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Abstract: Default probability is a fundamental variable determining the credit worthiness of a firm
and equity volatility estimation plays a key role in its evaluation. Assuming a structural credit risk
modeling approach, we study the impact of choosing different non parametric equity volatility
estimators on default probability evaluation, when market microstructure noise is considered.
A general stochastic volatility framework with jumps for the underlying asset dynamics is defined
inside a Merton-like structural model. To estimate the volatility risk component of a firm we use
high-frequency equity data: market microstructure noise is introduced as a direct effect of observing
noisy high-frequency equity prices. A Monte Carlo simulation analysis is conducted to (i) test
the performance of alternative non-parametric equity volatility estimators in their capability of
filtering out the microstructure noise and backing out the true unobservable asset volatility; (ii) study
the effects of different non-parametric estimation techniques on default probability evaluation.
The impact of the non-parametric volatility estimators on risk evaluation is not negligible: a sensitivity
analysis defined for alternative values of the leverage parameter and average jumps size reveals that
the characteristics of the dataset are crucial to determine which is the proper estimator to consider
from a credit risk perspective.

Keywords: structural models; default probability; stochastic volatility; jumps; non-parametric
volatility estimation; high-frequency data

JEL: C13, C58, G17, G32, G33

1. Introduction

Many empirical works in the financial literature highlight the poor performance of structural credit
risk models for defaultable bonds in predicting default probabilities and credit spreads, especially
when considering very short maturities. The classical approach to firm’s value models is the one
proposed by Merton [1]: a firm’s equity and debt are studied as contingent claims partitioning the
total value of the firm; the underlying assets value dynamic is defined by a geometric Brownian
motion. The empirical evidence indicates that classical standard structural models still have some
difficulties in accurately explaining default rates and spreads simultaneously. Estimation or calibration
methods provide evidence that predicted credit spreads are far below observed ones [2], the structural
variables explain little of the credit spread variation [3], pricing error is large for corporate bonds [4].
From an econometric point of view, the calibration of these models on real data is non trivial due to
key variables which are not directly observable: the underlying firm’s asset value and the volatility
of firm’s asset value returns. This critical issue concerning the calibration of the underlying asset
dynamics becomes even more problematic when one wants to consider also market microstructure
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effects into the structural modeling framework. The market microstructure literature strongly indicates
that trading noises can affect equity prices so that the estimation of equity volatility and other related
quantities may become a very difficult task. Observed equity prices can diverge from their equilibrium
value due to illiquidity, asymmetric information, price discreteness and other measurement errors.
Among many others, the works by [5,6] study the effects of trading noise on the optimal sampling
frequency of observed equity prices since sparse sampling may reduce the bias in volatility measures
due to such microstructure effects. The aim is to use as much as possible the information content of
high-frequency noisy equity prices and define a procedure to back out the firm’s asset volatility.

In the specific context of structural credit risk models, the relationship between the unobservable
asset volatility and the observed equity value predicted by the pricing model is masked by trading
noise; ignoring microstructure effects could non-trivially inflate estimates for the “true” equity volatility,
and this would lead to poor estimates for spreads and default rates. This issue has been analyzed in [7],
where the authors extend [8] to explicitly account for trading noise contamination on equity prices: they
devise a particle filter-based maximum likelihood method based solely on the time series of observed
equity values, showing its robustness with respect to market microstructure effects. The importance
of using high frequency data to back out parameters involved in firm’s value dynamics has been
highlighted in [9]: the authors propose a novel approach to identify the volatility and jump risks
components of individual firms from high-frequency observed equity prices, arguing that these new
measures can allow to capture the effects of stochastic volatility and jumps in the firm’s underlying
asset dynamics ([3,10]). Their analysis suggests that high-frequency-based volatility measures can help
to better explain credit spreads, above and beyond what is already captured by the true leverage ratio.
However, the highest frequency considered in this paper is the 5-min conservative sampling frequency
which allows to filter microstructure effects. Recently, several non-parametric estimators of daily stock
volatility have been proposed, allowing to exploit the information content of intra-day high-frequency
data without being affected by microstructure effects [5,6,11–15].

In this paper, we carry on the analysis in [16] considering a structural approach à la Merton
(see [1]) for defaultable corporate bonds in the presence of market microstructure noise and study a
class of models for the underlying firm’s assets value dynamics allowing for: (i) stochastic asset return
volatility; (ii) jump component. This extension to stochastic volatility and jump component for the
underlying assets is deemed to be particularly significant from a credit risk modeling perspective:
indeed, pricing and hedging issues related to equity markets suggest that stochastic volatility and
jumps are crucial in order to improve credit spreads predictions. In addition to this, a negative leverage
effect between stock prices and volatility is a typical feature observed in real data: stock prices tend to
decrease when volatility rises.

The mathematical framework for a firm’s assets value process is defined through, alternatively,
Heston [17] and Bates [18] models; as particular cases, the classical Merton model [1] and Merton
model with jumps in the underlying asset dynamics [19] can also be derived. We propose a particular
econometric approach to structural models calibration based on a non-parametric estimation of equity
volatility from high-frequency intra-day equity prices. Market microstructure effect is introduced by
assuming equity prices contaminated by trading noise under two different scenarios: (a) trading noise
independent log-Gaussian distributed; (b) trading noise correlated with intra-day equity log-returns.
From both an econometric and credit risk point of view, the interest of the analysis is concentrated on
three key variables: equity volatility, underlying (unobservable) asset volatility, default probability.
The aim of the paper is to exploit the information content of intra-day high-frequency prices and
compare the performance of alternative non-parametric equity estimators in filtering out microstructure
effects, retrieve the underlying asset volatility and thus evaluate the corresponding predicted default
probabilities under the historical measure. The estimated underlying asset volatility is obtained as
result of a specific calibration procedure matching the actual default probability (for a given maturity)
and considering equity volatility estimation as input: this technique allows us to overcome the problem
of its non-observability even when dealing with a structural approach. The results of our Monte Carlo



Econometrics 2016, 4, 31 3 of 31

simulation analysis highlight that asset volatility and default probabilities are deeply affected by the
choice of the non-parametric estimator for equity volatility. From an econometric point of view, the
commonly used 5-min Realized Volatility estimator is unable to provide reliable estimates for equity
volatility in the presence of market microstructure noise, leading to a significant underestimation of
both asset volatility and default probabilities and causing a wrong prediction of the real firm’s risk
profile. Obviously, the Realized Volatility estimator based on noisy 1-min returns would provide even
worse estimates, thus confirming results already discussed in [16]. For this reason, in this paper we
discuss full results for the 5-min Realized Volatility estimator providing a more fair benchmark for
all the other estimates. The Monte Carlo analysis has been developed for firms belonging to A rating
class, revealing that the choice of the non-parametric volatility estimator has a strong influence on risk
evaluation. This confirms the results of the analysis in [16] and extends their validity to the case of
stochastic volatility models with jump components for the firm’s assets.

The paper also provides empirical evidence highlighting the relevance of this study from a
practical credit risk perspective: the idea underlying the empirical analysis is to consider high frequency
equity prices of a US company and the corresponding time series of credit default swap (CDS) premium
as direct measure of a firm’s default probability (see also [9]). A regression analysis between daily CDS
quotes and the corresponding volatility measures based on high-frequency intra-day equity prices
is performed to show that alternative non parametric equity volatility measures can have a different
explanatory power and thus a different impact for a firm default probability evaluation.

The paper is organized as follows: Section 2 describes the alternative non-parametric estimation
techniques for equity volatility considered in our paper. Section 3 provides empirical evidence related
to the role of equity volatility estimates based on high-frequency equity prices for default probability
evaluation. Section 4 defines the structural credit risk model. Section 5 reports the results of our Monte
Carlo analysis for backing out assets volatility and evaluating default probabilities. Section 6 analyzes
the sensitivity of the asset volatility calibration and default probability estimation w.r.t. increasing
levels of the leverage effect and of the jump component. Finally, Section 7 concludes.

2. Non-Parametric Volatility Estimation under Microstructure Noise

This section describes the approach we follow to estimate the equity volatility Σs
t from

high-frequency equity data and gives details about the implementation of the specific volatility
measures considered in our analysis. We set p̃t := log S̃t, the noisy equity log-price. Time is measured
in daily units. We build daily measure of volatility by considering daily windows of n intra-day
equity data p̃t,j, j = 1, . . . , n. Besides the well known Realized Volatility estimator ΣRV

t := ∑n
j=1 δj( p̃)2,

where δj( p̃) := p̃t,j − p̃t,j−1 is the j-th within-day equity log-return on day t, we consider the following
estimators of the volatility process Σs

t : the bias corrected estimator by Hansen and Lunde [12]

ΣHL
t := ΣRV

t + 2
n

n− 1

n−1

∑
j=1

δj( p̃)δj+1( p̃);

the flat-top realized kernels by [6,20]

ΣK
t :=

H

∑
h=−H

k
(

h
H + 1

) n

∑
j=|h|+1

δj( p̃)δj−|h|( p̃).

with kernels of TH2 type k(x) = sin2 (π
2 (1− x)2). The realized kernels may be considered as unbiased

corrections of the Realized Volatility by means of the first H autocovariances of the returns. In particular,
when H is selected to be zero the realized kernels become the Realized Volatility. Our analysis includes
also the two-scale estimator by [15]
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ΣTS
t :=

S
S− 1

(
1
S

S

∑
s=1

ΣG(s)

t − 1
S

ΣRV
t

)
.

The two-scale (subsampling) estimator is a bias-adjusted average of lower frequency realized volatility
computed on S non-overlapping observation sub-grids G(s) containing nS observations. Recently, [13]
proposed a pre-averaging technique as an alternative to sub-sampling in order to reduce the
microstructure effects. The idea is that if one averages a number of observed log-prices, one is
closer to the latent process p(t). This approach, when well implemented, gives rise to rate optimal
estimators of power variations. In particular, a consistent estimator of the integrated volatility can be
constructed as

ΣPA
t =

√
∆

θψ2

n−kn+1

∑
s=0

δ̄s( p̃)2 − ψ1∆
2θ2ψ2

n

∑
s=1

δs( p̃)2,

where the pre-averaged return process is given by

δ̄s( p̃) :=
kn

∑
r=1

g
(

r
kn

)
δs+r( p̃) =

1
kn

(
kn−1

∑
j=kn/2

p̃t,s+j −
kn/2−1

∑
j=0

p̃t,s+j

)
,

θ = kn
√

∆, ψ1 = 1 and ψ2 = 1/12, corresponding to the "hat" weight function g(x) = x ∧ (1− x).
The Fourier-Fejer estimator [14] is given by

ΣF
t =

(2π)2

N + 1

N

∑
s=−N

(
1− |s|

N

)
cs(dp̃n)c−s(dp̃n),

where ck(dp̃n) =
1

2π ∑n
i=1 exp(−ikti−1)δi( p̃).

