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Abstract: We examine the relationship between consistent parameter estimation and
model selection for autoregressive panel data models with fixed effects. We find that the
transformation of fixed effects proposed by Lancaster (2002) does not necessarily lead to
consistent estimation of common parameters when some true exogenous regressors are
excluded. We propose a data dependent way to specify the prior of the autoregressive
coefficient and argue for comparing different model specifications before parameter
estimation. Model selection properties of Bayes factors and Bayesian information criterion
(BIC) are investigated. When model uncertainty is substantial, we recommend the use
of Bayesian Model Averaging to obtain point estimators with lower root mean squared
errors (RMSE). We also study the implications of different levels of inclusion probabilities
by simulations.
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1. Introduction

For a panel linear regression model with lags of the dependent variable as regressors (dynamic panel
model) and agent specific fixed effects, the maximum likelihood estimators (MLE) of the common
parameters, whose number does not change with sample size, are inconsistent when the number of
time periods is small and fixed, see Nerlove [1] and Nickell [2]. This problem, known as the “incidental
parameter problem”, has been reviewed by Lancaster [3]. A plethora of studies have been undertaken



Econometrics 2015, 3 495

to obtain consistent estimators for the common parameters in dynamic panel models. Among them
there are two main approaches: one is to use the generalized method of moments (GMM), see the
overview in Hsiao [4]; the other is based on modified profile or integrated likelihood, see e.g., the recent
works by Bester and Hansen [5], Hahn and Kuersteiner [6], Arellano and Bonhomme [7], Dhaene and
Jochmans [8]. Researchers using these two approaches usually presume the moment conditions or the
parametric models are correctly specified and the issue of model selection has relatively attracted less
attention. Correct model specification is very important, without which consistent parameter estimation
can not be achieved. In Andrews and Lu [9], the authors proposed model and moment selection criteria
(MMSC) under GMM context based on J-test statistics to address the issue. However, for dynamic
panel models, GMM will suffer from the weak instrument problem when the coefficient for the lagged
dependent variable is close to 1. Hence MMSC is unlikely to work for such situation.

Lee and Phillips [10] used the bias reducing prior from Arellano and Bonhomme [7] to develop
integrated likelihood information criterion to study lag order selection in dynamic panel models. The
prior in Arellano and Bonhomme [7] is designed to obtain first-order (in the time dimension) unbiased
estimators.1 Lancaster [11] suggested a way to reparameterize the fixed effects to achieve consistent
estimation (not just first-order) in the panel. While Lee and Phillips [10] only considered stationary data
in their application, we show that it is possible for Lancaster’s method to handle non-stationary data.
Different from Lee and Phillips [10], our paper focuses on the selection of exogenous regressors rather
than lag order selection. For the purpose of model comparison, proper priors must be used for parameters
not common to all the models to avoid Bartlett’s paradox when Bayes factors are used (see e.g., [12]).
Dhaene and Jochmans [8] found that the modified profile likelihood with Lancaster’s correction term
can be infinite for infinite parameter support, which implies a prior to ensure the posterior distribution to
be proper should be used in a Bayesian context. We develop a data dependent proper prior to combine
with Lancaster’s reparameterization to calculate Bayes factors and find that model selection based on
Bayes factors is inconsistent only for very extreme situations, such as when the number of time periods
is 2 or when the true value of the lag coefficient is less than −1. On the other hand, model selection
based on Bayesian information criterion (BIC) with the parameters evaluated at the biased MLE can be
inconsistent under more common circumstances. From an empirical point of view, researchers could
often be confronted with a large number of possible regressors and hence many possible models. Model
uncertainty leads to estimation risks especially for small samples since the estimates that we use from
a misspecified model could be far away from the true parameter values and hence misleading. From
our simulations, we find that Bayesian model averaging (BMA) can reduce such risk and produce point
estimators with lower root mean squared errors (RMSE).

The plan of the paper is as follows. Section 2 summarizes the model and the posterior results
with the estimation strategies discussed. Section 3 gives our motivations to compare different model
specifications and shows the conditions under which our estimator will be consistent when the model
is misspecified. Section 4 presents the conditions under which Bayes factors and BIC can be

1 They treat the bias as a result from finite time periods (finite sample bias) and remove the first order bias in the Taylor
expansion.
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consistent in model selection. In Section 5, we carry out simulation studies to verify our claims before
Section 6 concludes.

2. The Model and the Estimation

Here we investigate the first order autoregression linear panel model with a fixed effect, fi,

yi,t = fi + yi,t−1ρ + x′i,tβ + ui,t,

i = 1 . . . N, t = 1 . . . T.
(1)

where ρ is a scalar and xi,t is a k × 1 vector of explanatory variables. Denote ui as (ui,1, ui,2, . . . , ui,T )′,
Xi = (xi,1, xi,2, . . . , xi,T )′ and yi as (yi,1, yi,2, . . . , yi,T )′. We can rewrite Equation (1) into the vector
form below,

yi = fiι+ yi_ρ +Xiβ + ui, (2)

where ι is a T × 1 vector of ones. By repeated substitution, we can obtain

yi_ = fiζ1 + yi,0ζ2 + CXiβ + Cui, (3)

where yi_ = (yi,0, yi,1, . . . , yi,T−1)
′,

ζ1 =


0

1

1 + ρ

· · ·
1 + ρ+ ρ2 + · · ·+ ρT−2

 , ζ2 =


1

ρ

ρ2

· · ·
ρT−1

 , C =


0 0 · · · 0

1 0 · · · 0

ρ 1 · · · 0

· · · · · · · · · · · ·
ρT−2 ρT−3 · · · 1 0


The following are the assumptions we use throughout the paper.

Assumption 1. ui|Xi, fi, yi,0,σ
2, ρ,β ∼ i.i.d.(0,σ2IT ) where IT is an identity matrix with dimension

T ≥ 2.

Assumption 2. (a) {(Xi, fi, yi,0)} is a cross-sectionally independent sequence;

(b) E(|y2i,0|1+δ) < ∞, E(|f 2
i |1+δ) < ∞ and E(|x2i,t,h|1+δ) < ∞, for some δ > 0, all i = 1, 2, . . . , N ,

t = 1, 2, . . . , T and h = 1, 2, . . . , k, where xi,t,h denotes the hth element in xi,t;

(c) k and T are finite;

(d) E
(∑N

i=1X
′
iHXi

N

)
is finite and uniformly positive definite (see [13], p. 22) where H = IT − ιι′

T
;

(e) For any finite values of ρ, the following expression is uniformly positive, i.e., given sufficiently
large N ,

1

N

N∑
i=1

{
E [(yi_ − Cui)′H(yi_ − Cui)]−

E [(yi_ − Cui)′HXi]E

(
N∑
i=1

X ′iHXi

)−1
E

[
N∑
i=1

X ′iH(yi_ − Cui)

]}
> 0.

(4)
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Assumption 1 implies that Xi, fi and yi,0 are strictly exogenous. In comparison to the i.i.d. regularity
conditions in Lancaster [11], Assumption 2 (a)–(d) allow the distribution of Xi, fi and yi,0 to be
heterogeneous for cross sectional units with slightly more rigorous conditions on their moments such
that the asymptotic results in the paper can hold. Assumption 2 (e) is used to simplify the proofs of
Proposition 4 and Lemma 10 in Appendix D. Its purpose is to prevent the (within-group) regression of
(fiζ1 + yi,0ζ2 + CXiβ) on fixed effects and Xi from having perfect fit asymptotically, i.e., R-squared
tends to 1 as N increases and to ensure the true value of ρ to be the local mode of its marginal posterior
(discussed later) asymptotically. When β = 0 (no exogenous regressors in the model), Assumption 2 (e)
rules out fi = 0. When T ≥ 3, if Assumption 2 (e) is satisfied and β 6= 0, as shown in Appendix D
(Equation (53) and its discussion), the following probability limit should also be strictly positive,

plim
N→∞

1

N

 N∑
i=1

β′X ′iC
′MζCXiβ−

N∑
i=1

β′X ′iC
′MζXi

(
N∑
i=1

X ′iMζXi

)−1 N∑
i=1

X ′iMζCXiβ

 > 0, (5)

where Mζ = IT − ζ(ζ ′ζ)−1ζ ′ and ζ = (ζ1, ζ2). In practice, one could calculate the expression after
plim in Equation (5) to check Assumption 2 (e) with ρ and β replaced by their consistent estimates. If
the value of the expression decreases towards 0 with N ,2 there would be concern for Assumption 2 (e).
We would think such case should be very rare with real data.

The MLE of the common parameters, ρ, β and σ2, are not consistent due to the presence of the
incidental parameter fi, whose number will increase with N . For fixed T , it is impossible for the
MLE of fi to be consistent. When the predetermined regressor yi,t−1 is included, the MLE for ρ will
be correlated with that of fi and will also be inconsistent. To obtain the consistent estimators for the
common parameters, Lancaster [11] suggested the following way to reparameterize the fixed effect:

fi = gi exp [−φ (ρ)]− 1

T
ι′Xiβ, (6)

where gi is the new fixed effect, ι is a vector of ones and φ (ρ) is defined as

φ(ρ) =
1

T

T−1∑
t=1

T − t
t

ρt. (7)

We use the following prior for ρ, β and σ2 and g = (g1, g2, ..., gN)′:

p(g,σ2, ρ,β) = p(g1)...p(gN)p(σ2)p(ρ)p(β|σ2) ∝ 1

σ2
I(ρL ≤ ρ ≤ ρU)p(β|σ2,X). (8)

In other words, a flat prior for g and Jeffreys’ prior for σ2 are used. ρ is uniformly distributed over
[ρL, ρU ]. The specifications of ρL and ρU will be discussed in Proposition 4 later. p(β|σ2) takes the form
of g-prior in [14]:

β|σ2,X ∼ N

(
0, σ2(η

N∑
i=1

X ′iHXi)
−1

)
, (9)

2 One could withhold some sample while calculating the expression to see how its value changes with N .
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where X = (X1, X2, . . . , XN). The strength of the prior depends on the value of η. The smaller is η,
the less informative is our prior. As discussed in Section 4, to ensure model selection consistency we
can choose 0 < η(N) = O(Nα) for α < 0. For our simulation studies below, we choose η = 1

NT
. The

posterior results of the model are summarized below.

