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Abstract. We analyze the effects of automation and education on eco-

nomic growth and inequality in an R&D-based growth model with two

types of labor: high-skilled labor that is complementary to machines and

low-skilled labor that is a substitute for machines. The model predicts

that innovation-driven growth leads to increasing automation, an increas-

ing skill premium, an increasing population share of college graduates,

increasing income and wealth inequality, and a declining labor share.

In contrast to conventional wisdom, our theory predicts that faster eco-

nomic growth promotes inequality. Because education and technology

are endogenous, redistribution to low-skilled individuals may actually

not improve disposable low-skilled income, irrespective of whether it is
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1. Introduction

Common wisdom in growth and labor economics suggests that technological progress is

labor-augmenting. Technological progress developed by market R&D and incorporated into

new machines is intended to complement human work effort and to make workers more pro-

ductive (see, for example, Jones, 2005). In this paper, we look at the dark side of R&D-driven

technological change. We consider a situation where new technologies complement only high-

skilled workers but substitute for low-skilled workers.

In contrast to other recent studies on automation and growth (to be discussed below),

we consider an overlapping generations structure of the population and focus on endogenous

education and inequality within and across generations. Since (at least at the current state of

technology) high-skilled labor is more difficult to automate than low-skilled labor, people may

avoid the downsides of technological progress and enjoy its benefits by upgrading their skills.

We show that an increase in skill premium due to automation motivates an increasing share of

people to obtain higher education in the form of a college degree. However, in a heterogeneous

society, not everybody is able or willing to obtain higher education. Due to effort constraints,

some individuals do not to acquire higher education and are left behind. In this way, R&D-

based growth leads to increasing income and wealth inequality from one generation to the

next and, in an extension of the model, to increasing involuntary unemployment of low-skilled

individuals.

The most popular discussion of skill-biased technological progress is perhaps provided by

Goldin and Katz (2009), who argue that America has lost the “Race between Education and

Technology” because highschool completion rates have stagnated since the 1950s. However, as

emphasized by Acemoglu and Autor (2009), this loss is relative because the underlying model

assumes that low-skilled labor also benefits from innovation but “only” to a lesser degree than

high-skilled labor. Here, in contrast, we conceptualize individuals with tertiary education (a

college degree) as high-skilled workers. These workers are complements to machines and

their wages as well as their share in the workforce continued to increase throughout the 20th

century. The race against technology is lost by those individuals who do not to obtain a

tertiary education and thus do not benefit from innovation and technological change.

Another important distinction from Goldin and Katz (2009) is that, in their study, educa-

tion and technology are treated as being exogenous such that, in principle, education could

win the race against technology. In our framework, by contrast, both forces are endogenous.

Skill-biased technical change promotes education and more education, in turn, leads to more

R&D, more innovation, and further advancements of technology. The outcome that education

fails to keep pace with increasing skill-biased technological change is derived from the fact
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that technology advances perpetually, approaching a balanced growth path in infinite time,

while the labor share of high-skilled individuals approaches an upper limit in finite time.

The idea of labor-substituting technological progress has been popularized by Brynjolfsson

and McAfee’s (2011) book on another race, the “Race against the Machine”. Brynjolfsson

and McAfee claim that technological progress, understood as automation, makes people more

innovative, productive, and richer but at the cost of increasing unemployment and (wealth)

inequality in society. Early quantitative evidence for this view stems from Berman et al.

(1998), who show that around 70 percent of the decline in production workers’ share of

the wage bill can be explained by R&D and computerization. More recently, Graetz and

Michaels (2016) provide evidence that industrial robots lead to a reduction in the demand for

low-skilled labor; Frey and Osborne (2017) argue that the average educational attainment of

an occupation and the probability of this occupation to be automated are highly negatively

correlated; Arntz et al. (2016) explain that low-skilled workers perform tasks that are typically

much easier to automate than the tasks performed by high-skilled workers; and Acemoglu and

Restrepo (2017) find that the increase in industrial robots in U.S. manufacturing had large

negative effects on wages and employment across commuting zones with the strongest wage

effects on workers with a high school education or less.

To curb rising inequality of living standards, it is seemingly attractive to transfer income

to the losers from automation, perhaps in the form of unconditional transfers financed by

progressive labor income taxation or by taxing machine input, i.e., by imposing a so-called

robot tax (Shiller, 2017; Guerreiro et al., 2017; Gasteiger and Prettner, 2017). Here, we inves-

tigate the impact of these policies when both education and technology are endogenous. We

show that redistribution, aside from its repercussions on innovation and growth, may actually

harm disposable income of low-skilled individuals, at least in the short and medium run. The

reason is that both a robot tax and a progressive income tax reduce the potential income gain

from higher education, which leads to a larger population share of low-skilled individuals. As

a result, increasing low-skilled labor supply depresses the wage for low-skilled workers. By the

same general equilibrium argument, low-skilled wages could benefit from a subsidy for higher

education. Due to the induced additional uptake of higher education, low-skilled labor supply

declines and low-skilled wages increase. Redistribution to low-skilled workers improves their

disposable income unambiguously only when higher education is stationary.