Finally, the jump-robust Bipower Variation [21] is defined as

ΣBV
t = µ−2

1

n

∑
j=2
|δj−1( p̃)||δj( p̃)|,

with µ1 ' 0.7979.
Finite sample MSE-based optimal rules for choosing the parameters employed by these estimators

are discussed in [15,22–24]. Here, we proceed according to the following rules: a simple approximation
of the optimal sampling frequency for the Realized Volatility and Bipower Variation estimators is
to choose the number of observations approximately equal to n∗ = (Q/4E[η2]2)1/3, where Q is
the integrated quarticity estimated by means of low frequency returns. The optimal number of
sub-grids S is given by c∗n2/3, where c∗ = (Q/48E[η2]2)−1/3. For the Kernel estimator, we apply the
optimal mean square error bandwidth selection suggested by [23] and get H = c∗ξ4/5n3/5, where
c∗ = (144/0.269)1/5, ξ2 = E[η2]/

√
Q. In the case of the Pre-averaging estimator, inspired by [23], we

choose kn = c∗ξ4/5n3/5. Finally, for the Fourier-Fejer estimator, the optimal cutting frequency N can
be easily obtained by direct minimization of the estimated MSE given by Theorem 3 in [24].

3. Empirical Evidence

The aim of this section is to provide empirical evidence that alternative non parametric equity
volatility estimates constructed from high-frequency equity return data may have different impact
on a firm default probability evaluation. The idea is to consider high frequency equity prices of a US
company and the corresponding time series of CDS quotes. We choose to use the CDS premium as a
direct measure of a firm’s default probability as already done in [9]. The CDS is one of the most popular
instrument in the credit derivatives market. Under a CDS contract, the protection seller promises
to buy the reference bond at its par value when a predefined default event occurs. In return, the
protection buyer makes periodic payments to the seller until the maturity date of the contract or until
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a credit event occurs. This periodic payment is called the CDS spread and provides a pure measure of
the default risk of the reference entity. Indeed, if compared with corporate bond spreads, CDS spreads
provide relatively ”pure” pricing of the default risk of the underlying entity and are typically traded on
standardized terms. Moreover, bond spreads are more likely to be affected by differences in contractual
arrangements, such as differences related to seniority, coupon rates, embedded options, guarantees
and liquidity factors, which do not necessarily reflect the ”pure” default risk of the underlying asset.
Finally, CDS spreads tend to respond more quickly to changes in credit conditions in the short run,
which may be partly due to the absence of funding and short-sale restrictions in the derivatives market.

We adopt equity volatility measures as proxies for the time variation in volatility risk of a firm in
order to examine the relationship between equity returns and credit spreads. The empirical results
in [9] suggest that the volatility risk alone can predict up to 48% of the variation in CDS spread levels,
particularly for investment-grade entities. Their analysis was based on a sample of US corporates over
the period January 2001–December 2003.

Here we focus on 5-year CDS contracts for the Dow Jones Alcoa company. The sample covers the
period from 10 November 2015 to 23 May 2016, for a total of 134 trading days. Our CDS quotes are daily
and are provided by Bloomberg. The corresponding equity price sample contains 52,166 observations
at a 1-min frequency for a 6.5 h daily trading period. Tables 1 and 2 report, respectively, descriptive
statistics of high frequency equity prices and CDS premium in our dataset.

Table 1. Summary statistics of the 1-min transaction data on equity prices for the Alcoa company in
the period from 10 November 2015 to 23 May 2016 (52,166 trades). ”Std. Dev.” denotes the sample
standard deviation of the variable.

Variable Mean Std. Dev. Min Max

AA US Equity price 9.02 1.05 6.15 11.49
log-return (%) 1.68 × 10−4 1.78 × 10−1 −4.66 × 100 3.73 × 100

Table 2. Summary statistics of the daily CDS premium data (basis points) for Alcoa company in the
period from 10 November 2015 to 23 May 2016. ”Std. Dev.” denotes the sample standard deviation of
the variable.

Variable Mean Std. Dev. Min Max

CDS premium 433.87 91.09 329.24 661.63

High-frequency equity returns are contaminated by transaction costs, bid-ask bounce effects and
possibly jumps leading to biases in the variance measures. Figure 1 shows the time plot of the 1-min
log-returns and the autocorrelation function. Row data exhibit a strongly significant negative first order
autocorrelation and higher order autocorrelations remain significant up to lag 12. Sparse sampling
at 5 min frequency eliminates most of the microstructure effects. Figure 2 shows the histogram of
the 1-min equity log-returns. We can see that the distribution of returns is far from being normal.
Skewness is equal to –1.2078, while kurtosis is 73.1947.
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Figure 1. Time plot of the 1-min equity log-returns for Alcoa company over the period 10 November
2015 to 23 May 2016.
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Figure 2. Histogram of the 1-min equity log-returns for Alcoa company over the period 10 November
2015 to 23 May 2016.

Jumps have been identified and measured using the Threshold Bipower Variation method (TBV)
of [25], which is based on the joint use of Bipower variation and threshold estimation. This method
provides a powerful test for jump detection, which is employed at the significance level of 99.99%.
This procedure allows to identify a total of 25 days with jumps which are removed from the sample.
Since the TBV estimator is not robust to microstructure noise, we compute this measure of the integrated
volatility in the presence of jumps using sparse sampling.

A first empirical evidence of the correlation between CDS spreads and equity volatility measures
can be obtained by visually inspecting Figure 3, that shows the time plot of the daily 5-years CDS
spreads in basis points (bottom panel) and the corresponding equity Realized Volatility (top panel) for
our sample of 109 days after jump removal. The final sample covers the period 10 November 2015–23
May 2016. As we can observe from the figure, CDS spreads increased substantially in the middle of
the considered period and gradually declined at the end of the sample period. The (annualized) daily
return volatility varies between 0.2016 and 1.0838 following a similar pattern. From a statistical point
view, the CDS spread and Realized Volatility series are correlated with positive correlation of 61.7%
that exactly reflects their common qualitative behavior.
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Figure 3. Time plot of the 5-years CDS spreads in basis points (lower panel) and corresponding equity
volatility (upper panel) for our sample of 109 days after jump removal.

In order to examine the explanatory power of the different equity volatility measures introduced
in Section 2, for each estimated series of equity integrated volatility, we project the CDS spread on day
t on a constant and the corresponding estimated daily volatility measure Σs

t . The Mincer-Zarnowitz
evaluation regression takes the form

CDSt = φ0 + φ1Σs
t + εt, (1)

where t = 1, . . . , 109. The R2 from these regressions provides a direct assessment of the variability in
the CDS premium that is explained by the particular estimates in the regressions. The R2 can therefore
be interpreted as a simple gauge of the explanatory power of the volatility estimate and hence of its
potential economic significance.

Table 3 shows the OLS estimates from regressions (1). All the estimators are constructed
using 1-min returns. The only exceptions are the Realized Volatility and the Bipower Variation,
obtained from sparse sampled 5-min returns. All the estimated coefficients are significant at the 0.1%
significance level. The signs of coefficients are correct, since a higher equity volatility estimate raises
credit spread, and the magnitudes are sensible: for instance, a volatility shock of 1% in the Realized
Volatility estimate raises the credit spread by 4%.

As we can observe from the results reported in Table 3, a significant portion of the CDS premium
can be explained by the equity volatility estimates. This empirical evidence confirms the key role
played by high-frequency equity prices in the evaluation of a firm default probability. The general
outcome of our empirical study confirms the results already stated by [9] highlighting the key role
of the information content of equity volatility and extends them from an econometric point of view,
covering a bigger set of equity volatility estimators besides the 5-min Realized Volatility. Regardless of
the specific method implemented to estimate the volatility, we show that the portion of CDS premium
variability explained by equity volatility is between 36% and 42%. This smaller percentage w.r.t. the
48% found in [9] should be linked to the differences in market conditions between the two samples
considered in the empirical case study.
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The commonly used 5-min Realized Volatility yields a R2 of 38%, while estimators robust to
microstructure effects can yield higher R2 using all available data. In particular, the Fourier estimator
and the Two-scale estimator provide the highest R2 results at 42% and 41%, respectively, with a gain
of 10% over the Realized Volatility.

Table 3. OLS estimates from regressions (1) of the 5-year CDS spread (%) on day t over a constant and
each corresponding equity volatility estimate obtained by estimators defined in Section 2. Standard
deviation and T-statistics are reported in brackets.

Estimator φ̂0 φ̂1 R2

ΣRV
t 2.5476 4.0915 0.3810

Std. Dev. (0.2312) (0.5042)
T-statistics (11.0173) (8.1155)

ΣTS
t 2.0615 4.9657 0.4118

Std. Dev. (0.2715) (0.5737)
T-statistics (7.5916) (8.6556)

ΣHL
t 2.4268 4.4108 0.3884

Std. Dev. (0.2418) (0.5350)
T-statistics (10.0355) (8.2447)

ΣK
t 2.5293 4.2330 0.3797

Std. Dev. (0.2340) (0.5229)
T-statistics (10.8107) (8.0944)

ΣPA
t 2.6140 4.3276 0.3635

Std. Dev. (0.2314) (0.5535)
T-statistics (11.2956) (7.8184)

ΣF
t 1.9735 5.1398 0.4236

Std. Dev. (0.2749) (0.5796)
T-statistics (7.1788) (8.8677)

ΣBV
t 2.5891 4.1263 0.3801

Std. Dev. (0.2267) (0.5094)
T-statistics (11.4188) (8.1010)

4. Firm Value Model in the Presence of Market Microstructure Noise

This Section describes our structural modeling framework and the model we use to describe
trading noise on high-frequency equity data. We consider a stylized Merton-type [1] structural
approach that incorporates stochastic volatility and jumps in the presence of market microstructure
noise. Firm’s asset value process is defined through a jump-diffusion model, including Bates [18] and
Heston [17] models as described in Section 4.1. Market microstructure is considered in our setting
through the assumption of equity prices being contaminated by trading noise under two different
scenarios: a) independent log-Gaussian distributed noise process, b) trading noise process correlated
with intra-day equity log-returns; Section 4.2 gives a full description of market microstructure.

4.1. Assets Value Dynamics and Default Assumptions

We assume the structural credit risk modeling approach defined by Merton [1] and follow
the intuition of [3] introducing stochastic volatility and jumps in the underlying firm’s asset value
dynamics as

dAt

At
= (µ− δ− λµJ)dt +

√
VtdW1

t + Jtdqt

dVt = k(θ −Vt)dt + σ
√

VtdW2
t ,

(2)
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where At is firm value, µ is the instantaneous asset return, δ the asset payout ratio. The asset jump
component has a Poisson mixing Gaussian distribution, where qt is a Poisson process with intensity λ

and log(1 + Jt) are Normally distributed jump sizes in the logarithmic firm value, with expectation
log(1+µJ)−σ2

J /2 and variance σ2
J . The Poisson process qt is independent of the Brownian motions and

the jump sizes.The asset return variance, Vt, follows a square-root process with long-run mean θ, mean
reversion speed k and volatility-of-volatility parameter σ. Finally, ρ is the correlation between Brownian
motions W1

t , W2
t . This dynamics has been studied in the equity-option price literature ([18,26]), while

the general credit risk modeling framework has been analyzed by [10]. The model (2) includes
the Heston model [17], Merton setting with a jump component [19] and also the original Merton
framework [1] by assuming Vt constant through time (i.e., k, θ, σ = 0). The firm has two classes of
outstanding claims: equity and a zero-coupon debt with promised payment B at maturity T. To be
suitable for pricing corporate debt, we adopt the following bankruptcy assumptions from the classical
setting [1]: (i) there is only one outstanding bond, i.e., a zero-coupon bond with a promised payment B
at maturity; (ii) default can occur only at bond maturity with debt face value as default boundary; and
(iii) when default occurs, the absolute priority rule prevails. The payoffs to debt holders and equity
holders at time T become, respectively

DT = min(AT , B), ST = max(AT − B, 0).

