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Abstract: This paper proposes a methodology to incorporate bivariate models in numerical
computations of counterfactual distributions. The proposal is to extend the works of
Machado and Mata (2005) and Melly (2005) using the grid method to generate pairs of
random variables. This contribution allows incorporating the effect of intra-household
decision making in counterfactual decompositions of changes in income distribution.
An application using data from five latin american countries shows that this approach
substantially improves the goodness of fit to the empirical distribution. However, the exercise
of decomposition is less conclusive about the performance of the method, which essentially
depends on the sample size and the accuracy of the regression model.
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1. Introduction

Most empirical studies analyze the effects of income distribution determinants through decomposition
methodologies based on Oaxaca-Blinder (1973) [2,3]. Those methodologies usually focus on the wage
distribution of a single individual assuming that all employment decisions are made in an isolated
or independent way with respect to other household members. Notwithstanding, the literature on
intra-household labor supply shows several models of the interdependence in the employment decisions
within the household. Assortative mating literature provides vast evidence of interrelations of individual
variables among members, such as their education levels, labor income, the choice of hours of work, etc.
Ignoring this feature when estimating household labor earnings on decomposition exercises provides a
scenario that may be biased or unrealistic.

The main component of personal earnings is labor income. Therefore, it is important to know
its intra-household determinants to understand the behavior of the household incomes and their
consequences on inequality. In the most traditional model, there is a sole individual responsible for
making labor decisions independently of other household members. However, in the case of complete
households (with head and spouse) it is usual that this decision is made by the couple. There are
several models in the literature where a couple faces the problem of deciding together their labor supply
according to their interests within the home (e.g., Chiappori and Pierre-Andre, 1992 [4]; Blundell et al.,
2005 [5]; van Klaveren et al., 2008 [6], among others). The main mechanisms behind this decision are
the reservation wages of each member and the bargaining power that determines the share rule of the
household income.

Given the complexity involved in analyzing the joint employment decisions of all household members,
the usual alternative is to focus only on the decisions made by the household head and spouse. The
implicit assumption is that the rest of the household members will not change their behavior, or at
least their impact on family income is small. This assumption may be too simple, but it is a starting
point used in the literature to understand the complex mechanisms interacting in the labor decisions
made within the household. In particular, both the reservation wages and bargaining power depend
on observable and unobservable characteristics of household members such as age, education status,
persuasion, etc. Modeling both earnings equations to analyze household income distribution while
taking into account their interactions requires a methodology that generates counterfactual distributions
of hypothetical changes on their determinants.

Some examples of models including employment decisions within the household are Browning et al.
(1994) [7], Gasparini and Marchionni (2007) [8], Galiani and Weischenbaum (2012) [9], among others.
Usually these studies make several parametric and/or distributional assumptions, such as normality
in the unobservable income determinants. This approach could be too strict or it may not be quite
representative of the actual income distribution. Another usual methodological aspect is that those
papers use models focused on conditional means, relying on parametric assumptions other aspects of
the distribution. Despite the progress of quantile regression literature allows exploring issues beyond
the average effects, the bulk of the decompositions literature is based on counterfactual distributions of
earnings equations for a single individual (i.e., Machado and Mata (2005) [10], Melly (2005) [11] and
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Firpo et al. (2009) [12]). This paper attempts to expand this literature by proposing a methodology to
generate counterfactual scenarios on bivariate distributions using conditional quantiles.

The main contribution of this paper is to show that the problem of generating counterfactual income
distributions for both household members is just an exercise of numerical integration involving a joint
mechanism to generate a pair of random variables through their marginal distributions. Once this
mechanism is established, it is possible to use the ranking association of both household members
in order to get a set of replicates or realizations of the joint distribution. Nevertheless, the fact that
incomes are related with observable characteristics makes necessary to introduce some structure to the
conditional income distribution. Conditional quantiles are useful to model this matter for two reasons:
first, they are the counterpart of the cumulative conditional distribution, and second they are easily
estimable by standard methods. Quantile regressions allows an indirect way to capture the unobservable
heterogeneous effects on each marginal distribution. Finally, the last step of the proposed method is
to incorporate the relationship between the conditional incomes of both household members using a
probabilistic association of conditional rankings.

