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Abstract: Gini index is a widely used measure of economic inequality. This article develops a theory
and methodology for constructing a confidence interval for Gini index with a specified confidence
coefficient and a specified width without assuming any specific distribution of the data. Fixed sample
size methods cannot simultaneously achieve both specified confidence coefficient and fixed width.
We develop a purely sequential procedure for interval estimation of Gini index with a specified
confidence coefficient and a specified margin of error. Optimality properties of the proposed method,
namely first order asymptotic efficiency and asymptotic consistency properties are proved under
mild moment assumptions of the distribution of the data.

Keywords: distribution-free method; fixed width confidence interval; Gini index; sample size
planning; U-statistics
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1. Introduction

Economic inequality arises due to inequality in the distribution of income and assets among
individuals or groups within a society or region or even between countries. Economic inequality
is usually measured to evaluate the effects of economic policies at the micro or macro level.
Several inequality indexes that measure the economic inequality are proposed in the economics
literature. Among those indexes, Gini inequality index is the most widely used measure. The most
celebrated Gini index, as given in [1], is

GF(X) =
∆
2µ

, where ∆ = E |X1 − X2| , µ = E(X) (1)

and X1 & X2 are two i.i.d. copies of nonnegative random variable X with distribution function F.
Gini index compares every individual’s income with other individual’s income. If there are n randomly
selected individuals with incomes given by X1, . . . , Xn, then the estimator of the celebrated Gini
index is

Ĝn =
∆̂n

2X̄n
, (2)

where X̄n is the sample mean and ∆̂n is the sample Gini’s mean difference defined as,
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X̄n =
1
n

n

∑
i=1

Xi and ∆̂n =

(
n
2

)−1

∑
1≤i1<i2≤n

∣∣Xi1 − Xi2

∣∣ . (3)

The Gini index is undefined if X̄n = 0. We ignore this special case.
Inference for inequality measures, including Gini index, has been an area of research interest

among many economists in recent years. For the existing literature on inference problems related
to inequality index, we refer to [2–7]. Even though there exist innovative methods for constructing
confidence intervals for GF (e.g., see [7]), due to large standard errors of estimated Gini index as
mentioned in [8], we may not get a short confidence interval for Gini index. We know that the
confidence interval varies from sample to sample and so does its width. Wider confidence intervals
provide less precise information about the true value of the parameter of interest. Since it is desirable
to construct shorter confidence intervals, we rather fix the length of the confidence interval, or in other
words, the margin of error while achieving the confidence coefficient (1− α) for some specified α in
(0, 1). This problem is known as the fixed-width confidence interval estimation problem.

No fixed sample size procedure can provide a solution to the fixed-width confidence interval
estimation problem (e.g., see [9]). Thus, one must resort to sampling in stages to construct a
100(1− α)% confidence interval for GF with a pre-specified width. This problem falls in the domain of
sequential analysis. For details about the general theory of fixed-width confidence interval estimation,
we refer to [10,11]. Sequential analysis is concerned with studies where sample sizes are not fixed in
advance. Instead, the sequential estimation procedure depends on collecting observations until an
a-priori specified criterion or stopping rule is satisfied.

We know that Gini’s mean difference is U-statistic with a symmetric kernel of degree 2 and the
sample mean is a U-statistic with a symmetric kernel of degree 1 (e.g., see [12]). Under distribution-free
scenario, [7] used the central limit theorem for U-statistics to come up with a confidence interval for
Gini index. However, this cannot be used to find out a fixed-width confidence interval for Gini index.
In this article, we solve the problem of obtaining a fixed-width confidence interval for Gini index using
a purely sequential procedure with a stopping rule based on several U-statistics. Apart from being
unbiased estimators, U-statistics are also reverse martingales with respect to some non-increasing
filtration as proven in [13]. For more literature on reverse martingales, we refer to classical textbooks on
probability theory and stochastic processes such as [14,15]. We exploit the reverse martingale property
of U-statistics to derive attractive asymptotic properties of our proposed estimation procedure.