From now on, the focus of our study is concentrated on equity value and default probabilities in
order to develop our computational econometric analysis. Using no-arbitrage arguments, equity price,
namely St, can be computed as the price of a European call option written on the underlying asset At

with maturity T
St = AtF∗1 − Be−r(T−t)F∗2 , (3)

where F∗i = F∗i (At, Vt; T, B) i = 1, 2 are the so called risk-neutral probabilities, computed using the
corresponding characteristic function (see [17,18]).

We apply Itô’s lemma and get the following specification for equity price dynamics

dSt
St

=
1
St

µt(·)dt +
At
St

∂St
∂At

√
VtdW1

t +
1
St

∂St
∂Vt

σ
√

VtdW2
t

+
1
St
[St(At(1 + Jt), Vt; Ω)− St(At, Vt; Ω)]dqt,

where µt(·) is the instantaneous equity return under the historical probability measure, Ω is the
parameter vector. Let Σs

t indicate the instantaneous volatility of log-equity price given by

Σs
t =

√(
At

St

)2 ( ∂St

∂At

)2
Vt +

(
σ

St

)2 ( ∂St

∂Vt

)2
Vt + 2ρσ

At

S2
t

∂St

∂At

∂St

∂Vt
Vt. (4)

Notice that the evolution of equity volatility is driven by two time-varying factors, At and Vt,
while the underlying asset volatility is only driven by Vt. As particular case, if asset volatility is
constant (v :=

√
V), then Equation (4) reduces to the standard Merton (see [1]) formula Σs

t =
At
St

∂St
∂At

v.
The jump size of log-equity price is given by

Js
t = log[St(At(1 + Jt), Vt; Ω)]− log[St(At, Vt; Ω)].

The firm’s probability of default at maturity T is the probability of AT being below the constant
barrier represented by the face value of debt B. Under the physical probability measure this can be
computed through

P(AT < B|At) = 1− P(AT ≥ B|At) = 1− F2(At, Vt; T, B), (5)

where F2(At, Vt; T, B) will be evaluated with the historical drift for asset returns.
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4.2. Market Microstructure Noise on High-Frequency Equity Prices

Let us consider an individual firm: we can obtain a time series of equity prices {Stj , j = 1, . . . , n},
with a given constant sampling interval h = tj − tj−1. If one could observe the efficient (i.e., not
contaminated by noise) equity price, than equity volatility could be estimated by the well known
Realized Volatility estimator [27] at any desired accuracy level using high frequency data. However,
as stressed by [7], the relationship between the unobserved asset and the observed equity value
predicted by the pricing formula (3) may be masked by trading noise in reality. Econometric literature
suggests that observed equity prices can diverge from their equilibrium value due to illiquidity,
asymmetric information, price discreteness and other measurement errors. Thus, the approach used to
estimate equity volatility must take into account the presence of trading noise affecting the sample
of observations.

In this paper we assume an additive error structure for the trading noise on the logarithmic equity
value as follows

log S̃tj = log Stj + ηtj , (6)

where the random shocks ηtj , for 0 ≤ j ≤ n are i.i.d. random variables with zero mean and bounded
fourth moment and independent from the efficient log-return process. The assumption of independence
can be relaxed by considering a particular form of dependent noise, given by [12], with market
microstructure noise that is time-dependent in tick time and correlated with efficient returns

η̃j := α[log Stj − log Stj−1 ] + ηj, (7)

where α is a real constant and η̃j and ηj are the shorten notation for η̃tj and ηtj . The case α = 0
corresponds to the case of independent noise assumption. The basic idea of our paper is that, using
suitable volatility estimators, we can infer the volatility process Σs

t of equity returns from noisy
high-frequency data. Then, equity volatility estimate can be used to back out the (unobservable)
asset volatility vt =

√
Vt in order to match exactly the 5-years actual default probability given in

Equation (5). The resulting calibrated asset volatility finally allows to compute default probabilities for
different maturities.

5. Equity Volatility Estimation and Default Probability Computation

This section describes in detail our Monte Carlo simulation analysis and gives numerical results
about the performance of different equity volatility estimators in their capability of: (i) filtering the
microstructure noise and extracting equity volatility correctly; (ii) backing out asset volatility and
(iii) predicting default probabilities.

We perform Monte Carlo simulations by generating the underlying asset dynamic according to
Heston and Bates models, respectively, taking calibrated parameters from [9] for the base case. The full
set of parameters values used in our study is contained in Table 4.

In order to avoid arbitrage opportunities, all securities written on the underlying firm value At

must have the same Sharpe ratio, see [1] Equation (6). The same underlying assumption on the Sharpe
ratio is made for the asset volatility calibration procedure described in [9]. Therefore, the following
equation must be satisfied:

πa√
Vt

=
πe

Σs
t
, (8)

where πa := µ− r + δ is the total asset risk premium, πe is the historical equity risk premium and
we replace Σs

t by the value Σ̂t, that is any of the equity volatility estimates described in Section 2.
Equation (8) is the technical tool we use in order to back out the asset volatility vt :=

√
Vt that exactly

fits the 5-years probability of default given in Equation (5) according to the given equity volatility
estimate. More precisely, we plug relation (8) into (5) and solve for v̂t =

√
Vt. This step enables

us to tie down the risk-neutral distribution with the objective distribution without resorting to a
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certain arbitrary assumption or noisy estimate of the asset return process. Once noisy equity prices are
generated, we compare the performance of different volatility estimators in their ability of inferring
the ”true” equity volatility Σs

t . Then, we analyze the influence of this results on the underlying asset
volatility calibration and default probability computation.

Table 4. Base case parameters values.

Parameter Bates Heston

A0 100 100
r 5% 5%

Σe 37.21% 37.21%
PD5y 1.37% 1.37%

B 43.13 43.13
δ 2% 2%

πa 4.04% 3.49%
v0 25.01% 21.65%
k 0.87 0.74
θ 3.8% 4.24%
σ 4.42% 4.01%
ρ −24.04% −24.02%
λ 8.88%
µJ 2.35%
σJ 14.79%

Note: The Table describes base case parameters values considered in our Monte Carlo simulation
analysis. Σe denotes the equity volatility, PD5y the 5-years default probability and πa the historical
total asset risk premium. The values reported for the initial underlying asset v0 are consistent with an
equity risk premium πE = 6%.

In order to understand the influence of alternative equity volatility estimators on both asset
volatility calibration and default probability computation, we preliminarily show in Figure 4 the
theoretical relationship between these quantities. The idea is to take as base case the pair of parameters
Σs

t = 37.21%, vt = 25.01% and evaluate the impact of different equity volatility values ΣE
t ∈ [0.3, 0.45]

through our calibration device on both calibrated asset volatility and default probability, as if ΣE
t

was the equity volatility estimate obtained through the non-parametric estimator E. The theoretical
dependence of the calibrated asset volatility vE

t and the default probability is shown in Figure 4 for
the Bates model, but the qualitative behaviour is the same also for the Heston model: as we can
see, the equity volatility estimate is a key variable determining both the calibration of asset volatility
and the default probability. The impact on default probability is measured in terms of the absolute
error defined as DPAbsErr := DP(ΣE

t )− DP(Σs
t). The calibrated asset volatility depicted in Subplot

(i) is obtained by matching the 5-years default probability PD5 = 1.37%, then this value is used to
compute the absolute error on the 3-years default probability reported in Subplot (ii). To generalize
the outcome of the analysis, the relationship between calibrated asset volatility and equity volatility
estimation is nonlinear (convex) monotonous decreasing: overestimating equity volatility generates
an underestimation of the calibrated asset volatility. The same monotonous decreasing relation holds
between ΣE

t and the absolute error DPAbsErr, but the absolute magnitude of the error changes may
depend on whether we are under-estimating or over-estimating Σs

t and which time horizon we are
considering. As a general feature, the influence of a non-correct equity volatility estimation can be
not negligible. Thus, from a credit risk perspective, a robust equity volatility estimator is crucial to
properly evaluate default probability at each maturity.
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Figure 4. Asset volatility calibration and default probability computation. The plot shows how the
estimated equity volatility ΣE

t can affect the resulting asset volatility calibration and default probability
computation. Subplot (i) reports the underlying asset volatility calibrated for different values of
ΣE

t ; subplot (ii) shows the absolute error on default probability when a 3y horizon is considered.
The base case is Σs

t = 37.21%, vt = 25.01% (red dashed line in Subplot (i)) and the underlying
asset volatility is calibrated by matching the 5y default probability to highlight the behaviour of our
calibration algorithm. The absolute error on the 3y-default probability is defined through the variable
DPAbsErr := DP(ΣE

t )− DP(Σs
t) and reported in percentage (%).

5.1. Equity Volatility Estimation with High-Frequency Data

We perform a Monte Carlo simulation by generating a sample of 1000 trading days and equispaced
intra-day data at the frequency h = 1 min (i.e., n = 1440). Once the underlying asset value dynamics is
generated by model (2), high-frequency equity prices are obtained through the no arbitrage method
given by Equation (3). Market microstructure noise is considered, alternatively, for both cases described
by Equations (6) and (7). The random shocks ηj are i.i.d Gaussian random variables with zero mean
and standard deviation equal to 1.4 times the log-equity return standard deviation. We set α = 0.5 in
the dependent noise case (7).

In the case of Bates model, the generated dataset is cleaned for jumps according to the jump
removal procedure sketched in Section 3. This procedure allows to eliminate around 7.5%–10% of
days from our sample. Nevertheless, some days in the cleaned sample may still exhibit small jumps
that can affect volatility estimation. In particular, days in our sample can present different statistical
autocorrelation structures. Figure 5 shows the intraday log-returns, normalized to have mean zero
and standard deviation one, for the model with Gaussian uncorrelated noise. Panel (A) refers to a day
with no jumps and first order autocorrelation structure; panel (B) shows a big spike corresponding to a
jump in the equity log-price process, still retaining a first order autocorrelation structure; (C) refers to a
day with no jumps and autocorrelation at lags 3, 5, 9 and 15.
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Figure 5. Equity log-returns. Time plot of the tick-by-tick normalized equity log-returns and the ACF
on three sample days. (A) day with no jumps and first order autocorrelation structure; (B) day with
jumps and first order autocorrelation structure; (C) day with no jumps and autocorrelation up to lag 15.

Next we plot the histograms of the intraday returns of equity log-prices. Figure 6 displays
the histogram along with the standard normal density function, which is essentially confined
within (−3, 3). Clearly, the histograms display a slightly high peak and asymmetric heavy tails.
The distribution in case (B) is leptokurtic, i.e., more outlier-prone than the normal distribution.
Moreover, skewness is positive, i.e., the data are spread out more to the right of the mean than
to the left and the returns have heavier right tail.