The paper is organized as follows. In Section 2, a methodology to simulate bivariate random variable
realizations based on marginal distributions is presented. Section 3 extends this idea to conditional
joint distributions and its applications to counterfactual distributions. Section 4 shows an empirical
application with household survey data for different countries in the Southern Cone of Latin America.
Finally, Section 5 discusses the results and scope of the methodology.

2. Generating Random Variables

Generating random variables in the univariate case is relatively simple, and there are several methods
available. The most widely used is the inverse cumulative function method: let U be a random variable
with a uniform distribution U(0, 1), then the transformation F−1Y (U) generates a random variable with
distribution FY (y). Thus, this procedure simply consists on taking a realization of a uniform random
variable u and then computing the u−th quantile QY (u) ≡ F−1Y (u). In the case of integer variables, the
logic is quite similar to the continuous case (Devroye, 1986) [13].

The bivariate setup is more complex because the statistical relationship between two variables must
be considered. A closely related problem can be found in the study of copula functions. A copula
is a function that links the joint distribution to the one-dimensional marginal distributions (Nelsen,
1999) [14]. As in the univariate case, there are several methods to create a bivariate random draw.
For example, the conditional distribution method allows to generate a random vector (y1, y2) using a
vector (U1, U2) of independent uniform random variables. Specifically, the method of the conditional
distribution requires the following two steps: (1) compute y2 = F−12 (U2), where F2(.) is the marginal
cumulative distribution of y2; and (2) compute y1 = F−1(u1|y2), that is, using the inverse of the
cumulative distribution of y1 conditional on y2. The key to this process is to know the exact functional
form of the conditional distribution, which can be too strict in practice.

Another strategy that allows us to adapt the univariate methods (such as the inverse cumulative
function) to the bivariate problem is the grid method. Before explaining this procedure, it is appropriate
to give some definitions.
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Definition 1. (encoder function). Let m1 and m2 be two integer variables in the domain[1,M1] and
[1,M2], respectively. We define the encoder function m = T (m1,m2) as m = M1m1 +m2.

The image of this function is Im(T ) = [M1 + 1,M2
1 + M2]. The most interesting property of

the encoder function is that it has a single value m for each ordered pair (m1,m2). Therefore, each
coordinate is identified by the following decoding function:

Property 1. (decoding functions). Let m ∈ Im(T ) be a encoder function. Then, the coordinates m1

and m2 can be obtained from the decoding functions: m1 = [m/M1] and m2 = m−M1m1.

The last element that is needed is to define the set of grids of an enclosure A ⊂ R2
+.

Definition 2. (grid Cm). Let A ⊂ R2
+ be an enclousure, a grid Cm ⊂ A is defined as Cm≡ {(y1, y2) ∈

A| am1−1 < y1 < am1 ∧ bm2−1 < y2 < bm2} with m1 = 2, . . . ,M1, m2 = 2, . . . ,M2, where am1 and bm2

are values such that they satisfy a1 < a2 < . . . < aM1; b1 < b2 < . . . < bM2 and
⋃
m∈Im(T )C(m) = A.

Finally, consider two random variables (y1, y2) ∈ A with a joint density function f(y1, y2). To
generate a realization of a vector (ỹ1, ỹ2) from the population distribution f(y1, y2) we can use the grid
method by following the next steps:

1. Subdivide the enclosure A in grids Cm, where m ∈ Im(T ).
2. Calculate the probability mass of each grid pm = Pr[(y1, y2) ∈ Cm] for every m.
3. Generate a realization of an integer univariate random variable m̃ with probability distribution pm,

calculated in the previous step.
4. Decode m̃ to obtain the vector (m̃1, m̃2).
5. Compute the realization of (ỹ1, ỹ2) assigning values within the grid Cm̃.

Figure 1 presents two examples to illustrate how the method works: graph (a) shows the situation of
two random variables with a positive relationship while (b) represent the independent relationship case.

y 1

y 2

(a)

y 1

y 2

(b)

Figure 1. Random variables and correlation.