Proposition 3. The posterior distributions of the parameters in our model will take the following forms:

gi|yi, yi,0,σ2, ρ ∼ i.i.d.N

(
eφ(ρ)

ι′(yi − yi_ρ)

T
,
σ2

T
exp[2φ(ρ)]

)
, (10)

β|σ2, ρ, Y, Y0,X ∼ N


(

N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iH(yi − yi_ρ)

η + 1
,

σ2

(
N∑
i=1

X ′iHXi

)−1
η + 1

 , (11)

σ2|ρ, Y, Y0,X ∼ IG(N(T − 1), aρ2 − 2bρ + c), (12)

p(ρ|Y, Y0,X) ∝ I(ρL < ρ < ρU) exp (Nψ(ρ)) , (13)

where Y0 = (y1,0, y2,0, . . . , yN,0), Y = (y1, y2, . . . , yN) and

ψ(ρ) = φ(ρ)− T − 1

2
ln

(
a

N
ρ2 − 2

b

N
ρ +

c

N

)
, (14)

a =
N∑
i=1

y′i_Hyi_ −
1

η + 1

N∑
i=1

y′i_HXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHyi_, (15)

b =
N∑
i=1

y′i_Hyi −
1

η + 1

N∑
i=1

y′i_HXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHyi, (16)

c =
N∑
i=1

y′iHyi −
1

η + 1

N∑
i=1

y′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHyi. (17)

IG(·) denotes inverted gamma distribution with degrees of freedom N(T − 1) and mean aρ2−2bρ+c
N(T−1)−2 .

Note that a and c in Equations (15) and (17) are close to the sum of squared residuals (SSR) obtained
by respectively regressing yi_ and yi on fixed effects and Xi.3 φ(ρ) in Equation (14) is the term
from Lancaster’s reparameterization, which corrects the marginal posterior local mode of ρ to make
it consistent. Dhaene and Jochmans [8] showed that the modified profile likelihood function with φ(ρ)

can be infinite for ρ → ∞. Analogical to their results, we show that the marginal posterior of ρ will be
infinite and hence improper when ρ→∞ or when T is odd and ρ→ −∞ in Appendix D. Lancaster [11]
noted such behaviour of ρ’s marginal posterior in simulations, but did not discuss much on how to specify
the boundary points. In Proposition 4, we provide a data dependent way to specify ρL and ρU , which
is necessary for model comparison to avoid Bartlett’s paradox. First note that the probability limit of
ψ(ρ) is

ψ(ρ) = plim
N→∞

ψ(ρ) = φ(ρ)− T − 1

2
ln d(ρ), (18)

3 They are SSR when η = 0.
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where

d(ρ) = plim
N→∞

(
a

N
ρ2 − 2

b

N
ρ +

c

N

)
. (19)

Proposition 4. If Xi are the true set of exogenous regressors used to generate yi, under Assumption 1
and 2, asymptotically the marginal posterior of ρ in Equation (13) will have more than one stationary
points satisfying ψ′(ρ) = 0: 3 stationary points when T is odd and 2 when T is even, regardless of
the true value of ρ. The local posterior mode, which is a consistent point estimator, is the stationary
point nearest to the MLE satisfying ψ′′(ρ) < 0 asymptotically, which the other stationary point(s) do not
satisfy. ρU can be specified as the stationary point on the right of the posterior mode. When T is odd,
ρL can be specified as the stationary point on the left of the posterior mode; when T is even, ρL could be
chosen as a function of N such that ρL(N) < 0 is sufficiently small.4

Choosing the boundary points as in Proposition 4 can ensure the marginal posterior of ρ to be proper
and its support to contain the true value of ρ asymptotically. ρL and ρU are different from the boundary
points in the constrained maximization in Dhaene and Jochmans [8], who only considered parameter
estimation. The interval of our boundary points is wider than theirs, since we want to preserve the
bell-shaped part of the posterior density curve for model comparison. Another point to note is that when
the true exogenous regressors are included, the local posterior mode will exist regardless of the true value
of ρ (even if it is 1) due to Assumption 2.2 (e). Next we investigate the consequences when we can not
include the true regressors.

3. Motivations and Methods to Compare Different Model Specifications

In empirical applications, researchers are often faced with many possible regressors suggested by
different economic theories to be included into Equation (1). Different models are defined by the
inclusion of different combinations of the exogenous regressors and by whether or not the lagged
dependent variable is present. Proposition 5 below implies there is no guarantee that the posterior mode
in Equation (13) is a consistent estimator if some true regressors are excluded from the model.

Proposition 5. The posterior mode in Equation (13) is a consistent estimator for ρ if and only if we
have either

h2(β, ρ) = h3(β) = 0, (20)

or
−(T − 1)h2(β, ρ)

h3(β)
= h(ρ) (21)

where

h (ρ) =
T−1∑
t=1

T − t
T

ρt−1 =
d φ(ρ)

d ρ
=

1

T
ι′ζ1 = −trace(C ′H), (22)

4 When T is even, lim
ρ→∞

ψ(ρ) = 0. For model comparison, we need a proper prior for ρ and hence ρL must be finite for

finite N . In practice, we can choose ρL to ensure that [ρL, ρU ] contains a unique posterior mode when the true set of
regressors are included. In the subsequent simulations, we choose ρL = −N when T is even.
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h2(β, ρ) = plim
N→∞

1

N

 N∑
i=1

y′i_HX iβ−
N∑
i=1

y′i_HXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHX iβ

 ,
h3(β) = plim

N→∞

1

N

 N∑
i=1

β′X ′iHX iβ−
N∑
i=1

β′X ′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHX iβ

 .
(23)

Here X represents the regressors in the true model and X denotes the regressors we actually include in
our candidate model, while ρ is the true value of ρ.

The values of h2(β, ρ) and h3(β) depend on how the true regressors and the included regressors
are related, apart from the values of β and ρ. For h2(β, ρ) = h3(β) = 0 to be satisfied, it suffices
that the true regressors X are a subset of X .5 When some true regressors are excluded, the model
will suffer omitted variable bias unless Equation (21) holds. Given Assumption 1 and 2, one example
for Equation (21) to hold could be that all the true regressors are covariance stationary and they have
no serial correlation; the included regressors have zero correlation with the true regressors; moreover,
ζ ′1H lim

N→∞
1
N

∑N
i=1E(fiX i)β = ζ ′2H lim

N→∞
1
N

∑N
i=1E(yi,0X i)β = 0. For this restrictive case, it will be

possible to estimate ρ consistently without any true regressors included.6

To avoid inconsistent estimation due to model misspecification, one could include all the potential
regressors into the model. For finite sample, however, that could inflate the posterior variances for
the coefficients of the true regressors if too many irrelevant regressors are included. The simulation
studies in Section 5 reveal that while including all the regressors does not influence the estimation of
ρ in comparison to other consistent approaches, it leads to substantially high RMSE when estimating
β. Hence appropriate procedures for model selection are desirable. In a Bayesian framework, one can
evaluate different model specifications, denoted by Mi below, by their posterior model probabilities,
which can be calculated as

p (Mj|Y, Y0,Xj) =
p (Mj) p (Y |Y0,Xj,Mj)

p (Y |Y0)

=
p (Mj) p (Y |Y0,Xj,Mj)∑2K+1

i=1 p (Mi) p (Y |Y0,X i,Mi)
,

(24)

where Xj denotes the regressors included under Mj and p (Y |Y0,Xj,Mj) is the marginal likelihood,
obtained by integrating out ρ in Equation (13) or (43) in Appendix C. K is the number of all potential
exogenous regressors. The total number of models is therefore 2K+1. p (Mj) is the prior model
probability of model j. For finite samples, Ley and Steel [15] showed that the choice of prior model
probability will affect the posterior results to a large extent when the number of potential regressors
is large compared to the sample size. In what follows, we focus on the asymptotic behaviour of
posterior model probabilities and assume all the models are equally possible a priori. The posterior
model probability p (Mj|Y, Y0,Xj) will hence only depend on p (Y |Y0,Xj,Mj).

5 Note that h3(β) is the probability limit of 1
N times the SSR obtained by regressing Xiβ on fixed effects and Xi.

6 Due to the assumptions in the example,
−(T−1)h2(β,ρ)

h3(β) =
−(T−1)trace{C′H

∑N
i=1[V ar(Xiβ)+HE(Xiβ)E(Xiβ)′]}

trace{H
∑N

i=1[V ar(Xiβ)+HE(Xiβ)E(Xiβ)
′]} . Since∑N

i=1 V ar(Xiβ)

N is proportional to IT and HE(Xiβ)E(Xiβ)
′ = 0. Hence

−(T−1)h2(β,ρ)

h3(β) = −trace(C ′H) = h(ρ).
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4. Consistency in Model Selection

In this section, we discuss the situations when the posterior model probability of the true model will
tend to 1 asN tends to infinity. We will also analyze whether Bayesian information criterion (BIC) based
on biased MLE is consistent in model selection.

For static panel models when the true value of ρ is zero and the lagged dependent variable is not
included as a regressor, the analysis of Bayes factors is similar to that of Fernandez et al. [16]. In our
context, we can ensure model selection consistency by setting η as a function of N with 0 < η(N) =

O(Nα) for α < 0. As for BIC, it is consistent in model selection for static panel models.
Let us now consider the case when our candidate model (M1) contains yi_ andXi1. M1 is compared to

either M0, which has Xi0 but no yi_, or M2, which has Xi2 and yi_. Xij denotes the exogenous regressors
included under model Mj for j = 0, 1, 2, which satisfy Assumption 2.1 and 2.2. Xi1 can be the same or
different from Xi0, while Xi2 is different from Xi1. The Bayes factors respectively are:

p(Y |Y0,X1,M1)

p(Y |Y0,X0,M0)
=

(
η

η + 1

) k1−k0
2

ρU1∫
ρL1

exp [Nψ(ρ|M1)] dρ

(ρU1 − ρL1)
( c|M0

N

)−N(T−1)
2

, (25)

p(Y |Y0,X1,M1)

p(Y |Y0,X2,M2)
=

ρU2 − ρL2

ρU1 − ρL1

(
η

η + 1

) k1−k2
2

ρU1∫
ρL1

exp [Nψ(upρ|M1)] dρ

ρU2∫
ρL2

exp [Nψ(ρ|M2)] dρ

, (26)

where kj denotes the number of columns in Xij; a|Mj
, b|Mj

and c|Mj
in ψ(ρ|Mj) defined in Equation (14)

are calculated by replacing Xi with Xij in Equations (15) to (17) for j = 0, 1, 2, which multiplied by 1
N

have the following probability limits under Assumption 1 and 2 with η(N) = O(Nα) and α < 0:

plim
N→∞

1

N
a|Mj

= a|Mj
, (27)

plim
N→∞

1

N
b|Mj

= b|Mj
= a|Mj

(ρ + γ|Mj
), (28)

plim
N→∞

1

N
c|Mj

= c|Mj
= ρ2a|Mj

+ 2a|Mj
ργ|Mj

+ h3(β|Mj
|Mj) + (T − 1)σ2, (29)

γ|Mj
=

h2(β|Mj
, ρ|Mj)− σ2h(ρ)

a|Mj

. (30)

γ|Mj
stands for the Nickell MLE bias of ρ under Mj . We can see the MLE bias results from two

sources: the incidental parameter part (σ2h(ρ)) and the model misspecification part (h2(β|Mj
, ρ|Mj)).