In the next section, we formally state the fixed-width confidence interval estimation problem
and why a fixed-sample size procedure cannot be used. In Section 3, a purely sequential procedure is
proposed to construct a 100(1− α)% fixed-width confidence interval for unknown population Gini
index and implementation and characteristics of the sequential procedure is discussed as well. Section 4
presents simulation study and validate all theoretical results related to our procedure. We conclude
this article with some remarks in Section 5.

2. Problem Statement and Optimal Sample Size

Consider n randomly selected individuals from some population of interest with incomes denoted
by X1, X2, . . . , Xn. Suppose these are nonnegative independent and identically distributed random
variables assumed to be drawn from an unknown distribution function F where the support of the
distribution is (0, ∞). A strongly consistent estimator of population Gini index GF is Ĝn given in (2).
For pre-specified α in (0, 1), the goal of this paper is to develop the theory for constructing a 100(1− α)%
fixed-width confidence interval for GF. Formally, we would like to construct a confidence interval
Jn = (Ĝn − d, Ĝn + d) such that

P
(

Ĝn − d < GF < Ĝn + d
)
≥ 1− α, (4)
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for some prefixed margin of error d > 0. Using [7], we have

√
n
(

Ĝn − GF

)
→ N

(
0, ξ2

)
as n→ ∞, (5)

where ξ2 is the asymptotic variance given by

ξ2 =
∆2

4µ4 σ2 − ∆τ

µ3 +
∆2

µ2 +
σ2

1
µ2 . (6)

Here,

τ = E(X1 |X1 − X2|) and σ2
1 = V

[
E
(
|X1 − X2|

∣∣X1
)]

.

Schroder and Yitzhaki [16] proposed a way to come up with the reasonable sample size related to
the convergence of the distribution of Ĝn to normality. In this paper, we verify via simulation study
that for moderate sample sizes (see Section 4) the distribution of sample Gini index is approximately
normal. Based on the asymptotic normality of Ĝn, we observe that the coverage probability is

P
(

Ĝn − d < GF < Ĝn + d
)
≈ 2Φ

(
d
√

n
ξ

)
− 1,

where Φ is the distribution function of standard normal random variable. In order to have 100(1− α)%
confidence interval, sample size n must satisfy

2Φ
(

d
√

n
ξ

)
− 1 ≥ 1− α. (7)

Solving (7) for n, we obtain n ≥ d−2z2
α/2ξ2, where zα/2 is the upper

(
α
2
)th quantile of the standard

normal distribution. Provided ξ is known, the optimal (minimal) sample size required to construct a
fixed-width confidence interval for Gini index with approximately (1− α) coverage probability is

C = dd−2z2
α/2ξ2e, (8)

where, dwe the lowest integer which is greater than or equal to w.
The optimal fixed sample size C is unknown since the true value of ξ is unknown in practice.

If C were known, one would just draw C observations independently from the population of interest
and compute (ĜC − d, ĜC + d) which would satisfy (4) approximately. Since C is unknown, one must
draw samples at least in two stages in order to achieve the desired coverage probability at least
approximately. In the first stage, one must estimate C by estimating ξ, and then in the subsequent
stages one should collect samples until the current sample size is more or equal to the estimated
optimal sample size. In this article, we propose a purely sequential sampling procedure to estimate the
optimal sample size C and ensure that the fixed-width confidence interval based on the final sample
size attains the desired (1− α) coverage probability atleast asymptotically.

