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Abstract: A fast method for estimating the parameters of a stable-APARCH not requiring likelihood
or iteration is proposed. Several powerful tests for the (asymmetric) stable Paretian distribution
with tail index 1 ă α ă 2 are used for assessing the appropriateness of the stable assumption as the
innovations process in stable-GARCH-type models for daily stock returns. Overall, there is strong
evidence against the stable as the correct innovations assumption for all stocks and time periods,
though for many stocks and windows of data, the stable hypothesis is not rejected.
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1. Introduction

Since the seminal work of Mandelbrot [1] and Fama [2], the stable Paretian distribution for
modeling financial asset returns has generated increasing interest, as computer power required for its
computation became commonplace, and given its appealing theoretical properties of (i) summability
(as can be used for portfolio analysis; see [3–5], and the references therein); (ii) its heavy tails and
asymmetry that are ubiquitously characteristic of financial asset returns; and (iii) it being the limiting
distribution of sums of various independent identically distributed (i.i.d.) random variables, i.e.,
such sums are in the domain of attraction of a stable law; see, e.g., Geluk and De Haan [6] and the
references therein. McCulloch [7], Rachev and Mittnik [8], Borak et al. [9], and Nolan [10] offer extensive
accounts of the stable distribution and its wide applicability in finance, while Samorodnitsky and
Taqqu [11] provides a more technical development including the multivariate setting. Extensions and
compliments to the use of the stable Paretian include the tempered stable (see e.g., [12,13], and the
references therein) and the geometric stable (see, e.g., [14–16], and the numerous references therein).

As asset returns measured at the weekly, daily, or higher frequency exhibit the near-immutable
property of conditional heteroskedasticity, GARCH-type models are employed when interest centers on
short-term density and risk prediction. While such models, driven by Gaussian innovations, result in
a heavy-tailed process (see [17–20]; and the references therein), the residuals themselves are still highly
non-Gaussian, and numerous suggestions have been made for replacing the Gaussian distribution
with a leptokurtic one, the seminal article being Bollerslev [21] with the use of a Student’s t. Owing to
computational advances, the stable distribution was subsequently used; see [22–24] for details of this
model, its computation based on maximum likelihood, and the stationarity conditions.

In this paper, we propose two estimation methods. The first is based on traditional use of the
MLE, and focuses on a new, efficient, vectorized evaluation of the stable density. The second is a very
different and new estimation methodology for the stable-GARCH model that is extremely fast, as it
does not require evaluation of the likelihood or numerical optimization methods.
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Given (i) the appealing theoretical properties of the stable distribution; (ii) the fact that the
expected shortfall (ES) risk measure, as a left tail partial first moment (ErX | X ď cs, where c is the
VaR), is potentially highly dependent on the distributional assumption (see [25,26], and the references
therein); and (iii) that ES is not elicitable and thus more difficult to empirically test compared to VaR
(see [27]), one is motivated to test the validity of the stable Paretian assumption as the innovations
sequence for a GARCH-type model used for risk prediction or asset allocation.

Testing the stable Paretian distribution has been considered by several authors. Koutrouvelis and
Meintanis [28], Meintanis [29], and Matsui and Takemura [30] use the empirical characteristic function
to develop testing procedures in the symmetric stable case. Fama and Roll [31], Lau and Lau [32],
and Paolella [33,34] consider the change in the estimated tail index, α, as the data are summed: If the
data are stable, then the value of α should not change, whereas for many alternatives outside the
stable class, the classic central limit theorem will be at work, and the values of α will tend to increase
towards two as the data are summed. McCulloch and Percy [35] propose a set of composite (unknown
parameter case) tests for, among others, the symmetric stable distribution and are able to reject the null
in their applications, though they attribute this primarily to the presence of asymmetry.

Paolella [34] also proposes a test based on the difference of two consistent estimators of the tail
index α, and combines this with a new summability test, termed A` τ20, yielding a test that is (i) size
correct; (ii) often substantially more powerful than either of its two constituents and much more
powerful than the test based on the empirical characteristic function; (iii) easily computed, without the
need for the density or maximum likelihood (ML) estimation of the stable distribution; (iv) applicable
in the asymmetric case; and (v) also delivers an approximate p-value.

Our second interest in this paper is to use some of these tests applied to the filtered innovations
sequences of stable-GARCH models, in an effort to determine the applicability of the stable assumption
as the underlying distribution. While the literature is rich in proposing various GARCH-type models
with a variety of distributional assumptions on the innovations process, there is not as much work
dedicated to testing such assumptions. Klar et al. [36] propose use of a characteristic function based
test applied to the filtered residuals and use a bootstrap to assess small-sample properties; and also
contains references to some earlier literature for GARCH distributional testing.

Of interest in such a testing framework are the results of Sun and Zhou [37], which demonstrate
that, as the normal-GARCH process approaches the IGARCH border, the filtered innovation sequence
could exhibit artificially heavier tails. Recall that, in classic time series literature, it is known that, if
an AR(1) model is misspecified and the true process contains time-varying parameters or structural
breaks, then, as the sample size increases, the probability of unit-root tests not rejecting the null of a unit
root often increases; see, e.g., Kim et al. [38] and the references therein. Similarly, in a GARCH context,
under certain types of misspecification, as the sample size increases, the fitted GARCH model will
tend to the IGARCH border as the sample size increases. We attempt to counteract this phenomenon
by (i) using short windows of data; (ii) fit the rather flexible stable-APARCH model, as opposed to
appealing to quasi-maximum likelihood, which uses a normality assumption on the error term in the
GARCH process; and (iii) investigate results when imposing a fixed APARCH structure which is not
close to the IGARCH border; see Section 5.3 below, and, in particular, the discussion of the use of (18).
In this way, the (in general, highly relevant) findings of Sun and Zhou [37] are less applicable to our setting.

Anticipating our empirical results below, we find that, for most stocks and numerous segments of
time, the assumption of the innovation process driving a GARCH-type process being i.i.d. asymmetric
stable Paretian cannot be rejected. However, when viewing all the resulting p-values, they follow
more of an exponential-type distribution rather than a uniform, and thus there is substantial evidence
against the stable as the correct distribution for all stocks and time periods.

The remainder of this paper is structured as follows. Section 2 discusses and refutes the common
argument against using the stable distribution for modeling financial asset returns. Section 3 briefly
introduces the stable distribution and methods for its computation and estimation, while Section 4
details the tests for the symmetric and asymmetric stable Paretian assumption. Section 5 discusses
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two new methods for estimating a stable-APARCH process and also provides a comparison with the
competitive method of estimation based on the characteristic function, in the i.i.d. setting. Section 6
provides simulation evidence under the true model and some deviations from it, to illustrate the
behavior of the model parameter estimates and test statistics. Section 7 provides an empirical
illustration, applying the tests to the filtered innovations sequences of the fitted stable-APARCH
process to the constituents of the DJIA-30 and the 100 largest market-cap stocks from the S&P500 index.
Section 8 provides concluding remarks concerning distributional choices for modeling asset returns
and the role of testing.

2. Critique of the Stable Paretian Assumption

The primary argument invoked by some against use of the stable Paretian distribution in
a financial context is that (except in the special case of the Gaussian), the second moment, i.e.,
the variance, does not exist. We wish to dismantle this concern. There indeed exists literature,
influential papers including Loretan and Phillips [39], that provide evidence of the existence of second
moments in financial data. The problem with all such attempts at inference in this regard is that
the determination of the maximally existing moment of a set of data is notoriously difficult; see
McCulloch [40], Mittnik et al. [41], McNeil et al. [42], Heyde and Kou [43], and the references therein
for critique of such studies.

It should be noted that non-existence of variance cannot be claimed if a fitted stable distribution
has a tail index, α, whose confidence interval (easily computed nowadays via a parametric or
nonparametric bootstrap) does not contain the upper value of two. The flaw is that, first, an entire
parametric assumption is being placed on the density, whereas interest centers only on the tails;
and second, this particular parametric structure enforces non-existence of variance except in the
measure-zero case of normality. As an example, using a reasonably sized set of simulated Student’s t
data with degrees of freedom v “ 4 (implying the supremum of the existing moments is four) and
fitting a (location-scale) stable distribution will result in an estimated tail index of around α “ 1.7, and
whose confidence intervals do not include two. The conclusion that the variance does not exist is false.