Tables 5 and 6 present numerical evidence for each equity volatility estimator introduced in
Section 2 and used in our comparison when (a) trading noise is independent of intra-day equity
log-returns and (b) trading noise is correlated with intra-day equity log-returns, respectively; both
Heston [17] and Bates [18] dynamics are considered. All the estimators are applied on the equity
log-price series after jump removal. The only exception is for the jump-robust Bipower Variation which
is applied to the original dataset including jumps after optimal sparse sampling.

Tables 5 and 6 list the mean squared error (MSE) and bias (BIAS) achieved by the different
non-parametric equity volatility estimators. ΣRV

t represents the sparse sampled Realized Volatility
estimator based on 5-min returns, while ΣRVSS

t refers to the sparse sampled Realized Volatility estimator
where the sampling frequency is optimized in order to filter the microstructure effects, as explained
in Section 2. Our results strongly confirm well known stylized facts documented by the econometric
literature and highlighted by [24]: ΣRV

t estimates are strongly affected by noise and sparse sampling
can only moderately provide efficient estimates. The 5-min Realized Volatility estimator has the worst
performance in terms of both MSE and BIAS among all estimators for Heston and Bates settings,
with a MSE of order e − 02 and BIAS of order e − 01. This performance can be even worst when
considering the 1-min Realized Volatility estimator: results are not reported in the table, but equity
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volatility estimates are completely swamped by trading noise in such a case. The performance of
the Bipower Variation estimator ΣBV

t for equity volatility is comparable to the one obtained through
the Realized Volatility estimator based on sparse sampling ΣRVSS

t . This is particularly relevant in the
Bates model simulation of Table 6. In fact, jumps have been removed from our samples using the
procedure sketched in Section 2. Although some of the jumps may still be present after jump removal,
this procedure seems to be effective in eliminating the most relevant jumps.

As an alternative to sparse sampling, the first order correction of ΣHL
t can reduce the bias due to

the spurious first order autocorrelation in equity returns introduced by the trading noise: overall, this
estimator performs much better than ΣRVSS

t in both models and for both assumptions on the trading
noise. However, the BIAS reduction is more effective in the Heston model.

The best results in terms of MSE are obtained when considering the set of estimators specifically
designed to handle microstructure effects, i.e., ΣTS

t , ΣK
t , ΣPA

t and ΣF
t .

If we want to try to rank the estimators according to the noise provision, we can state that both
the Two-Scale ΣTS

t and the Kernel estimators ΣK
t have the best performance in Heston setting, with ΣK

t
having a smaller BIAS. The performance of the pre-averaging estimator ΣPA

t and the Fourier estimator
ΣF

t are comparable in both models.
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Figure 6. Intraday returns of equity log-prices. Comparison of the histogram of the normalized
intraday returns and the density of N(0, 1). (A) day with no jumps and first order autocorrelation
structure; (B) day with jumps and first order autocorrelation structure; (C) day with no jumps and
autocorrelation up to lag 15.
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Table 5. Heston model: performance of equity volatility estimators.

Heston ΣBV
t ΣRV

t ΣRVSS
t ΣTS

t ΣHL
t ΣK

t ΣPA
t ΣF

t

(a) MSE 1.79 × 10−3 1.31 × 10−2 1.65 × 10−3 3.43 × 10−4 1.05 × 10−3 4.37 × 10−4 5.10 × 10−4 5.09 × 10−4

BIAS 2.35 × 10−2 1.13 × 10−1 2.62 × 10−2 –1.47 × 10−3 –9.48 × 10−4 −7.69 × 10−4 –4.77 × 10−3 4.57 × 10−3

(b) MSE 2.42 × 10−3 2.28 × 10−2 2.30 × 10−3 3.58 × 10−4 1.66 × 10−3 4.64 × 10−4 5.05 × 10−4 5.71 × 10−4

BIAS 2.84 × 10−2 1.48 × 10−1 3.21 × 10−2 −7.66 × 10−4 5.10 × 10−4 –3.72 × 10−4 −4.20 × 10−3 6.06 × 10−3

Note: The table shows mean squared error (MSE) and BIAS for different equity volatility estimators. Panel (a) refers to the trading noise given in Equation (6),
panel (b) to Equation (7), with α = 0.5. The underlying dynamics follows Heston [17] model.

Table 6. Bates model: performance of equity volatility estimators.

Bates ΣBV
t ΣRV

t ΣRVSS
t ΣTS

t ΣHL
t ΣK

t ΣPA
t ΣF

t

(a) MSE 2.77 × 10−3 1.63 × 10−2 2.36 × 10−3 4.69 × 10−4 1.23 × 10−3 5.44 × 10−4 5.50 × 10−4 6.75 × 10−4

BIAS 3.16 × 10−2 1.24 × 10−1 3.19 × 10−2 7.18 × 10−4 2.08 × 10−3 2.10 × 10−3 -2.45 × 10−3 8.40 × 10−3

(b) MSE 3.36 × 10−3 2.78 × 10−2 3.12 × 10−3 6.37 × 10−4 1.88 × 10−3 7.18 × 10−4 7.51 × 10−4 8.91 × 10−4

BIAS 3.40 × 10−2 1.63 × 10−1 3.71 × 10−2 –6.38 × 10−4 1.54 × 10−3 2.43 × 10−3 –1.65 × 10−3 1.03 × 10−2

Note: The table shows mean squared error (MSE) and BIAS for different equity volatility estimators. Panel (a) refers to the trading noise given in Equation (6),
panel (b) to Equation (7), with α = 0.5. The underlying dynamics follows [18] model.
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5.2. Asset Volatility Calibration

This section analyzes how the choice of different volatility estimators affects the calibration of the
underlying asset volatility. In order to study the influence of different equity volatility estimators on
the default probability predicted by Merton model (see [1]), we proceed by developing the following
calibration exercise for the underlying asset volatility. For each equity volatility estimator, generically
denoted by E, and each day t in our sample, we find the corresponding daily asset volatility estimate
v̂t

E by matching the 5-years default probability coming from our equity volatility estimate ΣE
t with

the one evaluated through the model using the parameter values of Table 4. This is done for each day
in the sample. In this calibration exercise we act as if we did not know the asset values to mimic the
real-life estimation situation and we conduct inference only based on observable quantities such as
measurable equity volatility and the 5-years default probabilities. Default probabilities are computed,
for any maturity, according to Equation (5). In order to avoid arbitrage opportunities, following [9],
we consider as key assumption that all securities written on the underlying firm value At must have
the same Sharpe ratio, see (8) (cfr. Equation (6) in [1]). This consideration enables us to express the
instantaneous asset return µ as a function of the unknown asset volatility, given each equity volatility
estimate ΣE

t , and then to solve Equation (5) for the 5-years default probability with respect to the asset
volatility, to obtain the corresponding asset volatility estimate v̂t

E. Once asset volatility is known, we
can compute default probabilities for any other maturity according to Equation (5).

Table 7 shows descriptive statistics of calibrated asset volatility for the Heston model, Table 8
contains statistics for the Bates case. We report results obtained by matching 5-years default
probabilities for each equity volatility estimator E. Panel (a) of both tables refers to a trading noise of
the form (6); panel (b) refers to results obtained for a trading noise of the form (7). The set of equity
volatility estimators represented by Two-scale, Kernel, Fourier and Pre-Average estimators provides the
most accurate estimation of the resulting calibrated daily asset volatility for Heston case, showing the
smallest standard deviation. The same behavior is confirmed by results under Bates setting in Table 8.
These results are confirmed by statistics for the ratio v̂t

E/vt, where the variable vt is the underlying
asset volatility calibrated by considering the model daily equity volatility Σs

t on each day t in the
Monte Carlo sample. In particular, it is evident how the high-frequency Realized Volatility procedure
largely underestimates the underlying asset volatility: v̂t

RV/vt is strongly biased due to microstructure
effects, while the optimized v̂t

RVSS is less biased, even if a slightly larger variance appears.

Table 7. Heston model: calibrated asset volatility.

Heston

Mean Median 10 perc. 90 perc. Min Max Std Dev.

(a)

v̂t
BV 0.2082 0.2056 0.1833 0.2350 0.1614 0.2960 0.0205

v̂t
RV 0.1704 0.1699 0.1599 0.1815 0.1453 0.2027 0.0085

v̂t
RVSS 0.2063 0.2045 0.1838 0.2308 0.1583 0.2922 0.0182

v̂t
TS 0.2214 0.2202 0.2035 0.2410 0.1831 0.2718 0.0151

v̂t
HL 0.2229 0.2195 0.1950 0.2554 0.1764 0.3385 0.0243

v̂t
K 0.2210 0.2202 0.2021 0.2406 0.1802 0.2736 0.0155

v̂t
PA 0.2238 0.2228 0.2029 0.2453 0.1802 0.2774 0.0166

v̂t
F 0.2178 0.2169 0.1984 0.2375 0.1776 0.2684 0.0156

v̂t
BV/vt 0.9617 0.9498 0.8464 1.0853 0.7454 1.3673 0.0948

v̂t
RV/vt 0.7870 0.7845 0.7387 0.8383 0.6709 0.9364 0.0392

v̂t
RVSS/vt 0.9528 0.9448 0.8489 1.0659 0.7310 1.3495 0.0840

v̂t
TS/vt 1.0226 1.0172 0.9400 1.1134 0.8456 1.2554 0.0696

v̂t
HL/vt 1.0297 1.0140 0.9005 1.1796 0.8149 1.5637 0.1123

v̂t
K/vt 1.0210 1.0169 0.9335 1.1113 0.8326 1.2637 0.0714

v̂t
PA/vt 1.0337 1.0290 0.9371 1.1329 0.8326 1.2815 0.0766

v̂t
F/vt 1.0061 1.0018 0.9164 1.0970 0.8203 1.2396 0.0722
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Table 7. Cont.

Heston

Mean Median 10 perc. 90 perc. Min Max Std Dev.

(b)

v̂t
BV 0.2062 0.2040 0.1791 0.2368 0.1485 0.2902 0.0227

v̂t
RV 0.1602 0.1600 0.1503 0.1705 0.1361 0.1846 0.0079

v̂t
RVSS 0.2036 0.2023 0.1802 0.2300 0.1571 0.2942 0.0196

v̂t
TS 0.2209 0.2193 0.2021 0.2413 0.1781 0.2777 0.0153

v̂t
HL 0.2234 0.2180 0.1909 0.2637 0.1658 0.3779 0.0309

v̂t
K 0.2209 0.2193 0.2007 0.2429 0.1782 0.2942 0.0164

v̂t
PA 0.2235 0.2226 0.2020 0.2462 0.1791 0.2959 0.0172

v̂t
F 0.2170 0.2156 0.1967 0.2397 0.1760 0.2849 0.0165

v̂t
BV/vt 0.9391 0.9282 0.8200 1.0757 0.7079 1.2751 0.0984

v̂t
RV/vt 0.7298 0.7296 0.6947 0.7635 0.6308 0.8285 0.0273

v̂t
RVSS/vt 0.9276 0.9216 0.8227 1.0357 0.7396 1.3023 0.0838

v̂t
TS/vt 1.0061 1.0023 0.9348 1.0789 0.8673 1.2023 0.0553

v̂t
HL/vt 1.0176 0.9911 0.8757 1.1951 0.7826 1.8007 0.1353

v̂t
K/vt 1.0060 1.0006 0.9283 1.0914 0.8423 1.2411 0.0627

v̂t
PA/vt 1.0176 1.0121 0.9359 1.1062 0.8570 1.2606 0.0662

v̂t
F/vt 0.9883 0.9834 0.9103 1.0734 0.8388 1.2148 0.0642

Note: The table shows descriptive statistics of calibrated asset volatility for different equity volatility
estimators. Results are based on 1000 daily Monte Carlo simulations. Panel (a) refers to the trading
noise given in Equation (6), panel (b) to Equation (7), with α = 0.5.

