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Abstract: A large number of nonlinear conditional heteroskedastic models have been
proposed in the literature. Model selection is crucial to any statistical data analysis. In
this article, we investigate whether the most commonly used selection criteria lead to
choice of the right specification in a regime switching framework. We focus on two types
of models: the Logistic Smooth Transition GARCH and the Markov-Switching GARCH
models. Simulation experiments reveal that information criteria and loss functions can
lead to misspecification ; BIC sometimes indicates the wrong regime switching framework.
Depending on the Data Generating Process used in the experiments, great care is needed
when choosing a criterion.
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1. Introduction

Ever since Engle [1] developed the Autoregressive Conditional Heteroskedasticity (ARCH) models
which provide a fruitful framework to analyze volatility and financial time series, this has been a
major research focus in financial econometrics. Bollerslev [2] subsequently proposed Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) models, where volatility is a linear function
of past volatility and squared residual past shocks. These models are of the form εt = ηt

√
ht where ht is

a positive process (volatility) and ηt an identically and independently distributed random variable with
zero mean and unit variance. Although GARCH models are attractive, copious empirical evidence in
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the econometric literature argues against their suitability. For example, these models do not adequately
fit the data over a long period of time. Lamoureux and Lastrapes [3] show that if structural changes are
not considered, upward GARCH estimates of persistence in variance may be biased. Moreover, while
the squares of a GARCH(1,1) process follow the dynamics of an ARMA process with an autocorrelation
function (ACF) which goes to zero very fast, the sample ACFs of the squares tend to stabilize around
a positive value for larger lags. This is known as long range dependence in volatility. To circumvent
these problems, practitioners can use other types of model, such as regime switching models. Several
regime switching behaviors exist: in this paper we focus on regime switches driven by a hidden Markov
Chain and regime switches driven by a transition function. Markov Switching GARCH (MS-GARCH)
models belong to the first class. They have stochastic regime switches, and volatility can therefore take
different forms depending on probabilities. Asymmetric GARCH models belong to the second class.
The volatility has deterministic regime switches: it depends on a transition variable through a particular
transition function, for example, a logistic smooth function which gives the Logistic Smooth Transition
GARCH (LST-GARCH) model.

Practitioners studying empirical data need to choose a specific model to estimate conditional volatility.
The wrong model will lead to incorrect interpretation of data. For example,selecting the wrong type of
regime switching could cause a structural change to be confused with asymmetry. A well-known citation
from Box [4] says that “Models, of course, are never true but fortunately it is only necessary that they
be useful”. Thus, models are just an approximation of the true Data Generating Process (DGP). The
challenge for data analysts is to select the best model, the one closest to the DGP. All the inferences and
evaluations of real life data depend on accurate specifications yielding good in-sample forecasting results
and more accurate interpretation of the economic world. This is known as goodness of fit. In practice,
a set of plausible models is selected and narrowed down according to one of a number of criteria. The
most popular are Information Criteria (IC), loss functions, and the R2 from a regression. In time series
analysis, IC and in-sample forecasts evaluated with loss functions are very often used. In contrast with
out-sample forecasts, where in a lot of cases simpler models provide better results, in-sample forecasts
should be better when the closest model is estimated.

In this article, we seek to identify whether certain criteria are more likely to lead to a good choice of
regime switching type. To do so, we perform Monte Carlo experiments. We simulate data according to
DGPs. We focus on two models: MS-GARCH and LST-GARCH. The estimation of LST-GACRH
has been widely discussed in the literature; methods proposed include Quasi Maximum Likelihood
(QML) estimation ([5,6]), Generalized Method of Moments ([7]) and Bayesian estimation ([8,9]). All
these methods have advantages and drawbacks. We focus on the QML method here, since it is very
commonly used in empirical applications. To our knowledge, the consistency and the asymptotic
normality of LST-GARCH QML estimation has not been established yet1. There appear to be no
findings on MS-GARCH models to date, nor on the asymptotic distribution of the Maximum Likelihood
(ML) estimation. For example, Augustyniak [12] conducts an experiment which shows that Gray’s
method does not generate consistent estimates for the path-dependent MS-GARCH model. These

1 Some empirical studies have shown that the QML estimation of smooth transition models can cause problems in
interpretation. See Chan et al. [10] and Novella [11].
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models suffer from a lack of theoretical grounding, and our aim here is to investigate the consequences
on goodness-of-fit. Our experimental task is to estimate the data generated, using a wide variety of
specifications. Finally, we apply various selection criteria to these estimations to see which model is
chosen by the criteria. This method was employed in recent studies to highlight pitfalls in smooth
transition models ([11]).

Our results raise interesting questions, revealing that selection criteria lead to misspecification in
some cases. Does this mean that the criteria are not suitable for regime switching conditional volatility
models? Probably not: we argue that if these criteria lead the choice of the wrong specification it is more
because these regime switching models are difficult to estimate using the QML estimation, especially
when the regimes are poorly identified in MS-GARCH models.

The remainder of this article is organized as follow out as follows. In Section 2, we briefly
explain the different types of models and the selection criteria we explore. We present our simulation
experiment framework in Section 3. Section 4 presents the results and the discussion. Section 5 contains
concluding remarks.

2. Theory: Models and Selection Criteria

2.1. Models

In this section we describe the three classes of GARCH-type models that interest us here,
explaining why we focus on these models. First, we describe the class of univariate GARCH models.
Secondly, we present some asymmetric GARCH-type models: the LST-GARCH of Hagerud [6] and
Gonzalez-Rivera [13], the Glosten-Jagannathan-Runkle (GJR) GARCH and the Exponential GARCH
(EGARCH). Then, MS-GARCH-type models are introduced.

2.1.1. Univariate GARCH Model

The univariate GARCH model was introduced by Bollerslev [2] and many other followed. The
GARCH model is a benchmark in volatility modeling since it can capture the main stylized facts of a
financial time series that exhibit time-varying volatility clustering. A process (εt) is called a GARCH(p,q)
process if for t = 1, . . . , T , with T the sample size and

E(εt|εs , s < t) = 0, t = 1, . . . , T (1)

εt = ηt
√
ht, ηt ∼ IID(0, 1) (2)

with ηt an identically and independent distributed random variable with zero mean and unit variance and
if there exist ω, αj , j = 1, . . . , q and βi, i = 1, . . . , p such that

ht = V ar(εt|εu, u < t) = ω +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiht−i (3)
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GARCH-type models are generally estimated with the Gaussian Quasi Maximum Likelihood (QML)
method. A QML estimation of the vector parameters θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p)

′ is defined as
any solution θ̂QML of

θ̂QML = arg max L = n−1
T∑
t=1

`t (4)

with

`t = −1

2
log 2π − 1

2
log ht −

1

2

ε2t
ht

(5)

Gaussian QML estimation assumes that εt are normally distributed. However, if this assumption is not
verified, θ̂QML is still consistent but can be inefficient, as shown in [14] and [15].

