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Abstract: We give a simple explicit formula for turnover reduction when a large number
of alphas are traded on the same execution platform and trades are crossed internally. We
model turnover reduction via alpha correlations. Then, for a large number of alphas, turnover
reduction is related to the largest eigenvalue and the corresponding eigenvector of the alpha
correlation matrix.
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1. Introduction and Summary

With technological advances, hedge funds and similar investment vehicles can simultaneously trade
multiple alpha streams.1 One immediate question that arises is how to allocate capital to these alphas,
or, mathematically speaking, how to determine weights with which the alphas should be combined. This

1 Here “alpha” means a real-life (as opposed to “academic”) alpha, that is, any reasonable expected return on which one
may wish to trade, that is, take risk. In fact, real-life alphas (e.g., momentum strategies) often have sizable exposure to
risk. Furthermore, there is no “perfect” risk model w.r.t. which one would hypothetically neutralize risk exposure of a
portfolio. Otherwise, there would only be mean-reversion caused by temporary trading imbalances, which is evidently
not the case in real life. Different time horizons provide different alpha (trading) opportunities.
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is an optimization problem, whose solution depends on the precise optimization criterion as well other
factors, such as if and how transaction costs are included and modeled.

The second issue is related to crossing trades between alphas. If, say, within a given hedge fund,
Strategy A wants to buy $1M of MSFT while Strategy B wants to sell $1M of MSFT, it makes sense
to cross this trade internally—if the execution platform allows this, that is—as opposed to going to the
market as internal crossing amounts to substantial savings in transaction costs.2 When internal crossing
is employed, portfolio turnover is reduced, so using even the simplest model for transaction costs in
portfolio optimization requires accounting for turnover reduction.

As more and more alpha streams are combined, one expects that on average crossing should increase,
and therefore the percentage of the dollar turnover with respect to the total dollar investment—which
percentage we refer to simply as “turnover”—is expected to decrease. In [1] it was argued that turnover
indeed decreases and converges to a non-vanishing limit. Generally, it is no easy feat to precisely describe
internal crossing and turnover reduction. In a portfolio consisting of a large number of underlying
tradable instruments (e.g., stocks), precise details of internal crossing depend on the detailed portfolio
position and trade data. The question then is if one can model expected turnover reduction—on average,
that is—with some reasonable assumptions.

One observation is that the more correlated the trades are, the more correlated the alphas are, and
the more correlated the trades are, the lower the internal crossing is expected to be. Therefore, while
turnover reduction is not necessarily a simple (e.g., linear) function of alpha correlations, it is clear that
it is somehow related to them, so one can try to model turnover reduction based on alpha correlations,
which are much more tractable than the position and trade data. The key observation in [1] is that, when
the number N of alphas is large—the “Large N Limit”—the turnover reduction is indeed expected to
simplify. In [1] a simple model of turnover reduction was discussed, where one assumes a uniform
pair-wise correlation ρ between different alphas. Then, when the number of alphas is large, the portfolio
turnover has a non-vanishing limit, which is linearly proportional to ρ.

In this note we propose a model of turnover reduction for a general alpha correlation matrix. We
argue that in the large N limit we can model turnover reduction using a spectral decomposition of the
correlation matrix—hence the “Spectral Model”—using its eigenvalues and eigenvectors. In this limit we
have a non-trivial formula for turnover reduction, which is a generalization of [1]. The complementary
factor-model based approach of [23] confirms our result here that turnover goes to a finite limit when N
is large.

To summarize, in this note we give an explicit spectral model of turnover reduction for a general
alpha correlation matrix in the limit where the number of alphas is large. In this regime, this model can
be used in estimating transaction costs, and in the problem of portfolio optimization with costs. The
latter application of our model was implemented in [24,25].

The remainder of this paper is organized as follows. Definitions are in Section 2. Section 3 deals with
positive-definiteness of the covariance (or correlation) matrix. Section 4 discusses our spectral model

2 An illustrative discussion of internal crossing and its benefits can be found in [1], including an explicit example of crossing
trades between mean-reversion and momentum alphas. For a partial list of hedge fund literature, see, e.g., [2–22].
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of turnover reduction and caveats. Our main result is given by Equations (31), (34), (37) and (44). We
briefly conclude in Section 5.