Rising inequality may also trigger rising unemployment. To investigate this idea, we inte-

grate Akerlof and Yellen’s (1990) fair wage theory into an extension of the model. Automa-

tion increases the productivity and income of high-skilled workers but leaves productivity of

low-skilled workers unchanged. If low-skilled workers would receive “neoclassical” wages ac-

cording to their marginal product under full employment, they would perceive the increasing
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inequality as unfair and would not exert full effort at work. To elicit full effort, firms might

let low-skilled workers participate in the productivity gains from automation and adjust their

employment accordingly, causing involuntary unemployment among low-skilled workers. This

mechanism, however, does not necessarily imply that unemployment increases with automa-

tion. The reason for this perhaps unexpected result is that automation also increases the

skill premium and induces more higher education such that the supply of low-skilled labor

declines. With both the supply and demand of low-skilled labor contracting, the effect on

unemployment is ambiguous. Only when education is stationary, automation and fair wage

concerns imply unambiguously rising unemployment.

Some recent articles have investigated automation in the context of long-run development.

Hémous and Olsen (2016) and Acemoglu and Restrepo (2016) are perhaps most closely related

to our contribution. Like us, both studies focus on R&D-based innovations and inequality in

the process of economic growth. In both studies, the household side of the economy is simpler

than in our case because there is no education decision and skills are taken as given by the

infinitely living (representative) individual. The production side, however, is more complex in

both studies. Specifically, final goods are assumed to be produced by a variety of intermediate

goods (Hémous and Olsen) or a variety of tasks (Acemoglu and Restrepo). Varieties are

produced by labor and potentially by (low-skilled) labor replacing machines. R&D generates

new varieties that start out as un-automated. Firms may then make investments in order to

automate the production of their intermediate good. As a result, (low-skilled) wages benefit

from R&D-based innovations. In this setup, more productive automation could even raise

(low-skilled) wages because it encourages more R&D. It is perhaps fair to say that both

theories focus on the production side of the economy and on the question of under which

conditions (low-skilled) workers could gain from automation. This justifies a rather stylized

household side of the economy. In particular, the race between education and technology, and

the impact of redistribution policies are not discussed.

While Hémous and Olsen and Acemoglu and Restrepo assume that R&D creates new inter-

mediate inputs or tasks in production that start out un-automated, we conceptualize R&D as

the process that creates the very machines that substitute for low-skilled labor in production.

Acknowledging that R&D probably generates both un-automated new tasks and machines

that substitute for low-skilled labor, our theory complements the existing literature. It is

simpler and provides a less benign view on the role of R&D, which we think is more appropri-

ate to address inequality concerns and their suggested remedies. Moreover, the implications

seem to be more in line with the recent empirical findings of Acemoglu and Restrepo (2016)

for the U.S.

3



An earlier related study is provided by Krusell et al. (2000), who discuss capital-skill com-

plementarity and inequality in a growth model without R&D and TFP growth. Growth is

driven by the accumulation of equipment capital, which substitutes low-skilled labor and

augments high-skilled labor. The study focuses on mechanisms on the production side of the

economy and considers neither household decisions nor redistribution policies.

Sachs and Kotlikoff (2012) provide a model that discusses, like us, the interaction between

automation and education in an overlapping generations context. However, their framework

as well as their conclusions are different from ours. In their framework, all individuals are

assumed to start their working life as being low-skilled and may later in life invest in educa-

tion and physical capital. When exogenous technical advances increase the productivity of

machines that substitute for low-skilled labor, young individuals respond by investing less in

education. Instead of a race between education and technology, the study thus investigates a

case where the two “runners” move in opposite directions.1

The interaction between technology, wages, and education relates our paper to the unified

growth literature, where one of the core mechanisms is the rise of education triggered by

technological progress (Galor and Weil, 2000; Galor and Moav, 2002; Galor, 2005; 2011). In

contrast to this literature, we focus on tertiary education, R&D-based growth, and automa-

tion through new technologies. In an earlier study (Strulik et al., 2013), we constructed an

overlapping generations version of the Romer (1990)–Jones (1995) R&D-based growth model

with an endogenous education and fertility decision to discuss long-run adjustment processes.

However, we did not consider automation and the evolution of inequality.