Going the other way, if simulated stable Paretian data with α “ 1.7 are fit with a (location-scale)
Student’s t model, the estimated degrees of freedom will be around 4, and such that confidence
intervals often do not extend below two. The conclusion that the variance exists is false. This disparity
of the actual tail index, when estimated via a parametric structure, is, again, an artefact of imposing
a parametric heavy tailed density such that the tail index is bound between 0 and 2, and at two, the
distribution becomes the Gaussian. This mapping is continuous (e.g., for α close to 2, the density
is indeed “close to” Gaussian, except in the extreme tails). As such, the use of these and related
parametric models is not justified for inference about the maximally existing moment in the absence of
a strict parametric assumption.

It is important to emphasize that, if the data are non-Gaussian stable, then the traditional measures
of asymmetry and heavy-tails vis sample skewness µ̂3 (as the scale-standardized third central moment)
and kurtosis µ̂4 (as the fourth), respectively, are not valid, because their theoretical counterparts do
not exist. As such, while an empirically computed sample kurtosis will be large, the law of large
numbers is not applicable, and it will not converge as the sample size increases. This is not the case
with Student’s t data with degrees of freedom, v, larger than four. In that case, the sample kurtosis is
informative for estimation of v. For example, Singh [44] proposed an estimator of v, assuming v ą 4,
as v̂ “ 2p2µ̂4 ´ 3qpµ̂4 ´ 3q´1.

It is noteworthy that there do exist periods of stock returns and indexes, particularly during
crisis periods, such that not only is the tail index of the stable far less than two, but also even
the Student’s t fit yields estimated tail indices below two. While this is still not a formal test of
non-existence of second moments, it does provide strong evidence that that existence of the variance
can be questioned. Observe that traditional methods of portfolio optimization, which make use of
the sample variance-covariance matrix of returns data, would then be invalid; see, e.g., Gamba [3].
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This is addressed, for example, in Giacometti et al. [4], Doganoglu et al. [5], Paolella [45], Paolella and
Polak [46], and the references therein.

The existence of moments is determined from the asymptotic tail behavior, but in practical
applications, there are never enough data points to accurately characterize the tail. This point is
forcefully made in Heyde and Kou [43]. This helps explain why models using distributions with
completely different tail behaviors all can perform very well in terms of value at risk (VaR) forecasting,
this being a left-tail quantile of the predictive returns distribution of a portfolio of assets.

For example, Haas et al. [47], Alexander and Lazar [48], Haas et al. [49], Haas and Paolella [50] and
Haas et al. [51] use discrete normal mixture (MixN) GARCH models, with the MixN being a short-tailed
distribution; Broda and Paolella [52] use a normal inverse Gaussian (NIG) structure, this having
so-called semi-heavy tails (and existence of a moment generating function); several authors, including
Mittnik and Paolella [53], Kuester et al. [54], and Krause and Paolella [55] use an asymmetric
Student’s t distribution (this having heavy tails but such that the tail index lies in p0,8q);
Mittnik and Paolella [56] and Broda et al. [57] use the asymmetric stable and mixtures of symmetric
stable, respectively, these having heavy tails such that the tail index lies in p0, 2q. The fact that all of these
methods can deliver highly accurate VaR forecasts confirms that the choice of asymptotic tail behavior
and the (non-)existence of the second moment are not highly relevant for risk forecasting, but rather the
use of a leptokurtic, asymmetric, bell-shaped distribution, in conjunction with a GARCH-type process.

3. Stable Paretian Distribution: Evaluation and Estimation

3.1. Density, VaR and ES Calculation

Let X be a location-scale symmetric stable Paretian (sometimes referred to as symmetric α-stable,
or SαS) random variable, denoted X „ Sαpµ, σq, for 0 ă α ď 2, µ P R and σ ą 0. Its distribution is most
commonly expressed via its characteristic function (cf) as

φXpt; α, µ, σq “ E
“

exppitXq
‰

“ exp
`

iµt´ |σt|α
˘

. (1)

Observe that Y “ pX ´ µq{σ has cf φYpt; αq “ expp´|t|αq, which is real, recalling that, in general,
X is symmetric about zero if and only if its cf is real. For X asymmetric stable Paretian, denoted
X „ Sα,βpµ, σq, with asymmetry parameter β, ´1 ď β ď 1, its cf, for the case relevant for us, with
1 ă α ď 2, is most often given by

φXpt; α, β, µ, σq “ exp
´

iµt´ |σt|α
”

1´ iβ sgnptq tan
πα

2

ı¯

, 1 ă α ď 2. (2)

Natural tests for β ‰ 0 include the likelihood ratio test and whether a bootstrap confidence interval of
β includes zero, though one could also consider tests for asymmetry in the presence of heavy-tailed
distributions not necessarily stable; see Premaratne and Bera [58].

The stable class of distributions is the only one which has the property of sum-stability: the sum
of independent stable r.v.s, each with the same tail index α, also follows a stable distribution. In particular,

if Xi
ind
„ Sα,βi pµi, σiq , then S “

n
ÿ

i“1

Xi „ Sα,β pµ, σq , (3)

where

µ “
n
ÿ

t“1

µi, σ “ pσα
1 ` ¨ ¨ ¨ ` σα

n q
1{α and β “

β1σα
1 ` ¨ ¨ ¨ ` βnσα

n
σα

1 ` ¨ ¨ ¨ ` σα
n

.

Observe, in particular, that this holds for the Gaussian case, for which α “ 2.
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Simulation of Sα,βpµ, σq realizations is straightforward, as shown in Chambers et al. [59]; see also
Weron [60]. The otherwise far more time-consuming method of inverting the cumulative distribution
function (cdf) is not required.

Approximate computation of the probability density function (pdf) of X, as for example required
for computing the MLE, has been considered by numerous authors. For the symmetric case, accessible
integral and series expansions are available, most of whose origins are from Bergström [61] and
Zolotarev [62]; see also Nolan [63], McCulloch [64], Paolella [65] (Chapter 8), and the references therein.
We consider the proper integral expression used in Nolan [63] (which is actually for the general
asymmetric case), though it is based on Zolotarev’s (M) cf expression, which differs from (2). In the
symmetric case (β “ 0), Zolotarev’s (M) cf expression reduces to (1), and so is applicable for fast
computation of the SαS density. It is given by

fXpx; α, µ, σq “
1
σ

$

’

’

&

’

’

%

α
π|α´1|z

´ π{2
0 Vpy; α, zq exp t´Vpy; α, zqudy, if z ą 0,

Γp1` 1
α q{π, if z “ 0,

fXp´x; α, µ, σq, if z ă 0,

(4)

where z “ px´ µq{σ, and

Vpy; α, zq “
ˆ

z cospyq
sinpαyq

˙α{pα´1qˆcosppα´ 1qyq
cospyq

˙

.

Its benefit, as discussed by Nolan [63], is its suitability for numeric computation.
For implementation of (4), with likelihood calculations in mind, we develop a vectorized version,

suitable for Matlab. This yields a very large decrease in computational time compared to elementwise
evaluation, as well as high accuracy. For vectorization of (4), we replace all mathematical operators by
their element-wise counterparts, and use a vectorized variant of the adaptive Simpson quadrature,
(see, e.g., [66]) given by

b“

a

f pxqdx “

#

`

q1 ` q2
˘

{2, if }q2 ´ q1}8 ď 10´6,› c
a f pxqdx`

› b
c f pxqdx, otherwise,

(5)

where
›

denotes the (recursive) Simpson integral, }x}8 “ maxp|x1|, . . . , |xn|q is the sup norm for vector
x P Rn,

q1 “
b´ a

6
p f paq ` 4 f pcq ` f pbqq , q2 “

b´ a
12

p f paq ` 4 f pdq ` 2 f pcq ` 4 f peq ` f pbqq ,

with c “ pa` bq{2, d “ pa` cq{2 and e “ pc` bq{2.
Besides the reduced computational overhead by virtue of vectorization, the computation is

further accelerated by exploiting redundancies. For fixed α and location-zero scale-one z, observe
that several parts of (4) remain constant and only need to be evaluated once for all z. By removing
these redundancies, we find that computation times decrease significantly, in particular those of the
integrand, as the recursive Simpson quadrature requires a large number of function evaluations.
The resulting routine for the stable Paretian density is about 40 times faster than the naive
implementation, but equally robust and accurate. Moreover, the routine is also eight times faster than
the direct evaluation of the stable density found in John Nolan’s stable toolbox ([63]), though use of his
spline approximation is still vastly faster, albeit less accurate, and possesses some discontinuities such
that a gradient/Hessian-based optimizer could encounter problems when high accuracy is desired.

