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Abstract: This paper investigates if the impact of uncertainty shocks on the U.K. economy
has changed over time. To this end, we propose an extended time-varying VAR model that
simultaneously allows the estimation of a measure of uncertainty and its time-varying impact on
key macroeconomic and financial variables. We find that the impact of uncertainty shocks on
these variables has declined over time. The timing of the change coincides with the introduction
of inflation targeting in the U.K.

Keywords: TVP-VAR; stochastic volatility; uncertainty shocks

JEL: C15; C32; E32

1. Introduction

The recent financial crisis and ensuing recession have led to a renewed interest in the possible
relationship between economic uncertainty and macroeconomic variables. A number of papers use
VAR-based analyses to estimate the impact of uncertainty shocks for the U.S. and the U.K. (see, for
example, [1] for the U.S. and [2] for the U.K.). In general, these studies report that uncertainty shocks
have an adverse impact on the economy. For example, [2] find that uncertainty shocks depress GDP
and industrial production.

However, the estimates reported in these papers are typically based on data that span the last
three or four decades and, thus, cover periods potentially characterised by changing dynamics, policy
regimes and economic shocks. There has been limited focus on exploring whether the impact of
uncertainty shocks has changed over time in the United Kingdom and identifying the factors that can
possibly explain any temporal shifts.1

This paper attempts to fill this gap. We propose an extended TVP-VAR model that allows the
estimation of a measure of uncertainty that encompasses volatility from the real and financial sectors
of the economy and is a proxy for macroeconomic uncertainty. The proposed model incorporates
time-varying parameters and simultaneously provides an estimate of the time-varying response of
macroeconomic variables to shocks to this uncertainty measure, thus allowing the investigation of
temporal shifts in a coherent manner.

Our results suggest that the impact of uncertainty shocks on measures of real activity, inflation
and interest rates has declined systematically over time, with the change coinciding with the
introduction of inflation targeting in 1992. The impact of these shocks on stock returns has also
declined, but the degree of the shift is smaller.

1 Beetsma and Giuliodori [3] and Mumtaz and Theodoridis [4] investigate this question for the U.S.
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The analysis in the paper adds to the literature on uncertainty by systematically investigating
how the impact of uncertainty has changed over time in the U.K. The empirical model proposed in the
paper builds upon existing VAR models by simultaneously allowing the estimation of time-varying
volatility and the time-varying impact of this volatility on the endogenous variables. Our results have
important implications. Our empirical findings suggest that uncertainty is less of a concern for real
activity and inflation than in the past, but continues to have an important impact on the stock market.
This suggests that uncertainty shocks mainly affect the U.K. through a financial channel, and policies
designed to ameliorate the impact of these shocks need to take this mechanism into account.

The paper is organised as follows: Sections 2 and 3 introduce the empirical model and
discuss the estimation method. The results from the empirical model are presented in Section 4.3.
Section 5 concludes.

2. Empirical Model

The core of the empirical model is the following time-varying parameter vector autoregression
(TVP VAR):

Zt = ct +
P

∑
j=1

βtjZt−j +
J

∑
j=0

γtj ln λt−j + Ω1/2
t et (1)

where Zt is a matrix of endogenous variables that we describe below. The law of motion for the VAR
coefficients is given by:

B = vec([c; β; γ]) (2)

Bt = Bt−1 + ηt, VAR (ηt) = QB

As in [5], the covariance matrix of the residuals is defined as:

Ωt = A−1
t Ht A−1′

t

where At is lower triangular. Each non-zero element of At evolves as a random walk:

at = at−1 + gt, VAR(gt) = G (3)

where G is block diagonal, as in [5].
Following [6], the volatility of the shocks et is given by:

Ht = λtS (4)

S = diag(s1, .., sN)

The overall volatility evolves as an AR(1) process:

ln λt = α + F ln λt−1 + η̄t, VAR(η̄t) = Qλ (5)

and the diagonal elements of S are scaling factors.
The structure defined by Equation (4) suggests that the specification is characterised by the

following feature. First, the model does not distinguish between the common and idiosyncratic
component in volatility, and λt is a convolution of both components. In other words, Equation (5)
implicitly imposes a factor structure on the volatilities where the loadings equal one and the
idiosyncratic components are suppressed. With such a structure, λt is approximately the
average volatility.

While separating the unobserved components in Equation (4) may be interesting in its own
right, it is not directly relevant for our application, where the key aim is to estimate a measure of
the common volatility of the shocks, which, by definition, is a combination of the two components.
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As we show below, this simple scheme produces volatility estimates that are plausible from a
historical perspective.