2. Definitions

We have N alphas αi, i = 1, . . . , N . Each alpha is actually a time series αi(ts), s = 0, 1, . . . ,M ,
where t0 is the most recent time. Below αi refers to αi(t0).

Let Cij be the sample covariance matrix of the N time series αi(ts). Let Ψij be the corresponding
correlation matrix, i.e.,

Cij = σi σj Ψij (1)

where Ψii = 1.
To begin with, let us ignore trading costs. Alphas αi are combined with some3 weights wi. The

portfolio Profit and Loss (P & L) is given by

P = I

N∑
i=1

αi wi (2)

where I is the investment level (long plus short).
When linear trading costs are included, P & L is given by

P = I
N∑
i=1

αi wi − L D (3)

where L includes all fixed trading costs (SEC fees, exchange fees, broker-dealer fees, etc.) and linear
slippage. The linear cost assumes no impact, i.e., trading does not affect the stock prices. Also, D = I T

is the dollar amount traded, and T is the turnover. Let τi > 0 be the turnovers corresponding to individual
alphas αi. If we ignore turnover reduction resulting from combining alphas, then

T =
N∑
i=1

Ti ≡
N∑
i=1

τi |wi| (4)

However, turnover reduction can be substantial and needs to be taken into account. To do this, we need to
model turnover when N alphas are combined. The basic idea behind such modeling is discussed in [1],
including the assumption (and its limitations) that internal crossing can be parameterized by correlations.
Here, without repeating the arguments of [1], we will discuss a model of turnover reduction based solely
on the correlation matrix Ψij . As in [1], in this note our calculations are carried out in the framework
where each alpha is traded in its own separate aggregation unit, and matching trades are crossed between
separate aggregation units.

3 For the following discussion it is not important what the actual values of these weights are or how they are computed (e.g.,
via optimization, regression, etc.). We keep them arbitrary subject to the normalization condition

∑N
i=1 |wi| = 1. The

weights wi can be negative (internal crossing).
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3. “Fixing” Covariance Matrix

Generally, the covariance matrix Cij can have the following undesirable properties. First, it can be
(nearly) degenerate. Second, it may not be positive (semi-)definite (see footnote 5).

Let V (a)
i be N right eigenvectors of Cij corresponding to its eigenvalues λ(a), a = 1, . . . , N :

C V (a) = λ(a) V (a) (5)

with no summation over a. Let U be the N ×N matrix of eigenvectors V (a), i.e., the ath column of U is
the vector V (a):

Uij ≡ V
(j)
i (6)

Let Λ be the diagonal matrix of the eigenvalues λ(a):

Λij ≡ δij λ(j) (7)

with no summation over j. Then
C U = U Λ (8)

Note that, because C is symmetric, U can be chosen to be orthonormal: UT U = 1.
Let

w̃ ≡ UT w (9)

Then the volatility R is given by

R = I
√
w̃T Λ w̃ = I

√√√√ N∑
i=1

λ(i) w̃2
i (10)

So, if Cij is not positive semi-definite, i.e., if any of its eigenvalues λ(a) is negative, then the volatility R
is ill-defined. Also, if Cij is (nearly) degenerate, i.e., if any of its eigenvalues λ(a) is zero (or small), then
the corresponding linear combination of alphas given by

N∑
i=1

V
(a)
i αi (11)

has zero (or small) contribution to the volatility R, thereby introducing an instability into the system.
Near degeneracy is caused by alphas that are almost 100% correlated or anti-correlated and can be

cured by simply removing such “redundant” alphas:4 for each kept αi, each αj (j 6= i) is removed so
long as |Ψij| > Ψ∗, where 0 < Ψ∗ < 1 is the upper bound on the modulus of the allowed correlations
(e.g., Ψ∗ = 0.9). In the subsequent sections we will assume that |Ψij| ≤ Ψ∗ < 1.

However, in practice, near degeneracy is usually caused by the fact that M � N . In fact, when
M < N , only M eigenvalues of Cij are non-zero, while the remainder have “small” values, which can

4 The matrix Cij is degenerate if and only if the matrix Ψij is degenerate: det(C) = det(Ψ)
∏N

i=1 σ
2
i .
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be positive or negative. These small values are zeros distorted by computational rounding.5 In such
cases, the solution is not to remove any alphas (as they are not necessarily “redundant”), but to deform
the covariance matrix so it is positive-definite.

