms in the majority of parameter constellations. Only in the case of a small N
(N ∈ {100, 500}) combined with a small bandwidth (b = 30) and only few moment
conditions (q = 10) does our algorithm perform more slowly. This is in accordance with
the performance pattern in Jensen and Nielsen [12]. However, the computational cost is
below 1 millisecond, which should be irrelevant in practice. Our algorithm reaches its highest
performance approximately for N between 500 and 1000. After N = 1000 the performance
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of our new algorithm reduces, but still remains better than Roncalli [13] or Zeileis [15].
At the same time, the absolute computing times increase significantly, which leads to a considerable
difference in computational speed between the competing algorithms. This is also illustrated below.
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Figure 2. Relative computing times of Roncalli [13] and Zeileis [15] compared with our new algorithm
for different parameter constellations (parameter N reaches from 102 to 106). The green line is at
“y = 1”. The x-axis is logarithmic. Reading example: In the comparison of “Zeileis vs. NEW” with
the parameter set N = 103, q = 30 and b = 100 (blue dotted line) the NEW algorithm is about 20 times
faster compared to the algorithm proposed by Zeileis [15].
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We replicate the HAC estimation problem in two empirical applications and report the
computing time for the three competing algorithms.

Remark 3. We used the “fftwtools”-package of R for the fft-function. Additionally, the time series was padded
with zeros such that the total length of the series was a power of two.

The first empirical application is the estimation of a generalized asymmetric SV model with
realized volatility (GASV-RV) in Chaussé and Xu [25] based on high frequency financial data. The
estimation sample spans 5 years (2003–2008) and a total of N = 1,456,650 observations. The authors
consider four different GMM estimation procedures, each of them using the HAC covariance matrix
estimation and various sets of moment conditions with q = 36 moments at most. We replicated
this estimation problem and estimated only the corresponding HAC covariance matrices based on
randomly generated data, so that our new algorithm can directly be compared with the other ones.
According to our results in Table 3 the computation time is significant even for one single HAC
estimation due to the large N. Altogether (four estimations, six assets), our new algorithm can save
up to ~26 min as compared with Roncalli [13] or Zeileis [15]. It is important to note that Chaussé
and Xu [25] use one-step GMM. The estimation problem would be all the more time consuming for
iterated estimations.

Table 3. Computation times and gain in time in minutes for our new algorithm compared to the ones
proposed by Roncalli [13] and Zeileis [15] for the empirical applications in Chaussé and Xu [25] and
Lux et al. [26].

Time in Minutes

Chaussé and Xu Hansen et al. Lux et al.

one est. full est. one est. full est. “turbulent” “full”

Roncalli 1.38 33.03 1.67 193.40 17.31 35.80
Zeileis 1.47 35.23 1.68 195.20 19.71 40.41
NEW 0.39 9.32 0.66 76.42 10.55 22.84
gain in time NEW vs. Roncalli 0.99 23.70 1.01 116.98 6.76 12.96
gain in time NEW vs. Zeileis 1.08 25.91 1.02 118.78 9.16 17.57

The empirical application in Chaussé and Xu [25] is a comparative study between the GASV-RV
model and the GARCH model with realized volatility of Hansen et al. [33]. The original dataset in
Hansen et al. [33] comprises 29 assets over a time period of 6 years (N = 1,747,980). However Chaussé
and Xu [25] restricted their analysis to only 6 assets and 5 years, respectively, most likely due to the
enormous expenditure of time (see Table 3 for the computation times based on the original dataset).

The second empirical application is the forecast study in Lux et al. [26]. The authors consider
three forecast problems with different out-of-sample periods: the “full” sample (July 2005–April
2009), the “tranquil” sample (July 2005–July 2007) and the “turbulent” sample (July 2007–April 2009)
including the financial crisis. From an estimation point of view, the “tranquil” sample scenario is
redundant, since the relevant estimation results can be simply borrowed from the “full” sample
problem. On account of this, we replicated the estimation problem only for the “full” sample and the
“turbulent” sample problem and estimated only the corresponding HAC covariance matrices based
on randomly generated data. We assumed recursive estimations with rolling time window after each
forecast. Consider S&P 500 over the period roughly from 1983 to 2009. Then the “turbulent” sample
forecast problem requires 454 estimations with sample sizes from N = 6067 to N = 6520 whereas
the “full” sample problem requires 949 estimations with sample sizes from N = 5572 to N = 6520.
In each estimation step three models (the Binomial Markov-switching multifractal (MSM) model, the
Log-normal MSM model and the Log-normal MSM model with realized volatility) were considered
together with the iterated GMM procedure (approx. 30 iterations with q = 9 and b = 30). The gain
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in time as well as the overall computation time for the case of S&P 500 is given in Table 3. This time
saving cumulates rapidly when considering a number of five assets, as in Lux et al. [26].

