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Abstract: Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering
purposes. However, the SMC scope encompasses wider applications such as estimating static
model parameters so much that it is becoming a serious alternative to Markov-Chain Monte-Carlo
(MCMC) methods. Not only do SMC algorithms draw posterior distributions of static or dynamic
parameters but additionally they provide an estimate of the marginal likelihood. The tempered
and time (TNT) algorithm, developed in this paper, combines (off-line) tempered SMC inference
with on-line SMC inference for drawing realizations from many sequential posterior distributions
without experiencing a particle degeneracy problem. Furthermore, it introduces a new MCMC
rejuvenation step that is generic, automated and well-suited for multi-modal distributions. As
this update relies on the wide heuristic optimization literature, numerous extensions are readily
available. The algorithm is notably appropriate for estimating change-point models. As an example,
we compare several change-point GARCH models through their marginal log-likelihoods over time.

Keywords: bayesian inference; sequential monte carlo; annealed importance sampling;
change-point models; differential evolution; GARCH models

JEL: C11, C15, C22, C58.

1. Introduction

Sequential Monte Carlo (SMC) algorithm is a simulation-based procedure used in Bayesian
frameworks for drawing distributions. Its core idea relies on an iterated application of the importance
sampling technique to a sequence of distributions converging to the distribution of interest 1.
For many years, on-line inference was the most relevant applications of SMC algorithms. Indeed,
one powerful advantage of sequential filtering consists in being able to update the distributions of
the model parameters in light of new coming data (hence the term on-line) allowing for an important
time saving compared to off-line methods such as the popular Markov-Chain Monte-Carlo (MCMC)
procedure that requires a new estimation based on all the data at each new observation entering in
the system. Other SMC features making it very promising are an intuitive implementation based on
the importance sampling technique ([? ? ? ]) and a direct computation of the marginal likelihood
(i.e., the normalizing constant of the targeted distribution, see, e.g., [? ]).

Recently, the SMC algorithms have been applied to infer static parameters, field in which the
MCMC algorithm excels. Neal [? ] provides a relevant improvement in this direction by building
a SMC algorithm, named annealed importance sampling (AIS), that sequentially evolves from the

1 whereas the sequence does not have to necessarily evolve over the time domain
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prior distribution to the posterior distribution using a tempered function, which basically consists
in gradually introducing the likelihood information into the sequence of distributions by means of
an increasing function. To preclude particles degeneracies, he uses an MCMC kernel at each SMC
iteration. Few years later, [? ] proposes an Iterated Batch Importance Sampling (IBIS) SMC algorithm,
a special case of the Re-sample Move (RM) algorithm of [? ], which sequentially evolves over time
and adapts the posterior distribution using the previous approximate distribution. Again, an MCMC
move (and a re-sampling step) is used for diversifying the particles. The SMC sampler (see [? ])
unifies, among others, these SMC algorithms in a theoretical framework. It is shown that the methods
of [? ? ] arise as special cases with a specific choice of the ’backward kernel function’ introduced in
their paper. These researches have been followed by empirical works (see [? ? ? ]) where it is
demonstrated that the SMC mixing properties often dominate the MCMC approach based on a single
Markov-chain. Nowadays papers are devoted to build self-adapting SMC samplers by automatically
tuning the MCMC kernel (e.g., [? ]), by marginalizing the state vector (in a state space specification)
using the particle MCMC framework (e.g., [? ? ]), to construct efficient SMC samplers for parallel
computations (see [? ]) or to simulate from complex multi-modal posterior distributions (e.g., [? ]).

In this paper, we document a generic SMC inference for change-point models that can
additionally be updated through time. For example, in a model comparison context the standard
methodology consists in repeating estimations of the parameters given an evolving number of
observations. In circumstances where the Bayesian estimation is highly demanding as it is usually
the case for complex models and where the number of available observations is huge, this iterative
methodology can be too intensive. Change-point (CP) Generalized Autoregressive Conditional
Heteroskedastic (GARCH) processes may require several hours for one inference (e.g., [? ]).
A recursive forecast exercise on many observations is therefore out of reach. Our first contribution is
a new SMC algorithm, called tempered and time (TNT), which exhibits the AIS, the IBIS and the RM
samplers as special cases. It innovates by switching over tempered and time domains for estimating
posterior distributions. For instance, it firstly iterates from the prior to the posterior distributions
by means of a sequence of tempered posterior distributions. It then updates in the time dimension
the slightly different posterior distributions by sequentially adding new observations, each SMC step
providing all the forecast summary statistics relevant for comparing models. The TNT algorithm
combines the tempered approach of [? ] with the IBIS algorithm of [? ] if the model parameters are
static or with the RM method of [? ] if their support evolves with the SMC updates. Since all these
methods are built on the same SMC steps (re-weighting, re-sampling and re-juvenating) and the same
SMC theory, the combination is achieved without efforts.

The proposed methodology exhibits several advantages over SMC algorithms that directly
iterate on the time domain ([? ? ]). In fact, these algorithms may experience high particle
discrepancies. Although the problem is more acute for models where the parameter space evolves
through time, it remains an issue for models with static parameters at the very first SMC steps. To
quote [? ] (p. 546) :

Note that the particle system may degenerate strongly in the very early stages, when the
evolving target distribution changes the most[...].

The combination of tempered and time SMC algorithms allows to limit this particle discrepancy
observed at the early stage since the first posterior distribution of interest is estimated by taking
into account more than a few observations. One advantage of using a sequence of tempered
distributions to converge to the posterior distribution consists in the number of SMC steps that can be
used. Compared to the SMC algorithms that directly iterate on time domain where the sequence of
distributions is obviously defined by the number of data, the tempered approach allows for choosing
this sequence of distribution and for targeting the posterior distribution of interest by using as many
bridging distributions as needed.

Many SMC algorithms rely on MCMC kernels to rejuvenate the particles. The TNT sampler
is no exception. We contribute by proposing several new generic MCMC kernels based on the
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heuristic optimization literature. These kernels are well appropriated in the SMC context as they
build their updates on the particles interactions. We start by emphasizing that the DiffeRential
Evolution Adaptive Metropolis (DREAM, see [? ]), the walk move (see [? ]) and the stretch one
(see [? ]) separately introduced in the statistic literature as generic Metropolis-Hastings proposals are
in fact standard mutation rules of the Differential Evolution (DE) optimization. From this observation,
we propose seven new MCMC updates based on the heuristic literature and emphasize that many
other extensions are possible. The proposed MCMC kernel is adapted for continuous parameters.
Consequently, discrete parameters such as the break parameters of change-point models cannot
directly be inferred from our algorithm. To solve this issue, we transform the break parameters into
continuous ones which make them identifiable up to a discrete value. To illustrate the potential of the
TNT sampler, we compare several CP-GARCH models differing by their number of regimes on the
S&P 500 daily percentage returns.

The paper is organized as follows. Section ?? presents the SMC algorithm as well as its theoretical
derivation. Section ?? introduces the different Metropolis-Hastings proposals which compose what
we call the Evolutionary MCMC. We then detail a simulation exercise on the CP-GARCH process
in Section ??. Eventually we study the CP-GARCH performance on the S&P 500 daily percentage
returns in Section ??. Section ?? concludes.

2. Off-line and On-Line Inferences

We first theoretically and practically introduce the tempered and time (TNT) framework. To ease
the discussion, let us consider a standard state space model:

yt = f (θ, st, ωt) (1)

st = g(θ, st−1, vt) (2)

where st is a random variable driven by a Markov chain and the functions f(-) and g(-) are
deterministic given their arguments. The observation yt belongs to the set y1:T = {y1, ..., yT} with
T denoting the sample size and is assumed to be independent conditional to the state st and θ with
distribution f (yt|θ, st). The innovations ωt and vt are mutually independent and stand for the noise
of the observation/state equations. The model parameters included in θ do not evolve over time
(i.e., they are static). Let us denote the set of parameters at time t by xt = {θ, s1:t} defined on the
measurable space Et.

We are interested in estimating many posterior distributions starting from π(xτ |y1:τ), where
τ << T, until T. The SMC algorithm approximates these posterior distributions with a large
(dependent) collection of M weighted random samples {Wi

t , xi
t}M

i=1 where Wi
t > 0 and ∑M

i=1 Wi
t = 1

such that as M → ∞, the empirical distribution converges to the posterior distribution of interest,
meaning that for any π(xt|y1:t)-integrable function g : Et → < :

M

∑
i=1

Wi
t g(xi

t)→
∫

Et
g(xt)π(xt|y1:t)dxt almost surely.

The TNT method combines an enhanced Annealed Importance sampling 2 (AIS, see [? ])
with the Re-sample Move (RM) SMC inference of [? ] 3. To build the TNT algorithm, we rely
on the theoretical paper of [? ] that unifies the two SMC methods into one SMC framework
called “SMC sampler”. The TNT algorithm first estimates an initial posterior distribution, namely
π(xτ |y1:τ), by an enhanced AIS (E-AIS) algorithm and then switches from the tempered domain

2 enhanced in the sense that the AIS incorporates a re-sampling step
3 The IBIS algorithm being a particular case
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to the time domain and sequentially updates the approximated distributions from π(xτ |y1:τ) to
π(xT |y1:T) by adding one by one the new observations. We now begin by mathematically deriving
the validity of the SMC algorithms under the two different domains and by showing that they
are particular cases of the SMC sampler. The practical algorithm steps are given afterward (see
Subsection ??).

2.1. E-AIS : The Tempered Domain

The first phase, carried out by an E-AIS, creates a sequence of probability measures {πn}p
n=0

that are defined on the measurable spaces {En, ξn}, where En = En+1 = E 3 xτ , n ∈ {0, 1, ..., p}
is a counter and does not refer to ’real time’, p denotes the number of posterior distribution
estimations and πp coincides with the first posterior distribution of interest π(xτ |y1:τ). The sequence
distribution, used as bridge distributions, is defined as πn(xn|y1:τ) = γ(y1:τ |xn)φ(n) f (xn)/Zn where
Zn =

∫
E γ(y1:τ |xn)φ(n) f (xn)dxn denotes the normalizing constant, γ(y1:τ |xn) and f (xn) respectively

are the likelihood function and the prior density of the model. Through an increasing function φ(n)
respecting the bound conditions φ(0) = 0 and φ(p) = 1, the E-AIS artificially builds a sequence of
distributions that converges to the posterior distribution of interest.