2.1.2. Asymmetric Volatility Models

This kind of model belongs to the class of “asymmetric” or “leverage” volatility models. They were
introduced in response to empirical evidence that the increase in volatility is larger when returns are
negative than when they are positive2. This characteristic is known as the “leverage-effect”. These
models can be seen as regime switching GARCH models. They have different specifications according
to the sign of the past shocks. We consider in this article three different asymmetric GARCH-type
models: the LST-GARCH [6], the GJR-GARCH [20] and the EGARCH [21]. A process (εt) is called an
LST-GARCH(p,q) process if there exist ω, α1j , α2j , j = 1, . . . , q, βi, i = 1, . . . , p, and γ such that

ht = ω +

q∑
j=1

[α1j + α2jF (εt−j)]ε
2
t−j +

p∑
i=1

βiht−i (6)

where
F (εt−j) = (1 + exp(γεt−j))

−1 − 1

2
(7)

with γ, the so-called transition parameter. The LST-GARCH process can be seen as a generalization of
the well-known GJR-GARCH. A process (εt) is called a GJR-GARCH(p,q) process if there exist ω, α1j ,
α2j , j = 1, . . . , q and βi, i = 1, . . . , p such that

ht = ω +

q∑
j=1

[α1j + α2j1(εt−1 > 0)]ε2t−j +

p∑
i=1

βiht−i (8)

where 1(.) is the indicator function. When γ → +∞, the logistic function becomes a double step
function like the indicator function in the GJR-GARCH. In terms of regime, because the logistic
function is continuous, Gonzalez-Rivera [13] talks about a “continuum” of regimes where the probability
of regime switching is one. However, the term “regimes” does not have the same meaning as in
the MS-GARCH models. Conditions for a stationary positive process are given in Hagerud [6] and
Gonzalez-Rivera [13]. There is empirical evidence of how difficult it is to estimate the transition

2 See [16–19].
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parameter3. We will therefore try to determine whether this inefficient selection criteria. Finally, we
consider the popular EGARCH model by Nelson [21]. A process (εt) is called an EGARCH(p,q) process
if there exist ω, α1j , α2j , j = 1, . . . , q and βi, i = 1, . . . , p

log(ht) = ω +

q∑
j=1

gj(ηt−j) +

p∑
i=1

βi log(ht−i) (9)

where
gj(ηt−j) = α1jηt−j + α2j(|ηt−j|+ E|ηt|) (10)

The function gj depends on the magnitude and sign of ηt. This makes it possible to respond
asymmetrically to positive and negative values of the error term. As with the GARCH model, estimation
is performed by maximizing the log-likelihood function given by L =

∑T
t=1 `t with `t represented by

Equation (5) assuming the normality of the error term.

2.1.3. MS-GARCH Models

These models give rise to a conditional mixture distribution. They allow time-varying skewness
contrary to the traditional GARCH-type models: asymmetry exists in the conditional return distribution
but this asymmetry is time-varying ([22]). Their main difference from the previous model is the
following, for t = 1, . . . , T :

rt = εt

with
εt = ηt

√
ht(∆t)

and ηt an identically and independently distributed random variable with zero mean and unit variance.
∆t is a variable which indicates the state of the world at time t . We will focus on MS-GARCH processes:
∆t follows a Markov chain with finite state spaces S = 1, ..., k, and a transition matrix P . However, other
models exist where transition probabilities have a different definition. In contrast to the LST-GARCH
process, the probability of switching from one regime to another is no longer equal to one but depends
on the transition matrix P , given by

P =

p11 . . . pk1
... . . .

...
p1k . . . pkk


with pij = p(∆t = j|∆t−1 = i) the probability of being in state j at time t, given of being in state
i at time t − 1. In this sense, this type of regime switch is endogenous. A process (εt) is called a
MS(k)-GARCH(p,q) process if

εt = ηt
√
ht(∆t), ηt ∼ IID(0, 1) (11)

3 See [11] for example.
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and there exist ω(∆t), αi(∆t), i = 1, . . . , q, βl(∆t), l = 1, . . . , p and j = 1, . . . , k such that

ht(∆t) = ω(∆t) +

q∑
i=1

αi(∆t)ε
2
t−q +

p∑
l=1

βl(∆t)ht−l (12)

This model cannot be estimated by QML. The calculation of the likelihood function for a sample of T
observations is infeasible because it requires the integration of kT possible regime paths ([23] and [24]).
To circumvent the path dependence problem, Gray [5] introduces an MS-GARCH model under the
hypothesis that the conditional variance at any regime depends on the expectation of previous conditional
variance. He proposes to replace ht−1 by the conditional variance of the error term εt−1 given the
information up to t−2. Klaassen [25] enlarges the information set to t−1 by conditioning the expectation
of previous conditional variances on all available observations and also on the current regime:

ht(∆t) = ω(∆t) + α(∆t)ε
2
t−1 + β(∆t)

k∑
i=1

p(∆t−1 = i|Ωt−1,∆t = j)hi,t−1 (13)

with j = 1, ...k and Ωt is the information set of the process (i.e., the return history up to date t − 1).
The model of Klaassen is the second model of interest. The model of Haas et al. [26] contrasts with this
approach where each specific conditional variance depends only on its own lag,

ht(∆t) = ω(∆t) + α(∆t)ε
2
t−1 + β(∆t)ht−1(∆t) (14)

This model can be rewriten in matrix form:

ht = ω +αε2t−1 + βht−1

where ω = [ω1, ω2, ..., ωj]
′,α = [α1, α2, ..., αj]

′ and β = diag(β1, β2, ..., βj). ht is thus a vector of k×1

components. In this specification, every regime can be represented as an ARCH(∞), which is the direct
generalization of the single-regime GARCH model. This specification permits practitioners to interpret
the coefficients in the same way as in the single regime framework. These two MS-GARCH models4

can easily be estimated by Maximum Likelihood (ML) estimation following the work of Hamilton [28].
An ML estimation of θ0, with the vector parameters θ0 = (ω0,α0,β0)′ to be estimated is defined as any
solution of θ̂ML of

θ̂ML = arg max L =
T∑
t=1

log f(εt|Ωt−1)

where f(εt|Ωt−1) is the conditional density of εt given the process up to time t. This density is the sum
of conditional regime densities weighted by the conditional regime probabilities Pr(∆t = j|Ωt−1, θ).

4 There are a number of expansions of these two MS-GARCH processes. For example, Gallo and Otrento [27] introduce
asymmetric effects in each regime variance.
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These probabilities are obtained by using the recursive scheme proposed by [29]. Moreover, in-sample
forecasts of volatility are computed using these predicted probabilities:

ĥt =
k∑
j=1

Pr(∆t = j|Ωt−1, θ̂
ML)ht,j (15)

Finally, an assumption on conditional regime densities has to be made. In this paper, we investigate
a case where the conditional regime densities follow a Gaussian density. As noted by [25,30,31], if
regimes are not normal but leptokurtic, the use of within-regime normality affects identification of the
regime process. It implies, for example, that ML estimation based on Gaussian components does not
provide a consistent estimator. Hereafter, for convenience, we call the processes MSG-GARCH-K and
MSG-GARCH-H respectively, for Klaassen [25] and Haas et al. [26], assuming Gaussian conditional
regime densities. Moreover, we call the processes MST-GARCH-K and MST-GARCH-H respectively,
for Klaassen [25] and Haas et al. [26], assuming Student conditional regime densities.

2.2. Selection Criteria: Information Criteria and Loss Functions

In empirical analysis, model selection is based on different methods. A statistical specification
test comparing LST-GARCH and MS-GARCH processes does not exist yet5. The remaining way of
choosing a specification for a model is to use the selection criteria. We focus on IC and in-sample
forecasts. In contrast to hypothesis testing, they can be used to compare two models which have different
specifications and which are not necessarily nested. According to Akaike [33], a model should be
selected on the basis of good results when it is used for prediction. He proposed the well-known AIC to
evaluate models in terms of Kullback-Leibler (KL) information ([34]),

AIC = 2m− 2 log(L(θ̂|X))

where L(θ̂|X) represents the value of the likelihood function in θ̂, the vector of the estimated parameters,
given the observed data and m the number of parameters. In general linear models, AIC tends not to
perform well in small samples but the criterion tends to select the right model in large samples as shown
in [35]. BIC has a similar form,

BIC = m log(T )− 2 log(L(θ̂|X))

with T the sample size. AIC imposes less of a penalty on the number of parameters than does
BIC. In contrast to AIC, BIC is reputed to perform poorly in small samples in the context of general
linear models.