Our paper also contributes to the long-standing debate on the interaction between in-

equality and economic growth. While the earlier theoretical literature focused mainly on

the causality running from inequality to growth, where empirical studies found a negative

association (Persson and Tabellini, 1994; Alesina and Rodrik, 1994; Aghion et al., 1999), the

literature related to skill-biased technical change (cited above) argues in favor of the causal-

ity running from growth to inequality and suggests a positive association. Recently, Piketty

(2014) has popularized the view that economic growth reduces inequality in the context of

the neoclassical growth model. Here, we argue that R&D-based growth theory in conjunc-

tion with automation provides a “non-Pikettarian” result: ceteris paribus, faster growth is

predicted to lead to more inequality in labor income and wealth. This finding, however, does

1 Other, for various reasons, less related studies on automation and macroeconomic performance are provided
by Zeira (2006), Steigum (2011), Peretto and Seater (2013), Benzell et al. (2015), Sachs et al. (2015),
Abeliansky and Prettner (2017), Gasteiger and Prettner (2017), and Prettner (2017). Most of these studies
do not explain technological progress endogenously. Exceptions are Zeira (2006) and Peretto and Seater
(2013), which, however, do not address inequality issues and redistribution.
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not imply that there is no threat from automation when the growth rate of factor produc-

tivity declines. As long as R&D-based growth is positive, automation causes inequality to

rise. Along the transition, we can then observe a negative association between growth and

inequality because growth is declining, while inequality is on the rise. We show this outcome

by simulating a calibration of the model with U.S. data.

The paper proceeds as follows. In the next section, we set up the basic model of R&D-

driven automation. In Section 3, we take the education system as given and provide a series

of analytical results on economic growth and various aspects of inequality along the balanced

growth path. The full model with growth–education interaction is investigated in Section

4. We discuss two alternative scenarios, a conventional adjustment path, where the economy

gradually converges towards positive balanced growth and an alternative scenario, where TFP

growth is mildly declining. While our main results hold true in both scenarios, the second

scenario is better suited to capture long-run trends of growth, education, and inequality. We

use this version to investigate the various forms of redistribution policies mentioned above.

In Section 5, we extend the model by fair wage concerns and involuntary unemployment of

low-skilled workers. Section 6 concludes the paper.

2. The Model

2.1. Basic Assumptions. Consider an overlapping generations economy in which individu-

als live for two periods. Individuals enter the economy as young adults and are equipped with

secondary education (high school or less). Young adults are endowed with one unit of time

and decide whether or not to spend a certain amount η of their available time studying in

order to acquire greater skills in the form of a college degree or more. The remaining time of

young adulthood is supplied on the labor market. Young adults save for the second period of

their life, when they are retired. After the second period, individuals die with certainty. Time

t evolves discretely with each time step capturing one generation. The working population

is of size Lt and supposed to be constant. In an earlier version of this paper (Prettner and

Strulik, 2017), we showed that the main results also hold when there is a growing population.

Employing the argument of finite space on earth, it can be argued that the only meaning-

ful long-run steady state is associated with a stationary population (Strulik, 2005). Since

population is exogenous, we therefore assume it to be constant at all times.2

Individuals are heterogeneous with respect to their ability to graduate from college, which

is expressed as the disutility (or effort) entailed by studying. As a result, the society is

divided into high-skilled and low-skilled workers: high-skilled labor, denoted by LH,t, is, as

2See Strulik and Weisdorf (2008) for a unified growth model that endogenously generates convergence towards
a stationary population.
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conventionally assumed, complemented by machines, whereas low-skilled labor, denoted by

LL,t, is substituted by machines. For simplicity, we ignore the potential automation of some

high-skilled jobs by artificial intelligence. Including this feature would provide more realism

to our stylized model but would not change the main mechanisms and the results.

There are three production factors, the two types of labor described above and physical

capital in the form of machines and robots. Low-skilled workers can only be employed in the

final goods sector for tasks that can also be performed by machines. High-skilled workers

can be employed as workers in the final goods sector responsible for tasks that cannot be

easily automated or as workers in the R&D sector for developing new technologies (engineers

and scientists). In the basic model, we ignore the possibility of involuntary unemployment

such that all labor markets are cleared. A government taxes wage income and/or the use of

machines (i.e., it imposes a “robot tax”) at a constant rate and uses the revenue for lump-sum

redistribution to the workforce.

2.2. Individuals. Individuals experience utility from consumption in working age and old

age. In period t, the remaining lifetime utility of working-age individuals of type j = L,H is

given by

ut = log(cj,t) + β log(R̄sj,t)− v(a, η̃), (1)

where cj,t is consumption of young adults, β is the discount factor, and R̄ is the gross interest

rate on savings sj,t such that cj,t+1 = R̄sj,t refers to consumption in the second period of life.