Remark 1: The random variables {xn}p
n=0 exhibit the same support E which is also shared by xτ .

Furthermore, the random variable xτ coincides with xp since φ(p) = 1.

The E-AIS is merely a sequential importance sampling technique where the draws of a proposal
distribution ηn combined with an MCMC kernel are used to approximate the next posterior
distribution πn+1, the difficulty lying in specifying the sequential proposal distribution. Del Moral,
Doucet, and Jasra [? ] theoretically develop a coherent framework for choosing a generic sequence of
proposal distributions.

In the SMC sampler framework, we augment the support of the posterior distribution ensuring
that the targeted posterior distribution marginally arises :

π̃n(x1:n) = πn(xn)
n

∏
k=2

Lk(xk−1|xk),

=
γn(xn)

Zn

n

∏
k=2

Lk(xk−1|xk),

where γn(xn) = γ(y1:τ |xn)φ(n) f (xn), Zn =
∫

E γ(y1:τ |xn)φ(n) f (xn)dxn is the normalizing constant,
and Lk(xk−1|xk) is a backward MCMC kernel such that

∫
E Lk(xk−1|xk)dxk−1 = 1.

By defining a sequence of proposal distributions as

ηn(x1:n) = f (x1)
n

∏
k=2

Kk(xk|xk−1),

where Kk(xk|xk−1) is an MCMC kernel with stationary distribution πk such that it verifies
πk(xk) =

∫
E Kk(xk|xk−1)πk(xk−1)dxk−1, we derive a recursive equation of the importance weight:

wn(x1:n) =
γn(xn)∏n

k=2 Lk(xk−1|xk)

Zn f (x1)∏n
k=2 Kk(xk|xk−1)

,

= wn−1(x1:n−1)
Zn−1γn(xn)Ln(xn−1|xn)

Znγn−1(xn−1)Kn(xn|xn−1)
.
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For a smooth increasing tempered function φ(n), we can argue that πn−1 will be close to πn.
W therefore define the backward kernel by detailed balance argument as

Ln(xn−1|xn) =
πn(xn−1)

πn(xn)
Kn(xn|xn−1). (3)

It gives the following weights :

wn(x1:n) = wn−1(x1:n−1)
Zn−1γn(xn−1)

Znγn−1(xn−1)
, (4)

∝ wn−1(x1:n−1)γ(y1:τ |xn−1)
φn−φn−1 .

The normalizing constant Zn is approximated as

Zn

Zn−1
≈

M

∑
i=1

Wi
n−1

γn(xi
n−1)

γn−1(xi
n−1)

,

where Wi
n−1 = wn−1(xi

1:n−1)/ ∑M
j=1 wn−1(xj

1:n−1), i.e., the normalized weight.

The E-AIS requires to tune many parameters : an increasing function φ(n), the MCMC kernels
with the invariant distributions πn(.), a number of particles M, of iterations p, of MCMC steps J.
Adjusting these parameters can be difficult. Some guidance are given in [? ] for DSGE models.
For example, they propose a quadratic tempered function φ(n). It slowly increases for small values
of n and the step becomes larger and larger as n tends to p. In this paper, the TNT algorithm
generically adapts the different user-defined parameters and belongs to the class of adaptive SMC
algorithms. It automatically adjusts the tempered function with respect to an efficiency measure
as it was proposed by [? ]. By doing so, we preclude the difficult choice of the function φ(n) and
the number of iteration p. The number of MCMC steps J will be controlled by the acceptance rate
exhibited by the MCMC kernels. The choice of MCMC kernels and the number of particles are
discussed later (see Section ??).

2.2. The Re-Sample Move Algorithm : The Time Domain

Once we have a set of particles that approximates the first posterior distribution of interest
π(xτ |y1:τ), a second phase takes place. Firstly, let us assume that the support of xt does not evolve
over time (i.e., xt ∈ E ∀ t). In this context, the SMC sampler framework shortly reviewed here for the
tempered domain still applies. Let us define the following distributions:

πt(xt) = π(xt|y1:t),

π̃t(x1:t) = πt(xt)
t

∏
k=2

Lk(xk−1|xk),

ηt(x1:t) = f (x1)
t

∏
k=2

Kk(xk|xk−1),

Lk(xk−1|xk) =
πk(xk−1)

πk(xk)
Kk(xk|xk−1).

Then the weight equation of the SMC sampler is equal to

wt(x1:t) = wt−1(x1:t−1)
πt(xt−1)

πt−1(xt−1)
, (5)
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which is exactly the weight equation of the IBIS algorithm (see [? ], step 1, p. 543).
Let now consider the more difficult case where a subset of the support of xt evolves with t such

as xt = {xt−1, st} = {θ, s1:t−1, st} (see the state space model Equations (??) and (??)) meaning that
∀t ∈ [1, T], xt ∈ Et and Et−1 ⊂ Et. The previous method cannot directly be applied (due to the
backward kernel) but with another choice of the kernel functions, the SMC sampler also operates.
Let us define the following distribution :

πt(xt) = π(xt|y1:t), (6)

π̃t(x1:t, x∗2:t) = πt(xt)
t

∏
k=2

Lk(xk−1, x∗k |xk), (7)

ηt(x1:t, x∗2:t) = f (x1)
t

∏
k=2

K̃k(xk, x∗k |xk−1), (8)

K̃k(xk, x∗k |xk−1) = q̃k(x∗k |xk−1)Kk(xk|x∗k ), (9)

Lk(xk−1, x∗k |xk) = qk(xk−1|x∗k )Kk(x∗k |xk), (10)

Kk(x∗k |xk) =
πk(x∗k )Kk(xk|x∗k )

πk(xk)
by detailed balance argument. (11)

To deal with the time-varying dimension of xt, we augment the support of the artificial sequence
of distributions by several new random variables (see x∗2:t in Equation (??)) while ensuring that the
posterior distribution of interest πt(xt) marginally arises. Sampling from the proposal distribution
ηt(x1:t, x∗2:t) is achieved by drawing from the prior distribution and then by sequentially sampling
from the distributions K̃k(xk, x∗k |xk−1), which are composed by a user-defined distribution q̃k(x∗k |xk−1)

and an MCMC kernel exhibiting πk(xk) as the invariant distribution.
Under this framework, the weight equation of the SMC sampler becomes

wt(x1:t, x∗2:t) = wt−1(x1:t−1, x∗2:t−1)
πt(x∗t )qt(xt−1|x∗t )

πt−1(xt−1)q̃t(x∗t |xt−1)
. (12)

By setting the distributions qt(xt−1|x∗t ) = δ{xt−1=θ∗ ,s∗1:t−1}, where δi denotes the probability
measure concentrated at i, and q̃t(x∗t |xt−1) = νt(s∗t |xt−1)δ{θ∗ ,s∗1:t−1=xt−1}, we recover the weight
equation of [? ] (see Equation (20), p. 135)

wt(x1:t, x∗2:t) = wt−1(x1:t−1, x∗2:t−1)
πt(xt−1, s∗t )

πt−1(xt−1)νt(s∗t |xt−1)
. (13)

Like in [? ], only the distribution νt(.) has to be specified. For example, it can be set either to
the prior distribution or the full conditional posterior distribution (if the latter exhibits a closed form).

Remark 2: The division π(xt |y1:t)
π(xt−1|y1:t−1)

appearing in the weight Equations ((??) and (??)) can be reduced

to Zt−1
Zt

γ(yt|xt, y1:t−1) f (st|xt−1) which highly limits the computational cost of the weights.

2.3. The TNT Algorithm

The algorithm initializes the M particles using the prior distributions, sets each initial weight
{Wi

0}M
i=1to Wi

0 = 1
M and then iterates from n = 1, . . . , p, p + 1, ..., p + (T − τ) + 1 as follows

• Correction step: ∀i ∈ [1, M], Re-weight each particle with respect to the nth posterior
distribution

– If in tempered domain ( n ≤ p ) :

w̃i
n = γ(y1:τ |xi

n−1)
φ(n)−φ(n−1) (14)
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– If in time domain ( n > p ) and the parameter space does not evolve over time
(i.e., En−1 = En) :

w̃i
n =

γ(y1:τ+n−p|xi
n−1)

γ(y1:τ+n−p−1|xi
n−1)

= γ(yτ+n−p|xi
n−1, y1:τ+n−p−1) (see remark 2) (15)

– If in time domain ( n > p ) and the parameter space increases (i.e., En−1 ⊂ En) :

Set xi
n = {xi

n−1, si
n} with si

n ∼ νn(.|xi
n−1).

w̃i
n =

γ(y1:τ+n−p|xi
n) f (xi

n)

γ(y1:τ+n−p−1|xi
n−1) f (xi

n−1)νn(si
n|xi

n−1)
(16)

Compute the unnormalized weights : W̃i
n = w̃i

nWi
n−1.

Normalize the weights : Wi
n = W̃i

n

∑M
j=1 W̃ j

n

• Re-sampling step: Compute the Effective Sample Size (ESS) as

ESS =
1

∑M
i=1(Wi

n)
2

If ESS < κ where κ is a user-defined threshold then re-sample the particles and reset the weight
uniformly.

• Mutation step: ∀i ∈ [1, M], run J steps of an MCMC kernel with an invariant distribution
πn(xn|y1:τ) for n ≤ p and π(xτ+n−p|y1:τ+n−p) for n > p.

Remark 3: According to the algorithm derivation, note that the mutation step is not required at each
SMC iteration.