For the asymmetric case based on (2) (as well as the symmetric case), the use of the fast Fourier
transform is effective for 1.1 ă α ă 2; see Mittnik et al. [67] and Paolella [65] (Chapters 1 and 8) for
a detailed development. However, polynomial spline approximations are available for 1 ă α ď 2, such
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as in Doganoglu and Mittnik [68] and Nolan (as implemented in his stable toolbox for Matlab), that
are accurate enough for typical use and by far the fastest option; see also Veillette [69] and Liang and
Chen [70]. We will use the Nolan toolbox implementation for the calculation of the density, as required
for the likelihood ratio test in the asymmetric case; see Section 4.4 below.

In financial applications, the VaR and ES are the most important risk measures, and of great
relevance for portfolio optimization when the multivariate distribution of asset returns is non-elliptic
(see [71]). Quantiles of the stable distribution can be computed via root search applied to the cdf,
with expedient methods for doing this given, for example, in Nolan’s stable toolbox. For the ES,
an otherwise numerically problematic integral involving the density far into the tails can be replaced
by a straightforward proper integral expression, as developed in Stoyanov et al. [72] (see also [25]).
The calculations of VaR and ES can further be reduced to essentially instantaneous calculation by use of
table lookup methods similar to the development in Krause and Paolella [55], so that risk assessment
and portfolio optimization can be straightforwardly conducted in a stable Paretian framework.

3.2. Parameter Estimation

Once the stable pdf is available, ML estimation can be conducted accurately and efficiently
by use of standard gradient/Hessian-based optimization routines. The MLE will often be the best
choice in terms of accuracy as the sample size grows, owing to its asymptotic properties; see, e.g.,
DuMouchel [73,74]. Another benefit of having the density is that the MLE can be computed for
the parameters of non-i.i.d. models in essentially the same way as under a Gaussian assumption.
Examples include linear and nonlinear regression (see [75–78]), ARMA time series (see [79–81]), and
GARCH-type models (see [24,56]; and the references therein).

Perhaps the most remarkable estimator is that of McCulloch [82], which is trivial to compute.
While the estimator is consistent (to the extent that the granularity of the mapping of (6) to α and β

increases with the sample size) and applicable for 0.6 ă α ď 2 and ´1 ď β ď 1, its performance is not
comparable to the (now fully accessible) MLE, and so is less used nowadays, but was a breakthrough
in the early 1980s, given the lack of computing power and software.

Let Qppq “ F´1
X ppq denote the quantile function of X „ Sα,βpµ, σq at p, 0 ă p ă 1, and define

vα “
Qp0.95q ´Qp0.05q
Qp0.75q ´Qp0.25q

, and vβ “
Qp0.95q `Qp0.05q ´ 2Qp0.5q

Qp0.95q ´Qp0.05q
. (6)

The functions vα and vβ are invariant to location µ and scale σ. These functions are tabulated for
a grid of α and β values, and by replacing theoretical quantiles with (linearly adjusted) sample
counterparts from data X, those two functions can be inverted to obtain estimators α̂McC “ α̂McCpXq
and β̂McC “ β̂McCpXq. Similar, clever analysis in McCulloch [82] provides expressions for the location
and scale terms. For computation of the McCulloch estimator (as well as that of [83], discussed below
in Section 5.4), we use the publicly available Matlab implementation from S. Borak and R. Weron.

The nature of how this estimator uses particular order statistics to determine an estimator for α,
compared to how the so-called Hint estimator (see below in Section 3.3) uses other order statistics to
obtain an unbiased, consistent estimator of α, gives rise to a distribution testing procedure, as discussed
in Section 4.2 below.

Remarks:

1. There exist other methods for estimation of the four-parameter location-scale asymmetric stable
distribution in the i.i.d. case which obviate the need to evaluate the pdf. For example, the
estimator of Kogon and Williams [83] is based on the sample characteristic function, is very fast
to calculate, and results in estimates which are close in performance to the MLE (though less so
for the asymmetry parameter); see Section 5.4 below. Another method is via indirect inference,
which requires simulating stable realizations, but not evaluating its likelihood; see Lombardi and
Veredas [84] and Garcia et al. [85].
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2. Most, but certainly not all, applications with stable distributions, including our testing procedures
herein, assume existence of the mean, i.e., 1 ă α ď 2. This is convenient because, as α decreases
towards zero, evaluation of the pdf, and inference about the parameters, becomes more difficult.
This problem is addressed in Koblents et al. [86], in which an estimation procedure is proposed
for i.i.d. asymmetric stable Paretian data that is applicable for all, but particularly small, α. Use of
their method confirms that it performs well, and can outperform the MLE in terms of mean
squared error for some parameter constellations, including values of α ą 1. However, it is on the
order of 1000 times slower than use of the MLE when using spline approximations to the pdf.

3.3. Nonparametric Estimation of the Tail Index

For data coming from a distribution such that the right tail is asymptotically Pareto, the
cornerstone of nonparametric inference for the tail index is the Hill estimator, introduced in Hill [87].
Various derivations of the estimator can be found in McNeil et al. [42]. It requires specification of
tuning parameter k, which indicates “where the tail starts”, and is given by

1{α̂Hillpk; Xq “ k´1
k
ÿ

j“1

logpXT`1´j:Tq ´ log XT´k:T , (7)

where Xj:T denotes the jth order statistic of sample X “ pX1, . . . , XTq. For a given sample size T, small
values of k would seem to be preferred because one is further into the right tail, but the dearth of
the ensuing number of tail observations results in high inaccuracy of the estimator. This is a classic
example of a bias/variance tradeoff, and attempts at choosing k to minimize the mean squared error
would require knowledge of the true distribution.

Discussions of the pitfalls, and some solutions, associated with its use and choice of k are
discussed in Mittnik et al. [41], Rachev and Mittnik [8], McNeil et al. [42], and the references therein.
The applicability of Hill and smoothed Hill estimators to the filtered residuals of GARCH-type models
is discussed in Kim and Lee [88], while Dominicy et al. [89] develop a multivariate Hill-type estimator.

As discussed in Section 2, determination of the maximally existing moment of the distribution
governing a particular set of data is rather difficult, and the Hill estimator, and various modifications of
it, without additional distributional assumptions, do not provide reliable inference. This is particularly
the case with the Student’s t and the stable Paretian distribution, the latter discussed for example
in McCulloch [40] and Weron [90]. As an illustration, consider computing the Hill estimator for
a simulated set of i.i.d. data X1, . . . , XT and plotting it as a function of tuning parameter k, known
as a Hill plot. To do this for Xi Pareto with cdf FXpxq “ 1´ x´α, x ą 1, the probability integral
transform implies that we can take Xi “ P´1{α

i for Pi „ Unifp0, 1q, i “ 1, . . . , T. The left panel of
Figure 1 illustrates a Hill plot for Pareto and symmetric stable data, both with the same tail indexes
α “ 1.3, as well as Student’s t data with degrees of freedom v “ 3. The right panel is similar, but using
α “ 1.7 and v “ 6, all based on T “ 10, 000 observations. While the Hill estimator is highly accurate
for the Pareto data over a wide range of k, it never “stabilizes” for stable Paretian or Student’s t data.

In light of the poor performance of the Hill estimator for assessing the tail index, Adler [91]
adeptly states that “Many of the problems faced by the Hill and related estimators of the tail decay
parameter α can be overcome if one is prepared to adopt a more parametric model and assume, for
example, stable innovations” and comically adds that “Overall, it seems that the time may have come
to relegate Hill-like estimators to the Annals of Not-Terribly-Useful Ideas.” Despite its weaknesses, the
Hill estimator is far from ready to be relegated to the dustbin of statistical history. Recent work, as
cited above, continues to be developed, and as discussed next, it can form the basis of an excellent
estimator of the stable tail index.
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Figure 1. Hill Estimates for simulated Pareto, symmetric stable Paretian, and Student’s t, with tail
index α “ 1.3 (left) and α “ 1.7 (right), and sample size T “ 10, 000.

We now review the trivially computed estimator of the stable tail index of Mittnik and Paolella [92],
which exhibits extraordinary statistical properties, and is based on the Hill estimator. In particular, it is
a scale-invariant estimator for tail index α for location-zero SαS data, referred to as the Hill-intercept or
Hint, estimator, and denoted as α̂Hint. It is valid for (at least) 1 ď α ď 2 and makes use of the empirical
observation that the Hill estimator is very nearly linear as a function of k for stable Paretian data over
a large range of 1 ď α ď 2, tuning parameter k and sample size T. It was found that both the intercept
and slope of this linear approximation can be used to derive estimates of α. Using the intercept, the
estimator takes the simple form

α̂Hint “ α̂HintpXq “ ´0.8110´ 0.3079 b̂` 2.0278 b̂0.5, (8)

where b̂ is the intercept in the simple linear regression of α̂Hill pk; abspXqq on k{1000; the elements of k
are such that 0.2T ď k ď 0.8T in steps of max ttT{100u , 1u; and the absolute value of the data are used
because we assume symmetry.