The dotted lines delimit the grids subdividing the enclosure (i.e., the support of both random
variables). Clearly, in the first case the probability mass (measured by the proportion of points falling
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into each grid) is concentrated in the diagonal given by the bisectrix, while in the second case there is no
clear pattern for the joint probability. Logically, the greater the number of grids, the better the approach
of the method (Hörmann et al., 2004 [15]). Therefore, the method incorporates the statistical relationship
between y1 and y2 through the probability of each grid.

Lastly, note that the grids can be determined by their marginal quantile by defining the values
um1 ≡ F1(am1) and vm2≡ F2(bm2). The validity of this equivalence is that the cumulative distribution is
an increasing monotonic transformation of the random variable support. In other words, the Fj(.) value
represents the ranking position resulting from sorting the yjs increasingly. This establishes a one to one
relationship between any value of yj and its ranking. Then, the grid Cm can be written as:

Cm = {(y1, y2) ∈ A | am1−1 < y1 < am1 ∧ bm2−1 < y2 < bm2}
= {(y1, y2) ∈ A | Qy1(um1−1) < y1 < Qy1(um1) ∧Qy2(um2−1) < y2 < Qy2(um2)}

Figure 2 shows this equivalence in the definition of grids. The top graph on the right shows the
point cloud in the plane (y1, y2), while the lower graph on the left shows its counterpart in the plane
(F1(y1), F2(y2)). The figures in the other two quadrants show the cumulative probability of each variable
viewed solely as a univariate distribution (marginal distribution). Note that although the scales of the
enclosures are different, each point belonging to a grid in the upper right quadrant has a corresponding
grid on the lower left quadrant.

Figure 2. Equivalence of grids.
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The grid definition on the marginal probability plane is equivalent to define the grid in terms of
the levels of both variables. Then, looking at the grid plane makes it possible to adapt this method
to the context of conditional quantiles. This is a key idea because it is precisely the estimation target
of the quantile regression technique. Briefly, building the link between the probability grids and the
conditional quantiles allows us to associate the marginal rankings with the univariate method of random
sampling for the purpose of generating counterfactual distributions. Furthermore, this strategy requires
less information than the method of the conditional distribution given that it only requires to know the
probability of each grid rather than an entire functional form for the distribution of y1 conditional on y2.

3. Conditional Bivariate Model

3.1. Population

Consider now the distribution of (y1, y2) depending on a group of covariates (x1, x2). In particular,
consider the following linear model for the pair of random variables (y1, y2):

y1 = x′1β1 + ε1 (1)

y2 = x′2β2 + ε2 (2)

where x1 and x2 are observable covariates vectors and the errors have a joint density f(ε1, ε2|x), with
x ≡ (x1, x2). Using the Skorohod’s representation, the same model can be formulated under the
conditional quantile form:

Qy1|x1(θ1) = x′1β1(θ1)

Qy2|x2(θ2) = x′2β2(θ2)

where (θ1, θ2) are two random variables whose domain is given by A ∈ [0, 1] × [0, 1]. Given the joint
density f(ε1, ε2|x), the density of this transformation becames:

g(θ1; θ2|x) =
f [F−1Y1

(θ1), F
−1
Y2

(θ2)|x]

fy1 [F
−1
Y1

(θ1)|x]fy2 [F
−1
Y2

(θ2)|x]

Note that this function is the second derivative of the y1 and y2 copula conditional on x. The estimation
of this object is not easy if we do not previously postulate some parametric assumptions (e.g., bivariate
gaussian). While there are several available parametric forms for copulas, such as the Fréchet and Mardia
families, our goal is to keep the nonparametric aspect that characterizes the quantile regression approach.
However, it is unclear how the density estimation is useful for generating a sequence of random numbers
to build counterfactual scenarios. 1 In this context, generating random values for a vector (y1, y2)

conditional on x appears as a simple extension of the grids method explained in the previous section.