The shock η̄t represents the innovation to the volatility of the residuals et and is interpreted as
an uncertainty shock. In the empirical analysis below, we examine the time-varying response of the
endogenous variables to this shock.

The formulation presented in Equations (4) and (5) is related to a number of recent empirical
contributions. For example, the structure of the stochastic volatility model used above closely
resembles the formulations used in time-varying VAR models (see [5,7]). Our model differs from these
studies in that it allows a direct impact of the volatilities on the level of the endogenous variables.
The model proposed above can be thought of as a multivariate extension of the stochastic volatility
in the mean model proposed in [8] and applied in [9–11]. In addition, our model has similarities with
the stochastic volatility models with leverage studied in [12] and the non-linear model proposed in
Aruoba et al. [13]. Finally, the model is based on the VAR with stochastic volatility introduced in [14].
While [14] focus on the impact of volatility associated with the output shock, we focus on an overall
measure of uncertainty that incorporates the variance of all shocks in the model. In addition, the
model proposed above incorporates time variation, a feature missing from the studies that consider
stochastic volatility in mean models.2

3. Estimation and Model Specification

The model defined in Equations (1) and (5) is estimated using an MCMC algorithm. In this
section, we summarise the key steps of the algorithm and provide the details of the prior distributions.

3.1. Priors and Starting Values

3.1.1. VAR Coefficients

The initial conditions for the VAR coefficients B0 are obtained via an OLS estimate of a fixed
coefficient VAR using the first T0 = 180 observations of the sample period, which corresponds to the
first 15 years of the monthly dataset described below. Let B̂ols and v̂ols denote the OLS estimate
of the VAR coefficients and the covariance matrix estimated on the pre-sample data described
above. The prior for B0˜N(B̂ols, var(B̂ols)). The prior on QB is assumed to be inverse Wishart
QB,0 ∼ IW (Q̄B,0, TT0), where Q̄B,0 is assumed to be T0 × var(B̂ols)× k, T0 is the length of the sample
used for calibration and TT0 equals 10 plus the columns of QB. Following [7], the scaling factor k is
set to 3.5× 10−4.

3.1.2. Elements of the A Matrix

The prior for the off-diagonal elements At is A0 ∼ N
(

âols, V
(

âols
))

, where âols are the

off-diagonal elements of v̂ols, with each row scaled by the corresponding element on the diagonal.
V
(

âols
)

is assumed to be diagonal with the elements set equal to 10-times the absolute value of

the corresponding element of âols. The prior distribution for the blocks of G is inverse Wishart:
Gi,0 ∼ IW(Ḡi, Ki), where i = 1..N − 1 indexes the blocks of S. Ḡi is calibrated using âols. Specifically,
Ḡi is a diagonal matrix with the relevant elements of âols multiplied by 10−3. This prior specification
is used in previous studies, such as [15].

2 An exception is [4], who use an extended version of the proposed model to investigate the time-varying impact of
uncertainty shocks in the U.S. The model in [4] incorporates a factor structure in the observation Equation (1) and, thus,
incorporates more information.
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3.1.3. Elements of S and the Parameters of the Stochastic Volatility Transition Equation

The elements of S are assumed to have an inverse Gamma prior: P(si)˜IG(S0,i, V0). The degrees
of freedom V0 are set equal to five. The prior scale parameters are set by estimating the following
regression. λ̄it = S0,iλ̄t + εt, where λ̄t is the first principal component of the stochastic volatilities
λ̄it obtained using a univariate stochastic volatility model for the residuals of each equation of a VAR
estimated via OLS using the endogenous variables Zt.

We set a normal prior for the unconditional mean µ = α
1−F . This prior is N(µ0, Z0), where

µ0 = 0 and Z0 = 10. The prior for Qλ is IG
(
Q0, VQ0

)
, where Q0 is the average of the variances of the

transition equations of the initial univariate stochastic volatility estimates, and VQ0 = 5. The prior for
F is N (F0, L0), where F0 = 0.8 and L0 = 1.

3.1.4. Common Volatility λt

The prior for the initial value of λt is defined as ln λ0 ∼ N(ln µ0, I), where µ0 is the initial value
of λ̄t defined above.