A Simple Method

If one is interested in solving just the positive-definiteness problem, there are various ways of doing
this. A simple method that does not require removing any alphas is as follows [26]. Suppose some
eigenvalues λ(a) are negative or zero. Let

Λ̃ ≡ diag
(
λ̃(a)
)

(12)

λ̃(a) ≡ max
(
λ(a), λ∗

)
, a = 1, . . . , N (13)

where one chooses λ∗ > 0. Next, let

Z ≡ diag (zi) (14)

zi ≡
Cii∑N

j=1 U
2
ij λ̃

(j)
(15)

Finally, let

Ũ ≡
√
Z U

√
Λ̃ (16)

C̃ ≡ Ũ ŨT (17)

Note that C̃ij is positive definite, and we have

C̃ii = Cii (18)

I.e., this way we obtain a new positive-definite covariance matrix C̃ij while preserving the diagonal
elements of Cij . Note that, instead of applying this method to the covariance matrix Cij , one may choose
to apply it directly to the correlation matrix Ψij , as this method properly preserves the unit diagonal
elements of Ψij .

5 Actually, this assumes that there are no N/As in any of the alpha time series. If some or all alpha time series contain
N/As in non-uniform manner and the correlation matrix is computed by omitting such pair-wise N/As, then the resulting
correlation matrix may have negative eigenvalues that are not “small” in the sense used above, i.e., they are not zeros
distorted by computational rounding. The deformation method we discuss above can be applied in this case as well.
Non-positive-definiteness of the original (undeformed) correlation matrix typically is not a dominant effect in the first
principal component (see below) and turnover reduction; however, in practice one would typically use a positive-definite
(deformed) correlation matrix and the deformation can have a sizable effect—see Section 7 of [23] for illustrative
empirical examples.
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4. Spectral Model

The first observation is that, as we scale Ti → ζ Ti, we must have T → ζ T , where ζ > 0. Next, let
Ṽ

(p)
i be the eigenvectors of Ψij corresponding to the eigenvalues6 ψ(p), p = 1, . . . , N :

Ψ Ṽ (p) = ψ(p) Ṽ (p) (19)

Let Ũij be the N ×N matrix of eigenvectors Ṽ (p), i.e., the pth column of Ũ is the vector Ṽ (p):

Ũij ≡ Ṽ
(j)
i (20)

Ũ can be chosen to be orthonormal: ŨT Ũ = 1, which fixes the normalization of Ṽ (p). Note that Ṽ (p)

form an orthonormal basis of N -vectors:
N∑
i=1

Ṽ
(p)
i Ṽ

(q)
i = δpq (21)

Let ψ(1) > ψ(2) > . . . (so Ṽ (p) are the principal components of Ψij). Let

T̃ (p) ≡
N∑
i=1

Ṽ
(p)
i Ti (22)

This is the basis in which Ψij is diagonalized:

ŨT Ψ Ũ = diag(ψ(p)) (23)

In this basis, the only relevant building blocks constructed solely from Ti and Ψij are T̃ (p) and ψ(p),
together with scalar invariants of Ψij . Therefore, we have the following spectral model for the turnover:

T = κ
N∑
p=1

ψ(p)
∣∣∣T̃ (p)

∣∣∣ = κ
N∑
p=1

ψ(p)

∣∣∣∣∣
N∑
i=1

Ṽ
(p)
i Ti

∣∣∣∣∣ (24)

where κ is a constant, which must be constructed from a scalar invariant of Ψij . The only suitable scalar
invariant is the trace.7 Then T is given by

T =
1√

Tr(Ψ)

N∑
p=1

ψ(p)

∣∣∣∣∣
N∑
i=1

Ṽ
(p)
i Ti

∣∣∣∣∣ =
1√
N

N∑
p=1

ψ(p)

∣∣∣∣∣
N∑
i=1

Ṽ
(p)
i Ti

∣∣∣∣∣ (25)