3. The Sequential Estimation Procedure

In sequential estimation procedures, the parameter estimates are updated as the data is observed.
In the first step, a small sample, called the pilot sample, is observed to gather preliminary information
about the parameter of interest. Then, in each successive step, one or more additional observations are
collected and the estimates of the parameters are updated. After each and every step a decision is taken
whether to continue or to terminate the sampling process. This decision is based on a pre-defined
stopping rule.
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From (8) we note that the optimal sample size needed to find a fixed-width confidence interval
depends on unknown parameter ξ2. So, let us first find a good estimator of the unknown parameter ξ2.
Following [7,17], we consider the following strongly consistent estimator of ξ2 based on U-statistics.
Let us define a U-statistic, for each j = 1, 2, . . . , n,

∆̂(j)
n =

(
n− 1

2

)−1

∑
Tj

∣∣Xi1 − Xi2

∣∣ , (9)

where Tj = {(i1, i2) : 1 ≤ i1 < i2≤ n and i1, i2 6= j}. Define Wjn= n∆̂n−(n− 2)∆̂(j)
n for j = 1, . . . , n,

and Wn = n−1 ∑n
j=1 Wjn. According to [17], a strongly consistent estimator of 4σ2

1 is

s2
wn = (n− 1)−1

n

∑
i=1

(Wjn −Wn)
2.

Using [7],

τ̂n =
2

n(n− 1) ∑
(n,2)

1
2
(Xi1+Xi2)

∣∣Xi1−Xi2

∣∣ (10)

is an estimator of τ. Let S2
n be the sample variance. Thus, the estimator of ξ2 is

V2
n = max

(
0,

∆̂2
nS2

n

4X4
n

− ∆̂n

X3
n

τ̂n +
∆̂2

n

X2
n

+
s2

wn

4X2
n

)
(11)

similar to [7]. Note that τ̂n, S2
n, ∆̂n are U-statistics of degree 2 (e.g., [7,18]) and the sample mean Xn is a

U-statistic of degree 1. Using continuous mapping theorem [17], and Theorem 3.2.1 in [11], we observe
that a strongly consistent estimator of ξ2 is V2

n which will be used in our proposed sequential procedure
to estimate C.

Several plug-in estimators of the asymptotic variance parameter of Gini index are proposed in
the economics and statistics literature. To find the details about several plug-in estimators of the
asymptotic variance of Gini index under different sampling schemes, we refer to [4,19]. The proposed
plug-in estimator in [4] is simpler than V2

n . However, it is not known whether the estimator enjoys the
almost sure convergence property which is very important for us as we need this property to prove the
asymptotic optimality properties of the proposed sequential procedure. Moreover, with the high-end
computing facilities available these days, V2

n can be computed in seconds.
Using V2

n as the estimator of ξ2, we define the stopping rule Nd, for every d > 0, as

Nd = the smallest integer n(≥ m) such that n ≥
( zα/2

d

)2 (
V2

n + n−1
)

. (12)

Here, m is called the initial or pilot sample size, and the term n−1 is known as a correction term.
Note that Vn can be very close to zero with positive probability. Without the correction term,
the inequality (12) may be satisfied for very small n terminating the sampling process too early.
Thus the correction term n−1 ensures that the sampling process for estimating the optimal sample size
does not stop too early. For details about the correction term, we refer to [11].

From (12), we note that, Nd ≥
(

zα/2
d

)2
N−1

d , i.e., the final sample size must be at least zα/2/d.
Therefore, we consider the pilot sample size to be m = max {4, dzα/2/de}. This technique of estimating
pilot sample size can also be found in [10].

Recall that the optimal sample size required to achieve 100(1− α)% confidence interval for Gini
index is C which is unknown in practice. The stopping variable Nd defined in (12) serves as an
estimator of C. Below, we develop a purely sequential procedure to estimate the optimal sample size C.
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Implementation and Characteristics

We propose the following purely sequential procedure to estimate the optimal sample size C.
Stage 1: Compute the pilot sample size m = max {4, dzα/2/de} and draw a random sample

of size m from the population of interest. Based on this pilot sample of size m, obtain an
estimate of ξ2 by finding V2

m as given in (11) and check whether m ≥ (zα/2/d)2 (V2
m + m−1).

If m < (zα/2/d)2 (V2
m + m−1) then go to the next step. Otherwise, set the final sample size Nd = m.

Stage 2: Draw an additional observation independent of the pilot sample and update
the estimate of ξ2 by computing V2

m+1. Check if m + 1 ≥ (zα/2/d)2 (V2
m+1 + (m + 1)−1).