Proposition 4 shows that when the model is correctly specified, the local posterior mode is a consistent
estimator for ρ. In the simulation studies in Section 5 we find that when some combination of the
wrong exogenous regressors are included, the marginal posterior density of ρ can be either monotonically
increasing or is U-shaped depending on the value of T and does not have a local maximum. When we
find such a wrong model, we will assign 0 as its posterior model probability and will not estimate the
model. In Proposition 6 and 7 below, we consider the cases when the local maximum exists for ψ(ρ|Mj)
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in Equation (18) and show the sufficient conditions under which the Bayes factors in Equations (25) and
(26) can lead to the selection of the true model asymptotically. Denote ρ∗|Mj

as the local maximum of
ψ(ρ|Mj) in (ρLj , ρUj) with ψ′′(ρ∗|Mj

|Mj) < 0.

Proposition 6. When M1 is the true model, i.e., ρ 6= 0 and Xi1 is the set of true regressors to generate
Y , as N increases, p(Y |Y0,X1,M1)

p(Y |Y0,X0,M0)
in Equation (25) will tend to infinity if the following holds,

φ(ρ) +
T − 1

2
ln

c|M0

(T − 1)σ2
> 0 (31)

When M0 is the true model, i.e., Xi0 is the set of true regressors and ρ = 0, as N increases,
p(Y |Y0,X1,M1)
p(Y |Y0,X0,M0)

in Equation (25) will tend to 0 if either of the following is satisfied:

(a) we have

− φ(ρ∗|M1
) +

T − 1

2
ln
d(ρ∗|M1

|M1)

(T − 1)σ2
> 0; (32)

If Equation (21) is true under M1, Equation (32) will hold.

(b) Equation (20) is true under M1. In this case, the left hand side of Equation (32) is equal to 0.

Proposition 7. When M2 is the true model and M1 is the misspecified model, as N increases,
p(Y |Y0,X1,M1)
p(Y |Y0,X2,M2)

in Equation (26) will tend to 0 if either of the following holds:

(a) we have

φ(ρ)− φ(ρ∗|M1
) +

T − 1

2
ln
d(ρ∗|M1

|M1)

(T − 1)σ2
> 0, (33)

If Equation (21) is true under M1, Equation (33) will hold.

(b) Equation (20) is true under M1. In this case, the left hand side of Equation (33) is equal to 0.

Since both Equations (20) and (21) imply that the local posterior mode in Equation (13) is a consistent
estimator for ρ, from Proposition 6 and 7, we can see that if the posterior mode is consistent under the
misspecified model, the misspecified model will not be chosen by the Bayes factor (model selection will
be consistent). In Appendix D, we show that h(ρ) is positive over R when T is an even number. This
implies φ(ρ) is an increasing function over R. Also note that φ(0) = 0. Hence φ(ρ) < 0 for ρ < 0

and it is possible for Equation (31) to be violated when T is even and ρ is a negative number. As shown
in the last paragraph in Appendix E, though Equation (31) could be violated for the extreme case of
T = 2 and ρ < 0, fortunately, apart from this extreme case, violation of Equation (31) could only occur
when ρ < −1 for T being an even number greater than 2, which may not be relevant for most economic
applications with ρ ∈ [−1, 1].

Note that Equation (32) is the special case of Equation (33) with ρ = 0. When the posterior
mode is not consistent under the misspecified model, it is difficult to state under what circumstances
Equation (33) is or is not satisfied since ρ∗ generally does not have closed form. By construction, ρ∗|M1

is a local minimum for the left of Equation (33). In our simulation studies in Section 5, we calculate
Equation (32) or (33) under different settings when model selection errors based on Bayes factors occur.
We cannot find a single occurrence of either Equation (32) or (33) being violated except the cases when
Equation (20) is true, that is, when the candidate model nests the true model. It appears that the left hand
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sides of Equation (33) could be interpreted as how close the candidate model is to nest the true model.
Note that with real data, it is difficult to check Equation (20), but one can assess whether Equation (33) is
violated by replacing d(ρ|Mj) with

a|Mj
N

ρ2− 2
b|Mj
N

ρ+
c|Mj
N

and supplanting σ2 and ρ by their consistent
estimates e.g., those from the model including all the potential regressors.

Proposition 8 below shows when the BIC based on the biased MLE is consistent in model selection.
BIC for the model with and without the lagged dependent variable is defined respectively below,

BIClag = NT

[
ln

(
c

NT
− b2

a×NT

)
+ ln 2π + 1

]
+ (1 + k +N) ln(NT ), (34)

BICno lag = NT
[
ln

c

NT
+ ln 2π + 1

]
+ (k +N) ln(NT ), (35)

where a, b and c are defined respectively in Equations (15), (16) and (17) with η = 0, and k is the number
of exogenous regressors included. The model with smaller BIC value will be preferred.

Proposition 8. For the comparison of the two models in Equation (25), when M0 is the true model, BIC
will be consistent if the following is satisfied

(T − 1)σ2 − c|M1
+
b2|M1

a|M1

< 0. (36)

However, if Equation (20) is true under M1, the left of Equation (36) will be greater than 0 and BIC
will be inconsistent.

WhenM1 is the true model, BIC will be consistent in model selection if the following condition is met:

c|M0
− c|M1

+
b2|M1

a|M1

> 0. (37)

If Xi0 is the same as Xi1 and the probability limit of ρ̂MLE is equal to 0, the left of Equation (37) will
be 0 and BIC will be inconsistent.

For the comparison of the two models in Equation (26), when M1 is the true model, BIC will be
consistent in model selection if the following holds

c|M2
− c|M1

−
b2|M2

a|M2

+
b2|M1

a|M1

> 0. (38)

Conditions (36), (37) and (38) are just the sufficient but not necessary conditions for BIC to be
consistent in model selection since BIC has a penalty term against over-parameterization (the last term
in Equations (34) and (35)). Note that ρ̂MLE = b

a
and plim

N→∞
ρ̂MLE = ρ + γ from Equations (27) and

(28), where γ is the Nickell bias. The violation of Equations (36) and (37) is related to the hypothesis
test, H0 : ρ = 0. When plim

N→∞
ρ̂MLE = γ (ρ = 0) and Xi1 = Xi0, the probability of making type I errors

based on classical test statistics, such as Wald or likelihood ratio (LR), will be 1 and BIC will choose
M1 asymptotically with the left hand side of Equation (36) being a|M1

γ2|M1 > 0; when plim
N→∞

ρ̂MLE = 0

and Xi1 = Xi0, the probability of making type II errors will be 1 asymptotically and BIC will choose
M0 even if ρ 6= 0 with the left hand side of Equation (37) being a|M1

(ρ + γ|M1)
2 = 0. When incidental

parameters are present, Cox and Reid [17] suggest using the likelihood conditional on the MLE of the
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orthogonalized incidental parameters to construct LR statistics. In practice, if we find ρ̂MLE is close to 0

or the estimated Nickell bias, we should be cautious to use BIC for model selection. For Equation (38), as
shown in Appendix G, if M1 is the true model and Xi2 nests Xi1, the left hand side of Equation (38) will
be less than or equal to 0 asymptotically depending on whether a|M2

is less than or equal to a|M1
. Though

Equation (38) is violated when a|M2
= a|M1

, BIC can still favour M1 since there are more parameters
under M2. However, if a|M2

< a|M1
, which could happen when fi is highly correlated with all the

potential regressors, BIC will choose the wrong model M2 asymptotically, as shown in Section 5.3.
Given the SSR interpretation of a in Equation (15) (with η = 0), the practical implication of this result
is that if BIC chooses the model with all the regressors included, which always has smaller a

N
for finite

sample comparing to other models, we should be cautious with such choice in the application.

5. Simulation Studies

In this section we use Monte Carlo simulation to verify the claims in Proposition 6, 7 and 8 and
investigate the impact of model uncertainty on point estimation. The number of simulations is 1000.
We set T = 4, σ2 = 1, η = 1

NT
, ρL = −N when T is even and the number of possible regressors

to 8. We select 4 regressors out of 8 (K) to generate the dependent variable. The coefficient values
of the chosen regressors are 0.1 0.3, 1 and 2 respectively. We draw independently fi and yi,0 from
U [−4, 4]. For each simulation, we calculate the posterior model probabilities and the BIC of all the
models and evaluate the performances of the two criteria. In Proposition 5, we show that the posterior
mode is not a consistent estimator of ρ when neither Equation (20) nor (21) holds, which is possible
when the regressors have collinearity and serial correlation. We generate the potential regressors to be
covariance stationary and make them serially correlated and correlated with each other. The details of
the data generating process (DGP) can be found in Appendix A. There are three parameters controlling
the properties of the regressors: σ2

X = 5.33 (the variance with the same value as those of fi and yi,0),
s = 0.5 (the autocorrelation coefficient) and λ = 1 (between 0 and 1, the closer to 0, the higher the
correlation among the regressors). The settings are the same for the subsequent simulation exercises
unless otherwise stated. The results of robust checks with other values of σ2

X , s and λ are shown in
Appendix B.