In addition to its trivial computation, even in samples as small as T “ 50, the estimator is
essentially unbiased for α P r1, 2s and almost exactly normally distributed. In comparison, the
McCulloch [82] estimator exhibits higher sample variance, downward bias as α approaches two and,
even with sample sizes in excess of 5000, is not normally distributed. Furthermore, for given sample
size, the variance of α̂Hint is practically constant across α, reaching its maximum for α “ 1.5. For sample
sizes 50 ă T ă 10, 000, this is given approximately by

xSE pα̂Hintq « 0.0322´ 0.00205T˚ ` 0.02273T´1
˚ ´ 0.0008352T´2

˚ , (9)

where T˚ “ T{1000. Finally, simulations show that, for the sample sizes 50 ă T ă 10, 000, the MLE
performs only slightly better in terms of mean squared error. As such, the Hint estimator will form the
basis of the test for SαS data in Section 4.1 below.

To illustrate its performance and small-sample properties, Figure 2 shows boxplots across various
α and for two sample sizes, based on 100 replications, comparing it to the McCulloch estimator and the
MLE, where the latter estimates the three parameters location, scale and α (and not β). We see that the
Hint estimator has nearly the same sampling variance as that of the MLE, but, as it is not constrained
to lie in p1, 2q, its sampling distribution is nearly Gaussian also for α close to one or two, enabling easy
construction of confidence intervals in the smaller sample case of T “ 100. For the larger sample case
of T “ 1000, observe the much larger variation of the MLE compared to Hint in the tails, as seen in the
boxplots indicated by plus signs outside of the whiskers.
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Figure 2. Performance comparison via boxplots of the Hint, McCulloch, and ML estimators of tail
index α for i.i.d. symmetric stable Paretian data based on sample size T.

4. Testing Procedures

Five new methods of testing the (symmetric and asymmetric) stable Paretian assumption are
discussed in the following five subsections.

4.1. Summability Tests: τ0 and τ20

Let Y “ pY1, . . . , YTq
1 be an i.i.d. set of data such that Yi „ Sα,0pµ, σq, i “ 1, . . . , T, for α ą 0.

The summability test of Paolella [33] is designed for i.i.d. location-zero SαS data with tail index
1 ă α ă 2, but is scale-invariant. As such, an estimate of µ is required. We suggest use of the
McCulloch [82] estimator, for speed and simplicity reasons, and then proceed with X “ Y ´ µ̂.
The estimator α̂Hint is used in place of the theoretical value of α required below.

Denote by s the level of aggregation applied to data vector X “ pX1, . . . , XTq, i.e., for s “ 1, the
entire data vector is used; for s “ 2, the data are reduced to Xp2q “ pX1`X2, X3`X4, X5`X6, . . . , q; for
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s “ 3, Xp3q “ pX1 ` X2 ` X3, X4 ` X5 ` X6, . . . , q, etc., and let α̂ psq “ α̂Hint psq denotes the estimate of α

based on the Hint estimator for given level of aggregation s. For sample size T, the aggregation values
used are s “ 1, 2, . . . , rT{100s, so that the last α̂ psq is based on at least 100 observations. Under the
null hypothesis of (i.i.d., symmetric) stable data, the α̂ psq should be constant, while for non-stable
i.i.d. data, they are expected to increase. Thus, we consider estimating a simple linear trend model,
as a linear regression of α̂ psq onto a constant and s, with the slope coefficient denoted b̂. By using
the Hill-intercept estimator with its optimal properties discussed above, each α̂ psq can be treated as
a realization from a normal distribution with known variance, so that weighted least squares can be
used to compute b̂, where the weights are inversely proportional to the standard error of α̂ psq, in (9),
delivered with the Hill-intercept estimator.

Interest centers on the studentized test statistic given by τ0 “ τ0pXq “ b̂{xSEpbq, and simulation
can be used to obtain its distribution under the null for a given sample size T and tail index α, where α

is taken to be α̂Hint. In particular, Paolella [33] determined simple functions of T and α to compute the
cutoff values for sizes 0.01, 0.05 and 0.10, associated with the right tail of its distribution under the null
hypothesis, so that the procedure quickly delivers the test statistic and three hypothesis test outcomes.
Figure 3 illustrates the graphical output of the method, using i.i.d. stable and Student’s t data. For the
former, the point estimates of α do not vary much with respect to the aggregation value s, while those
for the latter tend to increase.
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Figure 3. Plots associated with the τ0 summability test, based on T “ 2000. Left uses symmetric stable
data with α “ 1.5; right uses Student’s t with three degrees of freedom.

The τ0 test was augmented by Paolella [34] in two ways. The first issue to realize is that the test
statistic τ0 (and thus the hypothesis test outcome) is not invariant to permutations of the data (though
observe that α̂Hint is invariant). As the data are purported to be i.i.d., the ordering should not play
a role. To alleviate this issue, we take

τB “ τBpXq “ B´1
B
ÿ

i“1

τ0
`

Xris
˘

, (10)

where Xris denotes a random permutation of the data such that all the Xi appear once, i.e., sampling
without replacement.1 Test statistic (10) with B “ 20 was shown to have substantially higher power
than use of τ0.

1 Notice that, unless all theoretically possible permutations are used (or, taking B “ 8 if they are randomly drawn), the
outlined procedure will still return different test statistics for the same data set (unless the set of seed values for the random
permutations is held constant to some arbitrary choice). While this feature is still undesirable, it cannot be avoided with
finite B and random permutations.
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Second, via simulation, the entire distribution under the null was modeled for a variety of T
and α, so that an approximate p-value of the τB test statistic can be delivered, instead of only the test
outcomes at the usual three levels of significance. This was done using B “ 20. The statistic τBpXq is
then computed from location-adjusted X (and B can be chosen much larger for a single data set to
ensure a nearly unique test statistic). For the simulated data used in Figure 3, the p-values are 0.67 and
0.017, respectively.

Paolella [34] shows that the τ20 test is relatively robust (in terms of actual size under the null)
when used with mildly asymmetric stable Paretian data (as is typical for financial asset returns),
whereas the following test, ALHADI, is not, and so requires modification to be used with asymmetric
data, as discussed in Section 4.4 below.

4.2. ALHADI: The α-Hat Discrepancy Test

Comparing (6) with (7) and (8), we note that the former uses only the order statistics associated
with quantiles 0.95, 0.05, 0.75, and 0.25, whereas the latter uses a much larger set via the Hill estimator.
When applied to data that are not stable Paretian, these estimates could differ substantially. Paolella [34]
formalized this, and developed the α-Hat Discrepancy Test, or, in short, ALHADI, with test statistic

A “ ApXq “ α̂HintpXq ´ α̂McCpXq. (11)

Under the null, ErApXqs « 0, recalling that α̂Hint and α̂McC are both consistent. The test also delivers
an approximate p-value. For the data used in Figure 3, the p-values are 0.25 and 0.0011, and the test
rejects the stable hypothesis for the Student’s t data at all conventional levels of significance.

4.3. Combined Test: A` τ20

With the ability to quickly and accurately approximate the p-values of the τ20 and ALHADI tests,
they can be combined to form a joint test with (approximately) correct size and also deliver a p-value.
The method to do this is discussed in Paolella [34], where it is also shown that the resulting test, termed
A` τ20, often has substantially higher power than either of the two constituent tests. We will see below
in the empirical application to financial returns data that this test more often rejects the null of stability
than does the τ20 test.

Based on an Intel 3.4 GHz processor, the ALHADI test and p-value calculation for
T “ 500 observations takes 0.0024 s. The τ20 test and p-value calculation takes 0.121 s. Given both, the
combined A` τ20 p-value calculation is essentially instantaneous, and otherwise takes the time equal
to the sum of the times for ALHADI and τ20, i.e., 0.123 s. For T “ 2500, it takes (only) about 0.124 s.