3.2. MCMC Algorithm

The Gibbs sampling algorithm is based on drawing from the following conditional
posterior distributions:

1. G(Bt\Ξ). The distribution of the time-varying VAR coefficients Bt conditional on all other
parameters Ξ is linear and Gaussian: Bt\Zt, Ξ ∼ N

(
BT\T , PT\T

)
and Bt\Bt+1,Zt, Ξ ∼

N
(

Bt\t+1,Bt+1
, Pt\t+1,Bt+1

)
, where t = T − 1, ..1, Ξ denotes a vector that holds all of the

other VAR parameters. As shown by [16] the simulation proceeds as follows. First, we
use the Kalman filter to draw BT\T and PT\T and then proceed backwards in time using
Bt|t+1 = Bt|t + Pt|tP

−1
t+1|t (Bt+1 − Bt) and Bt|t+1 = Bt|t − Pt|tP

−1
t+1|tPt|t.

2. G(QB\Ξ). The conditional posterior for QB is inverse Wishart: IW (η′tηt + Q̄B,0, T + T0), i.e., the
posterior scale matrix is given by η′tηt + Q̄B,0, and the degrees of freedom are T + T0.

3. G(At\Ξ). Given a draw for the VAR parameters, the model can be written as A′t (vt) = et,
where vt denotes the VAR residuals. This is a system of linear equations with time-varying
coefficients and a known form of heteroscedasticity. The j-th equation of this system is given
as vjt = −ajtv−jt + ejt, where the subscript j denotes the j-th column of v, while −j denotes
Columns 1 to j − 1. Note that the variance of ejt is time-varying and given by λtsj. The
time-varying coefficient follows the process ajt = ajt−1 + gjt with the shocks to the j-th equation
gjt uncorrelated with those from other equations. In other words, the covariance matrix var (g)
is assumed to be block diagonal, as in [5]. With this assumption in place, the [16] algorithm can
be applied to draw the time varying coefficients for each equation of this system separately.

4. G(S\Ξ). Given a draw for the VAR parameters, the model can be written as A′ (vt) = et.
The j-th equation of this system is given by vjt = −ajtv−jt + ejt, where the variance of ejt
is time-varying and given by λtsj. Given a draw for λt, this equation can be re-written as
v̄jt = −ajtv̄−jt + ējt, where v̄jt =

vjt

λ1/2
t

, and the variance of ējt is sj. The conditional posterior

for this variance is inverse Gamma with scale parameter ē′jt ējt + S0,j and degrees of freedom
V0 + T.

5. G(λt\Ξ). Conditional on the VAR parameters, and the parameters of the transition equation, the
model has a multivariate non-linear state-space representation. The work in [17] shows that the
conditional distribution of the state variables in a general state-space model can be written as
the product of three terms:

h̃t\Zt, Ξ ∝ f
(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
× f

(
Zt\h̃t, Ξ

)
(6)
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where Ξ denotes all other parameters and h̃t = ln λt. In the context of stochastic volatility
models, [18] show that this density is a product of log normal densities for λt and λt+1 and a
normal density for Zt. The work in [17] derives the general form of the mean and variance of the
underlying normal density for f

(
h̃t\h̃t−1, h̃t+1, Ξ

)
∝ f

(
h̃t\h̃t−1

)
× f

(
h̃t+1\h̃t

)
and shows that

this is given as:
f
(
h̃t\h̃t−1, h̃t+1, Ξ

)
∼ N (B2tb2t, B2t) (7)

where B−1
2t = Q−1

λ + F′Q−1
λ F and b2t = h̃t−1F′Q−1

λ + h̃t+1Q−1
λ F. Note that due to the

non-linearity of the observation equation of the model, an analytical expression for the complete
conditional h̃t\Zt, Ξ is unavailable, and a Metropolis step is required. Following [18], we draw
from (6) using a date-by-date independence Metropolis step using the density in (7) as the
candidate generating density. This choice implies that the acceptance probability is given by
the ratio of the conditional likelihood f

(
Zt\h̃t, Ξ

)
at the old and the new draw. To implement

the algorithm, we begin with an initial estimate of h̃ = ln λ̄t. We set the matrix h̃old equal to the
initial volatility estimate. Then, at each date, the following two steps are implemented:

(a) Draw a candidate for the volatility h̃new
t using the density 6, where b2t = h̃new

t−1 F′Q−1
λ +

h̃old
t+1Q−1

λ F and B−1
2t = Q−1

λ + F′Q−1
λ F.