5.1. When Model Selection is Consistent

The model selection performance results for different values of ρ > −1 appear similar and are
available upon request. If some true regressors are excluded, Equation (20) or (21) would be violated
more often under ρ = −1 than when ρ takes other positive values. The results presented in Table 1 are
based on ρ = −1. The “ER” column shows the error rates of Bayes factors7 while the “ERBIC”column
contains those of BIC. ForN = 40, BIC performs better than Bayes factors. As the sample size increases,
the error rates of the two criteria get closer and both decrease, which implies both are consistent in model
selection. Note that the coefficient of one of the exogenous regressors in the true model is equal to 0.1,

7 That is how often the model with the highest posterior model probability is not the true model.
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which is close to 0. Models selected based on Bayes factors often cannot pick up this regressor when
N = 40. The column “nest” indicates how often the model chosen by Bayes factors only omits the
regressor with coefficient 0.1 or is the same as the true model. In other words, the true model nests the
chosen model. Comparing this column to “nestbic”, we can see that the models chosen by Bayes factors
are more often nested inside the true model with the less important regressor excluded than the models
from BIC. Column “ER11” shows the proportions of errors committed when the true model and the
model chosen by Bayes factors both include yi_ but have different exogenous regressors.8 We can see
that all the errors made by Bayes factors and BIC are due to the inclusion of the wrong set of exogenous
regressors rather than omitting yi_. Hence there is no point to check whether or not Equation (31) or
(37) is violated. When the errors of ER11 or ERBIC11 occurred, we checked whether Equation (33)
or (38) was violated. For this and the following simulation exercises, we did not find any violations of
Equation (33). For Equation (38), it is only violated with its left hand side being 0 when the chosen model
(M2) includes all the regressors of the true model (M1). For this case, BIC is still consistent. In other
words, the errors of ER11 or ERBIC11 are fixable with larger sample sizes for both selection criteria.

Table 1. Simulation results when both criteria are consistent in model selection.

N ER ERBIC ER11 ERBIC11 Nest Nestbic
40 0.834 0.762 1 1 0.799 0.704
100 0.543 0.510 1 1 0.829 0.777
200 0.300 0.299 1 1 0.862 0.830
500 0.122 0.110 1 1 0.902 0.907
1000 0.064 0.064 1 1 0.943 0.942

5.2. When Equation (31) is Violated for Bayes Factors

In Section 4, we mentioned that when T is even and ρ is a small negative number, it is possible for
Equation (31) to be violated. Under the settings in Section A, the left hand side of Equation (31) often
has a root of ρ between −7.4 and −7.2 when the true regressors are included.9 If ρ is less than the root,
Equation (31) will be violated. In our next exercise, we set ρ = −7.4 and run the simulations again. The
results are in Table 2. We can see that Bayes factors cannot select the true model for once out of the 1000

simulations for all sample sizes while the error rates of BIC gradually decrease with N . All the Bayes
factors errors are made when the chosen model does not contain yi_ (see “ER10”) and Equation (31)
is violated. Similar problems with Bayes factors arise when T = 2 and −1 < ρ < 0 as explained in
Appendix E. Table 3 shows the simulation results for such situation when ρ = −0.9, σ2 = 100 and the
true model does not have Xi while other settings are the same as before. Bayes factors again show no
signs of model selection consistency almost always due to the violation of Equation (31). The “noreg”

8 In the subsequent discussion, we use ER10 to denote the proportion of errors made when the true model includes yi_
while the chosen model does not, and ER01 for when the true model does not include yi_ while the chosen model does.
Note that either ER10 + ER11 = 1 or ER01 + ER00 = 1. The notations for BIC are defined similarly.

9 Since the correlation among different regressors is random in our simulation, aM0
and the root are also random.
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column shows how often in the errors made by Bayes factors, the chosen model only includes the fixed
effects with no other regressors. As sample size increases, Bayes factors tend to make more such errors
which BIC never commits.

Table 2. Simulation results when Equation (31) is violated with ρ = −7.4.

N ER ERBIC ER10 no(31) ER10BIC Nest Nestbic
40 1 0.787 1 1 0 0 0.688
100 1 0.552 1 1 0 0 0.756
200 1 0.300 1 1 0 0 0.832
500 1 0.139 1 1 0 0 0.886
1000 1 0.064 1 1 0 0 0.941

Table 3. Simulation results when Equation (31) is violated with ρ = −0.9, T = 2, σ2 = 100

and no Xi in the true model.

N ER ERBIC ER10 no(31) ERBIC10 Noreg Noregbic
40 0.910 0.696 0.936 0.998 0 0.621 0
100 0.873 0.559 0.956 1 0 0.751 0
200 0.854 0.440 0.977 1 0 0.833 0
500 0.858 0.360 0.986 1 0 0.893 0
1000 0.896 0.273 0.991 1 0 0.921 0

5.3. When Equations (36), (37) or (38) is Violated for BIC

Bayes factors perform poorly in model selection when Equation (31) is violated, which takes place
under rather extreme situations. Next we show that BIC can perform poorly under more common
circumstances, which are more possible for economic applications. As discussed in Proposition 8, if
ρ = 0, BIC could asymptotically choose the model with the true exogenous regressor(s) and yi_ over the
true model. For the next simulation exercise, we change ρ to 0. The results are shown in Table 4. Bayes
factors now have smaller error rates while BIC cannot identify the true model. As expected, BIC always
chooses the models with yi_ (see “ER01BIC”), while the proportion of errors violating Equation (36),
gets higher for bigger sample sizes. Column “cnestbic” shows how often the chosen model by BIC nests
the true model when the errors of ER01BIC occur. The values in this column are just slightly smaller
than those in “no(36)”, which indicates a high proportion of the violation of Equation (36) happens when
the chosen model nests the true model.

Another situation of poor BIC performance is when Equation (37) is close to violation. In
Proposition 8, we mentioned that if plim

N→∞
ρ̂MLE = 0 under the true model, a candidate model with the

same exogenous regressors as those of the true model will violate Equation (37). In our next experiment,
we do not include any exogenous regressors into the true model and set ρ = 0.0756 to make ρ̂MLE close
to 0. If the candidate model (M0) only has fixed effects, the left hand side of Equation (37) is close
to but slightly above 0. The simulation results are given in Table 5. We can see that BIC error rates
gradually increase to near 1 with the sample size. Column “noregbic” indicates the proportion of BIC
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errors committed when the chosen model only includes fixed effects. Note that the values in this column
are the same as those in “ER10BIC”, which also get closer to 1 with sample size. Clearly, the poor
performance of BIC in this scenario should be related to Equation (37).

Table 4. Simulation results when Equation (36) is violated with ρ = 0 and T = 4.

N ER ERBIC ER01 ER01BIC no(36) Cnestbic Nest Nestbic
40 0.844 1 0 1 0.243 0.230 0.777 0
100 0.572 1 0 1 0.524 0.511 0.823 0
200 0.290 1 0 1 0.777 0.760 0.864 0
500 0.104 1 0 1 0.941 0.925 0.924 0
1000 0.042 1 0 1 0.996 0.985 0.965 0

Table 5. Simulation results when Equation (37) is violated with ρ = 0.0756 and no
exogenous regressors are included in the true model.

N ER ERBIC ER10 no(37) ER10BIC Noreg Noregbic
40 0.952 0.968 0.973 0 0.876 0.660 0.876
100 0.808 0.971 0.943 0 0.947 0.762 0.947
200 0.540 0.976 0.887 0 0.968 0.720 0.968
500 0.132 0.985 0.311 0 0.981 0.303 0.981
1000 0.056 0.991 0 0 0.990 0 0.990

Finally we show a case when Equation (38) is violated. Note that the left hand side of Equation (38)
asymptotically depends on a|M1

(calculated under the true model) and a|M2
(calculated under the wrong

candidate model). If a|M1
> a|M2

, BIC will be inconsistent, which could happen when M2 nests M1

and fi is highly correlated with all the potential exogenous regressors. In our next exercise, we set
T = 3, ρ = −1 and generate yi,0 and f ∗i from U [−1, 1]. When we generate x̃i,t in Equation (40), we
set s = −0.9. fi is generated as fi = f ∗i + 10 1

TK

∑T
t=1

∑K
h=1 xi,t,h. In the true model, no exogenous

regressors are included, which implies any candidate model including yi_ nests or is the same as the true
model. The results in Table 6 show that BIC is not consistent with increasing error rates as the sample
size gets larger than 200 and all the errors are of type ERBIC11. For all the errors made by BIC, we
have found that Equation (38) is violated with a|M1

> a|M2
. For a few cases, a|M1

is very close to a|M2
.

The column with the heading
a|M2

a|M1

< 0.999 in Table 6 indicates the percentage of the errors when a|M2

is smaller than a|M1
by more than 0.1% of its value. We can see that the majority of the errors happen

when a|M2
is smaller by more than a tiny fraction of a|M1

. The column headed with E
(
a|M2

a|M1

)
shows the

sample average of
a|M2

a|M1

from all the errors, which gets smaller with the sample size. This implies BIC
tends to choose the model with lower a in comparison to the true model with larger sample sizes. Note
that the simulation results are sensitive to the parameter settings. If we change T to 4 while keeping
other settings the same, among the BIC errors, a|M2

will be virtually the same as a|M1
and BIC will show

decreasing error rates, which, though, are higher than those of Bayes factors for different sample sizes.
In this case, we need to change ρ and s to make BIC inconsistent. The results are available upon request.
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Table 6. Simulation results when Equation (38) is violated.

N ER ERBIC ER11 ERBIC11
a|M2
a|M1

< 0.999 E
(
a|M2
a|M1

)
40 0.209 0.439 1 1 0.968 0.878
100 0.119 0.352 1 1 0.977 0.866
200 0.072 0.336 1 1 0.973 0.858
500 0.050 0.406 1 1 0.990 0.811
1000 0.039 0.600 1 1 0.993 0.782

To sum up, it is possible for Equation (36), (37) or (38) to be violated and BIC can be inconsistent in
model selection under more common circumstances than Bayes factors.