6 Here we are assuming that, if need be, the method reviewed in Subsection 3.1 has been applied and all ψ(p) > 0.
Furthermore, the basis of alphas αi is taken (i.e., the signs of αi are chosen) such that

∑N
i,j=1 Ψij ≡ N2ρ′ ≡ N(1 +

(N − 1)ρ) is maximized (ρ is the mean correlation). Thus, consider the case with uniform correlations Ψij = ρ, i 6= j,
studied in [1]. In this case, in the large N limit, the turnover reduction coefficient (see below) ρ∗ = ρ = ρ [1]. However, if
we flip the signs of some alphas αi → −αi (and then we must also flip the signs of the corresponding weights wi → −wi),
which does not change the portfolio turnover, the mean correlation ρ will no longer be equal ρ, hence the aforementioned
choice of the basis for αi. We will discuss this point in more detail and give a precise prescription for fixing this basis
below. For now we will just bear this in mind.

7 Note that det(Ψ) is not suitable because T is not expected to have a peculiar behavior when Ψij is nearly degenerate.
Furthermore, only the trace-based scalar invariant reproduces the special case discussed below. Also, see below why
relative coefficients in (24) do not change the end result.
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The power of Tr(Ψ) and the overall coefficient are fixed as follows. Let all off-diagonal elements of
Ψij be identical: Ψij = ρ (i 6= j). Also, let all Ti be identical. Then, recalling that ψ(1) is the largest
eigenvalue, we have

N∑
i=1

Ṽ
(1)
i Ti =

1√
N

N∑
i=1

Ti (26)

N∑
i=1

Ṽ
(p)
i Ti = 0, p > 1 (27)

ψ(1) = 1 + (N − 1) ρ (28)

ψ(p) = 1− ρ, p > 1 (29)

T =
1 + (N − 1) ρ

N

N∑
i=1

Ti (30)

which reproduces Equation (19) in [1].
The spectral model (25) simplifies in the large N limit. First, we fix the basis of alphas αi as follows.

Under the reflections αi → ηiαi (and, consequently, wi → ηiwi), where |ηi| = 1, we have Ψij →
ηiηjΨij , Ṽ

(p)
i → ηiṼ

(p)
i , while ψ(p) are invariant. Therefore, we can always choose the basis such that

all Ṽ (1)
i ≥ 0. In what follows we always work in this basis. In the large N limit, unless Ti have a highly

skewed distribution, the p > 1 contributions in (25) are suppressed8 as O(1/N). Therefore, in the large
N limit the following simplified model is a good approximation:9

T ≈ ψ
(1)

√
N

N∑
i=1

Ṽ
(1)
i Ti (31)

where ψ(1) is the largest eigenvalue of Ψij , and Ṽ (1) is the corresponding eigenvector (in the basis where
all Ṽ (1)

i ≥ 0) normalized such that
N∑
i=1

(
Ṽ

(1)
i

)2
= 1 (32)

Thus, assuming equal weights wi = 1/N with identical τi = τ , we have

T ≈ ρ∗ τ (33)

where

ρ∗ ≡
ψ(1)

N
√
N

N∑
i=1

Ṽ
(1)
i (34)

For a generic correlation matrix this quantity is constant withN with high t-statistic. For an illustrative10

example see Figure 1. The regression of y over x (without intercept) in Figure 1 has F-statistic over

8 E.g., in the uniform correlation case where Ψij = ρ (i 6= j), we have Ṽ
(1)
i = 1/

√
N , while the rest of the eigenvectors

have zero sums.
9 In this regard, even if we allow nonuniform relative coefficients in the sum over p in Equation (24), in the large N limit

the subleading p > 1 terms are suppressed and we still have (31).
10 We emphasize the adjective “illustrative” for the reason that, because various hedge funds in this data do/did not all trade

the same underlying instruments and also the corresponding time series are not 100% overlapping (some hedge funds are
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1.5 × 105 (upper line with circles) and 5 × 104 (lower line with triangles). This confirms what was
argued in [1], that the turnover reduction based on the correlation matrix goes to a non-vanishing limit
when N is large, i.e., ρ∗ does not vanish in this limit.