If m + 1 < (zα/2/d)2 (V2
m+1 + (m + 1)−1) then go to the next step. Otherwise, stop sampling and

report the final sample size as Nd = m + 1.
The process of collecting observations one by one is continued until there are Nd observations

such that Nd ≥ (zα/2/d)2
(

V2
Nd

+ Nd
−1
)

. At this stage, we stop sampling and report the final sample
size as Nd.

Based on the above algorithm, the sampling process will stop at some stage. This is proved in
Lemma A1 which states that if observations are collected using (12), under appropriate conditions,
P(Nd < ∞) = 1. This is a very important property of any sequential procedure since it mathematically
ensures that the sampling will be terminated eventually.

Next, we establish some desirable asymptotic properties of our proposed sequential procedure.
First, we prove that the final sample size Nd required by our sampling strategy is close to the optimal
sample size C at least asymptotically. We also prove the asymptotic efficiency property of sequential
procedure which ensures that, on average, we collect only the minimum number of samples to
achieve certain accuracy of estimation. Second, we show that the fixed-width confidence interval(

ĜNd − d, ĜNd + d
)

contains the true value of Gini index GF nearly with probability 1− α. We formally
state these results in Theorems 1 and 2.

Theorem 1. If the parent distribution F of X is such that E[X4] exists, then the stopping rule in (12) yields the
following asymptotic optimality properties:

(i) Nd/C a.s.→ 1 as d ↓ 0.
(ii) P

(
ĜNd − d < GF < ĜNd + d

)
→ 1− α as d ↓ 0.

Theorem 2. If the parent distribution F of X is such that the support of the distribution being (t, ∞) with
t > 0 and E[X4] exists, then the stopping rule in (12) yields

E (Nd/C)→ 1 as d ↓ 0. (13)

Theorems 1 and 2 are proved in the appendix. Part (i) of Theorem 1 implies that the ratio of final
sample size of our procedure and the optimal sample size, C asymptotically converges to 1. Part (ii)
of Theorem 1 implies that the coverage probability produced by the fixed-width confidence interval(

ĜNd − d, ĜNd + d
)

attains the desired level 1− α asymptotically. Theorem 2 implies that the ratio of
the average final sample size of our procedure asymptotically converges to the optimal sample size, C.

4. Simulation Study

In this section, we validate the asymptotic properties of our method stated in Theorems 1 and 2
through Monte Carlo study. To implement the sequential procedure, we fix d(= 0.01, 0.02) and
α(= 0.1, 0.05). Using the pilot sample size formula m = max {4, dz α

2
/de}, the pilot sample size

considered here is 165. Then, we implement the sequential procedure described in Section 3.1 and
estimate the average sample size (N), the maximum sample size (max(N)), the standard error (s(N))
of N, the coverage probability (p), and its standard error (sp) based on 2000 replications by drawing
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random samples from gamma (shape = 2.649, rate = 0.84) distribution truncated at t = 0.001(GF =

0.3308, ξ2 = 0.0468), log-normal distribution (mean = 2.185, sd = 0.562) truncated at t = 0.001(GF =

0.3089, ξ2 = 0.0532), and Pareto (20,000, 5).
Table 1 summarizes the numerical results obtained from the simulation study. The parameters of

log-normal and gamma distributions are the same as used by [20]. From the fourth column of Table 1,
we find that the ratio of the average final sample size and C is close to 1. Moreover, column 6 of Table 1
illustrates that the attained coverage probability is very close to the desired level of 90%. Thus, we find
that the simulation results validate all theoretical results mentioned in the previous section, and the
performance of the procedure is satisfactory for the above mentioned distributions.