5.4. Point Estimation

Judging from the previous simulation results, we can see that if we simply select the model with the
highest posterior model probability to provide the estimates of our interest, the chances will be high that
the model selected is not the true model especially when N is small regardless of which criterion we use.
Next we investigate how model uncertainty impacts on point estimation. We set ρ = 1 and the number of
simulations equal to 2000. We then evaluate the performances of different consistent point estimators.10

Table 7 shows the root mean squared errors (RMSE) with the cross section sample size (N ) equal to
40. The true values of ρ and β are shown under the column “True”. There are 8 potential regressors,
4 of which are not included in the true model and hence have coefficients equal to 0. The column
“Top” shows the RMSE resulting from the posterior mode of the model with the highest posterior model
probability, the column “All” shows the results from the model which include all the potential regressors,
while the values in the column “BMA” are from the posterior mode average of different models with
the weights equal to the posterior model probabilities. To evaluate the significance of a regressor in the
Bayesian context, we can calculate the sum of the posterior model probabilities of all the models which
include the regressor. The RMSE in the columns headed with percentage numbers are calculated based
on certain inclusion probability criterion. If the inclusion probability for a regressor is lower than the
percentage number of the column, we will simply use zero as its point estimate. Otherwise, we will use
the BMA estimate. From Table 7, we can see that the model including all the potential regressors has
much higher RMSE for all the parameters except ρ than other methods. BMA has smaller RMSE for
almost all the parameters than the top model criterion11 and it tends to have lower RMSE than inclusion
probability criteria for parameters different from 0 while larger RMSE for parameters equal to 0. Higher
inclusion probability tends to give smaller RMSE when the true value of the parameter is 0 while higher
RMSE for non-zero parameters. The last row of Table 7 shows the sum of RMSE in each column, which

10 The absolute value of Nickell bias under ρ = 1 is bigger than when ρ = −1. None of the conditions for model selection
consistency are found to be violated.

11 We have also obtained the results of finite sample biases of different point estimators (available upon request), which show
that the top model point estimators are generally less biased than other criteria and hence the higher top model RMSE
should be due to larger estimator variances.



Econometrics 2015, 3 509

is a measure of the overall performances of different criteria. We can see that BMA and various inclusion
probability criteria are all better than those of the top model and the all-inclusive model. The sum of
RMSE is the smallest when we set the inclusion probability to 50%.

Table 7. root mean squared errors (RMSE) of point estimators when N = 40.

True Top BMA All 30% 40% 50% 60% 70% 80%
ρ 1 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

β

0.1 0.110 0.090 4.954 0.096 0.099 0.101 0.102 0.103 0.103
0.3 0.126 0.114 4.263 0.117 0.121 0.128 0.138 0.151 0.167
0 0.072 0.066 3.567 0.062 0.060 0.058 0.056 0.049 0.046
0 0.071 0.057 5.219 0.054 0.052 0.049 0.045 0.042 0.036
0 0.051 0.044 2.254 0.039 0.036 0.030 0.027 0.023 0.019
1 0.119 0.104 6.033 0.105 0.105 0.106 0.111 0.114 0.121
0 0.057 0.053 3.777 0.049 0.047 0.041 0.038 0.033 0.025
2 0.118 0.108 6.573 0.108 0.108 0.113 0.113 0.120 0.128

Sum 0.739 0.652 36.656 0.647 0.643 0.643 0.646 0.653 0.661

To add more insights into inclusion probabilities, we present the error rates of in/excluding the
wrong/right regressor based on different inclusion probability criteria in Table 8 and compare to those
from the top model. Similar to the findings of RMSE, higher inclusion probabilities tend to give larger
error rates for non-zero parameters while smaller error rates for the zero parameters. The last row shows
the average error rates of different columns, of which the highest value appears when the 10% criterion
is used and the majority of the errors are from the zero parameters. Note that for a particular regressor,
the prior inclusion probability is 50% in our setting. If the posterior inclusion probability is no less than
50%, it implies the data confirm or strengthen the prior. The top model criterion has smaller average
error rate than almost all the inclusion probability criteria except 40% and 50%.

Table 8. The error rates of excluding or including a regressor based on different criteria
when N = 40.

True Top 10% 20% 30% 40% 50% 60% 70% 80%
ρ 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β

0.1 0.826 0.181 0.526 0.682 0.789 0.856 0.894 0.927 0.955
0.3 0.119 0.004 0.019 0.046 0.070 0.110 0.150 0.205 0.270
0 0.053 0.647 0.209 0.105 0.060 0.042 0.026 0.016 0.011
0 0.052 0.638 0.217 0.114 0.073 0.042 0.023 0.013 0.008
0 0.048 0.654 0.226 0.103 0.064 0.032 0.019 0.011 0.006
1 0.003 0.000 0.001 0.001 0.001 0.002 0.003 0.004 0.006
0 0.043 0.633 0.204 0.107 0.064 0.037 0.023 0.012 0.005
2 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002

Avg. 0.127 0.307 0.156 0.129 0.125 0.124 0.127 0.132 0.140
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Table 9 presents the results of RMSE sums and average error rates under different sample sizes. BMA
has smaller RMSE than the top model estimators for all sizes, while the top model average error rate is
in general close to the minimum of various inclusion probability criteria. The minimums of RMSE sums
are usually attained when the inclusion probability is above or equal to 50%, while the minimum average
error rates appear at around 50%. Therefore, under our simulation settings, for point estimation, it seems
sensible to use 50% inclusion probability to decide whether or not a regressor should be included.

Table 9. Sum of RMSE and averages of error rates.

Sum of RMSE Average Error Rates
N 40 100 200 500 1000 40 100 200 500 1000
Top 0.739 0.535 0.299 0.189 0.107 0.127 0.083 0.046 0.015 0.005
BMA 0.652 0.459 0.288 0.171 0.101 N.A. N.A. N.A. N.A. N.A.
10% 0.653 0.460 0.287 0.171 0.100 0.307 0.178 0.116 0.062 0.029
20% 0.653 0.460 0.286 0.170 0.099 0.156 0.102 0.063 0.030 0.012
30% 0.647 0.461 0.284 0.169 0.098 0.129 0.085 0.049 0.021 0.008
40% 0.643 0.461 0.285 0.169 0.097 0.125 0.081 0.046 0.017 0.006
50% 0.643 0.429 0.284 0.168 0.096 0.124 0.082 0.048 0.015 0.005
60% 0.646 0.437 0.278 0.169 0.096 0.127 0.087 0.051 0.015 0.004
70% 0.653 0.447 0.279 0.170 0.098 0.132 0.092 0.056 0.017 0.005
80% 0.661 0.437 0.279 0.161 0.100 0.140 0.099 0.063 0.021 0.007
90% 0.685 0.439 0.305 0.171 0.102 0.153 0.111 0.077 0.028 0.008

6. Conclusions

In this paper, we investigated consistent parameter estimation and model selection for the linear
dynamic panel model. We use the fixed effect reparameterization proposed by Lancaster [11] combined
with our data dependent prior for estimation and calculate Bayes factors to compare different model
specifications. We recommend model selection should precede parameter estimation, since Lancaster’s
fixed effect transformation may not necessarily lead to consistent estimation when some true exogenous
regressors are excluded. We have given the conditions under which Bayes factors or BIC can lead
to consistency in model selection and have shown that Bayes factors could be inconsistent in model
selection when the number of time periods is 2, or when the true autoregressive coefficient is less than
−1. Such situations could be rare for most economic applications. BIC based on the biased MLE can
be inconsistent when the fixed effects are highly correlated with all the potential exogenous regressors
or when the true autoregressive coefficient is 0 or its MLE is close to 0, which are more likely to happen
in reality.

When model uncertainty is substantial, e.g. with small sample sizes, we argue for the use of Bayesian
model averaging, which can produce point estimators with smaller RMSE than the model with the
highest posterior model probability in our simulation exercises. Inclusion probability criteria can be
helpful to reduce estimation risk and for deciding which regressor(s) should be chosen. We recommend
using 50% (the prior inclusion probability) to decide the inclusion of a regressor, which usually produces
the smallest RMSE and average error rates in our simulation exercises. It can be promising for future
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research to extend Lancaster’s reparameterization to account for higher order AR models and to consider
lag order selection along with regressor selection.
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Appendix

A. The DGP of Exogenous Regressors

We first draw x∗i,t
K×1

from i.i.d.N(0,σ2
XIK) and then generate x̃i,t as follows

x̃i,t = s x̃i,t−1 +
√

1− s2x∗i,t, (39)

with x̃i,0 = x∗i,0. s is the first order autocorrelation. Denote X̃i = (x̃i,1, . . . , x̃i,T )′, X̃i,j and Xi,h to be the
jth and hth column of X̃i and Xi respectively, where

Xi,h =
K∑
j=1

qh,jX̃i,j j = 1, 2, . . . , K. (40)

Define z
K×1

= ( 1√
K
, . . . , 1√

K
)′. qh = (qh,1, . . . , qh,K)′ is drawn from angular central Gaussian

distribution (ACG) with q′hqh = 1 and parameter zz′ + λ(I − zz′) (see [18]). qh can be viewed as
an orientation (direction) in RK . If λ = 1, qh will be uniformly distributed; if λ is closer to 0, qh will
be closer to the orientation of z, i.e., the regressors generated thereby will have higher correlation.12

Note that under our data generating design, any element in Xi will have mean 0 and variance σ2
X . The

correlation coefficient of any two elements in Xi is the same across i and can be calculated as

corr
(
Xi,t,h, Xi,t̃,h̃

)
= s|t−t̃|

K∑
j=1

qh,jqh̃,j t = 1, 2, . . . , T h = 1, 2, . . . , K. (41)

12 When λ = 1(0.01), by simulation, we find that the 2.5%th, 50%th and 97.5%th quantile of |q′hz| respectively are around
0.012(0.12), 0.26(0.94) and 0.73(0.99).
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B. Properties of the Exogenous Regressors in the Simulation

Here we will do some robustness checks of our simulation results under different settings. Apart
from the conditions in Proposition 6 to 8, model selection performance of Bayes factors and BIC is also
sensitive to the properties of Xi for different values of σ2

X , s and λ. We first reduce σ2
X to 1.33 to obtain

the results in Table 10. The error rates of the two criteria are all higher for different sample sizes than
those in Table 1 while the nest rates are all lower. Similar model selection deterioration could also occur
with inflated error variances (σ2). Hence model selection performance is affected by the relative strength
of the signal compared to the noise, which is determined by their variances.