0 100 200 300 400 500 600

0
5

0
1

0
0

1
5

0

x

y

Figure 1. x-axis: N ; y-axis: ρ∗ × N . This graph is based on the same Morningstar data
for 1990–2014 for 657 hedge fund returns (HF) as Figure 1 in [1]. The upper line (circles)
corresponds to the correlation matrix of the raw HF. The lower line (triangles) correspond
to the correlation matrix of the residuals (plus the intercepts, which have no effect) of HF
adjusted for RF (whose effect is small) and regressed over Mkt-RF and Fama-French risk
factors SMB, HML, WML. Each correlation matrix is taken in the basis where its eigenvector
corresponding to the largest eigenvalue has all nonnegative elements.

4.1. Caveats

The spectral model (25) is exactly that—a model. Its premise is that T is built solely from building
blocks constructed from Ti and Ψij . It is meant to work in the largeN limit and for generic configurations
of Ti. For example, if all Ti are zero except for T`, 1 ≤ ` ≤ N (i.e., wi = δi`, so T` = τ` and Ti = 0,

dead, some are newer than others, etc.), it would not necessarily be correct to assume that their trades could be crossed.
Therefore, we use this data only to illustrate various properties of the correlation matrix, and not to directly draw any
conclusions about turnover reduction had these alpha streams actually crossed their trades.
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i 6= `), then we expect T = T` as there is no internal crossing. Equation (25) does not have this property.
In fact, one can attempt to construct such T as follows. Let

T =
N∑
p=1

B(p)
∣∣∣T̃ (p)

∣∣∣ =
N∑
p=1

B(p)

∣∣∣∣∣
N∑
i=1

Ṽ
(p)
i Ti

∣∣∣∣∣ (35)

whereB(p) are coefficients to be determined from the requirement that when Ti = δi` τ` we have T = T`:

N∑
p=1

B(p)
∣∣∣Ṽ (p)

i

∣∣∣ = 1, i = 1, . . . , N (36)

This system ofN equations can be solved if the matrixAij ≡
∣∣∣Ṽ (j)

i

∣∣∣ is invertible. However, for a generic

Ψij some of the coefficients B(p) will be negative. In any event, we will not pursue this direction here
as our goal is turnover reduction in the large N limit for generic configurations of Ti, which brings us to
the next “caveat”.

For some Ψij some elements Ṽ
(1)
i in (31) can be small suppressing the contributions of the

corresponding αi. We can remedy this via the following approximation:

T ≈ ρ∗
N∑
i=1

Ti (37)

I.e., in the sum over Ṽ (1)
i Ti in (31), Ti are replaced by their cross-sectional average, and (33) is

reproduced in the case where individual turnovers are uniform.
It might be tempting to replace ρ∗ by

ρ′ ≡ ψ∗
N

(38)

where

ψ∗ ≡
1

N

N∑
i,j=1

Ψij (39)

is the least-squares solution to the approximate “eigenvalue” equation:

Ψ V ≈ ψ∗ V (40)
N∑
i=1

(
N∑
j=1

Ψij −ψ∗

)2

→ min (41)

where the minimization in Equation (41) is w.r.t. ψ∗, and V i ≡ 1/
√
N is the properly normalized

unit vector. However, using ρ′ can lead to underestimating turnover (i.e., overestimating turnover
reduction).11 In the example of Figure 1, for the upper line (circles) we have ρ∗ ≈ 0.282 and ρ′ ≈ 0.252,
and for the lower line (triangles) we have ρ∗ ≈ 0.127 and ρ′ ≈ 0.110.

In fact, there is a more precise relationship between ρ∗ and ρ′. Thus, from

Ψij =
N∑
p=1

Ṽ
(p)
i Ṽ

(p)
j ψ(p) (42)

11 One may wish to use max(ρ∗, ρ
′), their average or some other value between ρ∗ and ρ′.
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we have

ρ′ =
1

N2

N∑
i,j=1

Ψij =
N∑
p=1

[
N∑
i=1

Ṽ
(p)
i

]2
ψ(p) ≈

[
N∑
i=1

Ṽ
(1)
i

]2
ψ(1) (43)

where we have taken into account that in the large N limit the p > 1 terms in the sum are subleading.
Combining (43) and (34), we get

ρ∗ ≈
√
ρ(1) ρ′ (44)

where ρ(1) ≡ ψ(1)/N . Equation (43) makes it evident why in the large N limit choosing the basis where
all Ṽ (1)

i ≥ 0 is equivalent to maximizing ρ′ ≈ ρ (see footnote 6).