1 Unfortunately, even though the Fréchet-Hoeffding copula bounds are useful to characterize certain particular cases
such as comonotonic or countermonotonic random variables, they are too generic to be used in the context of random
variables simulation.
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Consider for simplicity that M1 = M2 = M and the cutoff values in A are equally spaced—i.e.,
um1 = m1/(M + 1) and vm2 = m2/(M + 1). Then,

1. Subdivide the support region defined by [0, 1]× [0, 1] in Cm grids for m ∈ Im(T ).
2. Calculate the probability of each grid pm = Pr[(θ1, θ2)|x ∈ Cm] for each m.
3. Generate the realization of an integer univariate random variable m̃ with probability pm, obtained

in the previous step.
4. Decode m̃ at coordinates (m̃1, m̃2).
5. Get realizations of the pair (θ̃1, θ̃2) assigning values within the grid Cm̃.
6. Generate (ỹ1, ỹ2) using the pair (θ̃1, θ̃2) and the univariate method of inverse cumulative function
ỹ1 = Qθ̃1

(y1|x1) and ỹ2 = Qθ̃2
(y2|x2).

So far, all the elements used in each step of the process come from the population and so they are
unobservable for the econometrician. Thus, an estimation strategy is required. The next section discusses
about this topic when we have a random sample available instead of population data.

3.2. Sample Estimation

To generate a replicate (y1, y2) using a random sample we can apply the same procedure explained
in the preceding paragraphs but replacing each element with its sample analogue. Specifically, we can
estimate conditional quantiles Q̂θj(yj|xj) = x′jβ̂j(θj) for j = 1, 2 using a certain grid of values—e.g.,
θ = 0.05, 0.10, ..., 0.90, 0.95. The classic reference to get a consistent estimator of β̂1(θ1) and β̂2(θ2) is
Koenker and Basset (1978) [16].

The grid method steps when we are working with sample estimators are:

1. Build Ĉm using x′2iβ̃1(am) and x′2iβ̃2(bm) as delimiters.
2. Estimate p̂m = P̂r(Cm) = n−1

∑n
i=1 1(i ∈ Ĉm), for every m.

3. Generate realizations of an integer random variable m̃ according to the probabilities p̂m.
4. Create the coordinates (m̃1, m̃2) decoding m̃.
5. Assign the values (θ̃1, θ̃2) for every grid Cm̃.
6. Compute (ỹ1, ỹ2) with the pair (θ̃1, θ̃2) using the method of the inverse function, that is
ỹ1 = Q̂θ̃1

(y1|x1) and ỹ2 = Q̂θ̃2
(y2|x2).

All the estimates used on each of the previous steps have good asymptotic properties (consistency)
under the usual exogeneity assumption (Koenker, 2005) [17]. Moreover, if the number of cells M is
large enough the grid method fits better. However, the number of different quantile regressions that
can be estimated with a finite sample size is limited. Portnoy (1991) [18] shows that this number is
O(n · log(n)). Nevertheless, this rate corresponds to the univariate case and to the best of our knowledge
there is no study for the bivariate analysis. On the other hand, taking too many quantiles affects the
consistency in the second step of the procedure because the probabilities of each grid are estimated with
few observations. Therefore, there is a trade-off between the number of grids and the precision of the
method. By the continuous mapping theorem, the method is expected to work well with relatively large
sample sizes, provided that it allows to subdivide the enclosure into a greater number of grids.
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3.3. Counterfactual Distributions

The proposed methodology can be used to generate counterfactual distributions due to a change on
its determinants, as in Oaxaca-Blinder decompositions. Particularly, this proposal is in line with the
literature initiated by Machado and Mata (2005) [10] and Melly (2005) [11]. Our contribution to this
literature is to extend their method when there are two variables of interest (y1, y2) or some function of
them. For example, the distribution of household per capita income is the variable of interest in the vast
majority of the studies about inequality and/or poverty. If y1 and y2 respectively represent the head and
spouse individual incomes, then the household income is the sum of them, plus the income of the other
family members. After calculating the total level of income received by each household, this number is
divided by the number of members in the household to obtain the household per capita income.

Assuming that incomes from other family members and those coming from non-labor sources are
constant, the distribution of household per capita income depends only on the determinants of the couples
income.2 Formally, let yt be the vector of household per capita income for all households observed in
year t, then the income distribution can be represented as:

yt = D(β1t(θ1), β2t(θ2), rt(θ1, θ2))

That is, yt is a function of the parameters of each income equation at year t as well as of the
probabilistic relationship between the two conditional rankings represented by rt(θ1, θ2).