Next we show that the levels of serial correlation and collinearity in the regressors also affect model
selection performance. Recall from Section A that s is the first order autocorrelation and λ controls the
level of collinearity. To have the regressors with no collinearity, we can set qh to be the hth column
of an identity matrix of dimension K. We set ρ = 1 and N = 200. The error rates under different
levels of serial correlation and collinearity are shown in Table 11. We can see that cross regressor
correlation and positive serial correlation are harmful for model selection. If different regressors are
orthogonal to each other, Bayes factors and BIC will have lower error rates than when collinearity is
present, while the highest error rates appear when s is 0.9 under different levels of collinearity. One
intriguing phenomenon is that negative serial correlation seems to enhance model selection performance
for most cases in comparison to positive or no serial correlation.

Table 10. Simulation results when ρ = −1 and σ2
X = 1.33.

N ER ERBIC ER11 ERBIC11 Nest Nestbic
40 0.962 0.958 1 1 0.501 0.497
100 0.886 0.872 1 1 0.736 0.716
200 0.767 0.747 1 1 0.827 0.812
500 0.500 0.470 1 1 0.869 0.856
1000 0.221 0.217 1 1 0.910 0.896

Table 11. Error rates under different levels of serial correlation and collinearity for ρ = 1

and N = 200.

Bayes Factors BIC
λs –0.9 –0.5 0 0.5 0.9 –0.9 –0.5 0 0.5 0.9
orthogonal 0.045 0.039 0.061 0.085 0.569 0.098 0.081 0.089 0.127 0.543
λ = 1 0.135 0.154 0.174 0.276 0.779 0.148 0.178 0.186 0.278 0.762
λ = 0.01 0.638 0.661 0.696 0.803 0.972 0.600 0.627 0.678 0.794 0.966
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C. Proof of Proposition 3 and Proposition 5

Here we use a different way of derivation from Lancaster [11]. In brief, we attempt to find a correction
function attached to the marginal posterior density of ρ such that the mode of the marginal posterior is a
consistent estimator for ρ. We first reparameterize the fixed effect as

fi = gir(ρ)− 1

T
ι′Xiβ (42)

where r(ρ) is a function of ρ, which we will find out later. The derivation of the conditional posterior
distribution p(gi,β,σ2|ρ, Y, Y0) follows standard Bayesian techniques, see e.g., [19] Chapter 10. The
details are available upon request. Here we just show the results after gi, β and σ2 are integrated out.

p(ρ|Y, Y0)p(Y |Y0) =Γ

[
N(T − 1)

2

]
T−

N
2 (2π)−

N(T−1)
2

I(ρL < ρ < ρU)

ρU − ρL

(
η

η + 1

) k
2

,

N−
N(T−1)

2

(
a

N
ρ2 − 2

b

N
ρ +

c

N

)−N(T−1)
2

r−N(ρ).

(43)

Taking log and differentiating both sides with respect to ρ produces

d ln p(ρ|Y, Y0)
d ρ

= −N(T − 1)(aρ− b)
aρ2 − 2bρ + c

−N d ln r(ρ)

dρ
.

By setting the above equal to 0, we can obtain

d ln r(ρ)

dρ
= −

(T − 1)( a
N
ρ− b

N
)

a
N
ρ2 − 2 b

N
ρ + c

N

.

Suppose for now we have included the true regressors in our model. Taking probability limit of the
right hand side by using Equations (27), (28) and (29) and evaluating both sides at ρ gives

d ln r(ρ)

dρ
= −h(ρ). (44)

Solving the above differential equation, we will have13

r(ρ) = exp [−φ(ρ)] , (45)

where φ(ρ) is given in Equation (7). By replacing r(ρ) with exp [−φ(ρ)] in Equation (43) and dropping
the terms not involving ρ, we will have the result in Equation (13).

When some true regressors are excluded from the model, the differential Equation (44) now becomes

d ln r(ρ)

dρ
=

(T − 1)
[
h2(β, ρ)− σ2h(ρ)

]
h3(β) + (T − 1)σ2

dρ (46)

13 Strictly speaking, the right hand side should be multiplied by an arbitrary constant not involving ρ.
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If the solution in Equation (45) is still valid, we should have

−(T − 1)h2(β, ρ) + (T − 1)σ2h(ρ)

h3(β) + (T − 1)σ2
= h(ρ).

So unless we have either −(T−1)h2(β,ρ)
h3(β)

= h(ρ) or h2(β, ρ) = h3(β) = 0, Equation (45) will not be
a solution for Equation (46). In other words, the reparameterization of the fixed effect in Equation (6)
cannot lead to consistent estimation of ρ.

D. Proof of Proposition 4

To prove the claims in Proposition 4, we first need to prove Lemma 9 and Lemma 10.

Lemma 9. For T ≥ 3, when T is odd, the polynomial h(ρ) is strictly increasing over (−∞,∞) and has
only one real root in [−2,−1); when T is even, the polynomial h(ρ) is greater than 0 with no real roots
and is strictly decreasing for ρ < −1 and strictly increasing for ρ > −1 with −1 as the minimum point.

Proof. When T = 3, we have h(ρ) = 1
3
(ρ+2); when T = 4, we have h(ρ) = 1

4
(ρ2+2ρ+3). These two

cases obviously satisfy the claims in Lemma 9. For T > 4, note that h′(ρ) = d h(ρ)
d ρ

=
T−2∑
t=1

t(T−t−1)
T

ρt−1 =

(T−2)ρT−TρT−1+Tρ−(T−2)
T (ρ−1)3 and the Sturm sequence of Th′(ρ)(ρ− 1)3 is

{
Th′(ρ)(ρ− 1) =

T−2∑
t=0

(2t− T + 2)ρt,

1

(ρ− 1)2
d h′(ρ)(ρ− 1)3

d ρ
=

T−2∑
t=1

tρt−1,
T−3∑
t=1

(T − t− 2)ρt−1,−(T − 2)2
}
.

(47)

Table 12 shows the signs of the Sturm sequence for ρ = ±∞ and T being even. We can see that
the difference between the number of sign changes when ρ changes from −∞ to ∞ is 2. By Sturm’s
theorem, this implies there are two real roots for Th′(ρ)(ρ− 1)3 = 0 in (−∞,∞). Clearly, ρ = 1 is one
real root. In other words, h′(ρ) has only one real root in (−∞,∞), which is ρ = −1, and h′(ρ) > 0 for
ρ > −1, h′(ρ) < 0 for ρ < −1. Therefore h(ρ) is strictly decreasing for ρ < −1 and strictly increasing
for ρ > −1 with ρ = −1 as the minimum point. Similarly, checking the difference between the number
of sign changes in Table 13, we can find that h′(ρ) has no real roots and h′(ρ) > 0. Hence h(ρ) is strictly
increasing over the real line when T is odd.

Table 12. Sturm sequence of Th′(ρ)(ρ− 1)3 when T is even and greater than 4.

ρ h′(ρ)
∑T−2

t=0 (2t− T + 2)ρt
∑T−2

t=1 tρ
t−1

∑T−3
t=1 (T − t− 2)ρt−1 −(T − 2)2

−∞ − + − + −
∞ + + + + −



Econometrics 2015, 3 515

Table 13. Sturm sequence of Th′(ρ)(ρ− 1)3 when T is odd and greater than 4.

ρ h′(ρ)
∑T−2

t=0 (2t− T + 2)ρt
∑T−2

t=1 tρ
t−1

∑T−3
t=1 (T − t− 2)ρt−1 −(T − 2)2

−∞ + − + − −
∞ + + + + −

We can write h(ρ) = ρT−Tρ+T−1
T (ρ−1)2 and the Sturm sequence of Th(ρ)(ρ− 1)2 is{

Th(ρ)(ρ− 1) =
T−2∑
t=1

ρt − (T − 1),
1

(ρ− 1)

d h(ρ)(ρ− 1)2

d ρ
=

T−2∑
t=0

ρt, T − 1

}
. (48)

From Table 14, we can see that h(ρ) does not have real roots and hence it is greater than 0 when
T is an even number. Table 15 shows h(ρ) has only one real root when T is odd. Since h(−2) =
(−2)T+3T−1

9T
≤ 0, h(−1) = T−1

2T
> 0 and h(ρ) is strictly increasing when T is an odd number no less than

3, the real root of h(ρ) = 0 must lie in between −2 and −1.

Table 14. Sturm sequence of Th(ρ)(ρ− 1)2 when T is even and greater than or equal to 3.

ρ h(ρ)
∑T−1

t=1 ρt − T + 1
∑T−2

t=0 ρt T − 1

−∞ + − + +

∞ + + + +

Table 15. Sturm sequence of Th(ρ)(ρ− 1)2 when T is odd and greater than or equal to 3.

ρ h(ρ)
∑T−1

t=1 ρt − T + 1
∑T−2

t=0 ρt T − 1

−∞ − + − +

∞ + + + +

Additionally, we need the following lemma to show that the true value of ρ is a local posterior
mode asymptotically.

Lemma 10. Under Assumption 1 and 2, we have plim
N→∞

a
N

= a > σ2trace(C ′HC), where ρ is evaluated

at its true value (ρ) in C. Also, we have trace(C ′HC) ≥ 2h2(ρ)

T−1 , where the equal sign holds only for

T = 2, and trace(C ′HC) ≥ 2h2(ρ)

T−1 + h′(ρ), where the equal sign holds for T = 2 or ρ = 1. In other
words, the following are true:

a >
2σ2h2(ρ)

T − 1
, (49)

a >
2σ2h2(ρ)

T − 1
+ h′(ρ)σ2. (50)
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Proof. Substituting Equation (3) into the right of Equation (15) gives

a =
N∑
i=1

(fiζ1 + yi,0ζ2 + CXiβ + Cui)
′H(fiζ1 + yi,0ζ2 + CXiβ + Cui)

−

N∑
i=1

[(fiζ1 + yi,0ζ2 + CXiβ + Cui)
′HXi]

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

[X ′iH(fiζ1 + yi,0ζ2 + CXiβ + Cui)]

η + 1
.

(51)

Since we assume E(ui|Xi, fi, yi,0) = 0 and set η = O(Nα) with α < 0, a
N

is asymptotically
equivalent to ã

N
, where ã is defined as

ã =
N∑
i=1

u′iC
′HCui +

N∑
i=1

(fiζ1 + yi,0ζ2 + CXiβ)′H(fiζ1 + yi,0ζ2 + CXiβ)

−
N∑
i=1

[(fiζ1 + yi,0ζ2 + CXiβ)′HXi]

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

[X ′iH(fiζ1 + yi,0ζ2 + CXiβ)] ,

=
N∑
i=1

u′iC
′HCui +

N∑
i=1

(y_ − Cui)′H(y_ − Cui)

−
N∑
i=1

[(y_ − Cui)′HXi]

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

[X ′iH(y_ − Cui)] .