(b) Update h̃old
t = h̃new

t with acceptance probability
f (Zt\h̃new

t ,Ξ)
f (Zt\h̃old

t ,Ξ)
, where f

(
Zt\h̃t, Ξ

)
is the

likelihood of the VAR for observation t and defined as |Ωt|−0.5 − 0.5 exp
(

ẽtΩ−1
t ẽ′t

)
, where

ẽt = Zt −
(

ct + ∑P
j=1 βtjZt−j + ∑J

j=0 γtj ln λt−j

)
and Ωt = A−1

t
(
exp(h̃t)S

)
A−1′

t .

Repeating these steps for the entire time series delivers a draw of the stochastic volatilities.3

6. G(α, F\Ξ). We re-write the transition equation in deviations from the mean:

h̃t − µ = F
(
h̃t−1 − µ

)
+ η̄t (8)

where the elements of the mean vector µi are defined as αi
1−Fi

. Conditional on a draw for h̃t

and µ, the transition Equation (8) is simply a linear regression, and the standard normal and
inverse Gamma conditional posteriors apply. Consider h̃∗t = Fh̃∗t−1 + η̄t, VAR (η̄t) = Qλand
h̃∗t = h̃t − µ, h̃∗t−1 = h̃t−1 − µ. The conditional posterior of F is N (θ∗, L∗), where:

θ∗ =

(
L−1

0 +
1

Qλ
h̃∗′t−1h̃∗t−1

)−1 (
L−1

0 F0 +
1

Qλ
h̃∗′t−1h̃∗t

)
L∗ =

(
L−1

0 +
1

Qλ
h̃∗′t−1h̃∗t−1

)−1

The conditional posterior of Qλ is inverse Gamma with scale parameter η̄′tη̄t + Q0 and degrees
of freedom T + VQ0.

Given a draw for F, Equation (8) can be expressed as ∆̄h̃t = Cµ + η̄t, where ∆̄h̃t = h̃t − Fh̃t−1

and C = 1− F. The conditional posterior of µ is N (µ∗, Z∗), where:

µ∗ =

(
Z−1

0 +
1

Qλ
C′C

)−1 (
Z−1

0 µ0 +
1

Qλ
C′∆̄h̃t

)
Z∗ =

(
Z−1

0 +
1

Qλ
C′C

)−1

3 In order to take endpoints into account, the algorithm is modified slightly for the initial condition and the last observation.
Details of these changes can be found in [18].
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Note that α can be recovered as µ (1− θ).

3.3. Estimation Using Artificial Data

To test the algorithm, we conduct a small Monte Carlo experiment. Seven hundred twenty
observations are generated from the following data-generating process with the number of variables
N = 2. The first 100 observations are discarded to remove the impact of initial conditions, and 120
observations of the remaining series are used as a training sample. Estimation is carried out using
500 observations. The length of the artificial sample broadly matches the monthly dataset used in the
empirical analysis below. The DGP is defined as:

Zt = βtZt−1 + γt ln λt + ct + Ω1/2
t et, et˜N(0, 1)

Ωt = A−1
t Ht A−1′

t , Ht = λtS

S =

(
1 0
0 2

)
λt = −0.1 + 0.75λt−1 + (0.5)

1
2 vt

βt =

(
β11,t β12,t
β21,t β22,t

)
, γt =

(
γ11,t
γ21,t

)

where λt is generated once using vt˜N(0, 1) and fixed for all iterations of the experiment.
Following [19], we assume that a one time shift defines the change in the VAR coefficients and the

non-zero element of At. During the first 250 observations, these coefficients equal βt =

(
0.5 0.1
0.1 0.5

)
,

γt =

(
−0.5
0.5

)
and A = −1. During the next 250 observations, the coefficients change to

βt =

(
0.5 0.1
0.1 0.5

)
, γt =

(
−1.5
1.5

)
and A = 0.1.

The data is generate 1000 times. For each replication, the MCMC algorithm described above is
run using 5000 iterations, and the last 1000 draws are used to compute the posterior mean of λt, At and
Bt. The figure below plots the median estimate and 84th percentile of λt, At and Bt across Monte Carlo
replications and compares these with the true underlying values. Figure 1 shows that the estimated
change in λ11 and λ21 closely matches the assumed shift in these coefficients. Note, however, that
the model estimates the shift in these coefficients to be smoother than assumed in the DGP. This is
not surprising, given the assumed random walk form for the transition of the VAR coefficients in the
model, which contrasts with the one-time change in the DGP. The results do show that the model
is able to pick up changes in the impact of uncertainty and is suited to the type of investigation
undertaken by this paper. Figures 2 and 3 show that the Monte Carlo estimates of At and ln λt are
close to their true estimated values. Overall, the results provides some evidence that the MCMC
algorithm delivers a satisfactory performance.
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Figure 1. Monte Carlo estimates of VAR coefficients. The black line is the true value of the parameter. The red line is the median estimate across 1000 replications,
and the shaded area represents the 68% interval.
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Figure 2. Monte Carlo estimates of the non-zero and non-unity element of the A matrix. The black line is the true value of the parameter. The red line is the median
estimate across 1000 replications, and the shaded area represents the 68% interval.
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Figure 3. Monte Carlo estimates of the stochastic volatility. The black line is the true value of the parameter. The red line is the median estimate across 1000
replications, and the shaded area represents the 68% interval.
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4. Empirical Analysis for the U.K.