Let I(·) be any distributive indicator based on the vector of household incomes (e.g., Gini, Theil index,
among others), then I(yt)−I(ys) is the distributional change between the years t and s. A decomposition
of this difference is an exercise of comparative statics where some income distribution determinants are
changed and the others remain constant. The key is to build a set of counterfactual scenarios where some
determinants are changed. The mechanism to do it is to generate replicates of the income distribution
using the method explained in Section 2. For example, let’s consider three counterfactual scenarios:

y1t = D(β1t(θ1), β2t(θ2), rt(θ1, θ2))

y2t = D(β1t(θ1), β2t(θ2), rt(θ1, θ2))

y12t = D(β1t(θ1), β2t(θ2), rt(θ1, θ2))

In the first equation, only the parameters of the household head have changed and this represent
the first scenario. In the second, only those of the spouse have been modified, while in the third both
parameter sets have changed. Then, if I(yt)− I(ys) is the observed change in the distributive indicator,
the effect of each scenario is:

y1t –ys = D(β1t(θ1), β2s(θ2), rs(θ1, θ2))−D(β1s(θ1), β2s(θ2), rs(θ1, θ2)) (3)

y2t –ys = D(β1s(θ1), β2t(θ2), rs(θ1, θ2))−D(β1s(θ1), β2s(θ2), rs(θ1, θ2)) (4)

y12t –ys = D(β1t(θ1), β2t(θ2), rs(θ1, θ2))−D(β1s(θ1), β2s(θ2), rs(θ1, θ2)) (5)

2 To incorporate non-labor income on a microsimulation exercise is not a simple task and depends mainly on the social
policies applied in each country under analysis. See Badaracco (2014) [19] as an example for the countries in the Southern
Cone of Latin America.
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To ease notation, we have omitted the observable characteristics of the household head (x1) and
spouse (x2). This obey to the fact that these determinants remain constant in our simulation exercise.
Notwithstanding, our methodology admits counterfactual scenarios including isolated changes on those
characteristics. In the terminology of Firpo et al. (2011) [20], the result of this exercise is called
“characteristic effect”; while the scenarios proposed in Equations (3)–(5) are “parameter effects”.
The aim of this paper is to show the simulation methodology and the performance of implementing
a simple exercise with different sample sizes. Therefore, to keep this analysis simple, only the
counterfactual scenarios involving parameter changes were considered, separating the effect of both
household members to explore the potential of the method.

4. Empirical Illustration

In this section we use real data as an application of the proposed methodology to generate
counterfactual distributions of per capita household income. The model is defined by Equations (1) and
(2) where y1 and y2 represent the labor earnings (in logs) of the household head and spouse, respectively.
The vectors x1 and x2 are observed characteristics (age, education, gender, number of children) while
ε1 and ε2 are terms representing the unobserved determinants of earnings. We focus our analysis on five
countries in Latin America, particularly those belonging to the Southern Cone: Argentina, Brazil, Chile,
Paraguay and Uruguay. The data come from household surveys collected by the statistical institutes of
each country.3

We use three alternative methods to estimate the earning models. The first method is to use a
seemingly unrelated regression model (SUR), in which the parameters in Equations (1) and (2) are
estimated by OLS but allowing correlation between the error terms in both equations. The second case is
the estimation of a quantile regression model (IQR), in which the assumption is that the error terms are
independent. Finally, the outcomes from these methods are compared with those obtained by applying
the methodology of estimating through quantile regressions but relating the model equations using the
grids method (DQR).

The first exercise is to analyze the performance of the proposed methodology (DQR) relative to the
other two strategies (SUR and IDR). We use an ad-hoc rule to choose the number of quantiles on each
earning equation. This rule ensures that the number of observations on each grid will be around 40 in
the case in which both equations are independent.4 The reason behind choosing this rule is to try to get
reliable estimates of each grid without losing the asymptotic properties.