In-sample forecasting can also be used to compare the real volatility with the predicted volatility. Loss
functions measure the difference, and the model with the lowest loss is selected. However, volatility

5 Hu and Shin [32] introduced a test procedure which tests the null hypothesis of a GARCH process against an
MS-GARCH process.
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is a latent variable: in practice we do not observe real volatility, so we use proxies to compute it.
Hansen and Lunde [36] show that the sufficient condition for a loss function to be robust is that ∂L(σ

2,h)
∂(σ2)2

does not depend on h, with σ̂2 the proxy and h the predicted volatility. Patton [37] derives necessary
sufficient conditions. Moreover, he provides a new class of loss functions that guarantee the consistency
of the ranking (asymptotically) when the unbiased volatility proxy is used instead of true volatility.
The following class requires the assumption that the volatility proxy is unbiased. Loss functions are
defined as

R(σ̂, h, b) =



1
(b+1)(b+2)

(σ̂2b+4 − hb+2)− 1
b+1

(hb+1(σ̂2 − h)) b /∈ {−1,−2}

σ̂2log σ̂
2

h
− (σ̂2 − h) b = −1

σ̂2

h
− log σ̂2

h
− 1 b = −2

(16)

with b a scalar parameter. In this article, we focus on three loss functions: Mean Squared Error (MSE),
Quasi Likelihood (QLIKE) and Mean Absolute Error (MAE). MSE and QLIKE are special cases of
Equation (16) when b = 0 and b = −2 respectively whereas MAE is not a robust loss function. For
t = 1, . . . , T they are each equal to

MSE : L(σ̂t, ht) =
1

T

T∑
t=1

(σ̂2
t − ht)2

QLIKE : L(σ̂, ht) =
1

T

T∑
i=1

(
σ̂t

2

ht
− log σ̂t

2

ht
− 1)

MAE : L(σ̂, ht) =
1

T

T∑
t=1

|σ̂2 − ht|

One important difference between MSE and QLIKE is that the former treats positive and negative errors
equally, while the latter imposes a larger penalty when the forecast underestimates the realized volatility.

3. Design of the Experiments

The objective of our study was to perform Monte-Carlo experiments to see if the most commonly used
information criteria and loss functions lead practitioners to choose the right specification in a conditional
volatility regime switching framework. Since many practitioners use these models, it is important to
assess the performance of the selection criteria, in order to guide professionals in their model selection
process. This section gives details of the different experiments.

3.1. Common Design: Starting Values and Numerical Method

First, we present all the features of our overall experimental framework. In all the the experiments,
data are first generated following a specific DGP described in great detail with more details below. Then,
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all the different models are estimated6. Finally, the selection criteria and loss functions presented in
Section 2 are computed. According to the criteria, we report the percentage of selection for each specific
model. Since we simulate our data, the real value of the volatility is known, but in order to come as close
as possible to reality, squared errors are also used to compute the loss functions. DGPs are restricted to
the LST-GARCH(1,1) and the MS(2)-GARCH(1,1) models. We focus on these models because there is
some evidence in the literature that their estimation can be problematic: for example, the latent regime
state estimation of MS-GARCH models. Our objective is therefore to show that these problems can lead
to a deterministic regime switching type being chosen instead of a stochastic one, resulting in spurious
interpretations. To interpret our results, we propose a working hypothesis that defines whether a selection
criterion is efficient in this simulation framework:

Remark 1. From now on, we consider a selection criterion as strongly efficient if and only if it leads to
the selection of the true DGP in at least 90% of cases. Moreover, we consider a selection criterion as
weakly efficient if and only if it leads to selection of the true DGP regardless of the assumption on the
distribution of the error term in at least 90% of cases.

The first part of our working hypothesis is very restrictive. In this case, we consider a selection
criterion as efficient only if the entire true DGP is selected. The second part relaxes the misspecification
on the error distribution. For example, if the true DGP is the MSG-GARCH-H and the selection
criterion leads to selection of the MST-GARCH-H in 95% of cases, we conclude that it is only weakly
efficient. Each simulation experiment is replicated 2000 times with a sample size7 T = 2000. With
the estimation framework described in the previous section, we face the well-known issue of selecting
the starting values to initialize the local optimization procedure. For the likelihood function, we use
traditional methods. The sample data variance is used to initialize the conditional variance and we
employ ergodic probabilities to set the parameters governing the Markov Chain for MS-GARCH models,
as recommended by [29]. To handle the issue of the initial parameter values, we use the true generating
values when they are known. Otherwise, starting values for the parameters are selected from a grid of
ten different random sets. We specify a plausible range for the parameters to avoid unusual sets. Thus,
we draw the vectors θ̃g = (ω1, α1, β1, ν)′, θ̃lst = (ω1, α1, α2, β1, γ, ν)′, θ̃gjr = (ω1, α1, α2, β1, γ, ν)′,
θ̃eg = (ω1, α1, α2, β1, γ, ν)′ and θ̃MS = (ω1, ω2, α1,1, α1,2, β1, β2, p11, p22, ν)′ which are respectively the
vectors of starting values of the GARCH, LST-GARCH, GJR-GARCH, EGARCH and MS-GARCH
models used in the estimation. All the parameters are drawn using a uniform distribution:
ωj ∼ U(0.0001; 0.5), α1 ∼ U(0.1; 0.3), α2 ∼ U(−0.15; 0.15), α1,j ∼ U(0.1; 0.3), βj ∼ U(0.4; 0.9),
γ ∼ U(0; 5) and pjj ∼ U(0; 1). Parameter ν is null when data are estimated under the normality
assumption. In the Student case, ν also follows a uniform distribution such that ν ∼ U(2.1; 10). For
each set of starting values, we check the positivity and the stationarity of the process. If the constraints

6 For each experiment, we estimate these models: GARCH, GARCH-T, LST-GARCH, LST-GARCH-T, GJR-GARCH,
GJR-GARCH-T, EGARCH, AEGARCH-T, MSG(2)-GARCH-H, MSG(2)-GARCH-K, MST(2)-GARCH-H and
MST(2)-GARCH-K.

7 Results for T = 1000 are available on demand, results remain the same. We do not consider smaller sample size since in
financial application, we used to study daily data.
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are not verified, we draw another set of starting values. The set which gives the highest likelihood is
selected to start the estimation procedure, which is based on the fmincon MATLAB routine. The options
remain the same for all estimations. We also check for optimization convergence by checking the output
structure of the fmincon function. If the procedure does not converge, we try another set of starting
values until optimization convergence is achieved.