Table 8. Bates model: calibrated asset volatility.

Bates

Mean Median 10 perc. 90 perc. Min Max Std Dev.

(a)

v̂t
BV 0.2526 0.2497 0.2076 0.3012 0.1558 0.3792 0.0381

v̂t
RV 0.2042 0.2038 0.1893 0.2211 0.1597 0.2502 0.0125

v̂t
RVSS 0.2502 0.2477 0.2202 0.2839 0.1826 0.3503 0.0254

v̂t
TS 0.2703 0.2701 0.2459 0.2962 0.2018 0.3360 0.0203

v̂t
HL 0.2714 0.2673 0.2361 0.3140 0.1857 0.3739 0.0304

v̂t
K 0.2694 0.2673 0.2444 0.2979 0.2007 0.3411 0.0215

v̂t
PA 0.2730 0.2710 0.2470 0.3018 0.2019 0.3498 0.0223

v̂t
F 0.2648 0.2624 0.2396 0.2928 0.1980 0.3340 0.0215

v̂t
BV/vt 0.9391 0.9241 0.7605 1.1260 0.5392 1.4802 0.1501

v̂t
RV/vt 0.7579 0.7573 0.7169 0.8034 0.5801 0.8881 0.0355

v̂t
RVSS/vt 0.9283 0.9208 0.8262 1.0473 0.6491 1.2119 0.0860

v̂t
TS/vt 1.0027 1.0020 0.9312 1.0833 0.7840 1.2004 0.0600

v̂t
HL/vt 1.0068 0.9931 0.8884 1.1467 0.7437 1.4164 0.1036

v̂t
K/vt 0.9994 0.9931 0.9222 1.0891 0.7794 1.2373 0.0659

v̂t
PA/vt 1.0127 1.0071 0.9315 1.1073 0.7852 1.2410 0.0684

v̂t
F/vt 0.9825 0.9771 0.9027 1.0745 0.7727 1.2113 0.0668

(b)

v̂t
BV 0.2521 0.2485 0.2067 0.3055 0.1616 0.3794 0.0387

v̂t
RV 0.1909 0.1909 0.1787 0.2043 0.1511 0.2252 0.0106

v̂t
RVSS 0.2474 0.2450 0.2160 0.2825 0.1727 0.3627 0.0270

v̂t
TS 0.2712 0.2694 0.2451 0.2990 0.2019 0.3480 0.0212

v̂t
HL 0.2726 0.2682 0.2318 0.3228 0.1847 0.3797 0.0347

v̂t
K 0.2692 0.2686 0.2424 0.2978 0.1918 0.3456 0.0225

v̂t
PA 0.2726 0.2721 0.2446 0.3029 0.1921 0.3568 0.0238

v̂t
F 0.2636 0.2633 0.2368 0.2924 0.1880 0.3481 0.0224
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Table 8. Cont.

Bates

Mean Median 10 perc. 90 perc. Min Max Std Dev.

v̂t
BV/vt 0.9378 0.9222 0.7570 1.1482 0.5435 1.4866 0.1514

v̂t
RV/vt 0.7089 0.7096 0.6710 0.7494 0.5672 0.8206 0.0322

v̂t
RVSS/vt 0.9187 0.9101 0.8112 1.0389 0.6286 1.4060 0.0940

v̂t
TS/vt 1.0070 1.0024 0.9246 1.0972 0.7306 1.2813 0.0700

v̂t
HL/vt 1.0129 0.9981 0.8711 1.1864 0.6801 1.4773 0.1275

v̂t
K/vt 0.9997 0.9971 0.9115 1.0918 0.6901 1.2540 0.0724

v̂t
PA/vt 1.0120 1.0086 0.9222 1.1073 0.6911 1.2946 0.0766

v̂t
F/vt 0.9786 0.9767 0.8952 1.0681 0.6766 1.2632 0.0719

Note: The table shows descriptive statistics of calibrated asset volatility for different equity volatility
estimators. Results are based on a sample of 934 days in case (a) and 901 days in case (b) for our Monte
Carlo simulations (due to jumps removal). Panel (a) refers to the trading noise given in Equation (6),
panel (b) to Equation (7), with α = 0.5.

5.3. Default Probability Computation

Once asset volatility is calibrated, we can turn to default probability computation. The average
(over the daily Monte Carlo replications) default probabilities for different maturities obtained from
alternative equity volatility estimation procedures are plotted in Figure 7 for Heston case, Gaussian
noise. For each day in the sample and for each volatility estimator E, we use the calibrated asset
volatility v̂t

E in order to compute the default probabilities for any maturity (from 1 to 5 years) through
Equation (5). The figure highlights how the Realized Volatility approach based on high frequency
noisy data drastically underestimates default probabilities, thus sparse sampling becomes mandatory
when equity data are affected by microstructure effects. On the whole, all the other procedures seem
to provide sensible results and only a deeper analysis reveals differences among different specific
estimators, as shown in Tables 9 and 10 where relative errors are reported.

Table 9. Heston model: default probability relative error.

Heston DPBV
Err DPRV

Err DPRVSS
Err DPTS

Err DPHL
Err DPK

Err DPPA
Err DPF

Err

(a)

1 y −13.3336 −92.8243 −28.5112 21.9938 78.9713 23.4477 42.2060 7.7918
1.5 y −17.5285 −78.4652 −24.5641 9.0594 26.2613 9.1401 18.3708 0.2651
2 y −14.7317 −62.4385 −18.8872 4.7895 12.3708 4.6020 10.1900 −1.1713

2.5 y −11.3451 −47.6616 −14.0002 2.8063 6.7021 2.5822 6.2117 −1.3314
3 y −8.2927 −34.8476 −10.0211 1.7067 3.8412 1.5118 3.9022 −1.1385

3.5 y −5.6774 −23.9395 −6.7715 1.0330 2.2124 0.8872 2.4191 −0.8426
4 y −3.4884 −14.7071 −4.1215 0.5700 1.1696 0.4737 1.3652 −0.5485

4.5 y −1.6097 −6.8180 −1.8894 0.2438 0.4832 0.1978 0.5945 −0.2621

(b)

1 y −13.4191 −96.3065 −31.8708 20.9369 168.7090 25.5428 42.4058 6.8763
1.5 y −19.3928 −85.0507 −28.2278 8.3951 44.9036 9.7227 18.0795 −0.8700
2 y −16.6626 −69.9185 −21.9503 4.3225 19.1746 4.8187 9.9133 −2.1040

2.5 y −12.9684 −54.5511 −16.3767 2.4793 9.7422 2.6783 6.0040 −2.0250
3 y −9.5387 −40.4839 −11.7690 1.4819 5.3111 1.5581 3.7556 −1.6324

3.5 y −6.5555 −28.1046 −7.9772 0.8845 2.9280 0.9107 2.3219 −1.1722
4 y −4.0377 −17.3914 −4.8619 0.4814 1.4919 0.4843 1.3077 −0.7493

4.5 y −1.8674 −8.1086 −2.2329 0.2037 0.5952 0.2015 0.5683 −0.3538

Note: The table shows default probability mean relative error given in Equation (9) for maturities
from 1 to 4.5 years. Results are based on 1000 daily Monte Carlo simulations using different equity
volatility estimators. Default probability relative errors are in percentage (%). The simulation is based
on equi-spaced intra-day data generated on a 1-min frequency. Panel (a) refers to a trading noise
defined by Equation (6), panel (b) to Equation (7).
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Table 10. Bates model: default probability relative error.

Bates DPBV
Err DPRV

Err DPRVSS
Err DPTS

Err DPHL
Err DPK

Err DPPA
Err DPF

Err

(a)

1 y 14.4309 −87.1895 −29.9293 11.2133 36.5447 10.6474 22.8589 −2.1273
1.5 y −6.3833 −75.8094 −25.6593 5.0568 15.0133 4.1198 11.6211 −4.3575
2 y −10.3506 −62.5783 −20.5019 2.6651 7.5550 1.8140 6.9034 −4.1742

2.5 y −10.1010 −49.6830 −15.8434 1.5097 4.1438 0.8191 4.3846 −3.4849
3 y −8.4835 −37.7336 −11.7809 0.8810 2.3454 0.3568 2.8397 −2.6973

3.5 y −6.4324 −26.8797 −8.2676 0.4938 1.2813 0.1194 1.7782 −1.9495
4 y −4.2495 −17.0514 −5.1743 0.2556 0.6447 0.0189 1.0198 −1.2420

4.5 y −2.0866 −8.1234 −2.4413 0.1009 0.2468 −0.0116 0.4469 −0.5943

(b)

1 y 13.4257 −91.9420 −31.6169 18.4987 59.6240 13.0964 25.4460 −3.3672
1.5 y −6.7622 −82.7271 −28.0554 8.7867 24.5731 5.1571 12.4494 −5.5782
2 y −10.6074 −70.1849 −22.7147 4.8896 12.5041 2.3203 7.1783 −5.2046

2.5 y −10.3035 −56.8420 −17.6859 2.9221 6.9522 1.0776 4.4463 −4.3048
3 y −8.6408 −43.8048 −13.2162 1.7902 3.9822 0.4853 2.8177 −3.3196

3.5 y −6.5510 −31.5429 −9.3084 1.0624 2.2163 0.1803 1.7301 −2.3910
4 y −4.3266 −20.1699 −5.8425 0.5798 1.1333 0.0436 0.9752 −1.5208

4.5 y −2.1247 −9.6830 −2.7621 0.2422 0.4423 −0.0050 0.4206 −0.7267

Note: The table shows default probability mean relative error given in Equation (9) for maturities
from 1 to 4.5 years. Due to jumps removal, results are based on a sample of 934 days in case (a)
and 901 days in case (b) for our Monte Carlo simulations using different equity volatility estimators.
Default probability relative errors are in percentage (%). The simulation is based on equispaced
intra-day data generated on a 1-min frequency. Panel (a) refers to a trading noise being defined
by Equation (6).

Comparing the performance of alternative equity volatility estimators on default probabilities is
done for different maturities (from 1 to 5 years) through the mean relative error between the estimated
default probability and the theoretical one. For each maturity, we consider the following measure

DPE
Err := E

[
DP(ΣE

t )− DP(Σs
t)

DP(Σs
t)

]
· 100, (9)

where DP(ΣE
t ) is the default probability evaluated through Equation (5) when equity and asset

volatility are estimated through a generic couple of estimators ΣE
t , v̂t

E; DP(Σs
t) is the corresponding

theoretical default probability when equity and asset volatility are, respectively, Σs
t and vt (model daily

volatilities). Tables 9 and 10 summarize the corresponding numerical results for both Heston and Bates
cases, suggesting that the choice of the volatility estimator largely affects default probabilities.