When the parameter space does not change over time (i.e., tempered or time domains with
En−1 = En), the algorithm reduces to the SMC sampler with a specific choice of the backward
kernel (see Equation (??), more discussions in [? ]) that implies that πn−1(.) must be close to πn(.)
for non-degenerating estimations. The backward kernel is introduced for avoiding the choice of an
importance distribution at each iteration of the SMC sampler. This specific choice of the backward
kernel does not work for model where the parameter space increases with the sequence of posterior
distributions (hence the use of a second weighting scheme when n > p, see Equation (??)) but the
algorithm also reduces to a SMC sampler with another backward kernel choice (see Equation (??)).
In the empirical applications, we first estimate an off-line posterior distribution with fixed parameters
and then by just switching the weight equation, we sequentially update the posterior distributions by
adding new observations. This two phases preclude the particle degeneration that may occur at the
early stage of the SMC algorithms that directly iterate on time such as the IBIS and the RM algorithms.
The tempered function φ(n) allows for converging to the first targeted posterior distribution as slowly
as we want. Indeed, as we are not constraint by the time domain, we can sequentially iterate as much
as needed to get rid of the degeneracy problem. The choice of the tempered function φ(n) is therefore
relevant. In the spirit of a black-box algorithm as the IBIS one is, the Section ?? shows how the TNT
algorithm automatically adapts the tempered function at each SMC iteration.

During the second phase (i.e., updating the posterior distribution through time), one may
observe high particle discrepancies especially when the space of the parameters evolves over time 4.
In that case, one can run an entire E-AIS on the data y1:τ+n−p when a degeneracy issue is detected (i.e.,

4 Theorem 1 in [? ] ensures that with a sufficiently large number of particles M, any relative precision of the importance
sampling can be obtained if the number of observations already covered is large enough in the IBIS context
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the ESS falls below a user-defined value κ1 < κ). The adaptation of the tempered function (discussed
in the next section) makes the E-AIS faster than usual since it reduces the number of iteration p at its
minimum given the ESS threshold κ. Controlling for the degeneracy issue is therefore automated and
a minimal number of effective sample size is ensured at each SMC iteration.

2.4. Adaptation of the Tempered Function

Previous works on the SMC sampler usually provide a tempered function φ(n) obtained by
several empirical trials 5, making these functions model-dependent. Jasra et al. [? ] innovate by
proposing a generic choice of φ(n) that only requires a few more codes. The E-AIS correction step
(see Equation (??)) of iteration n is modified as follows

1. Find φ̄n such that

1

∑M
i=1(Wi

n)
2

= 0.95ESSn−1,

where ESSn−1 refers to the Effective Sample Size of the previous SMC iteration, Wi
n = W̃i

n

∑M
j=1 W̃ j

n
is

the normalized weights and the unnormalized W̃i
n depends on φ̄n as

w̃i
n =

γ(y1:τ |xi
n−1)

φ̄n

γ(y1:τ |xi
n−1)

φ̄n−1
.

2. Compute the normalized weights {Wi
n}M

i=1 under the value of φ̄n

Roughly speaking, we find the value φ̄n that makes the ESS criterion close to the previous one
in order to keep the artificial sequence of distributions very similar as required by the choice of the
backward kernel (??).

Because the tempered function is adapted on the fly using the SMC history, the usual SMC
asymptotic results do not apply. Del Moral et al. [? ] and Beskos et al. [? ] provide asymptotic
results by assuming that the adapted tempered function converges to the optimal one (if it exists).

3. Choice of MCMC Kernels

The MCMC kernel is the most computational demanding step of the algorithm and it determines
the posterior support exploration, making its choice very relevant. Chopin [? ] emphasizes that
the IBIS algorithm is designed to be a true “black box” (i.e., whose the sequential steps are not
model-dependent), reducing the task of the practitioner to only supply the likelihood function and
the prior densities. For this purpose, a natural choice of the MCMC kernel is the Metropolis-Hastings
with an independent proposal distribution whose summary statistics are derived from the particles
of the previous SMC step and from the weight of the current step. The IBIS algorithm uses an
independent Normal proposal. It is worth noting that this “black box” structure is still applicable
in this framework that combines SMC iterations on tempered and time domains.

Nevertheless the independent Metropolis-Hastings kernel may perform poorly at the early stage
of the algorithm if the posterior distribution is well behaved and at any time otherwise. We rather
suggest using a new adaptative Metropolis algorithm of random walk (RW) type that is generic, fully
automated, suited for multi-modal distributions and that dominates most of the other RW alternatives
in terms of sampling efficiencies. The algorithm is inspired from the heuristic Differential Evolution
(DE) optimization literature (for a review, see [? ]).

5 a piecewise cooling linear function for [? ] and a quadratic function for [? ]
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The DE algorithms have been designed to solve optimization problems without requiring
derivatives of the objective function. The algorithms are initiated by randomly generating a set of
parameter values. Afterward, relying on a mutation rule and a cross-over (CR) probability, these
parameters are updated in order to explore the space and to converge to the global optimum.
The mutation equation is usually linear with respect to the parameters and the CR probability
determines the number of parameters that changes at each iteration. The first DE algorithm dates
back to [? ]. Nowadays, numerous alternatives based on this principle have been designed and
many of them display a different mutation rule. Considering a set of parameters {xi

t}M
i=1 lying in <d,

the standard algorithm operates by sequentially updating each parameter given the other ones. For
a specific parameter xj

t, the mutation equation to obtain a new value x̃t are typically chosen among
the following ones

x̃t = xj
t + F(

2

∑
g=1

xr1(g)
t −

2

∑
h=1

xr2(h)
t ), (17)

x̃t = xj
t + F(xj

t − xbest
t ) + F(xr1

t − xr2
t ), (18)

x̃t = xbest
t + F(

2

∑
g=1

xr1(g)
t −

2

∑
h=1

xr2(h)
t ), (19)

where i 6= r1(g), r2(h); r1(.) and r2(.) stand for random integers uniformly distributed on the support
[1, M]−i and it is required that r1(g) 6= r2(h) when g = h, F is a fixed parameter and xbest

t denotes the
parameter related to the highest objective function in the swamp. Then, for each element of the new
vector x̃t, the CR step consists in replacing its value with the one of xj

t according to a fixed probability.
The DE algorithm is appealing in an MCMC context as it has been built up to explore and

find the global optimum of complex objective functions. However, the DE method has to be
adapted if one wants to draw realizations from a complex distribution. To employ the mutation
Equations (??)–(??) into an MCMC algorithm, we need to insure that the detailed balance is preserved,
that the Markov-chain is ergodic with a unique stationary distribution and that this distribution is the
targeted one. To do so, we slightly modify the mutation equations as follows

x̃t = xj
t + F(δ, d)(

δ

∑
g=1

xr1(g) −
δ

∑
h=1

xr2(h)) + ζ, (20)

x̃t = xj
t + ZW(xj

t −
∑δ

g=1 xr1(g)
t

δ
), (21)

x̃t =
∑δ

g=1 xr1(g)
t

δ
+ ZStretch(xj

t −
∑δ

g=1 xr1(g)
t

δ
), (22)

in which ζ ∼ N(0, η2
x I); δ ∼ U[1, 3], F(δ, d) is a fixed parameter, ZRW and ZStretch are random variables

driven by two different distributions defined below.
These three update rules (??)–(??) are valid in an MCMC context and have been separately

proposed in the literature. The first Equation (??) refers to the DiffeRential Evolution Adaptive
Metropolis (DREAM) proposal distribution of [? ] and is the MCMC analog of the DE mutation (??).
In their paper, it is shown that the proposal distribution is symmetric and so that the acceptance ratio
is independent of the proposal density. Also, they fix ηx to a very small value (such as 1e-4) and F(δ, d)
to 2.38/

√
2δd because it constitutes the asymptotic optimal choice for a multivariate Normal posterior

distribution as demonstrated in [? ].6 Since the posterior distribution is rarely a Normal one, we

6 in the sense of M→ ∞
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prefer adapting F(δ, d) from one SMC iteration to another so that the scale parameter is fixed during
the entire MCMC moves of each SMC step. The adapting procedure is detailed below. Importantly, [?
] provide empirical evidence that the DREAM equation dominates most of the other RW alternatives
(including the optimal scaling and the adaptive ones) in terms of sampling efficiencies.

The second Equation (??) is an adapted version of the walk move of [? ] and can be
thought as the MCMC equivalence of the mutation (??).7 When the density gW(.) of ZW verifies
gW(−z/(1 + z)) = (1 + z)gW(z), it can be shown that the proposal parameter x̃t is accepted with a
probability given by

min{ |1 + ZW|d−1π(x̃t|y1:t)

π(xj
t|y1:t)

, 1}. (23)

As in their paper, we set the density to gW(z) ∝ 1/
√

1 + z if z ∈ [ −aW
1+aW

, aW] (with a ∈ <+)
and zero otherwise. The cumulative density function, its inverse and the first two moments of the
distributions are given by

FZW (x) = 1− (aW + 1)1/2 − (x + 1)1/2

(aW + 1)1/2 − (aW + 1)−1/2 ,

F−1
ZW

(u) = −1 + [(aW + 1)−1/2 + u((aW + 1)1/2 − (aW + 1)−1/2)]2,

E(ZW) =
a2

W
3(aW + 1)

,

V(ZW) = a2
W

4a2
W + 15aW + 15
45(aW + 1)2 .

In the seminal paper of the walk move, the parameter aW is set to 2. However, we rather suggest
solving the equation V(ZW) = 2.38/

√
2δd in order to obtain the optimal value of aW . Note that

Equation (??) is slightly different from the standard walk move of [? ] in the sense that the random
parameter δ can be greater than one and also because only one realization from ZW is generated
in order to update an entire new vector xj

t. The latter modification is motivated by the success of the
novel MCMC algorithm based on deterministic proposals (see the Transformation-based MCMC of [?
]) and by the DREAM update which also exhibits one (fixed) parameter F(δ, d) to propose the entire
new vector.