Using these three methods, the model’s coefficients are estimated in order to generate the joint
distribution of labor earnings of the heads and spouses in a particular year. These earnings are used
to build a new household per capita income and compute the Gini coefficient. Table 1 shows the
results. The first panel of the table shows the Gini coefficient observed in each country, followed by
the Gini coefficient of the simulated income from each method. The standard errors of each coefficient

3 Table A1 on Appendix shows a brief description of the surveys used.
4 Following this rule, the number of quantile estimates in each country are: 19 in Argentina, 39 in Brazil, 29 in Chile, 9 in

Paraguay, and 15 in Uruguay.
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are computed using 50 simulation replicates. Errors in the SUR model are generated 50 times from a
bivariate normal distribution using all the estimated parameters. For the IQR, uniform random variables
are generated independently, so that there is no conditional ranking association. Finally, under the DQR
simulation, the values of the labor earnings of the head and spouse are obtained from the estimated
probabilities in the grid method, namely considering the relationship between the two equations. The
second panel in the table presents the mean square error (MSE) of each estimate with respect to the
empirical distribution:

Table 1. Performance.

Argentina Brazil Chile Paraguay Uruguay

Gini
Observed 48.78 56.33 54.65 52.96 46.81

OLS 49.12 54.61 52.54 53.19 46.22
(0.03) (0.01) (0.02) (0.05) (0.02)

IQR 48.25 55.88 54.22 52.02 46.30
(0.01) (0.00) (0.02) (0.02) (0.01)

DQR 48.34 56.05 54.38 52.32 46.44
(0.01) (0.00) (0.02) (0.01) (0.01)

ECM
OLS 0.16 2.96 4.46 0.18 0.38
IQR 0.28 0.20 0.20 0.90 0.26
DQR 0.20 0.08 0.09 0.43 0.14

Obs. 16571 78188 45915 3337 10907

Note: Standard errors in parentheses. The observed Gini coefficient corresponds to the initial year (see
Table A1). The number of observations corresponds to the sample of households that have both head and
spouse in the initial year.

The SUR method has the lowest MSE for Argentina and Paraguay, followed closely by the DQR
method. Therefore, in these two cases, using the conditional mean with an assumption of normality
in errors fits relatively well to the real data. In the cases of Brazil, Chile and Uruguay the method
that achieves the lowest MSE is the DQR, followed by the IQR method. As discussed above, these
results suggest that the DQR method requires a certain amount of observations to achieve relatively good
performance. However, in the case of Uruguay, which has a smaller sample than Argentina, DQR method
has the lowest MSE. Then, this methodology may also depend on how well the model fits to the empirical
distribution. However, large sample sizes should improve the approximation of the DQR method.

The next step in this section is to perform the micro-decomposition discussed in Section 3.3 in order to
compare the results obtained with the three methods. As an illustration, we estimate the parameters effect
in the equations of labor earnings. Table 2 shows the results of this exercise: the row ∆ Obs contains
the observed variation in the Gini coefficient for the entire period. The first panel in the table shows the
parameters effect in the earning equation of the head, the second presents the effect corresponding to the
spouse equation, and the third panel shows the decomposition of the parameters effect in both equations.

The greatest variation in the Gini coefficient corresponds to Argentina, with a fall of almost 8 points,
followed by Uruguay with about 7 points. Brazil and Chile also show a reduction in inequality in terms
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of the Gini coefficient with values slightly higher than 4 points, while in the case of Paraguay an increase
of around a point is observed. The estimation results are interpreted as follows: the value −1.0 of the
parameters effect in the equation of the spouse in Argentina under the SUR model indicates that if all
that would have changed between 2004 and 2012 were the parameters governing the equation of the
spouse of the household, the Gini coeficient would had been reduced by a point.

Table 2. Parameters Effects

Argentina Brazil Chile Paraguay Uruguay
2004–2012 2004–2012 2003–2011 2007–2011 2004–2012