For simplicity, we assume that the economy is comparatively small and open to international

capital flows to an extent that the interest rate is determined at the world market.

Higher education requires a constant investment of time such that the time spent on educa-

tion is η̃ = 0 without tertiary education and η̃ = η with tertiary education, where 0 < η < 1.

Realistically, not all members of a society are willing or capable to obtain a college degree.

We model this aspect conveniently by assuming that individuals are of idiosyncratic ability

a and that the disutility (or effort) to be incurred by higher education is declining in a. For-

mally, the disutility of education is denoted by v with v(a, 0) = 0, v(a, η) = v(a) > 0, and

∂v/∂a < 0. Moreover, there exists a pole for ability, lima→ā>0 v = ∞, which captures the

notion of a lower bound of ability below which graduation from college is associated with

infinite disutility (or requires infinite effort). Consequently, there are always some individuals

in society who remain without a college degree.3

3As an alternative to assuming a constant time cost of tertiary education and ability affecting disutilty, we
could have assumed that the time needed to obtain a college degree depends on ability. This would qualitatively
provide the same results at the micro level. At the macro level, however, it would counterfactually imply a
secular increase of the average time to graduation when the skill premium rises.
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Let wj denote the wage per unit of labor supply of type j = L,H, τw the tax rate on wage

income, and Tj the lump-sum transfers to type j. The budget constraint that each individual

faces is then given by

(1− τw)(1− η̃)wj,t + Tj = cj,t + sj,t. (2)

Maximizing utility (1) subject to the budget constraint (2) leads to optimal consumption and

optimal savings as

cj,t =
(1− τw)(1− η̃)wj,t + Tj

1 + β
, sj,t =

β(1− τw)(1− η̃)wj,t + Tj
1 + β

, (3)

where β/(1 + β) is the savings rate of both types of workers.

2.3. Education Decision. By inserting (3) into (1), we obtain the indirect utility function

conditioned on education. Individuals compare utility with and without a college degree and

obtain higher education if

v(a) ≤ (1 + β) log

[

(1− τw)(1− η)wH,t + TH
(1− τw)wL + TL

]

≡ w̃t, (4)

in which w̃t denotes the net skill premium in terms of utility. Suppose ability is distributed

in the interval (0, 1). Let a∗t denote the ability level at the threshold, i.e., where (4) is fulfilled

with equality. Then,

v−1(w̃t) = a∗t . (5)

By applying the formula for the differentiation of inverse functions, we have (v−1)′ < 0 and

limw̃t→∞ = ā. Moreover, logic requires that v−1(0) = 1 such that nobody acquires higher

education when there is no skill premium. Figure 1 shows the implied shape of the v−1(w̃)

curve, i.e., the threshold for higher education. At a given level w̃t, individuals with ability a∗t
or higher obtain tertiary education. Individuals with lower ability remain low-skilled.

2.4. Final Goods Production. The production side of the economy builds upon Romer

(1990) and Jones (1995). Aggregate output is produced with physical capital in the form of

machines and with both types of labor according to the production function

Yt = L1−α
H,Y,t

(

Lα
L,t +

At
∑

i=1

xαi,t

)

, (6)

where LH,Y,t is the part of high-skilled labor that is employed in the final goods sector, xi,t

are machines of the specific type i, α ∈ (0, 1) denotes the elasticity of output with respect to

human labor that can easily be automated, and At is the stock of specific blueprints available

for the associated machines of type i, i.e., it represents the technological frontier of the country
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Figure 1: The Education Threshold
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Individuals with ability a below the threshold a∗
t

=
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[1− a∗

t
]Lt individuals with higher education.

under consideration. We conceptualize technological progress (a growing technological frontier

A, which is TFP growth) as an increase in the variety of machines in the production process.4

Let pi,t denote the net price of a unit of a machine of type i and τR the ad-valorem tax on

machine input in production (the robot tax). The factor rewards are then given by

wH,Y,t = (1− α)L−α
H,Y,t

(

Lα
L,t +

At
∑

i=1

xαi,t

)

⇔ wH,t = (1− α)
Yt

LH,Y,t

, (7)

wL,t = α(LH,Y,t/LL,t)
1−α, (8)

(1 + τR)pi,t = αL1−α
H,Y,tx

α−1
i,t , (9)

The key difference with respect to the conventional growth literature is that technological

progress (rising A) has a different impact on the two types of labor. As commonly assumed,

it increases the productivity of complementing labor LH and is in this sense quasi labor-

augmenting. However, it leaves the productivity of substitutable labor LL unaffected such

that the relative importance of this type of labor declines with technological progress.