Lastly, the third Equation (??) corresponds to the stretch move proposed in [? ] and improved by
[? ]. The probability of accepting the proposal x̃t is

min{ |ZS|d−1π(x̃t|y1:t)

π(xj
t|y1:t)

, 1}, (24)

when the density gS(.) of ZS verifies zgS(z) = gS(z−1). We adopt the same density function as
in their paper which is given by gS(z) = 1/

√
z for z ∈ [1/aS, aS], aS ∈ <+ and zero otherwise.

7 The best particle is replaced by an average over the particles
∑δ

g=1 x
r1(g)
t

δ which further diversifies the proposed parameters.
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The corresponding cumulative density function, its inverse, the expectation and the variance are
analytically tractable and are given by

FZS(x) =

√
aSx− 1
a− 1

,

F−1
ZS

(u) =
(u(aS − 1) + 1)2

aS
,

E(ZS) =
as + a−1

S + 1
3

,

V(ZS) =
(aS − 1)2(4a2

S + 7aS + 4)
45aS

.

In the standard stretch move, the parameter aS is set to 2.5. Like the DREAM algorithm,
the stretch move has been proven to be a powerful generic MCMC approach to generate complex
posterior distributions. The method is becoming very popular in astrophysics (see references in [? ]).

Once it is recognized that all these updates are also involved in the DE optimization problems,
incorporating many other techniques from the latter becomes straightforward. To highlight the
potential, we extend the DREAM, the walk and the stretch moves by proposing new update equations
that are derived from the trigonometric move, the standard DE mutation and the firefly optimization.

In the DE literature, [? ] suggest using a trigonometric mutation equation based on three
random parameters xr1

t , xr2
t , xr3

t and their corresponding posterior density values γ(y1:t|xri
t ) f (xri

t ) with
i = 1, 2, 3. From these quantities, the new parameter is given by

xtrigo
t =

3

∑
i=1

xri
t /3 + (p2 − p1)(xr1

t − xr2
t ) + (p3 − p2)(xr2

t − xr3
t ) + (p1 − p3)(xr3

t − xr1
t ),

in which pi ∝ γ(y1:t|xri
t ) f (xri

t ) for i ∈ [1, 3] are probabilities such that ∑3
i=1 pi = 1. Similarly, we can

extend the DREAM, the walk and the stretch moves using the trigonometric parameter as follows

DREAM : x̃t = xj
t + ZDirF(δ = 1, d)(xtrigo

t − xq
t ) + ζ, (25)

Walk move : x̃t = xj
t + ZRW(xj

t − xtrigo
t ), (26)

Stretch move : x̃t = xtrigo
t + ZStretch(xj

t − xtrigo
t ), (27)

where ZDir = 1 with probability 0.5 and -1 otherwise. Note that due to the random variable ZDir, the
DREAM proposal (??) is still symmetric and therefore the acceptance ratio remains identical to the
standard RW one.

The last two extensions are adaptations only for the stretch and the walk moves (as for the
DREAM one, it does not change the initial proposal distribution). The next proposal comes from
another heuristic optimization technique. The firefly (FF) algorithm, initially introduced in [? ],
updates the parameters by combining the attractiveness and the distance of the particles. For our
purpose, we define the FF update as

xFF
t = xr1

t + FFF(xr1
t − xr2

t ),

where FFF is a chosen constant and r1,r2 are taken without replacement in the M − 1 remaining
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particles. The two new moves based on the FF equation are given by

Walk move : x̃t = xj
t + ZRW(xj

t − xFF
t ), (28)

= xj
t + ZRW(xj

t − xr1
t ) + ZRWFFF(xr1

t − xr2
t ),

Stretch move : x̃t = xFF
t + ZStretch(xj

t − xFF
t ), (29)

= xr1
t + ZStretch(xj

t − xr1
t ) + (1 + ZStretch)FFF(xr1

t − xr2
t ).

We set FFF of the walk move to 2.38
E(ZRW)

√
2d

and the constant FFF of the stretch move is fixed to
E(ZStretch)

E(ZStretch)+1 .

Regarding the last new updates, one can notice that the standard Differential Evolution mutation
can also be used to improve the proposal distribution of the stretch and the walk moves. In particular,
we consider the move of the DE optimization given by

xDE
t = xr1

t + FDE(xr2
t − xr3

t ),

in which FDE is a fixed constant and r1,r2,r3 are taken without replacement in the M − 1 remaining
particles. Inserting this update into the stretch and the walk moves delivers new proposal
distributions as follows

Walk move : x̃t = xj
t + ZRW(xj

t − xDE
t ), (30)

= xj
t + ZRW(xj

t − xr1
t ) + ZRWFDE(xr2

t − xr3
t ),

Stretch move : x̃t = xDE
t + ZStretch(xj

t − xDE
t ), (31)

= xr1
t + ZStretch(xj

t − xr1
t ) + (1 + ZStretch)FDE[(xr2

t − xr3
t )].

Similarly to the Firefly proposal, we fix FDE of the walk move to 2.38
E(ZRW)

√
2d

and the constant FDE

of the stretch move is set to E(ZStretch)
E(ZStretch)+1 .

The standard DREAM, the walk and the stretch moves are typically used in an MCMC context.
However, when the parameter dimension d is large, many parallel chains must be run because, as
all these updates are based on linear transformations, they can only generate subspaces spanned by
their current positions. To remedy this issue in the MCMC scheme, [? ] have introduced the CR
probability. Once the proposal parameter has been generated, each element is randomly kept or set
back to the previous value according to some fixed probability pCR. Eventually, the standard MH
acceptance step takes place. In contrast, these multiple chains arise naturally in SMC frameworks
since the rejuvenate step consists in updating all the particles by some MCMC iterations. However,
the CR probability has the additional advantage of generating many other moves of the parameters.
For this reason, we also include the CR step into our MCMC kernel.

In order to test all the new move strategies, Table ?? documents the average autocorrelation times
over the multivariate random realizations (computed by batch means, see [? ]), obtained from each
update rule. The dimension of each distribution from which the realizations are sampled is set to 5
and we consider Normal distributions with low and high correlations as well as a student distribution
with a degree of freedom equal to 5. From this short analysis, the DREAM update is the most efficient
in terms of mixing. We also observe that the additional moves perform better than the standard ones
for the walk and the stretch moves.
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Table 1. Average of the autocorrelation times over the five dimensions for multiple update moves and
different distributions.

Stretch Move Walk Move DREAM

Move 5-Dimension Normal Distribution

with correlation of 0.5 and variances set to unity

Standard 84.99 106.19 13.79
Trigo 56.62 58.59 20.36
FF 52.21 51.75 –
DE 44.85 66.81 –

5-Dimension Normal Distribution

with correlation of 0.999 and variances set to unity

Standard 92.94 96.63 34.93
Trigo 63.14 82.83 23.91
FF 59.31 38.54 –
DE 70.07 61.45 –

5-Dimension Student Distribution

with correlation of 0.999, df = 5 and variances set to unity

Standard 104.59 75.91 23.11
Trigo 54.66 65.38 19.83
FF 38.17 35.21 –
DE 37.01 35.53 –

As the posterior distribution can take many different shapes, a specific MCMC kernel which may
work in bags of situations can fail for some ill posterior distributions (see for example the anisotropic
density in [? ] or the twisted gaussian distribution in [? ]). An appealing automatic approach is to
use several kernels which can behave differently depending on the posterior distribution. To do so,
we suggest to incorporate all the generic moves in combination with a fixed CR probability into
the MCMC rejuvenation step of the SMC algorithm. In practice, at each MCMC iteration, the
proposal distribution is chosen among the different update Equations ((??)–(??), (??)–(??)) according
to a multinomial probability pkernel. Then, some of the new elements of the updated vector are set
back to their current MCMC value according to the CR probability. The proposal is then accepted with
probability that is defined either by the standard RW Metropolis ratio, by (??) or by (??) depending on
the selected mutation rule.8 By assessing the efficiency of each update equation with the Mahalanobis
distance, one can monitor which proposal leads to the best exploration of the support and can
appropriately and automatically adjust the probability pkernel at the end of the rejuvenation step.
More precisely, once a proposed parameter is accepted, we add the Mahalanobis distance between
the previous and the accepted parameters to the distance already achieved by the selected move.
At the end of each rejuvenation step, the probabilities pkernel are reset proportionally to the distance
performances of all the moves.

Two relevant issues should be discussed. First, the MCMC kernel makes interacting the particles,
which rules out the desirable parallel property of the SMC. To keep this advantage, we apply the
kernel on subsets of particles instead of on all the particles and we perform paralelization between

8 Although only the chosen mixture enters in the MH acceptance ratio, the MCMC algorithm is still valid. For further
explanations, see [? ], section Transition Mixtures.
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the subsets. Secondly and more importantly, the SMC theory derived in Section ?? does not allow for
particle interactions. Proposition 1 ensures that the TNT sampler also works under a DREAM-type
MCMC kernel.

Proposition 1. Consider a SMC sampler with a given number of particles M and the MCMC kernels
given by the proposal distribution (??) or (??). Then, it yields a standard SMC sampler with particle
weights given by the Equation (??).
Proof. See Appendix ??.

Adapting the proof for the walk and the stretch moves is straightforward as the stationary
distribution of the Markov-chain also factorizes into a product of the targeted distribution.

Adaptation of the Scale Parameters F(δ, d), aW and aS

Since the chosen backward MCMC kernel in the algorithm derivation implies that the
consecutive distributions approximated by the TNT sampler are very similar, we can analyze the
mixing properties of the previous MCMC kernel to adapt the scale parameters F(δ, d), aW and aS.
Atchadé and Rosenthal [? ] present a simple recursive algorithm in order to achieve a specified
acceptance rate in an MCMC framework. Considering one scale parameter (either F(δ, d), aW or aS)
generically denoted by cn−1, at the end of the n− 1 SMC step, we adapt the parameter as follows :

cn−1 = p(cn−2 +
αn−1 − αtargeted

(n− 1)0.6 ) (32)

where the function p(.) is such that p(c) = c if c ∈ [A0,+∞] and p(c) = A0 if c < A0, the
parameter αn−1 stands for the acceptance rate of the MCMC kernel of the n − 1 SMC step and
αtargeted is a user-defined acceptance rate. The function p(.) prevents from negative values of the
recursive equation and if the optimal scale parameter lies in the compact set [A0,+∞], the equation
will converge to it (in an MCMC context). In the empirical exercise, we fix the variable A0 to 1e-8
for the DREAM-type move and to 1.01 for the other updates. The rate αtargeted is set to 1

3 implying
that every three MCMC iterations, all the particles have been approximately rejuvenated. It is worth
emphasizing that the denominator (n− 1)0.6 has been chosen as proposed in [? ] but its value, which
ensures the ergodicity property in an MCMC context, is not relevant in our SMC framework since at
each rejuvenation step, the scale parameter cn is fixed for the entire MCMC step. The validity of this
adaptation can be theoretically justified by [? ].