4.4. Extension to Testing the Asymmetric Stable Paretian Case

The asymmetric case can be dealt with by applying the aforementioned tests for SαS data to
X̃ “ pX̃1, . . . , X̃Tq, where

X̃t “ F´1
X pPt; α̂MLE, 0, 0, 1q, Pt “ FXppX´ µ̂MLEq{σ̂MLE; α̂MLE, β̂MLE, 0, 1q, (12)

t “ 1, . . . , T, i.e., the data are transformed by the inverse cdf based on the MLE to produce SαS data.
This procedure is numerically feasible using the fast MLE, cdf, and inverse cdf routines provided in
Nolan’s toolbox, and clearly asymptotically valid, though in finite samples, and in light of the relative
difficulty of estimating β accurately, can result in size distortions, depending on the nature of the test.
Paolella [34] demonstrates that, particularly for the A` τ20 test, the actual size properties are quite
reasonable for mild to moderate asymmetry (as appropriate for financial asset returns), but as |β| Ñ 1,
the test becomes conservative, i.e., the actual size is lower than the nominal.
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4.5. Likelihood Ratio Test in the Asymmetric Stable Paretian Case

We will make use of a likelihood ratio test (LRT) as a comparison of two non-nested models, along
the lines of Vuong [93]. This LRT is based on the likelihood of the fitted location-scale asymmetric
stable (computed using the spline approximation in Nolan’s stable toolbox) and the noncentral t
distribution, or NCT. The reasons for the choice of NCT, and fast methods for estimating its parameters
and computing the likelihood, are discussed in Paolella [34].

In general, it might seem undesirable to consider a likelihood ratio test (LRT), as it uses a specific
composite (i.e., specified distribution but unspecified parameters) alternative. Indeed, as Thode [94] (p. 7)
aptly warns in the context of normality testing: “Some tests, such as the likelihood ratio tests and
most powerful location and scale invariant tests, were derived for detecting a specific alternative to
normality. ... The disadvantage of these tests [is] that ... they may not be efficient as tests of normality
if in fact neither the null nor the specified alternative hypotheses are correct.” The same critique
of course applies in our context as well. However, it is demonstrated in Paolella [34] that this LRT
has, in addition to the highest power against the NCT, often the best power against a variety of
non-NCT alternatives.

For a particular data set X of length T, the LRT of size 0.05 can be conducted via a parametric
bootstrap as follows.

1. Estimate the parameters of the Sα,β distribution, say pθ0 “ pα̂, β̂, σ̂, µ̂q, using the MLE, with
associated log-likelihood denoted by `Sα,βp

pθ0; Xq.
2. Estimate the parameters of the location-scale NCT distribution and compute the associated

log-likelihood `NCTp¨; Xq.
3. Compute ratio

LR0pXq “ 2ˆ
`

`NCTp¨; Xq ´ `Sα,βp
pθ0; Xq

˘

. (13)

4. For i “ 1, . . . , s1,

(a) Simulate Xpiq, consisting of T copies of Sα,β realizations with parameter vector pθ0.
(b) Similar to steps 1 to 3, compute ratio LRipXpiqq “ 2ˆ

`

`NCTp¨; Xpiqq ´ `Sα,βp
pθi; Xpiqq

˘

.

5. Reject the Sα,β null hypothesis (formally in favor of the NCT alternative) if LR0 is equal to or
exceeds the 95% empirical quantile of pLR1, . . . , LRs1q.

For application to numerous data sets, this will be rather slow, so instead, the cutoff values were
pre-computed via simulation, on a two-dimensional grid of α and β values for a fixed sample size,
T “ 1000. This yields a set of actual cutoff values cactp0.05; T, α, βq. Then, for a particular data set
of length T, and based on estimates of α and β, use interpolation into the grid to approximate the
appropriate cutoff value corresponding to a 5% level test. Paolella [34] demonstrates that the actual
size of this procedure is quite good for 1.5 ď α ď 1.9 and zero to moderate asymmetry of either sign.

More extensive simulation and modeling of the actual LRT distribution for each entry in the grid
of α and β values is straightforwardly done, so that, like the other tests, a p-value can be delivered
instead of just a binary decision at the 5% nominal level. We do not pursue this because of the
computational requirements, though observe that, if such a p-value were available, then one could
consider forming a combined test of τ20, ALHADI, and LRT and determine if such a test has yet higher
power than its constituents. We leave such ideas for future work.

5. Estimation of the Stable-APARCH Process

After introducing the model in Sections 5.1–5.3 detail the new, faster estimation procedures, with
the first one being related to use of profile likelihood, while the second one does not require any
evaluation of the likelihood and is nearly instantaneous. Finally, Section 5.4 examines the use of
an alternative estimation procedure that is also fast and accurate.
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5.1. Model

Daily stock returns are obviously not i.i.d., but use of a GARCH-type model can be effectively
used to model and filter the time-varying scale term, yielding a sequence of underlying estimated
innovation terms that are close to being i.i.d., though from a distribution with heavier tails than the normal.

The earliest GARCH-type model with stable innovations appears to be that of McCulloch [95],
which can be viewed as a precursor of the Bollerslev [17] Gaussian-based GARCH model or the
Bollerslev [21] Student’s t-based GARCH model or, for that matter, the Taylor [96] power-one GARCH
model, as well as the integrated GARCH model of Engle and Bollerslev [18]. It amounts to a power-one,
integrated GARCH(1,1) process, without a constant term, driven by conditional SαS innovations and,
as such, with regard to use of non-Gaussian distributions, was ahead of its time.

Subsequently proposed models address the benefit (to VaR and density forecasts) of allowing
asymmetry in the innovations distribution, as well as asymmetric effects of shocks on volatility, as
shown in Mittnik and Paolella [53], Bao et al. [97], Kuester et al. [54], and the references therein.
Importantly, Kuester et al. [54] demonstrate that use of asymmetric GARCH models with asymmetric
(and heavy-tailed) distributions yield imputed innovations sequences that are closer to i.i.d., as required
for the application of our testing procedures.

We use the lag-one asymmetric power ARCH (APARCH) model from Ding et al. [98], coupled
with an asymmetric stable Paretian innovation sequence, hereafter Sα,β-APARCH, for the percentage
log returns sequence R1, R2, . . . , RT , given by

Rt “ a0 ` σt Xt, Xt
iid
„ Sα,βp0, 1q, (14)

t “ 1, . . . , T, where the evolution of scale term σt takes the form

|σt|
p
“ c0 ` c1 p|εt´1| ´ g1εt´1q

p
` d1 |σt´1|

p , εt “ σt Xt, (15)

with c0, c1 ą 0, d1 ě 0, |g1| ă 1, and, to ensure stationarity (see [24]), 0 ă p ă α. We fix p “ 1, as it is
typically estimated with large standard errors, and fixing it to any value in r1, αq has very little effect
on the performance of density and VaR forecasts. Observe that ErXts “ 0 for any 1 ă α ď 2 and any
´1 ă β ă 1 (see [65] (Section 8.3) for details), so that ErRts “ a0.

5.2. Model Estimation: Likelihood-Based

To estimate the parameters of the Sα,β-APARCH model, one could conduct full MLE for all seven
parameters jointly. This entails being able to effectively compute the pdf of the (asymmetric) stable
Paretian distribution. This approach, in a GARCH context, was first pursued by Liu and Brorsen [22],
using an integral expression for the stable density at a given point. Those authors advocate fixing
p “ α in (15), in which case, E

“

|εt|
p‰ does not exist, but is precisely on the “knife edge” border, as

E
“

|εt|
p‰ exists for 0 ď p ă α, and not otherwise. Mittnik et al. [23,99] and Mittnik and Paolella [56]

use an FFT-based approach for evaluating the stable density, this being much faster than pointwise
evaluation of the pdf, and also constrain 1 ď p ă α. An alternative method in the symmetric case that
is competitive with use of the FFT in terms of computational time, and is more accurate, is to use the
vectorized expression (5).

In this paper, we consider two new ways, both of which are much faster, and numerically very
reliable. This section discusses the first. The idea is to estimate only the four APARCH parameters,
based on the likelihood, using a generic multivariate optimization routine, and such that, for any fixed
set of these four values, estimates of a0, α and β are obtained from an alternative method, discussed
now, and referred to as the “stable-table estimator”, or, in short, STE. In particular, following the
same method as introduced in Krause and Paolella [55], the location term is obtained via a trimmed
mean procedure such that the trimming amount is optimal for the estimated value of tail index α.
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For example, if α “ 1, then the median should be used, while if α “ 2, the mean should be used; the
optimal values for 1 ă α ă 2 were pre-determined via simulation.