The key difference to related studies on automation (Acemoglu and Restrepo, 2016; Hemous

and Olson, 2016) is that we provide an aggregate view according to which machines do not

replace low-skilled labor in aggregate production. In our notation, the alternative view would

be formalized by a production function Yt = L1−α
H,Y,t

(

LL,t +
∑At

i=1 xi,t

)α

and, depending on

factor prices, production would employ either machines or low-skilled labor. Obviously, this

4 Alternatively, we could have used a quality-ladder model (following Aghion and Howitt, 1992), which, in
reduced-form, would be equivalent to the variety approach.
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approach requires a disaggregated view on the production process, where labor-replacing

machines are only available in some sectors of the economy.

Here, in contrast, low-skilled labor is always in demand. Intuitively, when new varieties of

machines enter the production process (A rises) and perform tasks formerly performed by low-

skilled labor, low-skilled workers find employment elsewhere in the economy. We thus maintain

the notion of quasi labor-augmenting technological progress from conventional growth theory.

The only difference is that technological progress does not increase the productivity of low-

skilled labor. This can be seen in the low-skill wage (8), which is independent from technology

and determined just by the relative skill supply. High-skilled labor, in contrast, benefits from

technological progress and wages increase at the rate of aggregate output when labor supply

stays constant [see (7)]. Finally, note that the demand for machines depends negatively on

the robot tax τR [see (9)].

2.5. R&D Sector. The R&D sector produces blueprints for new machines by employing

scientists, which are recruited from high-skilled labor. The production function of the R&D

sector is given by

At − At−1 = δ̄tLH,A,t, (10)

where LH,A,t denotes scientists employed in the R&D sector and δ̄ is the productivity of

these scientists. The productivity level of scientists itself depends on intertemporal knowl-

edge spillovers (the standing-on-giants-shoulders externality) and on congestion effects (the

stepping-on-toes externality) as described by Jones (1995). We follow the standard approach

and write

δ̄t =
δAφ

t−1

L1−λ
c,A,t

, (11)

where φ ∈ (0, 1] measures the strength of intertemporal knowledge spillovers and 1− λ with

λ ∈ [0, 1] measures the strength of the congestion externality.

Profits in the R&D sector are given by the revenue that R&D firms generate by selling the

patents they developed net of the costs for the scientists that they employed,

pA,tδ̄tLH,A,t − wH,A,tLH,A,t, (12)

where pA,t is the price of blueprints and wH,A,t denotes the wage rate of scientists. Due

to the competitive labor market, the wage rate of scientists attains the same level as the

wage rate for high-skilled workers in the final goods sector. R&D firms maximize profits by

choosing optimal R&D employment, which provides the optimality condition wH,A,t = δ̄tpA,t.

Our overlapping generations structure allows us to introduce a finite patent length of one

generation, which is reasonably close to the actual patent duration of approximately 20 years

(United States Patent and Trademark Office, 2017).
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2.6. Intermediate Goods Sector. The intermediate goods sector uses physical capital as

a variable input factor to produce machines. The production function is linear with a unitary

capital input coefficient such that xi,t = ki,t, where ki,t is the amount of physical capital em-

ployed by each intermediate goods producer. There are two types of firms in the intermediate

goods sector. Producers of the latest vintage of machines use a blueprint (patent) from the

R&D sector as fixed input. These firms have a certain degree of market power and free entry

into the intermediate goods sector implies that operating profits in period t, πi,t, are equal to

the entry costs consisting of the price that has to be paid up-front for the blueprint such that

πi,t = pA,t. (13)

Producers of older vintages of machines are no longer protected by patent law and free entry

ensures that a zero profit condition holds. Let variables associated with the latest vintage

of machines be indexed by i and variables associated with earlier vintages by j. Operating

profits for producers of the latest vintage are given by

πi,t = pi,t(xi,t)xi,t − R̄xi,t. (14)

Profit maximization implies

p′i,t(xi,t)
xi,t
pi,t

+ 1 =
R̄

pi,t
⇒ pi,t =

R̄

α
. (15)

Producers of the latest vintage of machines charge a markup over marginal cost and the

production of machines of type i adjusts (due to capital inflow/outflow) up to the point at

which R̄ = α2L1−α
H,Y,tx

α−1
i,t /(1 + τR). Producers of older vintages charge prices at marginal cost

pj,t = R̄ for all j such that the production of machines of type j adjusts up to the point at

which R̄ = αL1−α
H,Y,tx

α−1
j,t /(1+ τR). Combining both demand functions provides the input ratio

xj,t = α
1

α−1xi,t, (16)

implying that the demand for older vintages is higher because their price is lower. Aggregating

over all vintages and using (16) we obtain

At−1
∑

j=1

xαj,t +
At
∑

i=At−1

xαi,t = Ãtx
α
i,t, Ãt ≡

[

αα/(α−1) − 1
]

At−1 + At − α
α

α−1 . (17)

Using the new notation, we can rewrite final goods production as Yt = L1−α
H,t [L

α
L,t + Ãtx(i)

α].