4.1. Data

The TVP-VAR model in Equation (1) is estimated using the following endogenous variables:
(1) The growth rate of industrial production; (2) CPI inflation; (3) the three month T-Bill rate; and
(4) FTSE returns. By using these four variables, we aim to broadly capture the real and financial
sectors of the economy and to account for the changes in monetary policy. The data are monthly and
available over the period of January 1960 to April 2015, with the first 15 years employed as a training
sample. All series are obtained from the Global Financial Database. The growth rates of CPI and
industrial production are calculated as log differences times 100. FTSE returns are based on the FTSE
all share index.

4.2. Model Specification

The lag length in the VAR model P is set to six, and we allow three lags of ln λt to affect the
endogenous variables (J = 3). The choice of P partly reflects the convention in TVP-VAR studies
that allow dependence on data up to two quarters in the past. More importantly, this parsimonious
specification reduces the probability of instability in the VAR coefficients and, thus, allows reliable
computation of impulse response functions. By setting J = 3, we allow uncertainty shocks to have
an impact in a period up to one quarter. The Gibbs sampling algorithm described above is run for
25,000 iterations with the final 3000 iterations used for inference. Appendix A below shows that the
recursive means of the retained draws are fairly stable, providing evidence in favour of convergence.

4.3. Empirical Results

4.3.1. Estimated Volatility

Figure 4 plots the posterior estimate of the common volatility λt. We interpret this estimate as
a measure of uncertainty, as it summarises the common variance of the unpredictable component of
real and financial variables included in our VAR model.

Uncertainty was high during the mid 1970s following the first oil shock and a period of extremely
high inflation. The late 1970s saw the highest peak in the uncertainty measure in the aftermath of
the second oil shock. Uncertainty then peaked in September 1981 following a stock market collapse
(dubbed as ‘blue Monday’) in the U.K. and other industrial countries. Uncertainty was high during
the Sterling crisis of the mid-1980s and then during the stock market crash on ‘black Monday’ in
October 1987. Uncertainty increased in 1991 as the U.K. entered a recession, with the measure
peaking again with the U.K.’s exit from the ERM. It is interesting to note that fluctuations in the
uncertainty measure were smaller and less frequent over the 1992 to 2007 period, again providing
evidence of ‘Great Moderation’ in the U.K. One key episode of elevated uncertainty occurred around
2003 coinciding with the invasion of Iraq. However, this stability was broken in late 2008 as stock
markets across the world crashed following the sub-prime crisis in the U.S. Note that the recent debt
crisis in the Euro-zone has also translated into higher U.K. uncertainty in 2012 and 2013.

Figure 5 presents the quarterly uncertainty index developed by [20] along with the estimate of
λt. The figure shows that the periods of high uncertainty identified by the quarterly index match
those indicated by λt. Note, however, that the use of monthly data in our study implies that λt also
incorporates higher frequency movements in U.K. uncertainty.
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Figure 4. Estimate of common volatility λt. The figure shows the median (red line) and 68% error bands (green area).
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Figure 5. Estimate of common volatility λt. The figure shows the median (red line) and 68% error bands (green area). The index of [20] is presented as the dashed
dotted line for comparison.



Econometrics 2016, 4, 16 13 of 18

4.3.2. Impulse Response to Volatility Shocks

Figure 6 plots the time-varying impulse response to a one standard deviation shock to λt.
Following [5], the impulse responses are computed assuming that the parameters are fixed at their
estimated values and that they do not vary over the impulse response horizon. As shown by [21],
this assumption based on ‘anticipated utility’ provides a reasonable approximation to the underlying
object of interest.