Then, based on the location-standarized and APARCH scale-filtered data, the estimates of α

and β are determined from a table-lookup procedure based on sample and pre-tabulated quantiles.
In particular, for return series R “ pR1, . . . , RTq, we compute

arg max
θ

Lpθ; R | pa0,pαi, pβiq, tpa0,pα, pβu “ STEpR | θq, (16)

where STE refers to use of the stable-table method of estimation, but only for parameters a0, α and β; L
is the likelihood

Lpθ; R, a0, α, βq “
T
ź

t“1

pσ´1
t fSpX; α, β | a0, θq, (17)

X is the time series of location-standardized, APARCH-filtered values using the notation in (14),
with typical element Xt “ pRt ´ pa0q{pσt, and θ “ pc0, c1, d1, g1q are the APARCH parameters from (15).

The benefit of this procedure is that the generic optimizer only needs to search in three or four
dimensions, for the APARCH parameters (three if g1 is fixed in (15), as it tends to be erratic for small
samples), conveying a speed benefit, and also more numeric reliability. For a particular θ (as chosen by
a generic multivariate optimization algorithm), the STE method quickly delivers estimates of a0, α and
β. However, the likelihood of the model still needs to be computed, and this requires the evaluation of
the stable pdf, for which we use the fast spline approximation available in the Nolan Stable toolbox.
As such, the proposed method is related to the use of profile likelihood, enabling a partition of the
parameter set for estimation. As the STE method is not likelihood-based, the resulting estimator is not
the MLE, but enjoys similar properties of the MLE such as consistency, and can actually outperform
the MLE, first in terms of numeric reliability and speed, as already mentioned, but also in terms of
mean squared error (MSE), as discussed next.

Observe that the STE method utilizes the simple notion of pre-computing and the availability of
large memory on modern personal computers to save enormous amounts of processor time. It entails
tabulating a large set of quantiles for a tight grid of α and β values, and then using table lookup based
on sample quantiles to select the optimal α̂ and β̂. While the initial construction of the table takes
many hours, and requires megabytes of storage, once available, its use for estimation is virtually
instantaneous, does not require computation of the stable density and use of optimization algorithms,
and (depending on the granularity of the table and the choice of quantiles), delivers estimates of α

and β that are on par with the MLE, and, for small sample sizes, can outperform the MLE in terms of
mean squared error. The estimator is necessarily consistent, as the table lookup procedure is based on
sample and theoretical quantiles, and appealing to the Glivenko-Cantelli theorem, i.e., the empirical
cdf converges almost surely to its theoretical counterpart uniformly, and the fact that the cdf embodies
all information about the random variable.

5.3. Model Estimation: Nearly Instantaneous Method

We can improve upon the previous profile-likelihood type of estimation method in terms of speed
and also accuracy by forgoing the calculation of (16) and the necessity of evaluating the stable pdf
in (17) by using a fixed set of APARCH parameters θ that is determined by finding the compromise
values which optimize the sum of log-likelihoods of (16) for numerous typical daily financial return
series. The reason this works is statistically motivated in Krause and Paolella [55]. This is nothing
but an (extreme) form of shrinkage estimation, and, as demonstrated in Krause and Paolella [55],
often leads to better VaR forecasts than when estimating θ separately for each return series. A similar
analysis as done in Krause and Paolella [55] leads to the choice of θ as

c0 “ 0.04, c1 “ 0.05, d1 “ 0.90, and g1 “ 0.4. (18)
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This idea, reminiscent of the suggestion in the 1994 RiskMetrics technical document, often results
in (perhaps surprisingly) higher accuracy, and nearly instantaneous estimation of the Sα,β-APARCH
model. In the empirical section below, we will primarily use (16), and briefly show how the results
change when using (18).

5.4. Model Estimation: Characteristic Function Method

There exist other methods for the estimation of the four stable parameters in the i.i.d. setting,
most notably that of McCulloch [82], which, as already mentioned, is extraordinarily fast. Here, we are
concerned with the method of Kogon and Williams [83], hereafter KW, which also avoids calculation
of the stable density, instead making use of the empirical and theoretical characteristic function.2 It is
also fast, consistent, asymptotically normal, and generally outperforms the method of McCulloch [82].
The drawback of either of these methods is that, in our context of a stable APARCH model, these
methods are not immediately applicable, but, like the STE method, could be used analogously to the
setup in (16). However, the primary benefit of the STE method is that it is designed to deal with the a0

parameter as the location term of (14), which is not the same as the location parameter of an i.i.d. stable
framework. Nevertheless, for completeness, we contrast the STE and KW methods in an i.i.d. setting.

Figure 4 shows the small sample properties of the KW and STE estimators from a simulation study,
using true values of α and β that are typical for the conditional innovations process in an Sα,β-APARCH
model, as revealed in Section 7.1 below. For tail index parameter α, we see that the mode of α̂STE is
virtually at the true value, while that of α̂KW is upward biased. For asymmetry parameter β, β̂STE
exhibits less pile-up at the endpoints of the support than does β̂KW. The graininess of the former
results from the nature of the table lookup. While both methods are vastly faster than use of the
MLE, the STE method is about five times faster than KW, thus conveying it yet a further advantage.
The empirically computed mean squared error values are, to two significant digits, MSEpα̂KWq “ 0.0084,
MSEpα̂STEq “ 0.0087, MSEpβ̂KWq “ 0.40, and MSEpβ̂STEq “ 0.38.

Thus, in addition to comparable, if not slightly better small-sample performance, the STE method
is also much faster. However, as mentioned, its real benefit is its handling of parameter a0 in (14).
Much admirable work has been done over the years to enable estimation of the i.i.d. stable model.
However, the use of the i.i.d. model in modern, genuine applications is rather limited—once an i.i.d.
model is estimated, possibly with an estimator that yields slightly more accuracy in the third significant
digit, then what? Our concern is (ultra-) fast estimation of a Sα,β-APARCH model, given the obvious
prominence of GARCH-type effects in financial returns data, with, first, the intent of testing the stability
assumption, and secondly, the goal of computing tail risk measures, such as VaR and ES.

As mentioned in Section 3.1, the STE method has been extended to also provide the VaR and
ES, based on pre-computation. These otherwise laborious calculations are reduced to essentially
instantaneous delivery, and thus can be used for routine calculation by large financial institutions that
require reporting the VaR and/or ES on potentially tens of thousands of client portfolios. Moreover,
given the near instantaneous calculation of the (parameters, as well as the) VaR and ES for a particular
time series under the Sα,β-APARCH model assumption, the methodology can be used for mean-ES
portfolio optimization via the univariate collapsing method; see, e.g., Paolella [45], and thus in the
context of risk management. Finally, computation of confidence intervals for these measures are
nontrivial and inaccurate using the usual delta-method in conjunction with the sample covariance
matrix of the model parameters, rendering the asymptotic distributional behavior of such estimators of
little value. Instead, bootstrap methods are required for obtaining accurate confidence intervals of tail
risk measures, and thus only consistency (as fulfilled by the STE) is formally required, but practically,
also speed, for which the STE method shines.

2 The author is grateful to anonymous referee for suggesting to consider this method.
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Figure 4. Simulation results of the small sample properties of α̂ and β̂ for the Kogon and Williams [83]

(K-W) (top) and stable-table estimator (STE) (bottom) methods, using Xt
iid
„ Sα,βp0, 1q, t “ 1, . . . , T,

for T “ 250, and based on 100,000 replications. The vertical dashed line indicates the true values of
α “ 1.85 and β “ 0.

Remark: The method of Kogon and Williams [83] has been extended to the stable-power-GARCH
class of models by Francq and Meintanis [100]. They propose an estimation method based on the
integrated weighted squared distance between the characteristic function of the stable distribution
and an empirical counterpart computed from the GARCH residuals. Under fairly standard conditions,
the estimator is shown to be consistent. Future work could consider the efficacy of such an approach
compared to the one proposed herein.

6. Simulation Study Under True Model and Variations

First we wish to consider the behavior of the parameter estimates and the p-values of the combined
A` τ20 test (this being more powerful than either of its two constituent tests) when the simulated
model is Sα,β-APARCH with a0 “ 0, α “ 1.85, β “ 0, and APARCH parameters as given in (18). The
choice of α is based on the empirical evidence shown in Figure 5, associated with the empirical exercise
below in Section 7. Figure 6 shows the results, based on 10,000 replications with sample size T “ 500,
using the fixed APARCH parameters (18) and the trimmed mean technique for â0 and the fast table
lookup method for the two stable shape parameters. Unsurprisingly, given that the true APARCH
structure is used, and given the high accuracy of the trimmed mean and table lookup methods, the
modes of the histograms of the parameter estimates are at their true values and the shapes of the
histograms are very nearly Gaussian (though observe that occasionally, the values of β̂ are at the
extremes of its parameter space), and the p-values of the A` τ20 test are very close to being uniform.