Author Contributions: Jochen Heberle and Cristina Sattarhoff wrote the paper and programmed the algorithms.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. R Codes

In this section we present the reference R code for the four algorithms examined in this paper.
Our functions require three arguments: mcond, which corresponds to the matrix A, method, which
specifies the weights function, and the bandwidth bw. An auxiliary function for the computation of
different weights ωτ is also provided.

Appendix A.1. The R Code for Our New Algorithm

1 HAC.new <- function(mcond , method , bw){
2 require(fftwtools)
3 dimmcond <- dim(mcond)
4 Nlen <- dimmcond [1]
5 qlen <- dimmcond [2]
6 ww <- kweightsHAC(kernel = method , Nlen , bw)
7 ww <- c(1, ww[1:(Nlen -1)], 0, ww[(Nlen -1) :1])
8 ww <- Re(fftw(ww))
9 FF <- rbind(mcond , matrix(0, Nlen , qlen))

10 FF <- mvfftw(FF)
11 FF <- FF * matrix(rep(ww, qlen), ncol=qlen)
12 FF <- Re(mvfftw(FF, inverse = TRUE)) / (2*Nlen)
13 FF <- FF[1:Nlen ,]
14 return ((t(mcond) %*% FF) / Nlen)
15 }

Appendix A.2. The R Code for the Algorithm Proposed by Roncalli

1 HAC.ron <- function(mcond , method , bw){
2 dimmcond <- dim(mcond)
3 Nlen <- dimmcond [1]
4 qlen <- dimmcond [2]
5 ww <- kweightsHAC(kernel = method , Nlen , bw)
6 LL <- (crossprod(mcond , mcond)) / Nlen
7 for(i in 1:bw){
8 GG <- rbind(matrix(0,i,qlen), mcond [1:(Nlen -i) ,])
9 GG <- (crossprod(mcond , GG)) / Nlen

10 LL <- LL + ww[i]*(GG + t(GG))
11 }
12 return(LL)
13 }
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Appendix A.3. The R Code for the Algorithm Proposed by Zeileis

1 HAC.zei <- function(mcond , method , bw){
2 Nlen <- dim(mcond)[1]
3 ww <- kweightsHAC(kernel = method , Nlen , bw)
4 LL <- crossprod(mcond , mcond) / Nlen
5 for(i in 1:bw){
6 GG <- (crossprod(mcond [(i+1):Nlen ,], mcond [1:(Nlen -i) ,])) / Nlen
7 LL <- LL + ww[i]*(GG + t(GG))
8 }
9 return(LL)

10 }

Appendix A.4. The R Code for the Algorithm Proposed by Kyriakoulis

1 HAC.kyr <- function(mcond , method , bw){
2 Nlen <- dim(mcond)[1]
3 ww <- kweightsHAC(kernel = method , Nlen , bw)
4 ww <- c(1, ww[1:(Nlen -1)])
5 TT <- matrix(0, Nlen , Nlen)
6 TT <- matrix(ww[abs(col(TT) - row(TT)) + 1], Nlen , Nlen)
7 return(crossprod(t(crossprod(mcond , TT)), mcond) / Nlen)
8 }

Appendix A.5. The R Code for the Computation of the Weights

1 kweightsHAC <- function(kernel = c("Truncated", "Bartlett", "Parzen",
2 "Tukey -Hanning", "Quadratic Spectral"),
3 dimN , bw){
4 ww <- numeric(dimN)
5 switch(kernel ,
6 Truncated = {
7 ww[1:bw] <- 1
8 },
9 Bartlett = {

10 ww[1:bw] <- 1 - (seq(1,bw) / (bw+1))
11 }, Parzen = {
12 seq1 <- (seq(1,floor(bw/2))) / bw
13 seq2 <- (seq(floor(bw/2)+1,bw)) / bw
14 ww[1: length(seq1)] <- 1 - 6*seq1^2 + 6*seq1^3
15 ww[( length(seq1)+1):bw] <- 2*(1-seq2)^3
16 }, ‘Tukey -Hanning ‘ = {
17 ww[1:bw] <- (1 + cos(pi*((seq(1,bw))/bw))) / 2
18 }, ‘Quadratic Spectral ‘ = {
19 aa <- pi*((seq(1,dimN))/bw)/5
20 ww <- 1/(12*aa^2) * (sin(6*aa) / (6*aa) - cos(6*aa))
21 })
22 return(ww)
23 }
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