When the parameter space evolves over time, the MCMC kernel can become model dependent
since sampling the state vector using a filtering method is often the most efficient technique in terms
of mixing. In special cases where the forward-backward algorithm ([? ]) or the Kalman filter ([? ])
operate, the state variables can be filtered out. By doing so, we come back to the framework with
static parameter space. For non linear state space model, recent works of [? ? ] rely on the particle
MCMC framework of [? ] for integrating out the state vector. We believe that switching from the
tempered domain to the time one as well as employing the evolutionary MCMC kernel presented
above could even more increase the efficiency of these sophisticated SMC samplers. For example, the
particle discrepancies of the early stage inherent to the IBIS algorithm is present in all the empirical
simulations of [? ] whereas with the TNT sampler, we can ensure a minimum ESS value during the
entire procedure.

4. Simulations

We first illustrate the TNT algorithm through a simulation exercise before presenting results on
the empirical data. As the TNT algorithm is now completely defined, we start by spelling out the
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values set for the different parameters to be tuned. The threshold κ is recommended to be high as
the evolutionary MCMC updates crucially depend on the diversification of the particles. For that
reason we set it to 0.75 M. The second threshold κ1 that triggers a new run of the simulated annealing
algorithm is chosen as 0.1 M and the number of particles is set to M = 2000. We fix the acceptance
rate of the MCMC move to 1/3 and the number of MCMC iterations is set to J = 90. This number
should insure that each particle has moved away from its current position as it approximately implies
30 accepted draws. For all the simulations of the paper, Table ?? summaries these choices.

Table 2. Tuned parameters for the TNT algorithm.

Parameters TNT Algorithm

Nb. Particles M 2.000
Threshold ESS κ 0.75 M

Sec. threshold ESS κ1 0.1 M
Acc. rate αtargeted 1/3

Nb. MCMC J 90

Our benchmark model for testing the algorithm is a change-point Generalized Autoregressive
Conditional Heteroskedastick (CP-GARCH) process that is defined as follows

yt = µi + εt with εt|y1:t−1 ∼ N(0, σ2
t ), (33)

σ2
t = ωi + αiε

2
t−1 + βiσ

2
t−1 for t ∈ bτi−1 + 1, τic and t > 1, (34)

where τ1 = 0, τK = T and τi with i ∈ [2, K] denotes the observation when the break i
occurs. The number K of break points are fixed before the estimation and occur sequentially
(i.e., τi−1 < τi < τi+1 ∀i ∈ [2, K − 1]). Stationarity conditions are imposed within each regime by
assuming |αi + βi| < 1. The Table ?? documents the prior distributions of the model parameters.

We innovate by assuming that the regime durations d1 = τ1 and di = τi − τi−1 ∀i ∈ [2, K − 1]
are continuous and are driven by exponential distributions. The duration parameters are therefore
identifiable up to a discrete value since they indicate at which observation the process switches from
one set of parameters to another. However it brings an obvious advantage as it makes possible to use
the Metropolis update developed in Section ?? for the duration parameters too. Consequently, we are
able to update in one block all the model parameters. The TNT algorithm of the CP-GARCH models
is available on the author’s website.

Table 3. Prior distributions of the CP parameters. The distribution N(a, b) denotes the Normal
distribution with expectation a and variance b and U[a,b] stands for the uniform distribution with
lower bound a and upper bound b. The exponential distribution with parameter λ is expressed
as Exp(λ)(with density function : f (τ|λ) = λe−λτ) and the gamma distribution is denoted
by Gamma(a, b) in which a is the shape parameter and b the scale one (with density function
f (λ|a, b) = ba

Γ(a)λa−1e−bλ).

Mean Parameter ∀i ∈ [1, K] :
µi ∼ N(0,1)

GARCH Parameters ∀i ∈ [1, K] :
ωi ∼ U[0, 1] αi|βi ∼ U[0, 1− βi] βi ∼ U[0.2, 1]

Break Parameters ∀i ∈ [2, K− 1] :
d1 = τ1 ∼ Exp(λ) di = τi − τi−1 ∼ Exp(λ) λ ∼ Gamma(1, T)
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In this section, we test our algorithm on a simulated series and a financial time series. In addition
to that, we found relevant to compare our results with the algorithm of [? ] which allows for an online
detection of the breaks in the GARCH parameters. A proper comparison of the two approaches is
detailed in Appendix ??.

We generate 4000 observations from the data generating process (DGP) of Table ??. The DGP
exhibits four breaks in the volatility dynamic and tries to mimic the turbulent and quiet periods
observed in a financial index. Figure ?? shows a simulated series and the corresponding volatility
over time.

Table 4. Data generating process of the Change-point-Generalized Autoregressive Conditional
Heteroskedastic (CP-GARCH) model.

µ ω α β τ

Regime 1 0 0.1 0.1 0.85 1250
Regime 2 0 0.3 0.03 0.95 2230
Regime 3 0 0.25 0.2 0.70 3170
Regime 4 0 0.4 0.05 0.9 —

(a) (b)

Figure 1. Simulated series from the data generating process (DGP) exhibited in Table ?? and its
corresponding volatility over time. (a) Simulated series; (b) Volatility over time.

We use the marginal log-likelihood (MLL) for selecting the number of regimes by estimating
several CP-GARCH models differing by their number of regimes (see [? ]). As the TNT algorithm is
both an off-line and an on-line method, we start by estimating the posterior distribution with 3000
observations (i.e., τ = 3000) and then we add one by one the remaining observations. For each model,
we obtain 1001 estimated posterior distributions (from π(xτ |y1:τ) to π(xT |y1:T)) and their respective
1001 MLLs. By so doing, the evolution of the best model over time can be observed. A sharp decrease
in the MLL value means that the model cannot easily capture the new observation. According to
the DGP Table ??, the model exhibiting three regimes should at least dominate over the first 170
observations and then the model with four regimes should gradually take the lead.

Figure ?? shows the log-Bayes factors (log-BFs) of CP-GARCH models with respect to the
standard GARCH process (i.e., K = 1).9 The best model over give or take the first 300 observations
is the one exhibiting three regimes. Afterward, it is gradually dominated by the process with four

9 We remind that the log-BF is computed as the difference of the MLL of two models. Following the informal rule of [? ], if
the logarithm of the Bayes factor exceeds 3, we have strong evidence in favor of the model with the highest value.
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regimes (in red). The on-line algorithm has been able to detect the coming break and according to the
MLLs, around 150 observations are needed to identify it.

Figure 2. Log-BF over time of the CP-GARCH models in relation to the GARCH one. The log-BF of
the CP-GARCH model with two, three, four and five regimes are depicted in yellow, blue, red and
cyan respectively. A positive value provides evidence in favor of the considered model compared to
the GARCH one.

Table ?? documents the posterior means of the parameters of the model exhibiting the highest
MLL at the end of the simulation (i.e., with a number of regimes equal to 4) as well as their standard
deviations. We observe that the values are close to the true ones which indicates an accurate
estimation of the model. The breaks are also precisely inferred. At least for this particular DGP,
the TNT algorithm is able to draw the posterior distribution of the CP-GARCH models and correctly
updates the distribution in the light of new observations.

Table 5. Posterior means of the parameters of the CP-GARCH model with four regimes and their
corresponding standard deviations.

µ ω α β τ

Regime 1 –0.02 0.11 0.11 0.85 1253.7
(0.04) (0.04) (0.03) (0.04) (9.91)

Regime 2 0.15 0.67 0.05 0.91 2238.4
(0.13) (0.21) (0.02) (0.03) (17.42)

Regime 3 0.01 0.25 0.16 0.73 3169.4
(0.04) (0.08) (0.03) (0.05) (11.33)

Regime 4 0.06 0.61 0.07 0.85
(0.1) (0.22) (0.02) (0.04)

Eventually, one can have a look to the varying probabilities associated with each evolutionary
update function. These probabilities are computed at each SMC iteration and are proportional to
the Mahalanobis distances of the accepted draws. Table ?? documents the values for several SMC
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iterations. We observe that the probabilities highly vary over the SMC iterations. Moreover, the
stretch move and the DREAM algorithm slightly dominate the walk update.

Table 6. Probabilities (proportional to the Mahalabonis distance) of choosing a specific type of
Metropolis-Hastings move. Mean stands for the average over the SMC iterations.

SMC Iteration Stretch Move Walk Move DREAM Move

Trigo DE Firefly Standard Trigo DE Firefly Standard Trigo Standard

1th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
10th 0.13 0.09 0.08 0.07 0.10 0.06 0.07 0.08 0.22 0.11
100th 0.14 0.11 0.13 0.13 0.11 0.04 0.06 0.16 0.09 0.04
last 0.11 0.12 0.11 0.11 0.08 0.05 0.06 0.10 0.17 0.09
Mean 0.13 0.12 0.12 0.11 0.10 0.05 0.06 0.14 0.12 0.06

5. Empirical Application

As emphasized in the simulated exercise, the TNT algorithm allows to compare complex models
through the marginal likelihoods. We examine the performances of the CP-GARCH models over
time on the S&P 500 daily percentage returns spanning from February 08, 1999 to June 24, 2015 (4000
observations). We estimate the models with a number of regimes varying from 1 to 5 using the
TNT algorithm and we fix the value τ = 3000 which controls the change from the tempered to the
time domain.