Figure 7 is similar, but having used the jointly computed MLE of all seven model parameters.
The results are very similar, including the pileup at the extremes for β̂, though for α̂, its empirical
distribution is far from Gaussian. To inspect this in more detail, various starting values were used for
α̂ (and not just the true value), and the results were always the same. We suspect the reason for this
oddly-shaped behavior stems from the use of the fast spline approximation to the stable density used
for the MLE calculation. Confirmation could be done using slower but more accurate methods for the
calculation of the stable density, but the computing time would then become extensive; and in our
context, it is not the primary issue under study.
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Figure 5. Left: histogram of the estimates of α of the fitted Sα,β-APARCH process, for the 348 time
series of length T “ 1000 from the 29 DJIA stock returns; Right: Same but for the 1500 time series of
length T “ 1000 from the 100 largest cap stocks from the S&P500 index.

−0.2 −0.1 0 0.1 0.2
0

200

400

600

800

1000

1200
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Figure 6. Simulation results, based on 10,000 replications with sample size T “ 500, using the fixed
APARCH parameters (18) and the trimmed mean technique for â0 and the fast table lookup method for
the two stable shape parameters.

There are obviously infinite ways of modifying the true, simulated data generating process.
Figure 8 shows the effect on the p-value of the combined A` τ20 test, under the fixed APARCH and
MLE settings, when taking c1 “ 0.01 and d1 “ 0.95 (and the remaining parameters as before), this
choice being such that the volatility persistence is higher, but the stationarity condition (as a function
of c1, g1, α and β, plus d1) is about the same; see Mittnik and Paolella [53] (p. 316) for calculation
of the stationarity border in the APARCH case for various distributions. As expected, the p-values
of the A` τ20 test tend more towards zero when using the fixed, incorrect values of the APARCH
parameters (18), while those based on the MLE are still nearly uniform. Further experiments reveal
that modifying the true parameter g1 has little effect on the uniformity of the p-values under the fixed
APARCH specification (18) (and of course no effect on the MLE-based counterparts), while modifying
parameter c0 has a large impact on the former, as well as the parameter estimates of α and β.
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Figure 7. Similar to Figure 6, but having used the jointly computed MLE of all seven model parameters.
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Figure 8. Simulation results under the fixed APARCH (left) and MLE (right) settings, when taking
c1 “ 0.01 and d1 “ 0.95 for the true data generating process, and the remaining parameters as before,
i.e., a0 “ 0, α “ 1.85, β “ 0, c0 “ 0.04 and g1 “ 0.4.

7. Empirical Illustration

We apply the above methodology for estimating the Sα,β-APARCH model to various sequences of
asset returns, primarily using the estimation method in (16), given the previous simulation results in
Section 6, though we briefly compare the resulting p-values to the use of fixed APARCH parameters in (18).

7.1. Detailed Analysis for Four Stocks from the DJIA Index

We first show the testing results for four daily (log percentage) return series associated with the
DJIA index, from 3rd January 2000 to 17 September 2014, using:

1. moving windows of length T “ 500 and moving the window ahead by 100 days (resulting in
33 windows of data for each return series);

2. moving windows of length T “ 1000 and moving the window ahead by 250 days (resulting in
12 windows of data for each return series);

3. the full data set.

Consider use of the τ20 test and ignoring the asymmetry in the returns, recalling that it
approximately preserves its size for mildly asymmetric stable Paretian data. To each window, we
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fit the Sα,0-APARCH model as discussed above, and conduct the τ20 test on the filtered innovation
sequence. The left panels of Figure 9 pertain to the Procter & Gamble company, and show the returns
data (top), followed by the estimated values of tail index α (and β, when we consider the tests under
asymmetry below), and, in the third panel, the p-values of the τ20 test (ignoring asymmetry). (Observe
that there is overlap in the data sets used to generate the 33 windows, so that the τ20 test p-values are
not independent.) Under the null hypothesis (irrespective of the fact that they are not independent)
we would expect that their values are uniform on p0, 1q, and expect one to two of the 33 p-values to lie
below 0.05 and about three of them to lie below 0.10. This is clearly not the case, with the vast majority
below 0.5, eight values below 0.05, and 13 below 0.10. We conclude, particularly for recent times, that
the symmetric stable distribution can be rejected for this model.

Now consider the asymmetric case. The bottom panel shows the p-values from the three tests,
τ20, ALHADI, and A` τ20, based on fitting the Sα,β-APARCH model and use of the (12) transform.
Comparing the τ20 results from the symmetric case, we see, as expected, less rejections when asymmetry
is accounted for (as the power decreases), but the results are qualitatively the same. The combined
test A` τ20, which we recall has higher power than its constituent parts, delivers p-values around the
region of 2011–2012 very close to zero, providing strong evidence against the stable hypothesis for
that time period. With respect to the α̂ and β̂ values, observe that, for three windows, β̂ “ ´1, but in
two of those cases, α̂ is nearly two, in which case, parameter β has no meaning (and is very difficult
to estimate). When α̂ is close to two, the ALHADI test does not deliver a statistic, which explains the
missing value in the p-value plot.
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Figure 9. Application of the testing procedures to moving windows of data of length T “ 500, in
increments of 100, for Procter & Gamble (left) and JPMorgan Chase (right). Estimation is based on the
method in (16).

The right panels of Figure 9 pertain to the JP Morgan Chase company. Similar conclusions hold in
the sense that there are periods of data for which the stable hypothesis is clearly rejected, particularly
from the combined A` τ20 test. It is noteworthy for this data set that, after about 2011, for only one
window can the stable hypothesis be rejected.

Figure 10 is the same as Figure 9, having used two different stocks, Cisco Systems Inc., and
McDonalds Corporation. From the plot of α̂ for Cisco, it appears that, since the year 2003, the risk (as
measured by the conditional tail index) increased over much of the time (except for about two years
after the high point of the liquidity crisis in 2007), and since about 2011, α̂ is relatively constant around
1.7, and β̂ around zero. Use of the τ20 test under the assumption of symmetry would suggest that the
assumption of stability is tenable for this stock, with rejection at the 10% level only two times out of
33. However, under asymmetry, all three tests reject more frequently with approximately the same
proportion. McDonalds yields the interesting observation that, when α̂ decreases, the tests tend to
reject the stable assumption.
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Figure 10. Similar to Figure 9, but for Cisco Systems and McDonalds Corporation. Estimation is based
on the method in (16).

Figure 11 shows the p-values of the three tests when using a window length of T “ 1000 and step
size of 250. Qualitatively, they are similar to the T “ 500 case. When using the entire series (with length
T “ 3773), the p-values of the ALHADI test are 0.0011, 0.0070, 0.55, and 0.17, for Procter & Gamble,
JPMorgan Chase, Cisco Systems, and McDonalds Corp., respectively, while the p-values for τ1000 are
0.0041, 0.0043, 0.12, and 0.0034.
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Figure 11. Similar to last rows in Figures 9 and 10, but having used window length of T “ 1000 and
incrementing it by 250 observations. Estimation is based on the method in (16).
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Plots associated with the other stocks in the DJIA index were inspected using window lengths
T “ 500 and T “ 1000, and reveal similar findings. In particular, there is no stock such that the
p-values of the tests appear uniform on p0, 1q (with the somewhat exception of Cisco and use of the
τ20 test under symmetry), but instead, they tend to be closer to zero than one, and tend to have more
than two rejections out of 33 at the 5% level and more than three rejections at the 10% level. Given the
rejection rates (and the fact that the tests do not have perfect power), it appears that the assumption of
stability is not tenable for all stocks and time periods.

7.2. Summary of p-Values from the 29 DJIA Index Stocks

As a summary, and serving as a heuristic for judging the overall assessment of stability in the
(APARCH-filtered innovations of the percentage returns of the) stocks, we show the p-values for all
stocks and (i) all windows of length T “ 500 and (ii) based on the entire length of the return sequence,
as well as looking at the mean rejection rate of the LRT test of size 0.05.