Table 1. Performance of the proposed sequential procedure when the data is from gamma, log-normal,
and Pareto distribution.

d Distribution N C N/C p
α s(N) sp

d = 0.01 Gamma 1283.7450 1267 1.0132 0.9090
α = 0.1 1.7561 0.0064

d = 0.02 Gamma 469.1650 450 1.0426 0.9535
α = 0.05 1.0485 0.0047

d = 0.01 Lognormal 1435.3640 1440 0.9968 0.8965
α = 0.1 4.091604 0.0068

d = 0.02 Lognormal 509.0020 511 0.9961 0.9430
α = 0.05 2.0538 0.0052

d = 0.01 Pareto 654.5364 686 0.9541 0.9018
α = 0.1 4.2151 0.0063

d = 0.02 Pareto 244.3330 244 1.0014 0.9470
α = 0.05 2.0099 0.0050

To verify whether the distribution of sample Gini index converges to normality, we do the
following simulation study. We draw samples of sizes n = 470, 509, and 245 from gamma
(shape = 2.649, rate = 0.84), log-normal (mean = 2.185, sd = 0.562), and Pareto (20,000, 5) distributions
respectively and compute the sample Gini indexes. Please note that the choice of the parameters of
lognormal and gamma distributions are same as in [20]. The sample size n is chosen according to
the smallest N in Table 1 for different scenarios. We compute 200 replications for the sample Gini
index (using set.seed(123) in “R” language) and observe that Shapiro-Wilk’s test for normality returns
p-values 0.1938, 0.5066, and 0.3984 for gamma (shape = 2.649, rate = 0.84), log-normal (mean = 2.185,
sd = 0.562), and Pareto (20,000, 5) distributions respectively. Thus, we observe that for the above
scenarios sample Gini index converges to normality for moderate sample sizes.

5. Discussion and Concluding Remarks

Gini index is a widely used measure of economic inequality index. In order to evaluate the
economic policies adopted by a government, it is important to estimate Gini index at any specific time
period. If the income data for all households in the region of interest is not available, one needs to
estimate Gini index by drawing a sample of households from that region. Typically, large income
surveys are associated with different sampling schemes. To review several sampling techniques,
we refer to [19,21–24]. The sampling technique chosen to collect data usually depends on the
socio-economic diversity and size of the country or region. For regions or smaller countries with
lesser socio-economic diversity, the simple random sampling technique can be used to collect income
or expenditure data to estimate Gini index. Several research articles (e.g., [4,5,7,25,26]) are devoted
to drawing statistical inference on inequality indexes which are computed from household income
or expenditure by means of simple random sampling from the population of interest. In this paper,
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we also use simple random sampling technique to collect income or expenditure data in order to
estimate Gini index accurately. Even though the sequential methodology is introduced under i.i.d.
framework, which may be considered as a practical limitation of our work, sequential methodologies
may be adopted to different sampling schemes (e.g., see [27]). In the following Section 5.1, we discuss
the possibility of extending our work to stratified sampling.

Without assuming any specific distribution of the data, we show that the ratio of the final sample
size and the optimal sample size approaches 1. We also show that the confidence interval constructed
using our proposed sequential method attains the required coverage probability. Thus, based on
these results, we conclude that the proposed sequential estimation strategy can efficiently construct a
100(1− α)% fixed-width confidence interval for Gini index. In this article, we consider that after pilot
sample, one additional observation is collected in each step. If instead, a group of r(≥ 1) observations
are collected in each step after the pilot sample stage, the same properties will hold. The proofs will be
similar to the ones in Appendix.

The theory of the sequential procedure revolves around the idea of “learn-as-you-go”. In our
proposed method of estimation, the final sample size is not fixed in advance, and the observations
are collected until the estimated optimal sample size is obtained achieving the required 100(1− α)%
fixed-width confidence interval for Gini index. We hope that number of sequential procedures to
estimate income inequalities will be developed following this article, whereupon the idea of sequential
procedure can be applied to other sampling schemes used in economic surveys, taking into account of
the cost considerations as well.