To begin with, Table ?? documents the MLLs of the CP-GARCH models with different number
of regimes when all the observations have been included. The best model exhibits four regimes.

Table 7. S&P 500 daily log-returns—marginal log-likelihoods (MLLs) of the CP-GARCH models given
different number of regimes. The highest value is bolded.

# Regimes 1 2 3 4 5

MLL –5732.6 –5730.86 –5731.1 –5727.87 –5729.1

Table ?? provides the posterior means and the standard deviations of the best CP-GARCH model.
Not surprisingly, the break dates occur after the dot-com bubble and at the beginning of the financial
crisis. To link the results with the crisis event, Freddie Mac company announced that it will no
longer buy the most risky subprime mortgages and mortgage-related securities in 17 February 2007.
This date sometimes refers to the beginning of the collapse of the financial system.

Table 8. S&P 500 daily log-returns - posterior means of the parameters of the CP-GARCH model with
four regimes and their corresponding standard deviations.

µ ω α β τ

Regime 1 –0.01 0.16 0.11 0.81 25 March 2003
(0.05) (0.06) (0.03) (0.05) (74.22)

Regime 2 0.06 0.02 0.05 0.91 14 February 2007
(0.02) (0.03) (0.02) (0.05) (62.33)

Regime 3 –0.33 0.66 0.13 0.52 09 March 2007
(0.34) (0.22) (0.15) (0.20) (32.63)

Regime 4 0.08 0.02 0.12 0.86
(0.02) (0.01) (0.01) (0.01)



Econometrics 2016, 4, 12 19 of ??

We now turn to the recursive estimations of the CP-GARCH models. For the 1001 estimated
posterior distributions (from π(xτ |y1:τ) to π(xT |y1:T)), Figure ?? shows the log-BFs of the CP-GARCH
models with respect to the fixed parameter GARCH model (i.e., K = 1). The CP-GARCH model with
four regimes dominates over the entire period. The process with five regimes fits similarly the data
but is over-parametrized compared to the same model with four regimes. The difference between the
two models comes from the penalization of this over-parametrization through the prior distributions.
For interested readers, Appendix ?? provides additional results on the CP-GARCH models such as the
filtered volatility of the preferred process and a detailed comparison with other CP-GARCH models
exhibiting breaks in the intercept ω or with student innovations.

Figure 3. S&P 500 daily log-returns — log-BFs over time of the volatility models in relation to the
GARCH one. The log-BFs of the CP-GARCH models with two, three, four and five regimes are
depicted in yellow, blue, red and cyan respectively. A positive value provides evidence in favor of
the considered model compared to the GARCH one.

To end this study, Table ?? delivers the probabilities associated with each evolutionary update
function for several SMC iterations. As in the simulated exercise, the stretch move and the DREAM
algorithm slightly dominate the walk one. We also observe that the trigonometric move exhibits good
mixing properties since its associated probabilities are high, especially for the DREAM-type update.

Table 9. S&P 500 daily log-returns—probabilities (proportional to the Mahalabonis distance) of
choosing a specific type of Metropolis-Hastings move. Mean stands for the average over all the
Sequential Monte Carlo (SMC) iterations. The highest probability is bolded.

SMC Iteration Stretch Move Walk Move DREAM Move

Trigo DE Firefly Standard Trigo DE Firefly Standard Trigo Standard

1th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
10th 0.12 0.09 0.08 0.06 0.10 0.06 0.07 0.07 0.24 0.12
100th 0.13 0.13 0.12 0.12 0.08 0.05 0.05 0.11 0.15 0.07
last 0.12 0.12 0.12 0.11 0.08 0.05 0.06 0.10 0.17 0.09
Mean 0.12 0.12 0.11 0.11 0.09 0.05 0.05 0.10 0.16 0.08
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6. Conclusions

We develop an off-line and on-line SMC algorithm (called TNT) well-suited for situations
where a relevant number of similar distributions has to be estimated. The method encompasses
the off-line AIS of [? ], the on-line IBIS algorithm of [? ] and the RM method of [? ] that
all arise as special cases in the SMC sampler theory (see [? ]). The TNT algorithm benefits from
the conjugacy of the tempered and the time domains to avoid particle degeneracies observed in
the on-line methods. More importantly, we introduce a new adaptive MCMC kernel based on the
evolutionary optimization literature which consists in 10 different moves based on the interactions
of the particles. These MCMC updates are selected according to some probabilities that are adjusted
over the SMC iterations. Furthermore, the scale parameter of these updates are also automated thanks
to the method of [? ]. It makes the TNT algorithm fully generic and one needs only to plug the
likelihood function, the prior distributions and the number of particles to use it.

The TNT sampler combines on-line and off-line estimations and is consequently suited for
comparing complex models. Through a simulated exercise, the paper highlights that the algorithm is
able to detect structural breaks of a CP-GARCH model on the fly. Eventually, an empirical application
on the S&P 500 daily percentage log-returns shows that no break in the volatility of the GARCH model
had arisen from 7 January 2011 to 24 June 2015. In fact, the MLL clearly indicates evidence in favor
of a CP-GARCH model exhibiting four regimes in which the breaks occur at the end of the dot-com
bubble as well as at the beginning of the financial crisis.

We believe that the TNT algorithm could be adapted to recent SMC algorithms such as [? ?
] since they propose advanced SMC samplers based on the IBIS and the E-AIS samplers. Another
avenue of research could be an application on change-point stochastic volatility models. Indeed, the
evolutionary MCMC kernel is potentially able to update the volatility parameters of these models
without filtering them.
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Appendix

A. Proof of Proposition 1

Using the notation x1:M
1:n = {x1

1, ..., xM
1 , x1

2, ..., xM
n } which stands for NxM random variables and

assuming that xj
i ∈ E ∀i, j as in the E-AIS method (tempered domain) or the IBIS one (time domain),

we consider the augmented posterior distribution :

π̃n(x1:M
1:n ) = [

M

∏
i=1

πn(xi
n)]

n

∏
k=2

Lk(x1
k−1|x

1:M
k )

M

∏
q=2

Lk(xq
k−1|x

1:q−1
k−1 , xq:M

k )

If the backward kernels Lk(.|.) denote proper distributions, the product of the distribution of
interest marginally arises:
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π̃n(x1:M
n ) =

∫
[

M

∏
i=1

πn(xi
n)]

n

∏
k=2

Lk(x1
k−1|x

1:M
k )

M

∏
q=2

Lk(xq
k−1|x

1:q−1
k−1 , xq:M

k )dx1:M
1:n−1

= [
M

∏
i=1

πn(xi
n)]

The SMC sampler with DREAM MCMC kernels leads to a proposal distribution of the form :

ηn(x1:M
n ) = [

M

∏
i=1

f (xi
1)]

n

∏
k=2

Kk(x1
k |x

1:M
k−1)

M

∏
q=2

Kk(xq
k |x

1:q−1
k , xq:M

k−1)

where Kk(.|.) denotes the DREAM subkernel with invariant distribution πk(.). Sampling one
draw from this proposal distribution is achieved by firstly drawing M realizations from the prior
distribution and then applying the DREAM algorithm (N-1)xM times. As proven in [? ? ], the
DREAM algorithm leads to the detailed balance equation :

[
M

∏
i=1

πk(xi
k−1)]Kk(x1

k |x
1:M
k−1)

M

∏
q=2

Kk(xq
k |x

1:q−1
k , xq:M

k−1)

= [
M

∏
i=1

πk(xi
k)]Kk(x1

k−1|x
1:M
k )

M

∏
q=2

Kk(xq
k−1|x

1:q−1
k−1 , xq:M

k )

Using this relation, we specify the backward kernel as

Lk(x1
k−1|x

1:M
k )

M

∏
q=2

Lk(xq
k−1|x

1:q−1
k−1 , xq:M

k )

=
[∏M

i=1 πk(xi
k−1)]Kk(x1

k |x
1:M
k−1)∏M

q=2 Kk(xq
k |x

1:q−1
k , xq:M

k−1)

[∏M
i=1 πk(xi

k)]

The sequential importance sampling procedure generates weights given by

w̃n(x1:M
1:n ) ≡

π̃n(x1:M
1:n )

ηn(x1:M
n )

= w̃n−1(x1:M
1:n−1)

[∏M
i=1 πn(xi

n−1)]

[∏M
i=1 πn−1(xi

n−1)]

=
M

∏
i=1

wn(xi
1:n)

resulting in a product of independent weights exactly equal to the product of SMC sampler weights
(see Equation (??)).

B. Additional Estimation Results

From a financial econometric point of view, volatility modeling is very important. In this
appendix, we go deeper in our analysis of the CP-GARCH model. To begin with, Appendix ??
provides more details on the CP-GARCH results obtained in the empirical section. We then propose
two extensions of the process by allowing for partial breaks in the intercept in Appendix ?? and by
relaxing the Normal assumption of the innovation (see Appendix ??).
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B.1. Filtered Variance of the CP-GARCH Model

Figure ?? displays the S&P 500 daily log-returns and different quantiles of the filtered variance
posterior distribution given by the best model. The volatility tracks very well the magnitude of the
returns. Interestingly, since the different quantiles are almost undistinguishable, we conclude that the
uncertainty on the filtered variance is very small.

Figure B1. S&P 500 daily log-returns in relation with the 5% (blue), 50% (red) and the 95% (yellow)
quantiles of the filtered volatility posterior distribution provided by the CP-GARCH model with
4 regimes.

In the results documented in the empirical exercise, the closeness of the last two break dates may
appear suspicious. Figure ?? highlights the presence of a huge extreme value occurring in 2 February
2007. The process based on the GARCH parameters derived from the quiet period preceding the
financial crisis (from 2003 to 2007) cannot produce such a negative return (that amounts to –3.98).
In fact, the parameters have been estimated on a period where the second extreme value reaches 2.1
which is almost half of the outlier magnitude. Consequently, a new regime is created just to handle
this high return. In this specific case, the flexibility of the CP-GARCH process turns out to be negative
as creating a regime for an outlier is unappealing and counter-productive. To avoid the detection of
outliers, one can for instance increase the persistence in the transition probabilities λ since it will
penalize very short regimes.