3.2. Experiment 1: Simulation of MS-GARCH-K Processes

The purpose of the first experiment is to generate data following an MS-GARCH-K process. As
mentioned in Section 2.1.3, there are two different approaches to an MS-GARCH process. This
experiment focuses on the traditional approach, the one adopted in [25]. Data are generated following
Equation (12). The simulation procedure is the following. We start by generating the random error
vector {ηt} and the regime process vector {∆t} for t = 1, . . . , T . The random errors are drawn
randomly from a Gaussian distribution8. The regime process variable follows a Markov chain with

finite state space S = {1, 2} and a 2 × 2 transition probability matrix P =

(
p11 p21

p12 p22

)
. Next, we

construct9 h1(∆0) = ω(∆0) + α(∆0)ε
2
0 + β(∆0)h0 and ε1 = η1

√
h1. Finally, we compute recursively

the sequence {h2, ε2, . . . , hT , εT} where ht = ω(∆t) + α(∆t)ε
2
t−1 + β(∆t)ht−1 and εt = ηt

√
ht. In

this approach hT depends on the entire history of regimes up to T . The variance specification of
Klaassen [25] is reasonable since, as in the standard GARCH model, past shocks and past variances
affect today’s variances. However, it is not in keeping with the initial aim of GARCH models, which
is the representation of a high order ARCH process. In this first experiment, we use four different

transition matrices and two sets of GARCH parameters. For the first three cases, we haveω =

(
0.001

0.05

)
,

α1 =

(
0.2

0.1

)
and β =

(
0.4

0.85

)
. We focus on three different transition matrices P1 =

(
0.1 0.9

0.9 0.1

)
,

P2 =

(
0.5 0.5

0.5 0.5

)
and P3 =

(
0.9 0.1

0.1 0.9

)
. In this framework, the long-run (i.e., unconditional)

probabilities10 are equal for each process. However, the regime persistence δ 11 differs. Matrix P1

represents the case where regime switches occur often (anti-persistence), while the second matrix, P2,
represents the case where the probability of remaining in the same regime is equal to the probability of
switching regime (short memory behavior). The last case, matrix P3 (long memory behavior) represents
persistent regimes. In a fourth case, we use a different specification for both the Markov chain and
the GARCH parameters. The first regime occurs very few times, with high unconditional variance.

The second regime is the most common regime, with low unconditional variance : ω =

(
0.1

0.05

)
,

8 Klaassen [25] and Haas et al. [26], specifically address MS-GARCH models with Student-t distribution. While this case
is interesting, we do not consider it in this paper, for the sake of simplicity.

9 We set ε0 = 0, h0 = 1 and ∆0 = 1. We generate 2000 more observations than required to minimize any starting bias.
10 The probabilities of being in regime i = 1, 2. The long-run probability of the first regime: π1 is equal to π1 = 1−p22

2−p11−p22
.

11 δ is computed as follows: δ = p11 + p22 − 1.



Econometrics 2015, 3 299

α1 =

(
0.4

0.1

)
and β =

(
0.9

0.4

)
with P4 =

(
0.1 0.1

0.9 0.9

)
. The long-run probability of being in the first

regime is equal to 0.1 while the long-run probability of being in the second regime is 0.9. In this setup
the first regime is highly non-stationary, and can be seen as a jumps regime: at a time t a jump occurs
(regime 1), but since this regime is not persistent, we go back rapidly to the normal regime (regime 2).
However, the overall process is in good keeping with conditions described in [26]. We focus mainly
on transition matrices because they are the source of stochastic regime switches. The probability of
switching tends to one when switching rates increase. In this case, the selection criteria could fail to
identify the true nature of the model.

3.3. Experiment 2: Simulation of MS-GARCH-H Processes

The second approach is introduced by [26] and defined by Equation (14). The simulation procedure
differs from the first experiment in its second and the third steps. As before, we start by generating the
random error vector {ηt} and the regime process vector {∆t} for t = 1, . . . , T . The random errors
are drawn randomly from both a Gaussian distribution and a Student distribution with a degree of
freedom ν = 5. The state variable ∆t follows a Markov chain with finite state space S = {1, 2}

and a 2 × 2 transition probability matrix P =

(
p11 p21

p12 p22

)
. In the second step, we construct

h1 = ω + αε20 + βh0, h1(∆1) and ε1 = η1
√
h1(∆1)

12. In the third step, we compute recursively the
sequence {h2(∆2), ε2(∆2), . . . , hT (∆T ), εT (∆T )}where ht(∆t) = ω(∆t)+α(∆t)ε

2
t−1+β(∆t)ht−1(∆t).

All specific conditional variances need to be computed at each period: ht = ω + αε2t−1 + βht−1. Note
that if the variable ∆t switches, the conditional variance differs instantaneously. Then, the error term
is generated: εt = ηt

√
ht(∆t). The set of parameters are the same as in the first experiment, so that

results can be compared. However β =

(
0.4 0

0 0.85

)
for P1, P2 and P3 and β =

(
0.9 0

0 0.4

)
for P4

due to notation.

3.4. Experiment 3: Simulation of LST-GARCH Processes

In this third experiment, the underlying process is an LST-GARCH. The DGP of such a model is
more trivial since there is no latent process. It is described by Equation (6) for p = q = 1. To simulate
this process, we start by drawing ηt from a Gaussian distribution. Then, we compute recursively ht and
εt

13. As in the first experiment, we estimate the data with all the models. We focus on three different
sets of parameters. γ is the parameter of interest since it governs the transition function. If the transition
parameter is large, the transition function becomes steep and we can see it as a “two regimes” model,
as shown by Figure 1. The sets of parameters are ω = 0.05, α1 = 0.3, α2 = 0.55, β = 0.3 and
γ = {0.5, 1.5, 5}.

12 We set ε0 = 0, h(∆0)0 = 1 and ∆0 = 1. We generate 2000 more observations than required, to minimize any starting bias.
13 We generate 2000 more observations than required to minimize any starting bias.
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Figure 1. Logistic functions with different γ.

4. Results and Discussion

4.1. Results

Table 1 sums up the results. It shows whether or not the selection criteria are weakly efficient as
defined in remark 1. Tables 2 to 12 present in detail the results of the three Monte-Carlo experiments
described in Section 3. The choice percentage is given per selection criterion. For example, in Table 2,
the GARCH model is selected in first position by AIC in 16.6% of cases. Our results show that when
regimes are difficult to identify (i.e., many regime switches or one regime occurring very few times)
and data are generated as per Klaassen, information criteria and loss functions do not find always
the true DGP. Thus, practitioners could make the wrong choices in these cases. Moreover, squared
residuals should not be used as a proxy of volatility ; we encourage practitioners to use different proxies,
like realized volatility. In addition, the results show that information criteria perform poorly when
LST-GARCH is the generating process.

4.1.1. Experiment 1

In this first experiment, the DGPs are MS-GARCH-K path-dependent with Gaussian innovations.
With the first set of parameters, the transition probabilities are high: there are a lot of regime switches.
The results of the selection process are presented in Table 1 row 1 and in Table 2. In this case, none
of the criteria are strongly or weakly efficient as defined by our working hypothesis. However, if we
sum the results for both MSG-GARCH-K and MST-GARCH-K, loss functions select the right model
at a rate of 71.3% for MSE, 86.1% for QLIKE and 83.7% for MAE. They come close to the weakly
efficient point. Loss functions computed with ε2t often select the wrong model whatever the process used
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to simulate the data, and thus are not efficient with this volatility proxy. What stands out is the poor
performance of information criteria. AIC does not enable us to choose between MSG-GARCH-K and
the univariate GARCH-T model, while BIC is weakly inefficient, leading to choice of a GARCH model
in 98.9% of cases.

Table 1. Summary of the results of experiments 1 and 2. A cross means that the criterion is
weakly efficient as defined in remark 1.