4.2. Why Is All This Useful?

In real-life trading, when one combines thousands of not-too-correlated alphas (with some weights)
and trades the so-combined single “unified” alpha on a single trading platform (as opposed to trading
all these alphas on their own individual execution platforms), one gets an automatic bonus: internal
crossing of trades between different alphas, hence turnover reduction, which can be substantial. Why is
this important? Because the weights with which alphas are combined are determined via optimization (or
a similar procedure) and including trading costs (and impact) into this optimization requires modeling
turnover reduction, or else the effect of the costs would be (possibly grossly) overestimated, thereby
resulting in a (possibly substantially) suboptimal alpha weights. Our main Equations (31), (34), (37)
and (44) model turnover reduction via the first principal component and the corresponding eigenvalue
of the alpha correlation matrix, which is general. The model of turnover reduction in [1] is a special
simple case of our model where all pairwise correlations are uniform. This special case is an unrealistic
toy model used in [1] for the purpose of illustrating—via its simplicity—modeling turnover reduction
via correlations and the existence of a nonvanishing limit for the turnover when N goes to infinity (as
opposed to a naive guess that turnover goes to zero in the large N limit). However, the toy model
of [1] is just that—a toy model. It is not designed for practical applications—in real life correlations are
not uniform. In contrast, our spectral model we give in this paper is designed precisely with practical
applications in mind as it is applicable to a general (and realistic) alpha correlation structure. Put
differently, if one uses Equation (20) of [1] in the general case, it is unclear what ρ in that formula
should be. What we have achieved here is that we give a simple explicit formula for this ρ—which we
refer to as ρ∗ here—via (34) in the general (that is, practically interesting) case. Furthermore, we cannot
emphasize enough that our result here—that ρ∗ is expressed via the first principal component and the
corresponding eigenvalue—only holds in the large N limit; higher principal components are suppressed
by powers of 1/N , which are small when N is sufficiently large. At finite N there is no reason for such
contributions to be small. Note that this is irrespective of whether we consider the general case or the toy
model of [1]. In fact, Equation (19) of [1] expressly shows that unless N is large, Equation (20) of [1],
which is a special case of our model, does not hold.

One evident question arising in the context of the spectral model is out-of-sample stability.
Generally, off-diagonal elements of a sample covariance (correlation) matrix are not expected to be
too out-of-sample stable. Consequently, principal components of a correlation matrix inherit this
instability. Nonetheless, the first principal component—which happily is what our spectral model
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uses—generally is the most out-of-sample stable, with higher principal components substantially more
unstable. Prosaically, further mitigating the stability issue is the fact that turnover reduction is
important if alphas have substantial turnover in the first instance, i.e., the holding periods are short and,
consequently, the relevant historical lookbacks are also short. With short lookbacks one recomputes
quantities such as the correlation matrix and its first principal component on correspondingly high
frequencies. In fact, there is yet another way of dealing with the stability issue if one is able to build
a multi-factor risk model for alphas along the lines of [27], whereby instead of the sample correlation
matrix one uses a constructed one, which by its very construction—if such construction is possible in
the first instance, that is—is expected to be substantially more out-of-sample stable. All in all, in real
life one works with what one has got and tries to do one’s best with it, be it modeling turnover reduction,
alpha covariance matrix, etc.

5. Conclusions

The upshot is that—just as in theoretical physics [28]—the large N limit [1] provides a powerful tool
in quantitative finance. In this note we give an explicit spectral model of turnover reduction for a general
alpha correlation matrix in the limit where the number of alphas is large. In this regime, this model can
be used in estimating transaction costs, and in the problem of portfolio optimization with costs [24,25].
Our spectral model is expected to provide a good approximation for a generic distribution of individual
alpha turnovers. In the large N limit, the turnover reduction coefficient based on the spectral model does
not appear to vanish but approaches a finite value. In [23] we further confirm the results of this paper by
using a complementary factor model approach.
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