∆ Obs −7.8 −4.1 −4.4 1.0 −6.8

Head
OLS −1.0 −1.2 1.9 0.0 −1.0

(0.01) *** (0.00) *** (0.01) *** (0.01) *** (0.01) ***
IQR −0.7 −0.7 −1.1 −0.5 −1.3

(0.01) *** (0.00) *** (0.01) *** (0.02) *** (0.01) ***
DQR −0.6 −0.6 −1.1 −0.8 −1.4

(0.01) *** (0.00) *** (0.01) *** (0.02) *** (0.01) ***

Spouse
OLS −1.2 −0.7 1.0 0.3 −0.6

(0.01) *** (0.00) *** (0.01) *** (0.01) *** (0.01) ***
IQR −0.3 −0.1 0.4 −0.1 0.2

(0.00) *** (0.00) *** (0.01) *** (0.02) *** (0.00) ***
DQR −0.4 −0.1 0.3 −0.3 0.2

(0.00) *** (0.00) *** (0.00) *** (0.02) *** (0.00) ***

Both
OLS −2.3 −1.7 2.9 0.3 −1.6

(0.01) *** (0.01) *** (0.01) *** (0.01) *** (0.01) ***
IQR −1.1 −0.4 −0.7 −0.5 −1.0

(0.01) *** (0.00) *** (0.01) *** (0.02) *** (0.01) ***
DQR −1.1 −0.3 −0.8 −0.9 −1.1

(0.01) *** (0.00) *** (0.01) *** (0.03) *** (0.01) ***

Note: Standard errors in parentheses. * significative at 10%; ** significative at 5%; *** significative at 1%.

The greatest discrepancies among methodologies belong to the SUR method, while the IQR and DQR
do not differ significantly from each other. The differences between the DQR and IQR are between 0
and 0.1 points (in absolute value) in the countries where the DQR achieves the lowest MSE. This result
suggests a significant difference in terms of effects (between 0% and 30% in some cases). However, the
economic significance of these differences is small (one tenth point of the Gini). The case of Paraguay
shows a potential weakness in the DQR method when there are too few observations available. Since
DQR has the lowest MSE in this country, the differences with the other methods suggest that with small
samples the DQR method could present a potential bias in the estimated effects.



Econometrics 2015, 3 730

5. Conclusions

This paper proposes a method to incorporate the intra-household relationship between the labor
incomes of the head and the spouse in decomposition studies. The paper closely follows the articles of
Machado and Mata (2005) [10] and Melly (2005) [11]. We try to extend these papers by incorporating
the correlation of intra-household income modeled by a simultaneous equation system. The key idea in
our proposal is to associate conditional quantiles by adapting an standard method for generating random
variables: the grid method.

The complexity associated with the joint employment decisions in a household leads us to focus our
analysis on the behavior of the head and spouse, independently of the decisions of the rest of the family
members. Furthermore, our model only analyzes the determination of labor earnings, assuming all other
sources of income remain unchanged. Incorporating these other sources is an exercise that does not
allow certain generalizations because non-labor income depends mainly on the social policies applied in
each country (Badaracco, 2014 [19]).

An empirical application performing a simple decomposition exercise was implemented by using
data from household surveys for the Southern Cone countries in Latin America. The counterfactual
scenarios considered consisted on a change in the parameters in the labor earnings equations in two
different moments in time. The results show that, in general, incorporating the interaction of household
incomes substantially improves the goodness of fit to the empirical income distribution. Also, using
quantile regression can dramatically change the results of the simulation exercise. However, although
the introduction of correlation in incomes yields different results, the economic significance seems to
be minor. The comparative exercise among different surveys shows that the performance of the method
clearly depends on the sample size by limiting the number of grids. Moreover, given the sample size, the
goodness of fit of the semiparametric method seems to be another key point.

The paper omits some important issues related to the estimation of earnings equations such as sample
selection and endogeneity of covariates (e.g., education). The main reason for doing this is that our target
is to propose a methodology for the generation of counterfactual distributions, showing their application
using standard regression methods developed in the literature. Solving all these problems requires the use
of more specific methodologies that are still under development such as those in Buchinsky (2001) [21]
and Chernozhukov and Hansen (2006) [22]. Exploring the performance of the proposed method under
these estimation techniques is postponed for future research.
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Appendix

Table A1. Household Surveys.

Country Survey Acronim Years

Argentina Encuesta Permanente de Hogares-Continua EPH-C 2004–2012 (1)
Brazil Pesquisa Nacional por Amostra de Domicilios PNAD 2004–2012
Chile Encuesta de Caracterización Socioeconómica Nacional CASEN 2003–2011

Paraguay Encuesta Permanente de Hogares EPH 2004–2011
Uruguay Encuesta Continua de Hogares ECH 2004–2012

Note: (1) Second Semester.
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