DGP MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

Experiment 1 and 2 with Gaussian innovations

P1
MS-K
MS-H x x x x x

P2
MS-K
MS-H x x x x x

P3
MS-K x x x x x x x x
MS-H x x x x x

P4
MS-K
MS-H x x x x x x x x

Experiment 2

γ = 0.5 LST-G
γ = 1.5 LST-G
γ = 5 LST-G

Table 2. Results of experiment 1 with MSG-GARCH-K DGP when many switches occur.
Data are generated with the transition matrix P1. The top row of the table gives the selection
criteria. The left column gives the different models. The line in grey indicates the process
which should be selected in first position by each criterion. Regime persistence and volatility
persistence are respectively δ = −0.8 and λ = 0.9228.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 7.2 3.8 0.5 0 0 0 16.6 67.8
GARCH-T 4.2 2.1 0.5 0 0 0 32.2 31.1
MSG-GARCH-H 8.0 4.9 13.2 33.5 52.2 59.2 6.6 0
MST-GARCH-H 0.4 0.6 0.6 9 5.3 2.3 0.3 0
MSG-GARCH-K 30.7 46.1 54.3 49.1 34.2 34.0 27.1 0
MST-GARCH-K 40.6 40.6 29.4 8.4 8.3 4.5 1.1 0
LST-GARCH 1.1 0.9 0.1 0 0 0 0.4 0
LST-GARCH-T 1.3 0.2 0 0 0 0 1.3 0
GJR 0.7 0.4 0.1 0 0 0 3.8 0.8
GJR-T 0.7 0.3 0.1 0 0 0 5.5 0.1
EGARCH 3.1 0.1 0.4 0 0 0 2.0 0.1
EGARCH-T 2.0 0 0.8 0 0 0 2.1 0

With the matrix P2 (Table 1 row 3, Table 3), there are fewer regime switches. AIC and BIC lead to
do the wrong choices at a respective rate of 57.9% and 94.6%. This frequency is a little bit lower than
where there are many regime switches. The second model chosen by AIC is the MSG-GARCH-H. AIC
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leads to the right choice of regime switching behavior in 82.5% of cases. The rate of regime switching
errors decreases, since we less often select the GARCH model. In contrast, BIC still selects the GARCH
Student specification at a rate of 82.3%. As in the previous case, the in-sample forecasts selection
method improves the frequency of good choices. However, these selection criteria need to be more than
weakly efficient. Loss functions computed with ε2t return good results when data are simulated with
MS-GARCH-K. The results are better than in the previous experiment: the percentage of good selection
increases for all loss functions. For example, MSE leads to 49.1% good selection with the transition
matrix P1, increasing to 74.6% with P2.

Table 3. Results of experiment 1 with MS-GARCH-K DGP when probabilities of remaining
are equal to probabilities of switching. Data are generated with the transition matrix P2.
The top row of the table gives the selection criteria. The left column gives the different
models. The line in grey indicates the process which should be selected in first position,
by each criterion. Regime persistence and volatility persistence are respectively δ = 0 and
λ = 0.9165.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0.5 0.1 0 0 0 0 0 1.8
GARCH-T 0.2 0 0.1 0 0 0 8.2 82.3
MSG-GARCH-H 24.0 17.3 23.8 13.3 21.6 19.3 21.4 5.2
MST-GARCH-H 9.3 7.0 5.4 5.6 1.7 1.5 8.4 0.2
MSG-GARCH-K 36.1 46.1 49.5 74.6 72.7 74.4 42.1 5.4
MST-GARCH-K 21.9 29.4 19.6 6.5 4.0 4.8 12.7 0.1
LST-GARCH 0 0.1 0 0 0 0 0 0
LST-GARCH-T 0.4 0 0 0 0 0 0.2 0
GJR 0.2 0 0 0 0 0 0 0.1
GJR-T 0 0 0 0 0 0 3.3 0.5
EGARCH 6.1 0 1.6 0 0 0 0 0.1
EGARCH-T 1.3 0 0 0 0 0 3.7 4.3

This improvement is accentuated when data are generated with persistent regimes. Let us consider
MSG-GARCH-K and MST-GARCH-K together. In this case, all the decision criteria are weakly efficient
(Table 1 row 5, Table 4). Specification errors is reduced to below 10%. All the selection criteria are
efficient in this case. However, if these two models are compared, the Student version may be selected
even though the data are generated with Gaussian errors.

In the fourth case, the two variances are totally different. Selection criteria lead to the choice of a
misspecified model in this case (Row 7, Table 1 and Table 5). For example, BIC selects the simple
GARCH model at a rate of 69.4% and the GARCH-T with at rate of 28.8%. The MSG-GARCH-K
is never selected by this criterion. Loss functions do not work any better. Although MSE selects,
in first position, the right model, the rate is very low (22.2%). No model is clearly selected in first
position. Under the definition in remark 1, they are all inefficient and fail to recognize the true regime
switching behavior.
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Table 4. Results of experiment 1 with MSG-GARCH-K DGP when regime-specific
variances are persistent. Data are generated with the transition matrix P3. The top row
of the table gives the selection criteria. The left column gives the different models. The line
in grey indicates the process which should be selected in first position, by each criterion.
Regime persistence and volatility persistence are respectively δ = 0.8 and λ = 0.9147.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0 0 0 0 0
GARCH-T 0 0 0 0 0 0 0 0
MSG-GARCH-H 5.1 5.5 4.4 1.9 0.1 6.4 7.9
MST-GARCH-H 3.2 4.3 1.3 0.1 0.1 0 1.7 0.2
MSG-GARCH-K 48.8 43.1 64.7 85.7 93.6 90.1 72.2 88.8
MST-GARCH-K 42.9 47.1 29.6 12.2 5.9 9.8 19.7 3.1
LST-GARCH 0 0 0 0 0 0 0 0
LST-GARCH-T 0 0 0 0 0 0 0 0
GJR 0 0 0 0 0 0 0 0
GJR-T 0 0 0 0 0 0 0 0
EGARCH 0 0 0 0.1 0 0 0 0
EGARCH-T 0 0 0 0 0 0 0 0

Table 5. Results of experiment 1 with MS-GARCH-K DGP when the first regime has a
high variance which occurs very few times. Data are generated with the transition matrix
P4. The top row of the table gives the selection criteria. The left column gives the different
models. The line in grey indicates the process which should be selected in first position,
by each criterion. Regime persistence and volatility persistence are respectively δ = 0 and
λ = 0.8888.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 8.4 5.7 5.7 0 0 0 21.9 69.4
GARCH-T 7.3 5.5 5.9 0.1 0 0.1 43.8 28.8
MSG-GARCH-H 13.8 15.5 14.5 34.7 25.8 27.2 5.3 0
MST-GARCH-H 10.0 10.3 6.0 27.6 16.8 20.2 0.2 0
MSG-GARCH-K 22.2 34.2 41.7 30.0 51.9 45.3 5.0 0
MST-GARCH-K 14.9 19.7 16.7 7.4 5.2 7.0 0.5 0
LST-GARCH 3.8 1.7 1.2 0 0 0 0.2 0
LST-GARCH-T 4.8 3.3 1.8 0.2 0.2 0 1.0 0
GJR 2.3 1.1 1.5 0 0.1 0 6.9 1.4
GJR-T 2.2 2.3 2.1 0 0 0 9.9 0.1
EGARCH 5.1 0.5 1.1 0 0 0 1.9 0.2
EGARCH-T 5.2 0.2 1.8 0 0 0.1 3.4 0.1

4.1.2. Experiment 2

In this second experiment, the DGP is now an MS-GARCH as per of Haas et al. There is a significant
contrast with the previous experiment. In the first case (row 2 of Table 1 and Table 6), information
criteria are all strongly efficient as defined by remark 1. As highlighted by Table 6, AIC and BIC select
the MSG-GARCH-H model at a rate of 93.6% and 99.4% respectively. Loss functions computed with
the true volatility ht return a selection rate of over 50%. The MSG-GARCH-H is always selected in first
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position. If the percentage selection of the MSG-GARCH-H and the MST-GARCH-H are summed, loss
functions are weakly efficient. The MST-GARCH-H model provides a very good fit with data generated
by an MSG-GARCH-H model.