The left panel of the figure shows the median impulse response, while the right panel displays
the cumulated response at the one-year horizon. Consider the top row of the figure, which shows the
response of industrial production. The results show that the response has declined over time. During
the 1970s and the 1980s, an increase in uncertainty reduced industrial production by about 0.4% at
the one-year horizon. The magnitude of the response is similar to that reported by [2] using a fixed
coefficient VAR model. After the early 1990s, this response declined sharply, with the median close
to zero in 2005. There is weak evidence that the magnitude of this response has increased again over
the recent past, albeit to a value less than the estimate in the earlier part of the sample.

The response of inflation to the uncertainty shock is positive. This supports the existence of the
pricing bias channel postulated in [22]; in other words, when the economy is characterised by price
and wage rigidity, inflation rises in the face of uncertainty, because forward-looking agents bias their
pricing decision upwards in order to avoid supplying goods when demand and costs are high. The
estimated cumulated response displays a decline, but the degree of the change is estimated to be
smaller than the shift in the industrial production response. The cumulated response at the one-year
horizon averages 0.5% to 0.6% over the 1970s and the 1980s. This falls to around 0.2% to 0.3% over
the last two decades.

The decline in the response of the short-term interest rate is more dramatic. While the cumulated
response is positive before the early 1990s. After this period, the null hypothesis of a zero response
cannot be rejected.

The final sub-plot shows that the response of stock market returns to this shock has also declined
over time. After the late 1990s, the cumulated response of returns is about−2% in contrast to a decline
of about 3% earlier in the sample. In comparison to the macroeconomic variables, the magnitude of
the decline in the stock returns response appears to be smaller, and uncertainty shocks still have a
substantial impact on the stock market.

The time variation in the impulse responses is not sensitive to the prior distribution assumed
for QB. As discussed above, the benchmark model uses a relatively loose prior with the degrees of
freedom for the inverse Wishart prior distribution set to a fairly low value. If the degrees of freedom
are increased and more weight placed on the prior distribution, the resulting impulse responses are
very similar. In particular, if the degrees of freedom are set equal to the length of the training sample
(i.e., 180 observations), the estimated impulse responses still indicate that the response to uncertainty
shocks has declined over time. These additional impulse responses are presented in Appendix B.
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Figure 6. Impulse response to a one standard deviation volatility shock. The left panel shows the median response. The right panel shows the median and the 68%
error bands.
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It is interesting to consider the possible factors that can explain the decline in the response to
uncertainty shocks. A detailed DSGE-based analysis of this question is undertaken in [4] for the U.S.
The simulations in that paper suggest that the decline in the response to uncertainty shocks may be
consistent with an increase in weight placed on inflation in the policy rule employed by the central
bank. When this coefficient rises and authorities react strongly to inflation, future inflation is expected
to be on target. This reduces firms’ concerns about expected inflation and makes them less forward
looking. In other words, the pricing bias decreases, and the link between inflation and marginal cost is
renewed. In this case, authorities are able to cut the policy rate by more and for a longer period, which
helps them to address the adverse effects from elevated uncertainty, thus ameliorating the decline in
output and stock returns. Note that that the empirical results point to a change in the responses after
the early 1990s when the Bank of England introduced inflation targeting. As documented in [23],
there is strong evidence that the Bank placed a greater weight on inflation control after this date. This
provides tentative evidence that the change in the response to uncertainty may be linked to a change
in the practice of monetary policy. Of course, the U.K. economy was subject to other changes at the
same time, and a more structural analysis is required to distinguish between different factors affecting
the transmission mechanism of uncertainty shocks.

5. Conclusions

This paper considers whether the impact of uncertainty shocks on the U.K. economy has changed
over time. Using an extended TVP VAR model that allows the estimation of the time-varying impact
of uncertainty shocks, we find that the responses of industrial production growth, CPI inflation,
the short-term interest rate and stock market returns have declined over time. The main change
in the response coincides with the adoption of inflation targeting in the U.K. and is consistent with
simulations from a DSGE model that assumes an increase in the inflation coefficient in the monetary
policy rule.

In future work, it may be interesting to investigate more thoroughly the factors that may have
led to the change in the response to uncertainty in the U.K. In addition, it may be useful to apply
the model to a cross-section of countries that have had different historical experiences with regards
to policy and structural changes. This would also allow the estimation of uncertainty indices for a
larger range of countries.
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Appendix

A. Convergence

Figure A1. Recursive Means calculated every 100 Gibbs draws.
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B. Sensitivity Analysis

Figure A2. Impulse responses from the model using a tighter prior.
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