2.7. Equilibrium. In the basic model, we abstract from unemployment. Since ability is dis-

tributed in (0, 1), the population share of low-skilled individuals is v−1(w̃t) and the population

share of high-skilled individuals amounts to 1 − v−1(w̃t), see Figure 1. Consequently, low-

skilled employment is given by LL,t = v−1(w̃t)Lt, and, since high-skilled individuals spend
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a fraction η of their time on education, aggregate supply of high-skilled labor amounts to

LH,t = [1− v−1(w̃t)](1− η)Lt.

Labor market clearing requires that employment of high-skilled labor in the final goods

sector and in R&D add up to the total supply of high-skilled labor such that

LH,t = LH,Y,t + LH,A,t. (18)

The market-clearing wage rate is given by

wH,A,t = wH,Y,t ⇔ pA,t

δAφ
t−1

L1−λ
H,A,t

= (1− α)
Lα
L,t + Ãtx

α
i,t

Lα
H,Y,t

. (19)

From Equation (9), we get demand for intermediates as

xi,t =

[

α

pi,t(1 + τR)

]
1

1−α

LH,Y,t. (20)

Plugging (13) and (20) into (19) provides profits of producers of the latest vintage of machines

πi,t =
δAφ

t−1

L1−λ
H,A,t

= (1− α)
Lα
L,t + Ãt

[

α
pi,t(1+τR)

]
α

1−α

Lα
H,Y,t

Lα
L,Y,t

. (21)

Using (15), we obtain profits as πi,t = (1 − α)R̄xi,t/α. Inserting this expression, the price

pi,t = R̄/α, and equations (18) and (20) into (21), we obtain an implicit function for the

employment level of scientists LH,A,t. If an interior solution with R&D exists, the employment

level of scientists solves the equation

R̄

α

[

α2

R̄(1 + τR)

]
1

1−α

(LH,t − LH,A,t)
δAφ

t−1

L1−λ
H,A,t

=

(

LL,t

LH,t − LH,A,t

)α

+ Ãt

[

α2

R̄(1 + τR)

]
α

1−α

. (22)

Finally, the government runs a balanced budget. Suppose that low-skilled individuals

receive a fraction κ of total transfers such that TL,t = κTt/LL,t and TH,t = (1−κ)Tt/LH,t with

Tt = τWwH,tLH,t + τWwL,tLL,t + τRpi,txit [At − (1− α)At−1 − α] , (23)

where the last term captures the fact that older vintages of machines are sold at a lower price,

thus, providing less tax revenue.

3. Analytical Results

The full model is recursive: similar to the models of unified growth theory (Galor and Weil,

2000, Galor, 2011), individuals need to form expectations on their future wages to decide

upon their education. Future wages, however, depend on the education decision. Thus, the

full model is not analytically accessible and we discuss the adjustment dynamics numerically
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in Section 4. Here, we assume that the result of the education decision, LH,t, is given as

a positive pre-determined state variable at any time t (implying 0 < LH,t < Lt). Suppose,

for now, that τR = 0. Then, solving for the equilibrium boils down to solving one equation,

namely (22), for one unknown variable, employment in R&D, LH,A,t.

3.1. Equilibrium R&D Employment. Inspection of (22) provides the following result.

Proposition 1. At any time t, the equilibrium employment level in the R&D sector exists

and it is positive and unique.

For the proof notice that, due to the assumed positivity constraints on parameters and

state variables R̄ > 0, δ > 0, φ ∈ (0, 1], α ∈ (0, 1), λ ∈ (0, 1), At−1 > 0, LL,t > 0, and

LH,t > 0, the left-hand side (LHS) of Equation (22) is strictly decreasing in LH,A,t, while the

right-hand side (RHS) is strictly increasing in LH,A,t. Furthermore, we have that

lim
LH,A,t→0

LHS = ∞, lim
LH,A,t→0

RHS = const. > 0,

lim
LH,A,t→LH,t

LHS = 0, lim
LH,A,t→LH,t

RHS = ∞.

As a consequence, there is a unique positive level of scientists in the R&D sector. Once LH,A,t

has been found, we can solve for all other variables.