Table 6. Results of experiment 2 with MS-GARCH-H DGP when many switches occur.
Data are generated with the transition matrix P1. The top row of the table gives the selection
criteria. The left column gives the different models. The line in grey indicates the process
which should be selected in first position, by each criterion. Regime persistence and volatility
persistence are respectively δ = −0.8 and λ = 0.9228.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0 0 0 0 0
GARCH-T 0 0 0 0 0 0 0 0
MSG-GARCH-H 52.3 46.9 67.8 12.2 49.8 7.8 93.6 99.4
MST-GARCH-H 45.7 45.9 30.2 7.6 7.6 2.3 6.3 5.0
MSG-GARCH-K 0.9 3.9 1.1 65.8 30.6 70.8 0.1 0.1
MST-GARCH-K 1 3.3 0.9 12.0 12.0 19.1 0 0
LST-GARCH 0 0 0 0 0 0 0 0
LST-GARCH-T 0 0 0 0 0 0 0 0
GJR 0 0 0 0 0 0 0 0
GJR-T 0 0 0 0 0 0 0 0
EGARCH 0.1 0 0 0 0 0 0 0
EGARCH-T 0 0 0 0 0 0 0 0

With matrix P2 (Table 1 row 4, Table 7), there are again no selection problems. The rate of good
selection improves in all cases. As previously, information criteria and loss functions computed with
the true volatility are largely weakly efficient. However, poor performance is observed with the loss
functions computed with the squared residuals. In these cases, there are errors in choosing between the
two MS-GARCH-type processes.

When the regimes are persistent, the results are similar to those of the previous experiment where
the DGP was the MSG-GARCH-K (Table 1 row 6, Table 8). All the criteria are efficient except when
computed with volatility proxy, which leads to the selection of the MSG-GARCH-K model.

Finally, in the last special case (Table 1 row 8, Table 9), the results are very interesting; the
MSG-GARCH-H is selected with a strong majority by loss functions. If we add the number of
selections of the MST-GARCH-H, the selection criteria based on in-sample forecasts are weakly
efficient. Information criteria seem to select the true DGP. AIC is near the strongly efficient point (89.9 %
of correct selection). BIC selects the MSG-GARCH-H at a rate of 74.9%. However, it also selects the
GARCH-T model in 21.8 % of replications. The poor performance of squared residuals as a proxy of
volatility is again evident.
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Table 7. Results of experiment 2 with MS-GARCH-H DGP when probabilities of remaining
are equal to probabilities of switching. Data are generated with the transition matrix P2.
The top row of the table gives the selection criteria. The left column gives the different
models. The line in grey indicates the process which should be selected in first position,
by each criterion. Regime persistence and volatility persistence are respectively δ = 0 and
λ = 0.9165.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0 0 0 0 0
GARCH-T 0 0 0 0 0 0 0 0
MSG-GARCH-H 57.9 54.6 76.8 34.2 57.2 39.0 94.9 99.2
MST-GARCH-H 41.1 39.5 19.1 5.1 3.2 2.8 5.0 0.6
MSG-GARCH-K 0.7 3.2 3.7 53.4 36.8 54.1 0.1 0.2
MST-GARCH-K 0.2 2.7 0.4 7.3 3.3 4.1 0 0
LST-GARCH 0 0 0 0 0 0 0 0
LST-GARCH-T 0 0 0 0 0 0 0 0
GJR 0 0 0 0 0 0 0 0
GJR-T 0 0 0 0 0 0 0 0
EGARCH 0 0 0 0 0 0 0 0
EGARCH-T 0 0 0 0 0 0 0 0

Table 8. Results of experiment 2 with MSG-GARCH-H DGP when regime specific
variances are persistent. Data are generated with the transition matrix P3. The top row
of the table gives the selection criteria. The left column gives the different models. The line
in grey indicates the process which should be selected in first position, by each criterion.
Regime persistence and volatility persistence are respectively δ = 0.8 and λ = 0.9147.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0 0 0 0 0
GARCH-T 0 0 0 0 0 0 0 0
MSG-GARCH-H 59.9 64.6 79.2 48.7 19.1 35.9 97.9 99.8
MST-GARCH-H 39.5 32.8 19.1 13.1 2.8 7.5 2.0 0
MSG-GARCH-K 0.6 1.8 1.7 31.2 73.0 50.0 0.1 0.2
MST-GARCH-K 0 0.1 0 6.9 5.1 6.6 0 0
LST-GARCH 0 0 0 0.1 0 0 0 0
LST-GARCH-T 0 0 0 0 0 0 0 0
GJR 0 0 0 0 0 0 0 0
GJR-T 0 0 0 0 0 0 0 0
EGARCH 0 0 0 0 0 0 0 0
EGARCH-T 0 0 0 0 0 0 0 0
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Table 9. Results of experiment 2 with MSG-GARCH-H DGP when the first regime has a
high variance which occurs very few times. Data are generated with the transition matrix
P4. The top row of the table gives the selection criteria. The left column gives the different
models. The line in grey indicates the process which should be selected in first position
by each criterion. Regime persistence and volatility persistence are respectively δ = 0 and
λ = 0.8888.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0 0 0 0 0
GARCH-T 0 0 0 0 0 0 1.3 21.8
MSG-GARCH-H 88.2 82.0 87.2 73.0 83.6 64.2 89.9 74.9
MST-GARCH-H 8.8 8.7 5.3 13.5 3.8 5.9 1.8 0.1
MSG-GARCH-K 3.0 9.3 7.5 13.2 12.5 29.7 6.3 3.0
MST-GARCH-K 0.1 0 0 0.2 0.1 0.2 0 0
LST-GARCH 0 0 0 0 0 0 0 0
LST-GARCH-T 0 0 0 0 0 0 0 0
GJR 0 0 0 0 0 0 0 0
GJR-T 0 0 0 0 0 0 0.6 0.1
EGARCH 0 0 0 0.1 0 0 0 0
EGARCH-T 0 0 0 0 0 0 0.1 0.1

4.1.3. Experiment 3

We report the results of this experiment in the last three rows of Table 1, Tables 10, 11, and 12. None
of the selection criteria are efficient when γ is low. However, in this case, loss functions computed with
the true volatility yield the best results: roughly 40% correct selection for MSE, QLIKE and MAE loss
functions, regardless of the assumption on distribution. The volatility proxies are clearly inefficient and,
importantly, they lead to selection of an MS-GARCH-type process in about 80% of cases. Information
Criteria also lead the wrong choice of model. BIC is strongly inefficient since it selects a GARCH(1,1)
model at a rate of 96.3%. The non-linear effect affecting conditional volatility is not recognized in
this case.

When γ = 1.5, the logistic function is less smooth (red line in Figure 1). Results are presented in
Table 11. Loss functions computed with the true volatility have a good selection rate roughly 80%. Thus,
they are close to the weakly efficient point. However, they still perform poorly when we use ε2t . The
information criteria again fail to select the true DGP, selecting the LST-GARCH model in only 23.4% of
cases for AIC and 1.3% for BIC. All the other univariate GARCH-type models are selected in preference
to the LST-GARCH, especially the GJR.