Table 9 highlights that for the Heston model the smallest overall error on default probabilities is
provided by the Fourier estimator, followed by the Two-Scales and the Kernel ones. For maturities
greater than 2.5 years, even the ΣHL

t and Pre-Average estimators give good results. The optimally
sampled Bipower Variation ΣBV

t provides results that are comparable with ΣRVSS
t , underestimating

the default risk. The classical 5-min Realized Volatility approach can severely underestimate risk,
leading to an error of more than 90% in absolute value for maturities before 1y and around 60%−70%
in absolute value for maturities up to 2 years.

A similar ranking among estimators holds in Bates case, as reported in Table 10. While for
maturities greater than 3 years the Kernel estimator has the best performance, i.e., the smallest average
error on default probabilities, overall the Fourier estimator reveals to be the more stable one, with
relative errors across all maturities being below 5.6% in absolute value. Differently from the Fourier
case, all other estimators show a peak in the default probability relative error for the 1y time horizon.

For a better visual insight, Figures 8 and 9 show the mean relative error comparing different
calibration procedures for Bates model, with, alternatively, Gaussian (a) and Correlated noise (b).
A negative (positive) error reveals that the calibration procedure underestimates (overestimates)
default probabilities. What emerges from the reported plots of default probability relative errors is that
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the Fourier estimator (red line in the Figures) is the most efficient, although it slightly underestimates
default probabilities. This is due to the convexity of the non linear relationship between default
probability error and asset volatility, as depicted in Figure 4 and discussed in Section 6. All the
other estimators produce relative errors on default probabilities that are more inaccurate (and more
volatile) as function of the maturity, reaching high absolute values for very short time horizons.
The Realized Volatility estimator has a poor performance from 1y to 5y, always providing a significant
underestimation of the default probability. This qualitative behavior reflects also results obtained for
Heston setting, for both cases of Gaussian and Correlated trading noise and we omit them for brevity.
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Default Probabilities Calibrated from Heston (2003) Model: Noise panel (a)

DP (ΣBV
t )

DP (ΣRV
t )

DP (ΣRV SS
t )

DP (ΣTS
t )

DP (ΣHL
t )

DP (ΣK
t )

DP (ΣPA
t )

DP (ΣF
t )

DP (Σs
t )

Figure 7. Heston model: default probability. The plot reports the average results obtained by computing
default probabilities according to Equation (5). For each day in the sample and for each volatility
estimator E we use the asset volatility v̂t

E, calibrated as explained in the text, in order to compute the
default probabilities for any maturity (from 1 to 5 years). Results are based on 1000 daily Monte Carlo
simulations; trading noise is defined by Equation (6).
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Figure 8. Bates model: default probability relative error. The plot shows default probability mean
relative error given in Equation (9) for maturities from 1 to 5 years. Results are based on a sample of
934 days for our Monte Carlo simulations (due to jumps removal) and refer to trading noise (6).
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Default Probabilities Calibrated from Bates (1996) Model: Noise panel (b)
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Figure 9. Bates model: default probability relative error. The plot shows default probability mean
relative error given in Equation (9) for maturities from 1 to 5 years. Results are based on a sample of
901 days for our Monte Carlo simulations (due to jumps removal) and refer to trading noise (7).

6. Sensitivity Analysis

In this Section we study the sensitivity of the asset volatility calibration and default probability
estimation w.r.t. different values of the key parameters considered in our stochastic volatility setting:
the correlation between volatility and returns (leverage effect) in Heston model, captured by parameter
ρ, and the average percentage jump size in Bates model, captured by parameter µJ .

We consider as base case the setting described in the above analysis and define alternative sets
of parameters. This is done by keeping unchanged the 5-years default probability PD5y = 1.37%.
The leverage effect is analyzed within Heston model in Section 6.1, while the sensitivity w.r.t. the jump
parameter in Bates model is studied in Section 6.2. In both cases we consider a sample of 1000 days
for the Monte Carlo simulation and a market microstructure effect described by a Correlated noise
given in Equation (7). The simulations are based on equispaced intra-day data generated on a 1-min
frequency. The analysis is conducted by exploring how the performance of different equity volatility
estimators changes for different levels of the leverage effect and jump amplitude; then, the impact
of equity volatility estimates on calibrated asset volatility and default probability is studied. From a
credit risk perspective, this analysis is useful since it can suggest which equity volatility estimator is
more appropriate depending on the specificity of the real dataset. The base cases presented below are
the same already discussed in the previous section.

6.1. Leverage Effect

In this subsection we develop a sensitivity analysis on Heston model by considering alternative
values of the correlation parameter ρ which captures the leverage effect. The idea is to quantify the
impact of this key variable on both asset volatility calibration and default probability estimation.
Table 11 summarizes the results of this analysis: starting from the base case described in the previous
section, we compare the results associated to a correlation ρ = −24.02% with those obtained (i) for
a higher (in absolute value) negative correlation ρ = −30% and (ii) for the uncorrelated case ρ = 0.
As well documented in the econometric literature, the leverage effect is known to be negative in
financial markets, that is why we consider ρ = 0 as extreme scenario. The initial asset volatility
considered is the one corresponding to a 5-years default probability PD5y = 1.37% (see Table 11).
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Table 11. Test cases.

Heston

ρ v0

ρ = −30.00% v0 = 20.92%
ρ = −24.02% v0 = 21.65%

ρ = 0.0 v0 = 24.20%

Note: The table summarizes the values considered in the sensitivity analysis for three alternative test
cases associated with a 5-years default probability PD5y = 1.37%.

Table 12 reports MSE and BIAS of each equity volatility estimator under different levels of ρ.
The outcome of our analysis highlights that the performance of equity volatility estimators is not
much affected by the leverage parameter. Changing parameter ρ does not seem to generate a strong
and significant directional impact on MSE and BIAS of the considered equity volatility estimators.
Nevertheless, Table 12 reveals that the volatility estimators improve slightly their performance in terms
of MSE as the negative leverage effect increases in absolute value; the Two-Scales, Kernel, Pre-Average
and Fourier estimators give the best performance in terms of MSE, with an order of magnitude of
e− 04 in all cases.

As highlighted by Table 13, the leverage effect impacts the underlying asset volatility calibration:
increasing the correlation level enhances the variance of the calibrated asset volatility, as the last
column of the table shows. The 5-min Realized volatility estimator worsens its performance when
ρ(< 0) increases in absolute value, reaching an average of asset volatility ratio of 71%. The same
happens for the Bipower variation estimator and the Realized volatility estimator with sparse sampling:
BV worsen its asset volatility mean ratio from 95.2% to 94.1% going from ρ = 0 to ρ = −30%, while
the RVSS estimator shows results from 94% to 92.8% in the corresponding case studies. Results are
even worst if we consider the 1-min Realized Volatility estimator, completely swamped by trading
noise, and reaching less than 40% in terms of mean asset volatility ratio. We recall that results for the
1-min Realized Volatility estimator are not reported to have a more consistent benchmark with all other
estimators. In terms of standard deviation, the performance of ΣTS

t , ΣHL
t , ΣK

t , ΣPA
t , ΣF

t is comparable,
going from 4.9% to 6.8% depending on the level of the leverage ratio.

Table 14 reports the results for the default probability errors under the three alternative settings
associated to different leverage effects: all estimators (except the Fourier one) perform better in the
uncorrelated case and get worse as the negative leverage effect increases in absolute value. From a
credit risk perspective, this sensitivity analysis suggests that when dealing with a sample characterized
by a correlation parameter ρ close to zero, the Kernel estimator should be preferred in order to evaluate
the default probability, by reaching PD errors lower than 1.2% for 3y and lower than 0.16% for 4.5y
maturity. The ΣTS

t , ΣHL
t , ΣPA

t , ΣF
t also provide good estimated for maturities greater than 3.5y; for

shorter maturities, the smallest errors are obtained by the Fourier estimator with an error of −1.75%
for 1.5y and a maximum of 2.8% for the 1y time horizon, significantly lower than errors obtained for
the same short term maturity with all other estimators. At the same time, the Two-Scale, Kernel and
Fourier estimators represent the best choice for a sample of data characterized by a more realistic high
negative leverage effect: here the extreme case considered is ρ = −30%, and ΣTS

t , ΣK
t , ΣF

t show a good
performance. For ρ = −30%, the Fourier estimator still has the smallest volatility of default probability
errors if compared with the performance of all other estimators.
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Table 12. Heston model: leverage effect on equity volatility estimators.

Heston ΣBV
t ΣRV

t ΣRVSS
t ΣTS

t ΣHL
t ΣK

t ΣPA
t ΣF

t

ρ = −30%

MSE 2.25 × 10−3 2.18 × 10−2 2.04 × 10−3 3.53 × 10−4 1.45 × 10−3 4.23 × 10−4 4.65 × 10−4 5.28 × 10−4

BIAS 2.57 × 10−2 1.46 × 10−1 2.92 × 10−2 −5.06 × 10−4 −7.05 × 10−4 −1.96 × 10−5 −4.01 × 10−3 5.84 × 10−3

ρ = −24.02%

MSE 2.42 × 10−3 2.28 × 10−2 2.30 × 10−3 3.58 × 10−4 1.66 × 10−3 4.64 × 10−4 5.05 × 10−4 5.71 × 10−4

BIAS 2.84 × 10−2 1.48 × 10−1 3.21 × 10−2 −7.66 × 10−4 5.10 × 10−4 −3.72 × 10−4 −4.20 × 10−3 6.06 × 10−3

ρ = 0

MSE 2.86 × 10−3 2.70 × 10−2 2.64 × 10−3 4.95 × 10−4 2.11 × 10−3 4.93 × 10−4 5.52 × 10−4 6.25 × 10−4

BIAS 3.03 × 10−2 1.62 × 10−1 3.50 × 10−2 −1.62 × 10−3 −1.24 × 10−3 −1.64 × 10−4 −4.61 × 10−3 6.55 × 10−3

Note: The table shows mean squared error (MSE) and BIAS for different equity volatility estimators. The panel refers to the trading noise given in Equation (7), with
α = 0.5. Alternative values for the correlation ρ are considered, i.e., ρ ∈ {−30%,−24.02%, 0}.



Econometrics 2016, 4, 31 24 of 31

Table 13. Heston model: leverage effect on calibrated asset volatility.

Heston

Mean Median 10 perc. 90 perc. Min Max Std Dev.