3.2. Balanced Growth Path. The additional assumption that ā has already been reached

establishes an asymptotic balanced growth path along which the population shares of workers

stay constant. The long-run economic growth rate rises if there are more scientists employed

in R&D and if these scientists have a higher productivity level (δ), and it decreases with the

extent of the duplication externality. Let L∗

H,A denote the solution of (22) at a∗t = ā. The

balanced growth rate is obtained from (10) and (11) as g = δ(L∗

H,A)
λ for φ = 1 and as g = 0

for φ < 1. As it is well known, when the population and the education level per person stay

constant, positive balanced growth exists only for a knife-edge case. Off the balanced growth

path, however, the case of zero asymptotic growth is compatible with meaningful adjustment

dynamics, as shown below.

3.3. Wage inequality. Inspection of (7) and (8) shows that high-skilled workers enjoy wage

growth when the economy is growing (growing Yt). By contrast, wages of low-skilled workers

are constant on the balanced growth path because factor shares are constant. This leads

directly to the next result.

Proposition 2. Technological progress is skill-biased. In an economy populated by high-skilled

workers who are complementary to machines and low-skilled workers who are substitutes to

machines, higher growth implies higher wage inequality along the balanced growth path.
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The intuition for this result is straightforward. Technological progress raises the productiv-

ity of high-skilled workers by introduction of new machines. At the same time, however, new

machines do not raise the productivity of low-skilled workers because these workers are sub-

stitutes for machines. Another way to illustrate the disruptive effect of technological progress

on low-skilled workers is to consider the labor share in aggregate income and to decompose

it between high-skilled workers and low-skilled workers.

Proposition 3. Along a path of positive balanced growth, the total labor share is declining

towards (1− α). The low-skilled labor share is declining to zero.

For the proof, we compute the labor share as

(1− α) +
wL,tLL,t

Yt
, (24)

where (1 − α) is the high-skilled labor share. We then note that, along a path of positive

balanced growth, LL,t and wL,t are constant because population shares are constant, whereas

Yt is growing at a positive rate. The decline in the labor share in the course of automation is

consistent with the empirical evidence for the U.S. pointing out that the labor share was con-

stant until the 1970s, but declined by almost 6 percentage points since then (Karabarbounis

and Neiman, 2014).

3.4. Wealth Inequality. The declining relative income of low-skilled labor has, furthermore,

a clear inequality-enhancing effect on the distribution of wealth.

Proposition 4. In a growing economy without redistribution, the share of wealth held by

high-skilled workers increases and converges to one asymptotically. Ceteris paribus, faster

economic growth leads to a faster increase of wealth inequality.

For the proof, we insert wages (7) and (8) into savings (3) for TH = TL = 0 and obtain

relative wealth held by high-skilled workers s̃:

s̃ =
(1− η)(1− α) Yt

LH,Y,t

(1− η)(1− α) Yt

LH,Y,t
+ α

(

LH,Y,t

LL,t

)1−α
LL,t

LH,t

. (25)

Along the balanced growth path, the population shares stay constant, while Yt/LH,Y,t grows

perpetually. This implies that the second term in the numerator becomes gradually less

important from a quantitative point of view such that s̃ converges to 1. Clearly, wealth

inequality increases faster when Yt grows at a higher rate. Notice that, off the steady state,

rising higher education (declining LL and increasing LH) reinforces wealth inequality during

the transition towards the steady state.
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In our stylized framework, rising wealth inequality is a product of growing wages of high-

skilled workers, stagnating wages of low-skilled workers, and constant saving rates. In a less

stylized framework, utility functions could take into account subsistence needs or status con-

cerns in consumption. These mechanisms would, however, further amplify wealth inequality

because they imply lower saving rates for the poor. The result of Proposition 4 deviates from

with the findings of Piketty (2014), who argues that, ceteris paribus, faster economic growth

reduces inequality.

4. The Race between Education and Technology

4.1. Preliminary Considerations. We next consider adjustment dynamics off the steady

state and the interaction between education and technology. Qualitatively, it is straightfor-

ward to see the impact of technology on education.

Proposition 5. With technological progress, the share of high-skilled labor in the population

increases and converges towards ā.

The proof is obvious from Proposition 2 and inspection of Equation (5) and Figure 1.

As technology advances and more machines are used in production, the wage of high-skilled

workers increases relative to low-skilled workers. An increasing skill premium motivates more

individuals to obtain higher education. Increasing supply of high-skilled labor leads, ceteris

paribus, to relatively higher wages for low-skilled workers [see Equations (7) and (8)], and,

thus, suppresses the skill premium. This interplay captures the “race between education and

technology” only that, in its original setup, Goldin and Katz (2009) treated education as ex-

ogenous, whereas here, education is endogenous and triggered by technological advancements.