Figure B2. S&P 500 daily log-returns over the quiet period preceding the financial crisis in relation
with the median of the filtered volatility posterior distribution provided by the CP-GARCH model
with four regimes.
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B.2. A CP-GARCH Process with Partial Breaks

Instead of considering breaks in all parameters, one can be interested in a more parsimonious
model where only the intercept ω evolves over time. In fact, as the latter parameter is related to the
long-run volatility of a regime, the partial-break model can highlight if it is the volatility persistence
that is changing over time or only the long-term variance.

We start by a simulation exercise. A series of 4000 observations exhibiting breaks only in the ω

parameter has been generated from the DGP documented in Table ??.

Table B1. Data generating process of the CP-GARCH model exhibiting breaks in ω. The long run
variance of each regime is given in the row ω

1−α−β .

µ ω α β τ ω
1−α−β

Regime 1 0 0.1 0.1 0.85 1210 2
Regime 2 0 0.3 — — 2060 6
Regime 3 0 0.05 — — 3030 1
Regime 4 0 0.4 — — — 8

We carry out a In-sample simulation by fixing τ = 4000 (no online estimation) and so by
estimating only the posterior distribution of the model parameters given all the observations.
To begin with, Table ?? delivers the MLLs for the partial CP-GARCH models exhibiting different
number of regimes. In this specific case, the criterion selects the true number of regimes.

Table B2. Simulated series from the DGP Table ??—MLLs of the partial CP-GARCH models given
different number of regimes. The highest value is bolded.

# Regimes 1 2 3 4 5

MLL –7746.57 –7748.83 –7749.35 –7738.38 –7738.68

Table ?? provides summary statistics of the targeted distribution. The break dates are well
detected and the highest standard deviation is related to the first break which is in agreement with
the DGP. In fact, the difference in the long run variance is the smallest when moving from the first to
the second regime. We also observe that the persistence parameters as well as the intercepts are quite
accurately estimated.

Table B3. Simulated series from the DGP Table ??—posterior means of the parameters of the partial
CP-GARCH model with four regimes and their corresponding standard deviations.

µ ω α β τ

Regime 1 0.03 0.16 0.11 0.81 1197.78
(0.04) (0.02) (0.02) (0.04) (58.29)

Regime 2 –0.05 0.52 — — 2062.17
(0.09) (0.17) — — (22.83)

Regime 3 0.03 0.08 — — 3033.17
(0.04) (0.02) — — (22.55)

Regime 4 0.04 0.7 — —
(0.1) (0.20) — —
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We now turn to the empirical series and study the S&P 500 daily log returns. As before, we select
the best model according to the MLL. Table ?? documents the criterion for the CP-GARCH and the
partial CP-GARCH processes given several numbers of breaks. Interestingly, if only the intercept
varies over time, the preferred model solely exhibits one break. Additionally, the model where
all the parameters vary is preferred which gives evidence in favor of some breaks in the volatility
persistence. The break of the partial CP-GARCH model corresponds to the end of the dot com bubble
since the posterior mean of the break date is 2 February 2003 with a standard deviation of 103 days.

Table B4. S&P 500 daily log-returns — MLLs of the CP-GARCH models given different number of
regimes for two distinct specifications. The partial CP-GARCH model denotes a CP-GARCH process
where only the intercept is allowed to exhibit breaks. The standard CP-GARCH model exhibits breaks
in all its parameters. The highest value is bolded.

# Regimes 1 2 3 4 5

Partial CP-GARCH Model

MLL –5733.71 –5732.81 –5737.97 –5735.85 –5734.47

Standard CP-GARCH Model

MLL –5732.6 –5730.86 –5731.1 –5727.87 –5729.1

B.3. A CP-GARCH Process with Student Innovations

As it is well known that financial returns exhibit fat tails, we now study the t-CP-GARCH model,
i.e., a CP-GARCH process with t-student innovations. To begin with, a series of 4000 observations
from the DGP displayed in Table ?? has been simulated. Figure ?? shows a simulated series and the
corresponding conditional volatility over time.10

For each regime i, the degree of freedom do fi is an additional parameter to be estimated. We
constraint the parameter do fi ∈ [2, 100] and use the non-linear transformation ˜do f i = log( do fi−2

100−do fi
) in

order to map it on the real line. For each transformed parameter, we choose as a prior distribution a
Normal distribution with mean equal to 0 and a variance amounting to 2. As in the previous exercises,
we fix τ = 4000 and simulate the final posterior distribution. Table ?? documents the MLLs for the
t-CP-GARCH process with different numbers of regimes. The criterion selects the right specification.

Table B5. Data generating process of the t-CP-GARCH model. The degree of freedom is denoted
by dof.

µ ω α β τ

Regime 1 0 0.1 0.1 0.85 15 1080
Regime 2 0 0.3 0.03 0.95 40 2390
Regime 3 0 0.25 0.2 0.70 5 3280
Regime 4 0 0.4 0.05 0.9 10 —

10 taking into account the degree of freedom of the student distribution.



Econometrics 2016, 4, 12 25 of ??

Table B6. Simulated series from the DGP Table ??—MLLs of the t-CP-GARCH models given different
number of regimes. The highest value is bolded.

# Regimes 1 2 3 4 5

MLL –10132.12 –10124.63 –10106.30 –10095.56 –10098.63

(a) (b)

Figure B3. Simulated series from the DGP Table ?? and its corresponding volatility over time.
(a) Simulated series; (b) Volatility over time.

Table ?? gives the standard summary statistics of the posterior distribution. We observe that
all the parameters are quite accurately estimated. Obviously, as long as the student distribution
gets closer to the Normal one, the likelihood function becomes flatter with respect to the degree of
freedom. Consequently, it makes difficult to obtain a precise estimation of it.

Table B7. Simulated series from the DGP Table ??—posterior means of the parameters of the
t-CP-GARCH model with four regimes and their corresponding standard deviations.

µ ω α β τ dof

Regime 1 0.03 0.16 0.16 0.8 1094.74 37.25
(0.05) (0.05) (0.03) (0.03) (31.65) (22.39)

Regime 2 0.06 0.27 0.04 0.94 2373.9 51.42
(0.11) (0.12) (0.01) (0.01) (14.1) (22.74)

Regime 3 0.17 0.25 0.2 0.69 3306.04 5.14
(0.07) (0.08) (0.03) (0.04) (22.71) (0.89)

Regime 4 0.13 0.62 0.03 0.91 42.78
(0.13) (0.28) (0.02) (0.04) (24.12)

We now apply the t-CP-GARCH process to the empirical series. Table ?? provides the MLLs
for many different numbers of regimes. There is a clear evidence in favour of the t-CP-GARCH
process compared to the standard CP-GARCH one. Moreover, the best model does not exhibit any
break. It emphasizes that the Normal innovations is clearly rejected and that the breaks were mainly
detected to capture extreme values.
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Table B8. S&P 500 daily log-returns—MLLs of the CP-GARCH models given different number of
regimes for two distinct specifications. The t-CP-GARCH model denotes a CP-GARCH process with
t-student innovations. The innovations of the standard CP-GARCH model are driven by a Normal
distribution. The highest value is bolded.

# Regimes 1 2 3 4 5

t-CP-GARCH model

MLL –5673.98 –5675.91 –5678.11 –5682.85 –5686.78

Standard CP-GARCH model

MLL –5732.6 –5730.86 –5731.1 –5727.87 –5729.1

C. Comparison with the Online SMC Algorithm

He and Maheu [? ] provide an online algorithm able to detect structural breaks on the fly in a
process which exhibits the path dependence issue. The paper strongly relies on [? ] which develop
an auxiliary particle filter (hereafter APF, see [? ]) to estimate the static parameters. The sequence of
targeted distributions in a standard APF evolves over the time domain and consists in the posterior
distributions given a growing number of observations. As a consequence, the number of iteration
equals to the sample size.

We propose a formal comparison of the two approaches. For the sake of completeness, the next
section briefly reviews the method of [? ] and discusses the important differences with the TNT
sampler. Eventually, in Section ??, we apply the algorithm on the two financial time series of the
paper to empirically compare the two approaches.

C.1. The APF Algorithm for CP-GARCH Models

Following [? ], the CP-GARCH model is specified as follows11

yt = µst + εt with εt|y1:t−1 ∼ N(0, σ2
t ),

σ2
t = ωst + αst ε

2
t−1 + βst σ

2
t−1,

where st is a discrete latent variable taking values in [1,K] that is driven by a Markov-chain. The K by
K transition matrix is given by

P =


p1 1− p1 0 ... 0
0 p2 1− p2 ... 0

...
0 0 0 0 ... 1


As already mentioned, the CP-GARCH model exhibits the path dependence issue which makes

the standard inference relying on the forward-backward filter not appropriate. To solve the problem,
[? ] use an APF algorithm (see [? ]) in combination with an artificial sequence for the static
parameters (see [? ]). The static parameters are assumed to evolve over time according to a
shrinkage random walk process. As this process requires unbounded support for all the model

11 To compare with the specification of the paper, we have included the mean parameters {µi}K
i=1.
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parameters, they map the bounded parameters on the real line using non-linear transformations.
To be precise, if a parameter r belongs to [a,b] (with 0 < a < b), they apply the mapping
r̃ = log r−a

b−r ∈ <. For notational convenience, we gather all the model parameters into the set
θ = {µ1, ω1, α1, β1, p1, ..., µK, ωK, αK, βK, pK} and their associated mapping into θ̃. The key idea of [?
] consists in including the lagged conditional variances into the set of the SMC particles (and the
previous error terms as we have included mean parameters {µi}K

i=1 in the CP-GARCH specification).
Let define the filtration Ft−1 = {θ̃i

t−1, si
t−1, σi

t−1, εi
t−1, Wi

t−1}N
i=1 generated by the SMC at time t− 1.