ρ = −30%

v̂t
BV/vt 0.9414 0.9287 0.8099 1.0820 0.7170 1.6830 0.1100

v̂t
RV/vt 0.7112 0.7105 0.6753 0.7481 0.6333 0.8161 0.0285

v̂t
RVSS/vt 0.9286 0.9186 0.8180 1.0401 0.7280 1.5650 0.0909

v̂t
TS/vt 1.0055 1.0029 0.9322 1.0815 0.8502 1.2804 0.0598

v̂t
HL/vt 1.0209 0.9977 0.8745 1.1864 0.7505 1.7650 0.1370

v̂t
K/vt 1.0048 0.9991 0.9250 1.0881 0.8296 1.2480 0.0651

v̂t
PA/vt 1.0180 1.0123 0.9322 1.1079 0.8298 1.2640 0.0689

v̂t
F/vt 0.9875 0.9822 0.9061 1.0758 0.7997 1.2254 0.0672

ρ = −24.02%

v̂t
BV/vt 0.9391 0.9282 0.8200 1.0757 0.7079 1.2751 0.0984

v̂t
RV/vt 0.7298 0.7296 0.6947 0.7635 0.6308 0.8285 0.0273

v̂t
RVSS/vt 0.9276 0.9216 0.8227 1.0357 0.7396 1.3023 0.0838

v̂t
TS/vt 1.0061 1.0023 0.9348 1.0789 0.8673 1.2023 0.0553

v̂t
HL/vt 1.0176 0.9911 0.8757 1.1951 0.7826 1.8007 0.1353

v̂t
K/vt 1.0060 1.0006 0.9283 1.0914 0.8423 1.2411 0.0627

v̂t
PA/vt 1.0176 1.0121 0.9359 1.1062 0.8570 1.2606 0.0662

v̂t
F/vt 0.9883 0.9834 0.9103 1.0734 0.8388 1.2148 0.0642

ρ = 0

v̂t
BV/vt 0.9518 0.9420 0.8545 1.0614 0.7486 1.2600 0.0809

v̂t
RV/vt 0.7775 0.7768 0.7496 0.8061 0.7093 0.8636 0.0218

v̂t
RVSS/vt 0.9403 0.9371 0.8598 1.0316 0.7810 1.1655 0.0653

v̂t
TS/vt 1.0075 1.0031 0.9481 1.0687 0.8798 1.2356 0.0497

v̂t
HL/vt 1.0201 0.9972 0.8981 1.1718 0.8000 1.5879 0.1145

v̂t
K/vt 1.0044 0.9992 0.9440 1.0689 0.8841 1.1871 0.0494

v̂t
PA/vt 1.0147 1.0121 0.9497 1.0812 0.8880 1.2185 0.0529

v̂t
F/vt 0.9905 0.9879 0.9284 1.0535 0.8628 1.1834 0.0509

Note: The table shows descriptive statistics of calibrated asset volatility for different equity volatility
estimators. The panel refers to the trading noise given in Equation (7), with α = 0.5. Alternative
values for the correlation ρ are considered, i.e., ρ ∈ {−30%,−24.02%, 0}.

By looking at asset volatility and equity volatility estimation, we can observe what follows: the
performance of the three noise-robust estimators ΣTS

t , ΣK
t , ΣF

t is comparable, and in some cases the
Two-Scale and Kernel estimators can even do better than the Fourier one. Nevertheless, in terms of
default probability relative error, the Fourier estimator provides better results, in particular for short
maturities. The intuition behind the observed behavior is linked to the convexity of the non-linear
relationship between default probability error and underlying asset volatility, as depicted in Figure 4.
As we can observe, the relationship between default probability error and equity volatility estimates
is non-linear and flattening as the equity volatility estimate increases. The same applies for the
relationship between asset volatility and equity volatility. While the Two-Scale and Kernel estimators
bring to an average overestimation of the underlying asset volatility, the Fourier estimates reveals an
overall underestimation of the asset volatility. As a consequence, Fourier results are associated to a
slight underestimation of the default probability while the Two-Scale and Kernel estimators can bring
to higher default probability overestimation. This effect is amplified for short maturities, since the
target variable to calibrate is the 5-years default probability.
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Table 14. Heston model: leverage effect on default probability estimation.

Heston DPBV
Err DPRV

Err DPRVSS
Err DPTS

Err DPHL
Err DPK

Err DPPA
Err DPF

Err

ρ = −30%

1 y 4.7996 −96.9042 −23.7409 22.3603 164.5229 24.3275 42.8046 6.8151
1.5 y −14.3485 −86.5006 −25.6429 8.5531 45.9491 9.0604 18.3006 −0.9973
2 y −14.2628 −71.7115 −20.5832 4.2434 20.1667 4.3702 10.0212 −2.2244

2.5 y −11.6035 −56.2816 −15.5388 2.3587 10.4761 2.3651 6.0606 −2.1285
3 y −8.7107 −41.9399 −11.2325 1.3717 5.8261 1.3378 3.7860 −1.7152

3.5 y −6.0728 −29.2146 −7.6546 0.7914 3.2556 0.7570 2.3270 −1.2429
4 y −3.7607 −18.1143 −4.6681 0.4249 1.6958 0.3979 1.3155 −0.7859

4.5 y −1.7491 −8.4585 −2.1484 0.1761 0.6865 0.1617 0.5710 −0.3716

ρ = −24.02%

1 y −13.4191 −96.3065 −31.8708 20.9369 168.7090 25.5428 42.4058 6.8763
1.5 y −19.3928 −85.0507 -28.2278 8.3951 44.9036 9.7227 18.0795 −0.8700
2 y −16.6626 -69.9185 -21.9503 4.3225 19.1746 4.8187 9.9133 −2.1040

2.5 y −12.9684 −54.5511 −16.3767 2.4793 9.7422 2.6783 6.0040 −2.0250
3 y −9.5387 −40.4839 −11.7690 1.4819 5.3111 1.5581 3.7556 −1.6324

3.5 y −6.5555 −28.1046 −7.9772 0.8845 2.9280 0.9107 2.3219 −1.1722
4 y −4.0377 −17.3914 −4.8619 0.4814 1.4919 0.4843 1.3077 −0.7493

4.5 y −1.8674 −8.1086 −2.2329 0.2037 0.5952 0.2015 0.5683 −0.3538

ρ = 0

1y −15.5280 −94.5066 −34.7584 22.5433 132.9700 18.0097 33.3303 2.8602
1.5y −18.0677 −81.4410 −27.5159 9.4160 40.9134 7.1596 15.0375 −1.7585
2y −14.9654 −65.8099 −20.6777 5.0341 18.8418 3.6290 8.5020 −2.2432

2.5y −11.4706 −50.7851 −15.1741 2.9833 10.1242 2.0582 5.2617 −1.9516
3y −8.3639 −37.4239 −10.7986 1.8339 5.7829 1.2193 3.3458 −1.5084

3.5y −5.7269 −25.8687 −7.2810 1.1117 3.3050 0.7165 2.0835 −1.0672
4y −3.5034 −15.9461 −4.4069 0.6189 1.7562 0.3880 1.1869 −0.6675

4.5y −1.6112 −7.3986 −2.0128 0.2692 0.7288 0.1665 0.5234 −0.3087

Note: The table shows default probability mean relative error given in Equation (9) for maturities
from 1 to 4.5 years. Results are based on a sample of 1000 days for our Monte Carlo simulations.
Default probability relative errors are in percentage (%). The panel refers to the trading noise
given in Equation (7), with α = 0.5. Alternative values for the correlation ρ are considered, i.e.,
ρ ∈ {−30%,−24.02%, 0}.

6.2. Average Jumps Size

This section compares the performance of alternative non-parametric estimators for different
values of the average jump size, measuring their sensitivity to parameter µJ . The aim of this analysis is
to study how alternative scenarios with a different jump amplitude can affect asset volatility calibration
and default probability estimation inside a setting described by the Bates model.

Table 15 summarizes the cases we consider in this analysis: starting from the base parameters
associated to µJ = 2.35% (as in the previous Section, Table 4), we consider two alternative cases: one
with higher average jump size µJ = 3.35%, one with lower average jump amplitude µJ = 1.35%.
The initial asset volatility considered in each case is the one associated to a 5-years default probability
PD5y = 1.37% (see Table 15). Here we consider a sample of 1000 days for our Monte Carlo simulation
and a Correlated trading noise as defined in Equation (7). The simulation is again based on equispaced
intra-day data generated on a 1-min frequency.

Table 15. Test cases.

Bates

µJ v0

µJ = 3.35% v0 = 25.04%
µJ = 2.35% v0 = 25.01%
µJ = 1.35% v0 = 24.94%

Note: The table summarizes the values considered in this sensitivity analysis for three alternative test
cases associated with a 5-years default probability PD5y = 1.37%.
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Results for the equity volatility estimators are reported in Table 16: the Two-Scale estimator is
the one having the smallest BIAS in the three cases analyzed, with a performance comparable to the
Kernel estimator for the case µJ = 3.35. In case µJ = 2.35% or µJ = 1.35%, the Two-Scale estimator
still exhibits an order of magnitude on the BIAS of e− 04, while the BIAS for the Kernel goes to e− 03.
A subset of estimators, namely ΣBV

t , ΣRVSS
t , ΣK

t , ΣPA
t , ΣF

t , shows an improved performance in terms of
MSE when going from µJ = 3.35% to µJ = 1.35%, thus for a decreasing average jumps size.

The jumps amplitude effect on asset volatility calibration is shown in Table 17: the general
outcome is that the average jumps size has a quite negligible effect on asset volatility ratio for all
estimators except the Bipower variation, showing the highest standard deviation of more than 15%.
The higher jumps amplitude µJ = 3.35% is associated to an average asset volatility ratio for the
Bipower variation of 93% with a 15.44% standard deviation. The ΣTS

t , ΣHL
t , ΣK

t , ΣPA
t , ΣF

t estimators
show the best performance: from our results, we cannot say that the jumps amplitude has a strong
directional effect on asset volatility calibration. The 5-min Realized volatility estimator has the worst
performance among the whole set of estimators, for each value of the jumps amplitude, showing an
average asset volatility ratio of around 70%. The performance is even worst if we consider the 1-min
Realized volatility, providing estimates below 50% in terms of mean asset volatility ratio for the Bates
case. A possible explanation of the observed behavior for all estimators under Bates setting can be
related to the fact that we are filtering out days with jumps: if the procedure to remove jumps gives
good results for each value of the parameter µJ , this can explain why we do not see a huge impact on
calibrated asset volatility. On the contrary, the Bipower variation estimates are computed on the full
sample before jump removal and therefore are more sensitive to the jump size.

Finally, from Table 18 we can see the sensitivity of errors on default probability for different levels
of the parameter µJ : the 5-min Realized volatility estimator still has a poor performance for each value
of µj, since it always underestimates default probability with errors reaching more than −91% in all
cases for short maturities. The Realized volatility estimator with sparse sampling on the contrary
improves its performance when µJ increases: this effect is greater for maturities up to 2.5 years.

The Fourier estimator gives the best results for the high average jumps size level µJ = 3.35%.
Under this scenario, also the Kernel and Two-Scale estimators perform quite well from 2.5 years
onwards, with errors below 2.7%.

From a credit risk perspective, the choice of the volatility estimator is affected by the level of the
jumps amplitude: for intermediate and low levels of the average jump amplitude, the best performance
in terms of relative errors is given by the Kernel estimator for maturities greater than 2.5 years, while
for short maturities the Fourier one has to be preferred. When the dataset is instead characterized by a
high average jump size, i.e., µj = 3.35% in our test case, the Fourier estimator provides the smallest
standard deviation of errors on the default probability estimation, thus it seems to be the best choice
from a risk management perspective under this scenario. If we consider single time horizons estimates,
the Two-Scale and Kernel can have estimates which are better than Fourier, but the overall performance
is dominated by the Fourier estimator with errors always below 3% for all maturities.
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Table 16. Bates model: effect of average jumps size on equity volatility estimators.