(52)

Note that 1
N

(
ã−

N∑
i=1

u′iC
′HCui

)
is non-negative since it is equal to 1

N
multiplied by the SSR

obtained by regressing fiζ1 + yi,0ζ2 + CXiβ on fixed effects and Xi, i.e.,

fiζ1 + yi,0ζ2 + CXiβ = qiι+Xiϑ+ εi, (53)

where qi denotes the fixed effect scalar and εi = (εi1, εi2, . . . , εiT )′ is the error term in the regression.
Assumption 2 (e) rules out plim

N→∞

∑N
i=1 ε

′
iεi

N
= 0. Note that (1−ρ)ζ1+ζ2 = ι. When T ≥ 3, pre-multiplying

both sides of Equation (53) by Mζ yields

MζCXiβ = MζXiϑ+Mζεi. (54)

Therefore one can use Equation (5) to check Assumption 2 (e), which ensures the SSR
N

from
Equation (53) to be strictly positive asymptotically and

a > plim
N→∞

1

N

N∑
i=1

u′iC
′HCui = σ2trace(C ′HC). (55)

Hence Equation (49) is strict if trace(C ′HC) ≥ 2h2(ρ)

T−1 . Similarly, to prove Equation (50), one needs

to show trace(C ′HC) ≥ 2h2(ρ)

T−1 + h′(ρ). The proof of these two inequalities can be found in the proof
of Lemma 3 in Dhaene and Jochmans [8], by noting V LB

0 = trace(C′HC)
T−1 , b0 = − h(ρ)

T−1 and c0 = −h′(ρ)
T−1 ,

where V LB
0 , b0 and c0 are the notations used in their paper.
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From Equation (14), we can see that ψ(ρ) = φ(ρ)− l(ρ) and l(ρ) = T−1
2

ln( a
N
ρ2 − 2 b

N
ρ + c

N
). The

posterior mode is found by checking the intersection points of h(ρ), i.e., d φ(ρ)
d ρ

and l′(ρ), which is

l′(ρ) =
(T − 1)( a

N
ρ− b

N
)

a
N
ρ2 − 2 b

N
ρ + c

N

. (56)

Assuming that the true exogenous regressors are included such that h2(β, ρ) = h3(β) = 0 and using
Equation (27) to (30), we can find that the probability limit of l′(ρ), denoted as l′(ρ), is

l′(ρ) = plim
N→∞

l′(ρ) =
(T − 1)(ρ− ρ− γ)

(ρ− ρ− γ)2 + σ2

a2

[
a(T − 1)− σ2h2(ρ)

] . (57)

From Equation (49) in Lemma 10, we know that σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
>

σ4h2(ρ)

a2
≥ 0. Hence the

denominator in Equation (57) is positive and l′(ρ) ≥ (<)0 for ρ ≥ (<)ρ + γ. Moreover,

l′′(ρ) = plim
N→∞

l′′(ρ) = −(T − 1)
(ρ− ρ− γ)2 − σ2

a2

[
a(T − 1)− σ2h2(ρ)

](
(ρ− ρ− γ)2 + σ2

a2

[
a(T − 1)− σ2h2(ρ)

])2 . (58)

The denominator above is positive. The polynomial in the numerator has two roots: ρ +

γ ±
√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
. Using Equation (49) in Lemma 10 again, we have ρ + γ +√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
> ρ − σ2h(ρ)

a
+ σ2

a

∣∣h(ρ)
∣∣ and ρ + γ −

√
σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
<

ρ − σ2h(ρ)

a
− σ2

a

∣∣h(ρ)
∣∣. Therefore the true value of ρ, i.e., ρ lies in between the two roots of l′′(ρ) = 0,

where l′(ρ) is increasing.14 When ρ is larger (less) than the bigger (smaller) root, l′(ρ) will be decreasing.
Since l′(ρ) ≥ (<)0 for ρ ≥ (<)ρ+γ, we can see that lim

ρ→±∞
l′(ρ) = 0. Since l′(ρ) = h(ρ), h(ρ) therefore

intersects l′(ρ) at ρ. Define ψ(ρ) = φ(ρ) − plim
N→∞

l(ρ). Evaluating its second order derivative at the true

value of ρ yields ψ′′(ρ) = h′(ρ) − [(T−1)a−2σ2h2(ρ)]
(T−1)σ2 . Using Equation (50) in Lemma 10, we can find

ψ′′(ρ) < 0. In other words, ρ is a local maximum for ψ(ρ). When T is even, because h(ρ) > 0 is
increasing after −1 and l′(ρ) is decreasing beyond the bigger root of l′′(ρ) = 0, h(ρ) should intersect
l′(ρ) again as at the point ρU in Figure 1, which is larger than ρ and the bigger root of l′′(ρ) = 0. We can
see that ψ(ρ) has bell shape over (−∞, ρU ] when T is even. However, for ρ > ρU , ψ(ρ) is increasing and
hence lim

ρ→∞
ψ(ρ) =∞. To ensure the marginal posterior of ρ to be proper, we have to restrict the bounds

of ρ in our estimation. Similarly, when T is odd, since h(ρ) is strictly increasing, h(ρ) should intersect
l′(ρ) on the left hand side of ρ. There should be three intersection points as shown in Figure 2. Since
ψ(ρ) is decreasing for ρ < ρL due to ψ′(ρ) < 0, we have lim

ρ→−∞
ψ(ρ) =∞ when T is odd. Choosing ρL

and ρU in the way described by Proposition 4 can ensure ψ(ρ) evaluated at the end points to be smaller
than ψ(ρ) and the marginal posterior density of ρ to be proper.

14 Note that a and σ2 are positive. When h(ρ) ≥ 0, we can have ρ + γ +
√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
> ρ and ρ + γ −√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
< ρ− 2σ2h(ρ)

a ≤ ρ; when h(ρ) < 0, we can have ρ+ γ +
√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
>

ρ− 2σ2h(ρ)

a > ρ and ρ+ γ −
√

σ2

a2

[
a(T − 1)− σ2h2(ρ)

]
< ρ.
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Figure 1. Intersection points of h(ρ) and l′(ρ) when T = 6, ρ = 1, σ2 = 1, σ2
f = 1,

σ2
y0

= 0.1, E(fi) = E(yi,0) = E(fiyi,0) = 0 and there are no exogenous regressors.
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Figure 2. Intersection points of h(ρ) and l′(ρ) when T = 5, ρ = 1, σ2 = 1, σ2
f = 1,

σ2
y0

= 0.1, E(fi) = E(yi,0) = E(fiyi,0) = 0 and there are no exogenous regressors.
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E. Proof of Proposition 6

To prove Proposition 6 and 7, essentially we need to simplify the integral(s) which appears in the
Bayes factor. One way to do it is Laplace’s method, the details of which can be found in [20,21]. Under
the assumption that there exists only one solution ρ∗ in (ρL,ρU ) for ψ′(ρ) = 0 with ψ′′(ρ∗) < 0, the
integral appearing in the Bayes factor can be written as

ρU∫
ρL

exp [Nψ(ρ)] =

√
2π

N |ψ′′(ρ∗)|
exp

[
Nψ(ρ∗)

](
1 +O(

1

N
)

)
(59)

Building on Equation (18), the first and second order derivatives of ψ(ρ) are

ψ′(ρ) = h(ρ)−
(T − 1)(ρ− ρ− γ)[

ρ2 − 2ρ(ρ + γ) + ρ2 + 2ργ + (T−1)σ2+h3(β)
a

] , (60)

ψ′′(ρ) = h′(ρ)−

(T − 1)
[
ρ2 − 2ρ(ρ + γ) + ρ2 + 2ργ + (T−1)σ2+h3(β)

a
− 2(ρ− ρ− γ)2

]
[
ρ2 − 2ρ(ρ+ γ) + ρ2 + 2ργ + (T−1)σ2+h3(β)

a

]2 .
(61)

If the chosen set of regressors can lead to consistent estimation of ρ, i.e., either Equation (20) or (21)
is satisfied, evaluating Equations (18), (60) and (61) at ρ will give

ψ(ρ) = φ(ρ)− T − 1

2
ln
[
(T − 1)σ2 + h3(β)

]
,

ψ′(ρ) = 0,

ψ′′(ρ) = h′(ρ)− a(T − 1)

(T − 1)σ2 + h3(β)
+

2h2(ρ)

T − 1
.

The Bayes factor in Equation (25) is

p(Y |Y0,M1)

p(Y |Y0,M0)
=

(
η

η + 1

) k1−k0
2

√√√√ 2π

N
∣∣∣ψ′′(ρ∗|M1

|M1)
∣∣∣

exp

[
Nψ(ρ∗|M1

|M1)

]
(ρU1 − ρL1)

( c|M0

N

)−N(T−1)
2

(
1 +O(

1

N
)

)
. (62)

Asymptotically, replacing ψ(ρ∗|M1
|M1), ψ′′(ρ∗|M1

|M1) and
c|M0

N
by their probability limits and η

η+1
by

O(Nα) with α < 0 (our prior choice for η) should not affect the analysis of the Bayes factor. Define

ξ10 =
O
(
N

α(k1−k0)
2

)
ρU1 − ρL1

√√√√ 2π

N
∣∣∣ψ′′(ρ∗|M1

|M1)
∣∣∣ exp

[
N

(
ψ(ρ∗|M1

|M1) +
T − 1

2
ln c|M0

)]
, (63)

which should have the same asymptotic behaviour as Equation (62). If Xi1 is the true set of regressors
to generate Y (so h2(β, ρ|M1) = h3(β|M1) = 0 and ρ∗|M1

= ρ), ξ10 can be written as

ξ10 =
O
(
N

α(k1−k0)
2

)
ρU − ρL

√√√√ 2π

N
∣∣∣h′(ρ)− a|M1

σ2 +
2h2(ρ)

T−1

∣∣∣ exp

{
Nφ(ρ) +

N(T − 1)

2
ln

[
c|M0

(T − 1)σ2

]}
. (64)
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So we can guarantee p(Y |Y0,M1)
p(Y |Y0,M0)

tends to infinity given ρ 6= 0 as long as Equation (31) holds.
Now let us consider the case when the true model is M0 in Equation (25), i.e., ρ is 0 and Xi0 is the

set of true regressors. ξ10 takes the following form,

ξ10 =
[(T − 1)σ2]

N(T−1)
2

ρU1 − ρL1

O
(
N

α(k1−k0)
2

)√√√√ 2π

N
∣∣∣ψ′′(ρ∗|M1

|M1)
∣∣∣ exp

[
Nψ(ρ∗|M1

|M1)

]

=O
(
N

α(k1−k0)
2

)√√√√ 2π

N
∣∣∣ψ′′(ρ∗|M1

|M1)
∣∣∣
exp

[
Nφ(ρ∗|M1

) + N(T−1)
2

ln (T−1)σ2

d(ρ∗|M1
|M1)

]
ρU1 − ρL1

.