Possible Extension to Stratified Sampling

The sequential procedure that is proposed under i.i.d. framework may be extended to non i.i.d
framework where stratified sampling is used. Suppose we divide the population into S strata. In the
population, stratum s contains a mass of Hs households. The total number of households in the
population is H = ∑S

s=1 Hs. The density of the household income or expenditure, X in the sth stratum
is denoted by dF(x|s).

Now, a sample of ns households (indexed by hs) is drawn by simple random sample with
replacement from every strata so that the total number of households in the sample is n = ∑S

s=1 ns and
ns = nas with ∑S

s=1 as = 1, where as = Hs/H. Let xshs be the total income of the hth
s household

belonging to the sth stratum. If wshs = Hs
ns

is the weight of hth
s household in the sth stratum,

then following [21,22], Gini index can be estimated by the estimator

Ĝ = 1− 2
µ̂

S

∑
s=1

ns

∑
hs=1

wshs xshs

(
1− F̂(xshs)

)
, (14)

where

µ̂ =
S

∑
s=1

ns

∑
hs=1

wshs xshs and F̂(xshs) =
S

∑
i=1

ns

∑
j=1

wij I[xij ≤ xhcs ]/
S

∑
i=1

ns

∑
j=1

wij. (15)

Now, following [21,22] we have

√
n
(

Ĝ− GF

)
d→ N (0, V∗) , (16)

where V∗ is the asymptotic variance given in [22], modified to take into account of the stratified
sampling only. Now,

P
[∣∣∣Ĝn − GF

∣∣∣ ≤ d
]
→ 2Φ

(√
n

V∗
d
)
− 1 (17)
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The confidence coefficient will be approximately 1− α provided
√

nd/
√

V∗ ≥ zα/2. In order to have a
fixed-width confidence interval, we need sample size n satisfying

n ≥ d−2z2
α/2V∗ ≡ C, say. (18)

Since C is unknown it must be estimated in the first stage and continue sampling until the sample
size n is bigger than corresponding estimated value of C. Note that C is the optimum (i.e., minimum)
household size to be sampled to achieve (1− α) confidence level provided V∗ were known. The optimal
number of households to be sampled in the sth stratum (s = 1, . . . , S) will be Cs = Cas which is also
unknown since C is unknown. Bhattacharya [22] proposed an estimator of the asymptotic variance
V∗ of the Gini index under complex household survey which can be used in Equation (18). Then the
stopping rule developed in Equation (12) may be modified taking into account of the stratification
and finite sampling scenario to find out an estimate of the optimum number of households in order
to find a fixed-width confidence interval for Gini index under stratified sampling. However, we do
not intend to explore this possibility in this article, and we believe that this could be a good topic of
future research.
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improve the paper. We remain deeply indebted to Professor Gautam Tripathi and Professor Nitis Mukhopadhyay
for their comments and suggestions.
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Appendix A

Lemma A1. Under the assumption that ξ < ∞, for any d > 0, the stopping time Nd is finite, that is,
P(Nd < ∞) = 1.

Proof. The Lemma A1 is proved by using (12) and the fact that V2
n is strongly consistent estimator of

ξ2 and Nd → ∞ as d ↓ 0 almost surely.

Lemma A2. The value of sample Gini index lies between 0 and 1.

Proof. Let Y1, . . . , Yn be the ordered incomes of n persons where Y1 represents the income of the
poorest person and Yn represents the income of the richest person. Using [28], Gini index can be
rewritten as

0 ≤ Ĝn =
2 ∑n

i=1 iYi

n ∑n
i=1 Yi

− n + 1
n
≤ 2n ∑n

i=1 Yi

n ∑n
i=1 Yi

− n + 1
n

=
n− 1

n
≤ 1.

This proves the lemma.

Appendix A.1. Proof of Theorem 1

(i) The definition of stopping rule Nd in (12) yields

( zα/2

d

)2
V2

Nd
≤ Nd ≤ mI(Nd = m) +

( zα/2

d

)2 (
V2

Nd−1 + (Nd−1)−1
)

. (A1)

Since Nd → ∞ a.s. as d ↓ 0 and Vn → ξ a.s. as n → ∞, by Theorem 2.1 of [29], V2
Nd
→ ξ2 a.s.