Bates ΣBV
t ΣRV

t ΣRVSS
t ΣTS

t ΣHL
t ΣK

t ΣPA
t ΣF

t

µJ = 3.35%

MSE 3.55 × 10−3 2.80 × 10−2 2.94 × 10−3 6.29 × 10−4 1.84 × 10−3 6.23 × 10−4 6.70 × 10−4 7.61 × 10−4

BIAS 3.36 × 10−2 1.64 × 10−1 3.50 × 10−2 2.58 × 10−4 2.12 × 10−3 5.23 × 10−4 −3.99 × 10−3 7.70 × 10−3

µJ = 2.35%

MSE 3.36 × 10−3 2.78 × 10−2 3.12 × 10−3 6.37 × 10−4 1.88 × 10−3 7.18 × 10−4 7.51 × 10−4 8.91 × 10−4

BIAS 3.40 × 10−2 1.63 × 10−1 3.71 × 10−2 −6.38 × 10−4 1.54 × 10−3 2.43 × 10−3 −1.65 × 10−3 1.03 × 10−2

µJ = 1.35%

MSE 3.32 × 10−3 2.81 × 10−2 2.74 × 10−3 5.31 × 10−4 1.81 × 10−3 5.42 × 10−4 5.85 × 10−4 6.83 × 10−4

BIAS 3.51 × 10−2 1.65 × 10−1 3.58 × 10−2 4.81 × 10−4 2.37 × 10−3 1.15 × 10−3 −3.10 × 10−3 8.59 × 10−3

Note: The table shows mean squared error (MSE) and BIAS for different equity volatility estimators. The panel refers to the trading noise given in Equation (7), with
α = 0.5. Alternative values for the jump parameter µJ are considered: µJ ∈ {1.35%, 2.35%, 3.35%}.
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Table 17. Bates model: effect of average jumps size on calibrated asset volatility.

Bates

Mean Median 10 perc. 90 perc. Min Max Std Dev.

µJ = 3.35%

v̂t
BV /vt 0.9392 0.9267 0.7602 1.1496 0.4126 1.4478 0.1544

v̂t
RV /vt 0.7102 0.7098 0.6747 0.7501 0.5455 0.8180 0.0311

v̂t
RVSS/vt 0.9247 0.9162 0.8129 1.0481 0.6522 1.2965 0.0943

v̂t
TS/vt 1.0050 0.9998 0.9226 1.0932 0.7700 1.2898 0.0705

v̂t
HL/vt 1.0113 0.9914 0.8703 1.1860 0.6887 1.4865 0.1253

v̂t
K/vt 1.0047 1.0002 0.9248 1.0921 0.7424 1.2830 0.0695

v̂t
PA/vt 1.0182 1.0158 0.9288 1.1087 0.7404 1.2769 0.0733

v̂t
F/vt 0.9854 0.9840 0.9033 1.0720 0.7190 1.2204 0.0698

µJ = 2.35%

v̂t
BV /vt 0.9378 0.9222 0.7570 1.1482 0.5435 1.4866 0.1514

v̂t
RV /vt 0.7089 0.7096 0.6710 0.7494 0.5672 0.8206 0.0322

v̂t
RVSS/vt 0.9187 0.9101 0.8112 1.0389 0.6286 1.4060 0.0940

v̂t
TS/vt 1.0070 1.0024 0.9246 1.0972 0.7306 1.2813 0.0700

v̂t
HL/vt 1.0129 0.9981 0.8711 1.1864 0.6801 1.4773 0.1275

v̂t
K/vt 0.9997 0.9971 0.9115 1.0918 0.6901 1.2540 0.0724

v̂t
PA/vt 1.0120 1.0086 0.9222 1.1073 0.6911 1.2946 0.0766

v̂t
F/vt 0.9786 0.9767 0.8952 1.0681 0.6766 1.2632 0.0719

µJ = 1.35%

v̂t
BV /vt 0.9317 0.9196 0.7512 1.1245 0.5598 1.4828 0.1508

v̂t
RV /vt 0.7057 0.7052 0.6688 0.7443 0.5763 0.8189 0.0303

v̂t
RVSS/vt 0.9200 0.9169 0.8127 1.0360 0.6870 1.2506 0.0871

v̂t
TS/vt 1.0039 0.9992 0.9228 1.0875 0.7633 1.3245 0.0657

v̂t
HL/vt 1.0118 0.9892 0.8660 1.1991 0.7020 1.4525 0.1273

v̂t
K/vt 1.0021 0.9994 0.9173 1.0850 0.7610 1.2345 0.0658

v̂t
PA/vt 1.0149 1.0140 0.9262 1.0992 0.7605 1.2729 0.0699

v̂t
F/vt 0.9819 0.9822 0.8987 1.0669 0.7453 1.2360 0.0661

Note: The table shows descriptive statistics of calibrated asset volatility for different equity volatility
estimators. The panel refers to the trading noise given in Equation (7), with α = 0.5. Alternative
value for the jump parameter µJ are considered: µJ ∈ {1.35%, 2.35%, 3.35%}. Results are based on
samples of 905, 901, 904 days respectively (due to jumps removal over a sample of 1000 days).

Table 18. Bates model: effect of average jumps size on default probability estimation.

Bates DPBV
Err DPRV

Err DPRVSS
Err DPTS

Err DPHL
Err DPK

Err DPPA
Err DPF

Err

µJ = 3.35%

1 y 15.4331 -92.3935 −28.6628 17.4791 57.9038 16.4345 29.8876 0.8040
1.5 y −5.5499 −82.9953 −25.8303 7.8566 23.3246 7.4235 15.4241 −2.6013
2 y −9.8511 −70.3362 −21.0037 4.1976 11.7265 3.9850 9.3216 −2.9963

2.5 y −9.8283 −56.9149 −16.3758 2.4224 6.4631 2.3112 6.0103 −2.6650
3 y −8.3473 −43.8289 −12.2420 1.4384 3.6764 1.3796 3.9382 −2.1293

3.5 y −6.3752 −31.5402 −8.6199 0.8253 2.0304 0.7968 2.4951 −1.5712
4 y −4.2349 −20.1568 −5.4092 0.4368 1.0308 0.4246 1.4449 −1.0138

4.5 y −2.0879 −9.6728 −2.5561 0.1768 0.3994 0.1731 0.6388 −0.4898

µJ = 2.35%

1 y 13.4257 −91.9420 −31.6169 18.4987 59.6240 13.0964 25.4460 −3.3672
1.5 y −6.7622 −82.7271 −28.0554 8.7867 24.5731 5.1571 12.4494 −5.5782
2 y −10.6074 −70.1849 −22.7147 4.8896 12.5041 2.3203 7.1783 −5.2046

2.5 y −10.3035 −56.8420 −17.6859 2.9221 6.9522 1.0776 4.4463 −4.3048
3 y −8.6408 −43.8048 −13.2162 1.7902 3.9822 0.4853 2.8177 −3.3196

3.5 y −6.5510 −31.5429 −9.3084 1.0624 2.2163 0.1803 1.7301 −2.3910
4 y −4.3266 −20.1699 −5.8425 0.5798 1.1333 0.0436 0.9752 −1.5208

4.5 y −2.1247 −9.6830 −2.7621 0.2422 0.4423 −0.0050 0.4206 −0.7267



Econometrics 2016, 4, 31 29 of 31

Table 18. Cont.

Bates DPBV
Err DPRV

Err DPRVSS
Err DPTS

Err DPHL
Err DPK

Err DPPA
Err DPF

Err

µJ = 1.35%

1 y 8.1961 −91.5704 −33.4203 14.1758 57.0915 12.3161 24.6874 −3.0626
1.5 y −9.5962 −82.6645 −28.5201 6.4643 23.5554 5.4018 12.8792 −4.7706
2 y −12.5535 −70.2623 −22.7504 3.4514 11.9553 2.7455 7.7550 −4.4219

2.5 y −11.7049 −56.9596 −17.5633 1.9838 6.6331 1.4914 4.9708 −3.6450
3 y −9.6430 −43.9142 −13.0488 1.1734 3.7960 0.8299 3.2388 −2.8032

3.5 y −7.2316 −31.6256 −9.1501 0.6707 2.1123 0.4398 2.0399 −2.0157
4 y −4.7442 −20.2222 −5.7238 0.3533 1.0806 0.2137 1.1752 −1.2808

4.5 y −2.3185 −9.7054 −2.6987 0.1423 0.4222 0.0781 0.5170 −0.6114

Note: The table shows default probability mean relative error given in Equation (9) for maturities
from 1 to 4.5 years. Results are based on a sample of 905, 901, 904 days (due to jumps removal
over a sample of 1000 days), respectively, in the three cases depicted below for our Monte Carlo
simulations. Default probability relative errors are in percentage (%). The panel refers to a trading
noise defined by Equation (7). Alternative values for the jump parameter µJ are considered:
µJ ∈ {1.35%, 2.35%, 3.35%}.

7. Conclusions

In this paper we address the problem of calibrating the underlying asset volatility and estimating
the corresponding default probability inside a structural credit risk model. This is done by means of a
non-parametric estimation of equity volatility coming from high-frequency intra-day equity prices.

We consider a stylized Merton-type [1] structural model for defaultable bonds that incorporates
stochastic volatility and jumps in the presence of market microstructure noise. The model framework
for the unlevered firm’s assets value process is defined through, alternatively, Bates [18] and Heston [17]
models. Two market microstructure assumptions are considered, namely independent Gaussian and
Correlated (to equity returns) trading noise.

We show that by exploiting the information content of intra-day high-frequency prices and by
filtering out microstructure effects, it is possible to efficiently retrieve the underlying asset volatility
and thus evaluate the corresponding default probabilities under the historical measure. The simulation
analysis is conducted for bonds with rating A and the calibrated underlying assets volatility is
obtained as result of a specific calibration procedure defined by matching the 5y default probability
for this rating class and considering equity volatility estimation as input. This technique allows us to
overcome the problem of the non-observability of the underlying asset volatility even if working in a
structural model.

A regression analysis conducted between CDS daily quotes of a US company and the
corresponding series of equity volatility measure extracted from high frequency equity prices highlights
that alternative non parametric equity volatility estimators can have a different impact in terms
of explanatory power of CDS premium variability and thus on default probability evaluation.
These empirical evidences are confirmed by the simulation study under both Heston and Bates settings.

The outcome of our Monte Carlo simulation analysis highlights that asset volatility and default
probabilities are deeply affected by the choice of the non-parametric equity volatility estimator.
The commonly used Realized Volatility estimator is unable to provide reliable estimates for equity
volatility in the presence of market microstructure noise, leading to a significant underestimation of
both asset volatility and default probabilities. This confirms the results obtained by [16] and extend
their validity to the case of stochastic volatility models with jump components for the firm’s assets.

A sensitivity analysis is also provided to evaluate to what extent the choice of the non-parametric
estimators for equity volatility affects the calibrated asset volatility and default probabilities when data
are characterized by alternative leverage parameters (Heston model) or alternative average jumps size
(Bates model). The analysis reveals interesting results from a credit risk point of view, suggesting that
(i) the characteristics of the dataset are crucial to determine which is the proper estimator to consider
and (ii) the convexity of the non-linear relationship between default probability error and underlying
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asset volatility plays a key role. As an example, when the dataset is characterized by a high negative
leverage effect, the Fourier estimator has a performance which is comparable with other estimators in
retrieving the underlying asset volatility but has the best performance in terms of default probability,
especially for short maturities, due to the non-linear relationship between default probability error
and underlying asset volatility.
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