(65)

If Equation (32) holds, then the Bayes factor in Equation (25) will tend to 0 for large sample size. If
M1 is misspecified, but ρ can be consistently estimated, i.e., ρ∗|M1

= 0, Equation (65) can be simplified as

ξ10 = O
(
N

α(k1−k0)
2

)√ 2π

N
∣∣ψ′′(0|M1)

∣∣ exp

[
N(T−1)

2
ln
[

(T−1)σ2

(T−1)σ2+h3(β|M1)

]]
ρU1 − ρL1

. (66)

If Equation (21) holds, some true regressors should be excluded from M1 and hence Equation (32) is
true with h3(β|M1) > 0. If Equation (20) holds, we have h3(β|M1) = 0 and k1 ≥ k0. The Bayes factor
will therefore tend to 0 when N tends to infinity.

Finally we show when Equation (31) will be violated. If M0 only includes the true exogenous
regressors, we should have h2(β, ρ|M0) = h3(β|M0) = 0 and a|M0

> σ2trace(C ′HC) as in
Equation (55). The following should be true:

φ(ρ) +
T − 1

2
ln

[
a|M0

ρ2 − 2ρσ2h(ρ)

(T − 1)σ2
+ 1

]
> υ(ρ) =

φ(ρ) +
T − 1

2
ln

1 +
ρ2
∑T−2

j=0 (T − j − 1)ρ2j

T − 1
−

ρ2
∑T−2

j=0

(∑j
i=0 ρ

i
)2

T (T − 1)
−

2ρh(ρ)

T − 1

 . (67)

When T = 2, the right hand side of Equation (67), i.e., υ(ρ), will be ρ

2
+ 1

2
ln(1 − ρ +

ρ2

2
) and it is

an increasing function with υ(0) = 0. Hence υ(ρ) is less than 0 when ρ < 0. The left hand side of
Equation (67) can be negative for ρ < 0 if σ2 is much larger than E(f 2

i ) and E(y2i,0).15 When T is an
odd number great than or equal to 3, υ(ρ) is positive for ρ ∈ R. When T is even and greater than 2, υ(ρ)

is positive for ρ ∈ (−1,∞) and has a root less than −1. If ρ is less than the root, υ(ρ) will be negative.
By direct calculation, as T increases, we find that the root of υ(ρ) will get closer to −1 from the left.
Hence, to sum up, Equation (31) will hold for ρ ∈ (−1,∞) when T is any integer greater than or equal
to 3 and h2(β, ρ|M0) = h3(β|M0) = 0.

15 When T = 2, E(fiyi,0) = 0 and the true model contains no exogenous regressors, φ(ρ)+ T−1
2 ln

[
a|M0

ρ2−2ρσ2h(ρ)

(T−1)σ2 + 1

]
is equal to

ρ

2 +
1
2 ln

(
1− ρ+

[
E(f2

i )

2 +E(y2i,0)(
ρ2

2 −ρ+
1
2 )+

σ2

2 ]ρ2

σ2

)
, which approaches υ(ρ) as E(f2

i )
σ2 and

E(y2i,0)

σ2 get smaller.
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F. Proof of Proposition 7

By Laplace’s method, we can write Equation (26) as

p(Y |Y0, X1,M1)

p(Y |Y0, X2,M2)
=
ρU2 − ρL2

ρU1 − ρL1

(
η

η + 1

) k1−k2
2

√
ψ′′(ρ∗|M2

|M2)

ψ′′(ρ∗|M1
|M1)

exp

[
N
(
ψ(ρ∗|M1

|M1)− ψ(ρ∗|M2
|M2)

)](
1 +O(

1

N
)

)
.

(68)

Suppose the true model is M2, similar to the previous section, by dropping ρU2
−ρL2

ρU1
−ρL1

√∣∣∣∣ψ′′(ρ∗|M2
|M2)

ψ′′(ρ|M1)

∣∣∣∣ =

O(1), we can obtain the corresponding ξ12,

ξ12 = O
(
N

α(k1−k2)
2

)
exp

{
N

[
φ(ρ∗|M1

)− φ(ρ) +
T − 1

2
ln

d(ρ|M2)

d(ρ∗|M1
|M1)

]}
. (69)

Note that d(ρ|M2) = (T − 1)σ2. So if Equation (33) is satisfied, the Bayes factor is consistent
in model selection. If M2 despite being misspecified can still lead to consistent estimation of ρ, ξ12
will become

ξ12 = O
(
N

α(k1−k2)
2

){ (T − 1)σ2

(T − 1)σ2 + h3(β|M1)

}N(T−1)
2

. (70)

If Equation (21) holds, we will have h3(β|M1) > 0 and hence Equation (33); if Equation (20) holds,
M1 will nest M2 (k1 > k2) with h3(β|M2) = 0. For both cases, p(Y |Y0,X1,M1)

p(Y |Y0,X2,M2)
will tend to 0.

G. Proof of Proposition 8

The likelihood function takes the following form,

p (Y |θ, Y0) = (2π)−
TN
2 σ2(−NT

2
)

N∏
i=1

exp{− 1

2σ2
[yi − yi_ρ− ιfi −Xiβ]′ [yi − yi_ρ− ιfi −Xiβ]}.

(71)

By taking log of the likelihood function and solving the first order condition, we can obtain the
maximum likelihood estimators as the following,

σ̂2 =
1

NT

N∑
i=1

[yi − yi_ρ̂− ιf̂i −Xiβ̂]′
[
yi − yi_ρ̂− ιf̂i −Xiβ̂

]
, (72)

f̂i =
ι′(yi − yi_ρ̂−Xiβ̂)

T
, (73)

β̂ =

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iH(yi − yi_ρ̂), (74)

ρ̂ =
b

a
, (75)

Substituting the above into the log of (71) multiplied by −2 and adding the appropriate constants
(number of parameters multiplied by the natural log of the sample size) yields the BIC Equations in (34)
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and (35). A smaller BIC value indicates evidence in favour of the model. Let us now look at the case
of Equation (25). When Xi1 are the true regressors to generate Yi, the BIC difference between M0 and
M1 is

BIC|M0 −BIC|M1 = NT

[
ln
c|M0

N
− ln

(
c|M1

N
−

(b|M1/N)2

a|M1/N

)]
+ (k0 − k1 − 1) ln(NT ). (76)

Asymptotically speaking, replacing a
N

, b
N

and c
N

by a, b and c defined in Equation (27) to (30)
respectively should not affect the analysis. Define ω01 as

ω01 =NT ln
c|M0

c|M1
−

b2|M1

a|M1

+ (k0 − k1 − 1) ln(NT )

=NT ln
(T − 1)σ2 + h3(β|M0) + a|M0

ρ2 + 2ρh2(β, ρ|M0)− 2ρσ2h(ρ)

(T − 1)σ2 + h3(β|M1)−
[h2(β,0|M1)−σ2h(ρ)]

2

a|M1

+ (k0 − k1 − 1) ln(NT ).

(77)

If M1 is the true model, we should have ω01 > 0, h3(β|M1) = h2(β, 0|M1) = 0 and inside the
natural log of the first term, the numerator should be larger than the denominator. That is we should have
Equation (37) stated in Proposition 8 or

h3(β|M0) + a|M0
ρ2 + 2ρh2(β, ρ|M0)− 2ρσ2h(ρ) +

σ4h2(ρ)

a|M1

> 0. (78)

If Xi0 is the same as Xi1, we will have a|M0
= a|M1

= a, k1 = k0 and h2(β, ρ|M0) = h3(β|M0) = 0.

The left of Equation (78) will become a
(
ρ− σ2h(ρ)

a

)2
. If ρ− σ2h(ρ)

a
= 0, i.e., ρ + γ = plim

N→∞
ρ̂MLE = 0,

we will have BIC|M0 − BIC|M1 < 0 asymptotically, which means we will prefer M0 over M1 even if
ρ 6= 0. In a situation like this, model selection is not consistent. The problem with BIC will also arise
when M0 is the true model with ρ = 0. Now ω01 is

ω01 = NT ln
(T − 1)σ2

c|M1
−

b2|M1

a|M1

+ (k0 − k1 − 1) ln(NT ), (79)

To have ω01 < 0, we should have Equation (36) in Proposition 8 or[
h2(β, 0|M1)− (T−1)σ2

T

]2
a|M1

− h3(β|M1) < 0. (80)

If h2(β, 0|M1) = h3(β|M1) = 0, we will have ω01 > 0, which implies inconsistency in model
selection. For the case of Equation (26), the corresponding ω21 is

ω21 = NT ln
c|M2
−

b2|M2

a|M2

c|M1
−

b2|M1

a|M1

+ (k2 − k1) ln(NT ). (81)

BIC will be consistent if we have Equation (38) stated in Proposition 8 or

a|M1
a|M2

h3(β|M2) + a|M2
σ4h2(ρ)− a|M1

[
h2(β, ρ|M2)− σ2h(ρ)

]2
> 0. (82)
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If Xi2 nests Xi1, the left of Equation (82) can be simplified as (a|M2
− a|M1

)σ4h2(ρ) with a|M2
≤ a|M1

.
When a|M2

= a|M1
, ω21 will become (k2 − k1) ln(NT ) with k2 > k1. BIC is therefore consistent. But

if a|M2
< a|M1

, ω21 in Equation (81) will be dominated by the first term (negative) asymptotically and
hence BIC is inconsistent.
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