Hence, dividing all sides of (A1) by C and letting d ↓ 0, we prove Nd/C → 1 a.s. as d ↓ 0.
(ii) In order to show that our procedure satisfies the asymptotic consistency property, we will derive

an Anscombe-type random central limit theorem for Gini index. This requires the existence of
usual central limit theorem of Gini index and uniform continuity in probability (u.c.i.p.) condition.
For details about the u.c.i.p. condition, we refer to [17,30–32] etc.
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First of all, let us define n1 = (1− ρ)C and n2 = (1 + ρ)C for 0 < ρ < 1. Now, we know from [7]

that Yn =
(√

n(∆̂n − ∆),
√

n(X̄n − µ)
)′ L→ N2(0, Σ), where

Σ =

(
4σ2

1 2(τ − µ∆)
2(τ − µ∆) σ2

)
.

First, let us prove that YNd

L→ N2(0, Σ). Define D′ = (a0 a1). Note that D′YNd = D′YC + (D′YNd −D′YC).

Thus, it is enough to show that (D′YNd −D′YC)
P→ 0 as d ↓ 0. We can write

(D′YNd −D′YC) =a0
√

Nd(∆̂N − ∆̂C) + a1
√

Nd(X̄Nd − X̄C)

+ (
√

Nd/C− 1)D′YC. (A2)

Fix some ε > 0 and note that

P
{
|a0
√

Nd(∆̂Nd − ∆̂C) + a1
√

Nd(X̄Nd − X̄C)| > ε
}

≤ P
{
|a0
√

Nd(∆̂Nd − ∆̂C) + a1
√

Nd(X̄Nd − X̄C)| > ε, |Nd −C| < ρC
}

+ P[|Nd −C| > ρC]

≤ P
{

max
n1<n<n2

|
√

n|∆̂n − ∆̂C| >
ε

2|a0|

}
+ P

{
max

n1<n<n2
|
√

n|X̄n − X̄C| >
ε

2|a1|

}
+ P[|Nd −C| > ρC]

Here, ∆̂n and X̄n are both U-statistics which satisfy Anscombe’s u.c.i.p. condition (for e.g., see [17]).
Using u.c.i.p. condition and the fact that Nd/C a.s.→ 1, we conclude that for given ε > 0, there exist η > 0
and d0 > 0 such that

P{|a0
√

Nd(∆̂Nd − ∆̂C) + a1
√

Nd(X̄Nd − X̄C)| > ε} < η for all d ≤ d0.

This implies a0
√

Nd(∆̂Nd − ∆̂C) + a1
√

Nd(X̄Nd − X̄C)
P→ 0 as d ↓ 0. Also, note that(√

Nd/C− 1
)

D′YC
P→ 0 as d ↓ 0 since Nd/C→ 1 almost surely and D′YC

L→ N2(0, Σ). Thus, from (A2),

we conclude (D′YNd −D′YC)
P→ 0, that is, YNd

L→ N2(0, Σ). Now, define G(u, v) = u
2v , if v 6= 0. Using

Taylor’s expansion, we can write

√
Nd(G(∆̂Nd , X̄Nd)−G(∆, µ)) =

√
Nd

(
∆̂Nd −∆

2µ
− ∆

2µ2 (XNd − µ) + RNd

)
, (A3)

where RNd = −2(∆̂Nd−∆)(XNd−µ)/b2 + 4a(XNd−µ)2/b3, a = ∆+ p(∆̂Nd−∆), b = 2µ+ p(2XNd − 2µ),
and p ∈ (0, 1). Rewriting (A3) in the vector-matrix form, we get√