By Bayes’ theorem, we have

π(θ̃t, st|y1:t,Ft−1) ∝ f (yt|y1:t−1,Ft−1, st, θ̃t) f (st|y1:t−1,Ft−1, θ̃t) f (θ̃t|y1:t−1,Ft−1) (C1)

In Equation (??), the static parameters θ are now time-varying and the distribution
f (θ̃t|y1:t−1,Ft−1) is approximated by a mixture as follows

f (θ̃t|y1:t−1,Ft−1) ≈
N

∑
i=1

Wi
t−1N(θ̃µ,t−1, (1− a2)Vt−1) with θ̃µ,t−1 = aθ̃t−1 + (1− a) ¯̃θt−1

where ¯̃θt−1 = ∑N
i=1 Wi

t−1θ̃i
t−1, Vt−1 = ∑N

i=1 Wi
t−1(θ̃

i
t−1 −

¯̃θt−1)(θ̃
i
t−1 −

¯̃θt−1)
′, a = (3δ− 1)/(2δ) and δ

is a discount factor belonging to [0, 1], typically set around 0.95-0.99. Note also that as the filtration
includes the previous conditional variances and error terms, the path dependence issue has been
solved since the density function f (yt|y1:t−1,Ft−1, st, θ̃t) is a computable Normal density. The APF
algorithm of [? ] is briefly detailed in Algorithm ??.

The APF algorithm exposed in Algorithm ?? is distinct in many ways from the TNT sampler.
We believe that none of the two approaches dominate and that the algorithmic choice should depend
on the needs of the user. In fact, if she is interested in smooth estimates of the states and in an
exact posterior simulation (besides the monte carlo error), then she should use the TNT sampler.
On the contrary, if she needs a simulation of all the posterior distributions (given only the very first
observation to the entire sample) and if she wants a fast estimation, then she should definitely choose
the APF approach. Below we discuss in deep details the noticeable differences of the methods.

• The complexity of the APF is O(NT) which is by far faster than the TNT sampler. However, in
order to avoid particles’ discrepancies, the number of particles needs to be very high. He and
Maheu [? ] recommend N = 300.000.

• The algorithm of [? ] provides an online detection but does not deliver smooth estimates of the
states while the TNT sampler gives the smooth probabilities of the states and an online detection
when the algorithm switches to the time domain.

• The APF algorithm relies on an approximation of the distribution f (θ̃t|y1:t−1,Ft−1) and on
an artificial process for the static parameters which depends on a user-defined parameter δ.
On the contrary, the TNT sampler is not based on any approximations and can directly estimate
static parameters.

• The TNT sampler updates the particles according to an ergodic MCMC kernel which converges
to the targeted distribution. By contrast, the APF algorithm is sensible to outliers (as discussed
in [? ]) and if the number of particles is too low, the APF method may not well approximate the
final posterior distribution.

• The algorithm of [? ] exhibits the appealing advantage of estimating the number of regimes.
In fact, one can fix the number of regimes K to a very high value and counts the number
of detected regimes in the output. Oppositely, we have to fix the number of regimes before
estimating the CP-GARCH model. However, it is more a model issue than an algorithmic one
as a CP-GARCH model with an undetermined number of regimes (which relies on hierarchical
Dirichlet processes, see [? ]) can be estimated by the TNT sampler.
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• As mentioned in [? ], the Algorithm ?? requires a prior on the transition probability that is close
to one for obtaining sensible results since the estimation of the states is sensitive to the outliers.
In the same spirit, the other priors need to be informative in order to improve the detection of
new regimes (and to limit the number of particles). The TNT sampler allows to freely choose
the prior distributions of the model parameters.

• As long as the probability of being in a state is not equal to zero, the algorithm of [? ] can get
back to an already visited regime. This feature is highlighted in the simulation exercise below.

• Since the TNT sampler relies on an MCMC kernel to update the particles, the detections of
breaks (exacerbated in the second phase when observations are introduced one by one) highly
depend on the mixing of the MCMC kernel and therefore on the number J of MCMC iterations.
On the contrary, the online detection of the APF algorithm will depend on the number of
particles and how the prior distributions are diffuse. Therefore, for online estimations, the two
algorithms exhibit pros and cons which makes their performance depending on the problem
at hand.

Algorithm 1 APF algorithm for the CP-GARCH(1,1) model

for i = 1 to N do
Sample si

1 ∼ f (s1)

Sample θ̃i
1 ∼ f (θ̃1) where f (θ̃1) denotes the prior density of θ̃

Compute the un-normalized weight : wi
1 = f (y1|si

1, θ̃i
1)

Save the conditional standard error σi
1 and the error term εi

1
end for
For i=1,...,N, compute normalized auxiliary weights : Wi

1 = wi
1/ ∑N

r=1 wr
1

for t = 2 to T do
Prediction step :
for i = 1 to N do

Compute θ̃i
µ,t and the mode si

µ,t of f (st|si
t−1, θ̃i

t−1)

Compute the un-normalized auxiliary weight : gi
t = f (yt|y1:t−1, si

µ,t, θ̃i
µ,t, σi

t−1)W
i
t−1

end for
For i=1,...,N, compute normalized auxiliary weights : Gi

t = gi
t/ ∑N

r=1 gr
t

Resample step on the auxiliary weights :
For i=1,...,N, assign a particle to each ri by stratified sampling
(see [? ])
Update step :
for i = 1 to N do

Sample θ̃i
t ∼ N(θ̃ri

µ,t−1, (1− a2)Vt−1)

Sample si
t ∼ f (st|sri

t−1, θ̃i
t)

Compute un-normalized weight : wi
t =

f (yt |y1:t−1,si
t ,θ̃

i
t ,σ

ri
t−1)

f (yt |y1:t−1,s
ri
µ,t ,θ̃

ri
µ,t ,σ

ri
t−1)Save the conditional standard error σi

t and the error term εi
t

end for
For i=1,...,N, compute normalized auxiliary weights : Wi

t = wi
t/ ∑N

r=1 wr
t

end for

C.2. Comparison of the He and Maheu Algorithm with the TNT Sampler

We estimate the CP-GARCH model with the algorithm of [? ]. To begin with, Table ??
summarizes the prior distributions of [? ]. In fact, the algorithm requires transition probabilities close
to one as well as quite informative priors for the other parameters to correctly perform. Regarding
the tuning parameters, we follow the recommendations of [? ] and fix δ to 0.99, N to 300.000 and the
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number K of regimes to 6.

Table C1. Prior distributions of the CP-GARCH parameters. The distribution N(a, b) denotes
the Normal distribution with expectation a and variance b and Gam(a,b) stands for the gamma
distribution with a being the shape parameter and b the scale one. The beta distribution is expressed
as Beta(a,b) with shape parameters a and b.

Mean parameter ∀i ∈ [1, K] :
µi ∼ N(0,0.1)

GARCH parameters ∀i ∈ [1, K] :
ωi ∼ Gam[1, 0.2] αi ∼ Beta[1, 8] βi ∼ Beta[4, 1]

Transition parameters ∀i ∈ [1, K− 1] :
p̃i ∼ N(10, 1)

C.2.1. Results on the Simulated Series

We start by estimating the model on the same simulated series as in the paper. The DGP is given
in Table ??.

As the method cannot provide smooth probabilities of the states, Figure ?? displays the filtered
distribution (i.e., f (st|y1:t)). All the breaks have been correctly detected. However, the number of
detected regimes only amounts to two. In fact, the probability of being in regime 1 was not zero when
the third break has been detected and since the third and the first regimes exhibit similar parameters
(see DGP Table ??), the weights of the particles related to the first states were again influential.
To compare with the TNT estimation, Figure ?? documents the smooth probabilities (i.e., f (st|y1:T)).
The breaks are sharply identified as the estimation uses future observations to confirm the presence
of a change.

Figure C1. Simulated series—filtered probabilities of the states given by the He and Maheu’s
algorithm. The probabilities of the first state are displayed in blue, the second in green, the third
in red and the last three regimes have virtually zero probabilities over the entire sample.
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Figure C2. Simulated series—smooth probabilities of the states given by the TNT algorithm. The
probabilities of the first state are displayed in blue, the second in green, the third in red and the last
one in turquoise.

Table C2. Data generating process of the CP-GARCH model.

µ ω α β τ

Regime 1 0 0.1 0.1 0.85 1250
Regime 2 0 0.3 0.03 0.95 2230
Regime 3 0 0.25 0.2 0.70 3170
Regime 4 0 0.4 0.05 0.9 —

C.2.2. Results on the S&P 500 Daily Percentage Returns

We now compare the two algorithms on the empirical time series used in the paper. Figure ??
documents the filtered probabilities of the states provided by the He and Maheu’s algorithm.
The graphic shows the detection of at least five regimes which means one additional break compared
to the preferred model obtained by the TNT sampler. To compare the break detection, Figure ??
documents the smooth probabilities of the TNT sampler for the CP-GARCH model with five regimes
(the second best model according to the MLL). The two approaches give very similar results.
Interestingly, all the breaks obtained by the TNT sampler are also identified by the APF algorithm.
Two differences are worth discussing.

1. The algorithm of [? ] detects two breaks during the financial crisis while only one regime covers
the period for the TNT sampler. Nevertheless the presence of two regimes in this spell is quite
uncertain by judging the probabilities of the third regime (in red) which remain above 20% over
the entire period.

2. Compared to the online detection of [? ], the uncertainties around the break dates are very small
in Figure ?? as the smooth probabilities take the future observations into account.
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Figure C3. S&P 500 daily log-returns—filtered probabilities of the states given by the He and Maheu’s
algorithm. The probabilities of the first state are given in blue, the second in green, the third in red
and the fourth in turquoise, the fifth in purple and the last one in pale green.

Figure C4. S&P 500 daily log-returns - smooth probabilities of the states given by the TNT algorithm
for the CP-GARCH model exhibiting five regimes. The probabilities of the first state are displayed in
blue, the second in green, the third in red, the fourth in turquoise and the fifth in purple.
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