First, Figure 12 shows histograms of the resulting 29ˆ 33 “ 957 p-values, for each of the three
tests, resulting from use of all 29 available stocks and 33 windows of length T “ 500. (The DJIA Index
consists of 30 stocks, but for the dates we use, the Visa company is excluded due to its late IPO in
2008.) As mentioned before, within a stock, the p-values for a particular test are not independent, as
the windows overlap. They are perhaps not independent also across stocks. Nevertheless, if the stable
hypothesis were true, then the resulting histograms should be close to uniform p0, 1q. We see that this
is not the case, with the deviation from uniformity (and pile-up towards small values) greatest for the
A` τ20 test, which is precisely the general test with the highest power against numerous alternatives;
see Paolella [34]. The mean number of rejections at the nominal level of 0.05 are 0.17, 0.22, 0.28, for the
τ20, ALHADI, and A` τ20 tests, respectively.
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Figure 12. Histograms of the p-values over all 33 windows using T “ 500, and the 29 available stocks
of the DJIA. Estimation is based on the method in (16).

When conducting this same analysis using moving windows of length T “ 1000 in increments
of 250 (resulting in 29ˆ 12 “ 348 time series), the resulting mean number of rejections are 0.27, 0.29,
and 0.39. This substantial increase in rejection can be attributed to two factors. The first is that the
tests are more powerful as the sample size increases. The second factor is that, unfortunately, as the
sample size grows, so does the extent of the misspecification of the model (stable-APARCH, with
constant parameters), rendering the filtered innovation sequences less likely to be genuinely i.i.d.
Even if (heroically) the Sα,β-APARCH model assumption were correct at each point in time, then its
parameters are changing through time, as observed for the conditional tail index in Figures 9 and 10.

The left panel of Figure 5 shows the estimates of α of the fitted Sα,β-APARCH process, for the
348 time series of length T “ 1000 from the 29 DJIA stock returns. (The right panel is similar, but
applies to the 100 stocks considered in Section 7.3.) We see that, for both data sets, α̂ clusters between
1.85 and 1.9, so that, conditional on the scale term (as modeled via an APARCH process), the conditional
distribution of the return is often not particularly heavy-tailed, though still “far” from Gaussian, as can
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be seen by comparing the, say, 0.01 quantiles or expected shortfall measures of the stable distribution
with tail indexes 1.9 and 2.0.

Next, Figure 13 shows the ALHADI and τ20 p-values computed on all 29 stocks, using the entire
time series of T “ 3773 daily returns, and using B “ 1000 for the τB test to ensure near-uniqueness
of its values. About 2/3 of the series have ALHADI p-values below 0.10, while 28 of the 29 p-values
for the τ1000 test are below 0.10, with five close to or above 0.05. This would suggest strong evidence
against the stable assumption, but the value of this exercise is somewhat questionable because, as
previously mentioned, it assumes that the data generating process is constant throughout the entire
time span, and it being a Sα,β-APARCH process, with constant parameters. For shorter windows, this
might indeed be a very reasonable approximation to reality, but for nearly 14 years of daily data, this
is highly unlikely, and the resulting sequence of filtered innovations is surely “less close” to being i.i.d.
than those corresponding to shorter windows of data.
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Figure 13. Histograms of the p-values for all 29 stocks in the DJIA using the entire data set of T “ 3773.
Estimation is based on the method in (16).

Finally, we consider the results of the LRT, when applied to the filtered innovation sequence of
the fitted Sα,β-APARCH process applied to the 348 windows of length T “ 1000, this having been
estimated by joint maximum likelihood of all seven model parameters, using the spline approximation
of the asymmetric stable density provided in Nolan’s toolbox and the method detailed in Krause and
Paolella [55] and Paolella [34] for fast estimation of the location-scale NCT. The results of the LRT test
are binary, with one indicating rejection at the 5% level. The resulting average rejection rate is 0.47,
i.e., for about half of the 348 time series, the stable hypothesis is rejected at the 5% level. This rate is
higher than that of A` τ20, which was 0.39. One reason is that the LRT is more powerful than A` τ20.
Another reason is that, possibly, it is also more sensitive to deviations from i.i.d.. Only extensive
simulation evidence could shed some partial light on this, but as any GARCH-type model will be
misspecified to some extent, particularly as the sample size grows, it is not clear how to definitively
address this issue.

Remark: Throughout the above analysis, we used the method in (16), such that the APARCH
parameters, the location term a0 (based on the trimmed mean method), and two shape parameters of
the stable distribution (the latter based on table lookup) are estimated. It is of interest to consider the
behavior of the p-values when we fix the APARCH coefficients, as described in (18) (but still estimating
a0 and the two stable shape parameters as before). The mean number of rejections at the nominal level
of 0.05 are 0.18, 0.19, 0.26, for the τ20, ALHADI, and A` τ20 tests, respectively. These are very close to
the previously obtained numbers but such that the rejection rates for the latter two tests are a bit lower.
A possible explanation of this is that the fixed APARCH parametrization is mildly better specified, as
argued in Krause and Paolella [55], so that the resulting filtered innovation sequence is “a bit closer to
i.i.d.” than its APARCH-fitted counterpart. As the tests assume i.i.d., deviations from this assumption
might affect their performance such that the probability of rejection of the null (of i.i.d. stable) is higher
when the model is “more misspecified”.
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7.3. Summary of p-Values from 100 S&P500 Stocks

Here we consider a larger data set, using the daily percentage log returns from the top
100 market-cap corporations of the S&P500 index (obtained from CRSP), from 3rd January 1997
until 31st December 2014. The results are shown in Figure 14, which is similar to Figure 12, but based
on the resulting 4100 p-values, from the 100 stocks and 41 windows of length T “ 500 incremented by
100 days. We observe a similar phenomenon as with the DJIA stocks, namely, that the p-values for all
the tests are not uniform on p0, 1q, but rather indicative that the stable assumption can be rejected for
some stocks and time periods. The mean number of rejections at the nominal level of 0.05 are 0.19, 0.21,
0.27, for the τ20, ALHADI, and A` τ20 tests, respectively. Again notice that the latter has the highest
rejection rate, as it is the most powerful of the three tests.

When conducting this same analysis using moving windows of length T “ 1000 in increments
of 250 (resulting in 1500 time series), the resulting mean number of rejections are 0.36, 0.32, and 0.48.
The LRT test, applied to the same windows, yields an average rejection rate of 0.50, i.e., for half of the
1500 time series, the stable assumption is rejected at the 5% level. Observe that the rejection rate using
the LRT is the highest among all the tests considered, while that of the combined A` τ20 was very
close, being 0.48.
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Figure 14. Same as Figure 12, i.e., p-values over windows using T “ 500, but having used the 100 largest
market-cap stocks from the S&P500 index, resulting in 4100 p-values.

8. Conclusions

A fast new method for estimating the parameters of the Sα,β-APARCH is developed, and this is
used to obtain the filtered innovation sequences when the model is applied to daily financial asset
returns data. These are, in turn, subject to several new tests for stability. Application of the tests to
the components of the DJIA-30 index and the top 100 market-cap corporations of the S&P500 index
suggests that, for most stocks and some segments of time, the assumption of the innovation process
driving a GARCH-type process being i.i.d. stable Paretian cannot be rejected, though overall, based on
the rejection rates, there is evidence against it.

One should differentiate in this context between the use of formal testing procedures for
a distributional assumption, and the appropriateness, or lack thereof, of using that distribution.
In particular, the successful use of the stable distribution in conjunction with GARCH-type models
for risk prediction and asset allocation lends evidence that, at least from a purely practical point of
view, the model has merit. This point is also made in Nolan [101]. Moreover, a very large number
of empirical studies exist that use a GARCH model with Student’s t or generalized exponential
(GED) innovations, these being available in many software packages, but rarely, if ever, is the
distributional assumption questioned or addressed in a formal way. Instead, some studies will
compare the forecasting performance of several models, usually finding that the use of a GARCH-type
model that allows for asymmetric shocks to volatility, in conjunction with a leptokurtic, asymmetric
distribution, delivers competitive risk forecasts.
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All models and distributions employed for modeling non-trivial real data are nothing but
approximations and are necessarily wrong; and without an infinite amount of data, tail measurements
will always be inaccurate. As such, at least in finance, while distributional testing is an important
diagnostic, a crucial measure of the utility of a model is in the application to forecasting, such as
downside risk, or portfolio optimization—for which different (non-Gaussian) models can be compared
and ranked.

Both in-sample and out-of-sample diagnostics and testing procedures have value for assessing
the appropriateness of a model, but the purpose of the model must always be considered. For example,
if tomorrow’s VaR is required on 100,000 portfolios, then speed, numeric reliability, and practicality
will play a prominent role. In the complicated game of financial risk forecasting and asset allocation,
it is highly unlikely that a single model will be found to consistently outperform all others, but the
appropriate use of distributional testing, out-of-sample performance diagnostics, and common sense
can lead to a model that reliably fulfils its purpose.
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