Nd(G(∆̂Nd , X̄Nd)−G(∆, µ)) = D′YNd +
√

NdRNd , (A4)

where D′ =
(

1
2µ , −∆

2µ2

)
. Note that

√
Nd(XNd − µ) converges in distribution to a normal distribution

by Anscombe’s CLT and both
(

∆̂Nd −∆
)

and
(
XNd − µ

)
converges to 0 almost surely. This yields

√
NdRNd

P→ 0 as d ↓ 0. Hence,
√

Nd(ĜNd −GF)
L→ N(0, D′ΣD) as d ↓ 0. This completes the proof of

Theorem 1.
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Appendix A.2. Proof of Theorem 2

In this subsection, we prove a lemma that is essential to establish Theorem 2. Note from (12) that

Nd ≥
z2

α/2
d2 N−1

d , i.e., Nd ≥
zα/2

d (= m) with probability 1. Suppose X(n) = (X(1), . . . , X(n)) denotes the n
dimensional vector of order statistics from the sample X1, . . . , Xn, and Fn is the σ-algebra generated by
(X(n), Xn+1, Xn+2, . . .). By [13],

{
Xn,Fn

}
,
{

S2
n,Fn

}
, {τ̂n,Fn},

{
∆̂n,Fn

}
, and their convex functions

are all reverse submartingales. Using reverse submartingale properties, let us prove the following
lemma along the lines of [33].

Lemma A3. If E(X2p
1 ) is finite for some p > 1, then E

[
sup
n≥m

V2
n

]
< ∞ for m ≥ 4.

Proof. To prove Lemma A3, it is enough to show that: E

[
sup
n≥m

s2
wnX−2

n

]
, E

[
sup
n≥m

∣∣∣∣ ∆̂n

X3
n

τ̂n

∣∣∣∣
]

, E

[
sup
n≥m

∆̂2
n

X2
n

]
,

and E

[
sup
n≥m

∆̂2
n

X4
n

S2
n

]
are finite.

We note that, 0 ≤ ∆̂n
2X
≤ 1. So, it is enough to show that E

[
sup
n≥m

s2
wnX−2

n

]
, E

[
sup
n≥m

τ̂n

X2
n

]
and

E

[
sup
n≥m

S2
n

X2
n

]
are finite. Following [34] (p. 338), we have E

[
sup
n≥m

s2
wn

]
< ∞ if E[Xα

1 ] < ∞ for α > 2 and

m ≥ 4. Therefore,

E

(
sup
n≥m

s2
wnX−2

n

)
≤ t−2E

(
sup
n≥m

s2
wn

)
< ∞. (A5)

We note that τ̂n and S2
n are U-statistics. Using Lemma 9.2.4 of [35], for p > 1,

E

(
sup
n≥m
|τ̂n|p

)
≤
(

p
1− p

)p
E
(
|τ̂m|p

)
and E

(
sup
n≥m

∣∣∣S2
n

∣∣∣p) ≤ ( p
1− p

)p
E
(∣∣∣S2

m

∣∣∣p) .

Since E(X2p
1 ) if finite for some p > 1, E

(
|τ̂m|p

)
and E

(∣∣S2
m
∣∣p) are finite which yield

E

(
sup
n≥m

∣∣∣∣∣ τ̂n

X2
n

∣∣∣∣∣
)
≤
{

t−2E

(
sup
n≥m
|τ̂n|

)}
< ∞,

and

E

(
sup
n≥m

∣∣∣∣∣ S2
n

X2
n

∣∣∣∣∣
)
≤
{

t−2E

(
sup
n≥m

∣∣∣S2
n

∣∣∣)} < ∞.

This completes the proof of Lemma A3.

Below, we prove Theorem 2 by using Lemma A3.
Since Nd ≥ m a.s., dividing (A1) by C yields

Nd/C−mI(Nd = m)/C ≤ 1
ξ2

(
sup
d>0

V2
Nd−1 + (m− 1)−1

)
almost surely. (A6)

Since E

(
sup
d>0

V2
Nd−1

)
< ∞ by Lemma A3 and Nd/C → 1 a.s. as d ↓ 0, by the dominated convergence

theorem, we conclude that lim
d↓0

E(Nd/C) = 1.
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This completes the proof of Theorem 2.
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