The number of GJR selections with both AIC and BIC is shown to increase when γ increases
(Table 12). There is also a large non-negligible number of selections of the EGARCH model. Moreover,
the performance of MSE and MAE loss functions computed with ht tends to be worse when γ = 5.
Despite this, errors are not made on the asymmetric effect presents in the conditional volatility. The
selection criteria never select Markov switching models, except for the volatility proxy loss functions.
This experiment shows that when γ is not large enough, the asymmetric behavior of the conditional
volatility may not be detected. Moreover, when γ is too large, the GJR model is a good choice because
it avoids the estimation issues encountered with the LST-GARCH.
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Table 10. Selection results of experiment 3 with a smooth logistic function. Data are
generated with a LST-GARCH model with γ = 0.5. The top row of the table gives the
selection criteria. The left column gives the different models. The line in grey indicates the
process which should be selected in first position, by each criterion. The volatility persistence
is λ = 0.825.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 4.3 9.9 6.9 0.1 0 0 56.2 96.3
GARCH-T 4.0 8.8 6.4 0.3 0 0.2 2.6 0.2
MSG-GARCH-H 1.8 2.2 4.0 29.6 21.9 13.7 1.3 0
MST-GARCH-H 2.8 2.5 5.2 1.5 3.5 25.0 0 0
MSG-GARCH-K 1.1 1.9 2.3 41.8 61.3 45.2 4 0
MST-GARCH-K 4.3 7.5 6.5 3.9 3.4 5.1 0 0
LST-GARCH 30.9 32.3 27.3 7.3 2.5 1.9 3.5 0
LST-GARCH-T 16.7 11.1 18.8 6.0 4.6 1.9 0.1 0
GJR 14.5 10.0 9.9 1.4 1.9 0.9 26.5 3.3
GJR-T 14.8 13.5 11.4 1.1 0 0.3 1.0 0
EGARCH 2.2 0.2 0.8 3.9 0.8 3.0 8.0 0.2
EGARCH-T 2.6 0.1 0.5 3.1 0.1 2.8 0.4 0

Table 11. Selection results of experiment 3 with a smooth logistic function. Data are
generated with a LST-GARCH model with γ = 1.5. The top row of the table gives the
selection criteria. The left column gives the different models. The line in grey indicates the
process which should be selected in first position, by each criterion. Volatility persistence is
λ = 0.825.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0.1 0 0 7.4 34.8
GARCH-T 0.1 0.4 0.1 0.2 0 0 0.6 0
MSG-GARCH-H 0 0.2 0.1 28.0 25.1 14.1 0.1 0
MST-GARCH-H 0 0.1 0.1 0.6 1.9 23.9 0 0
MSG-GARCH-K 0.1 0.2 0 31.9 58.9 41.8 0.1 0
MST-GARCH-K 0.1 0.4 0 3.2 4.0 4.2 0 0
LST-GARCH 43.4 63.5 43.1 10.4 5.3 3.2 23.4 1.3
LST-GARCH-T 33.0 19.8 34.5 8.0 2.3 1.8 2.0 0
GJR 9.7 6.0 9.2 1.5 1.2 1.2 46 41.3
GJR-T 11.1 9.3 10.8 2.7 0 0.9 3.0 0.1
EGARCH 1.4 0.7 1.3 5.9 1.2 4.7 16.3 22.5
EGARCH-T 1.1 0.4 0.8 7.5 2 4.2 1.1 0
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Table 12. Selection results of experiment 3 with a smooth logistic function. Data are
generated with a LST-GARCH model with γ = 5. The top row of the table gives the selection
criteria. The left column gives the different models. The line in grey indicates the process
which should be selected in first position, by each criterion. The volatility persistence is
λ = 0.825.

MSE(ht) QLIKE(ht) MAE(ht) MSE(ε2t ) QLIKE(ε2t ) MAE(ε2t ) AIC BIC

GARCH 0 0 0 0.1 0 0 0 0.1
GARCH-T 0 0 0 0 0 0 0 0
MSG-GARCH-H 0 0 0 33.4 33.2 22.8 0 0
MST-GARCH-H 0 0 0 0.8 1.0 19.7 0 0
MSG-GARCH-K 0 0 0 30.0 47.3 37.0 0 0
MST-GARCH-K 0 0 0 4.4 5.4 3.9 0 0
LST-GARCH 48.0 62.8 49.5 7.2 3.8 2.4 28.9 1.8
LST-GARCH-T 19.6 26.0 26.3 8.8 8.4 6.3 1.3 0
GJR 18.1 5.3 13.5 6.3 0.8 3.2 55.8 92.8
GJR-T 14.3 5.9 10.7 8.4 0.1 4.5 3.1 0.3
EGARCH 0 0 0 0.4 0 5.7 10.9 5.0
EGARCH-T 0 0 0 0.2 0 0.2 0 0

4.2. Discussion

To summarize the results presented in Section 4.1, we point out three main selection issues. The first
one is whether Student models can outperform Gaussian models for in-sample forecasts. The second is
that information criteria perform poorly in some special cases. Finally, we find that squared standardized
residuals are a bad proxy for volatility when making in-sample forecasts.

The first issue is interesting. Since the Student distribution tends to the Gaussian distribution when
the degree of freedom tends to infinity, it is not surprising that the MST-GARCH can fit MSG-GARCH
data well. Moreover, there is no problem with interpretation. Even when a misspecification error is made
on the distribution, it does not impact regime switching behavior.

We propose two possible explanations for the poor results obtained with some selection criteria.
First, when two processes are similar, the likelihood of model misspecification may be higher. The
likelihood value is the principal component of information criteria. MS-GARCH processes with P1

are anti-persistent since λ = −0.8 and the probabilities of switching are equal to 0.9. In asymmetric
models, regime switches are deterministic and depend on a transition function. Thus, the equation for
ht changes in each period and the probability of switching is equal to one. It is not surprising that the
univariate model fits well with MS-GARCH processes with a transition matrix of the form of P1. As
shown by Guegan and Rioublanc [38], MS-GARCH models with this type of persistence have a similar
autocorrelation function to the GARCH process. Moreover, the loss functions work better for the simple
reason that the number of parameters impact the information criteria.

A second possible explanation is that, in mixture models, when there is a very small class that is hard
to identify or when two classes are very similar, estimation may be less efficient, as pointed out by [39].
This is observed from the results of Tables 2, 5, 6, 9, Figures 2 and 3. The four tables correspond to
cases where the long-run probabilities are low for at least one regime. Figure 2 gives box plots for
each parameter of MSG-GARCH models when the model estimate corresponds to the DGP. This figure
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highlights the poor estimation efficiency of MSG-GARCH-K parameters when the transition matrices
are P1 or P4. Estimations are around the DGP values for both MS-GARCH models, but the variance
is higher with MSG-GARCH-K (Figures 2(a) and 2(b)). Moreover, there are more extreme values
in this latter process, particularly for the estimation of transition probabilities. With P3, estimation
errors are less frequent. Figure 3 represents the non-parametric density estimation14 of the simulated
conditional volatility processes f̂(ht) (solid lines) and the estimated conditional volatility processes
f̂(ĥt) (dash-dash lines), for one replication15 with f the probability density function. Figure 3 shows the
differences between the non parametric density functions when we use P1 and P3. They point to a large
difference between the two MSG-GARCH models, which can be explained by the construction of the
MSG-GARCH-K. Although the computation of past conditional variance depends only on the previous
state, ht is dependent on all the previous regimes. In the MSG-GARCH-H, regime-specific variances are
totally independent. That is why both simulated MSG-GARCH-H volatility processes exhibit bimodal
densities (blue solid line). Moreover, f̂(ĥt) seems to fit well f̂(ht). With MS-GARCH-K processes,
f̂(ht) functions (red solid lines) also have two modes but they are less apparent and wider. This is
probably due to path-dependence behavior. Although the approximation of Klaassen is attractive, it
sometimes fails to adequately fit the overall volatility time series of the path-dependent MSG-GARCH-K
model; we can see that f̂(ĥt) (red dash-dash line) does not exhibit the two modes when the regimes
switch a lot (Figure 3(a)). Of course, these figures represent only one replication, but things are very
similar for the others. All this illustrates why BIC does not choose the right model (results of Tables 2,
3 and 7): if the regimes are not properly identified, the estimation will be less accurate and the value of
the likelihood function lower. Thus, AIC and BIC have higher values and become inaccurate in selecting
the model. The loss functions computed with the true volatility are not affected by the likelihood value
and are more efficient than the information criteria.

Finally, the impact of using ε2t differs depending on the loss function and the DGP. For example,
the frequency of good choices indicated by the QLIKE loss function decreases when regimes become
more persistent and the DGP is the MSG-GARCH-H, whereas it increases when the DGP is the
MSG-GARCH-K. However, this proxy works better than information criteria when data are simulated
by MSG-GARCH-K. Other proxies which are unbiased and contain much more information should
give better results, so we encourage practitioners to use them to estimate RS-GARCH models. Similar
remarks are made in [36,37,40] regarding the selection of models using an out-sample forecasts
approach. The authors cited above recommend the realized volatility for example.

Our two experiments yield three main findings: first, when data are simulated in the sense of Haas,
information criteria are a powerful means of selecting the right model. Secondly, loss functions seem
to work well when the DGP is MSG-GARCH-K. Finally, although ε2t is not a good proxy, it gives good
results when data are generated in the sense of Klaassen. Our results also highlight the strong impact
that estimation has on the efficiency of these criteria.

14 Estimation computed with Gaussian kernel and Silverman’s rule of thumb.
15 Figure 3(a) is related to the 40th replication of the first and the second experiments with matrix P1, BIC selects the right

specification when data are simulated with MSG-GARCH-H but it selects the GARCH model for data simulated with
MS-GARCHG-K. Figure 3(b) is related to the 66th replication of the first and second experiments with P3 where there is
no selection problem.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Box plots of MSG-GARCH parameter estimations. (a) MS-GARCH-K with
P1; (b) MS-GARCH-H with P1; (c) MS-GARCH-K with P2; (d) MS-GARCH-H with
P2; (e) MS-GARCH-K with P3; (f) MS-GARCH-H with P3; (g) MS-GARCH-K with P4;
(h) MS-GARCH-H with P4.
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(a) (b)

Figure 3. Non-parametric density estimation of the simulated and estimated conditional
volatility for one replication in Experiment 1 and 2. (a) Transition matrix P1; (b) Transition
matrix P3.

With the third experiment, our framework reveals estimations of α2 and γ to be very imprecise,
as represented in Figure 4. This Figure gives the non-parametric density estimation16 of α2 and γ

for the three cases that we investigate. Figure 4(a) shows that α2 is very poorly estimated when the
transition parameter is low; although there is a mode around 0.55, the true value of α2, a second
mode appears around 0.1. More surprisingly, there is a third mode around −0.55, i.e., we sometimes
estimate an opposite asymmetric effect. A plausible explanation is that when the transition parameter
is low, the logistic function is substantially flatter. As a result, estimating the coefficient attached to the
logistic function and transition parameter is harder. Figures 4(c) and 4(e) show that estimation works
better when γ increases. Figures 4(b), 4(d) and 4(f) give the non-parametric density estimations of γ.
They highlight the well-stylized fact that QML is not an accurate means estimating of this parameter.
Despite this estimation problem, regime selection is good; on average, the criteria select at least the right
regime switching behavior: MS-GARCH models do not capture the continuum of regimes introduced
by Gonzalez-Rivera [13]. However, the GJR model adequately fits the LST-GARCH process. As
for using squared residuals as a proxy for volatility, we do not recommend this any more than in the
previous experiment.

16 Estimation computed with Gaussian kernel and Silverman’s rule of thumb.
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(a) α̂2 (b) γ̂

(c) α̂2 (d) γ̂

(e) α̂2 (f) γ̂

Figure 4. Non-parametric density estimation of α2 and γ for the three sets of parameters.
(a,b) correspond to the first set γ = 0.5; (c,d) correspond to the second set γ = 1.5; and
(e,f) correspond to the third set γ = 5.
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5. Conclusions

This paper presents simulation results regarding the properties of model selection criteria in a regime
switching conditional volatility framework. Such models are often difficult to estimate due to their
complex forms, posing a number of challenges, MS-GARCH models need to estimate many parameters.
ST-GARCH models need to estimate a transition parameter, which is complicated. For example, Chan
and McAleer [41] investigate the finite sample properties of MLE for Smooth Transition Autoregressive
models (STAR) with GARCH component models. They show that the variability of the threshold value
depends on the magnitude of unconditional shocks for the Logistic STAR model. They also examine
misspecification on the transition function. Moreover, estimation by QML is know to be very sensitive
to starting values.

This article contributes to three strands of the literature. First, we show that it is rare to make
an error in the selection of regime switching behavior. Selection criteria manage to distinguish well
between stochastic and deterministic switches in most cases. However, Information Criteria could lead
practitioners to make the wrong choice between stochastic and deterministic regime switches. Loss
functions computed with true volatility are more suitable for this purpose. The second contribution of
this work concerns the selection of models based on selection criteria such as AIC, BIC or in-sample
forecast performance. Through statistical analysis, we provide empirical evidence that results obtained
using these selection criteria are directly impacted by estimation performance. Proper estimation of
these models is important, and although regime switching GARCH models provide good indicators to
explain the financial crisis17, selection needs to be made with great care. Estimation methods other than
QML are available, like Bayesian or GMM estimations. However, with MS-GARCH models, ML is the
one most commonly used in empirical work. Finally, we examine in-sample forecasts and show that the
noisy proxy of squared returns is, in a lot of cases, not a good choice when selecting a volatility model.

In the first experiment, data are simulated following MSG-GARCH-K models with many transition
matrices. Results show that BIC could lead to a majority selection of GARCH and LST-GARCH models
when the regimes are not persistent or one of them occurs too often. In the same way, AIC selects
MSG-GARCH-H. Loss functions improve model selection accuracy when computed with simulated
volatility. Like many other authors, we find that squared errors are a very imprecise proxy for true
volatility and these selection criteria do not lead to good results. In the third experiment, the underlying
processes are LST-GARCH with different transition parameters. We show that the selection process is
difficult when the transition parameter is not large enough or when it is too large. The GJR model may
be a good candidate for such model estimations.

Our findings here reflect the complex nature of regime switching GARCH models, implying that
practitioners need to perform careful before using this type of model.

17 Brunetti et al. [42] detect currency turmoil in southeast Asia with MS-GARCH models. Chang [43] uses
Markov-Switching model to argue that macroeconomic variables have regime-dependent effects on stock return dynamics.
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