Given that technological advances are the dominating force, the skill premium is gradually

increasing, and a larger share of society obtains higher education. Ultimately, the society con-

verges towards a situation, where a population share of ā remains without higher education

because the learning ability of its members is too low for obtaining a college degree. In other

words, in a growing economy, the threshold ā is reached in finite time. From then onwards,

the population shares of high-skilled labor and low-skilled labor stay constant and the econ-

omy converges towards a balanced growth path (which is only reached as time approaches

infinity).

To fully assess the interactions in the race between education and technology, we need to

solve the model numerically. We consider two different scenarios. In the first scenario, we

assume, as it is common in R&D-based growth theory, that the economy converges gradually

towards a steady state of positive long-run growth. In the second scenario, we consider

the case of a secular decline in the growth rates of TFP and per capita GDP. This case
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is less frequently discussed in the literature (exceptions are Jones, 2002, and Groth et al.,

2010). However, it is particularly relevant in the present case to address the question of

whether increasing automation is compatible with declining productivity growth. The case

of (mildly) declining productivity growth is also better suited for calibrating the model with

U.S. data. In the following, we thus briefly discuss conventional adjustment dynamics towards

positive balanced growth and then calibrate the model more carefully for the case of declining

productivity.

4.2. Positive Steady-State Growth. We start the computation of adjustment dynamics

in the year 1900 and convert the predicted growth rates per generation into annual rates. To

generate positive long-run growth, we need to impose φ = 1. We set R̄ = 2, which implies an

annual real interest rate of approximately 4.5 percent. We assume that the time preference

rate equals the interest rate and set β = 1/R̄. Regarding the output elasticity of machines,

we assume that α = 0.6 such that the long-run labor share is given by 0.4. Assuming that

high-skilled individuals enter college at age 19, complete their education after 5 years and

leave the workforce at age 63, we obtain the estimate of η = 0.11 = 5/(63− 19).

The distribution of ability in the population is likely to be bell-shaped. IQ, for example, is

by definition approximately normally distributed. This means that the cumulated distribution

function of ability is s-shaped and the cumulated distribution function for effort or disutility

of education is s-shaped as well. The inverse function v−1(w̃) is thus the inverse of an s-shaped

function with a positive lower limit (as shown in Figure 1). It can be conveniently captured

by the inverse logistic function v−1(w̃) = ā + (1 − ā)/{1 + exp[θ(w̃ − ψ)]}. We set ā to 0.5,

implying that in the limit, half of the population is high-skilled (obtained a college degree).

We set the population size (arbitrarily) to 1,000 and then adjust the initial technology

level A(0), the technology parameters δ and λ, and the education parameters φ and θ such

that the model predicts – for the end of the 20th century – an annual TFP growth rate of

around 2 percent per year, an R&D share of around 2 percent, that around 30 percent of the

population have acquired a college degree, and that the Gini coefficient of income is about 45

percent. This leads to the estimates A(0) = 8, ψ = 2, θ = 10, λ = 0.2, and δ = 0.43. In the

benchmark case, there is no redistribution such that τW = τR = 0.

Adjustment dynamics are shown in Figure 2. Generational growth rates are converted to

annual growth rates assuming that a generation lasts for 25 years. Blue (solid) lines reflect

adjustment dynamics of the benchmark case. As the economy grows and skill-biased tech-

nological progress unfolds (first panel), more individuals are motivated to acquire a college

education (second panel). The increase in college graduates renders high-skilled labor less

scarce and more high-skilled labor is allocated to R&D (third panel). This, in turn, fur-

ther amplifies technological progress such that the economy takes off with initially increasing
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Figure 2: Adjustment Dynamics (φ = 1)
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Parameters: α = 0.6; β = 0.33; δ = 0.43, φ = 1, λ = 0.2, θ = 0.10, ψ = 2.

growth rates. After a while, however, the stepping-on-toes effect becomes noticeable and the

gain in growth rates levels off as the economy adjusts towards the steady state.

During the transition, the wage rate of low-skilled labor increases somewhat due to its

declining supply such that steady-state wages are around 1.4 times higher than initial wages.

However, for the aggregate low-skilled wage bill, this effect is almost compensated by declining

supply such that wLLL increases only by 4 percent over a century. Compared to these mi-

nuscule changes, the wages of high-skilled labor increase drastically in conjunction with TFP

growth. As a consequence, income and wealth inequality increase as the economy converges

towards the steady state. The bottom panel of Figure 2 shows inequality measured by the Gini

coefficient of wage income, which is, in our simple setup, easily obtained as sw−LH,t/Lt, where

sw is the income share of high-skilled individuals, sw ≡ wH,tLH,t/(wH,tLH,t + wL,tLL,t). As

the economy grows, the income share of high-skilled individuals converges to 100%, whereas

the share of high-skilled workers converges toward 45%. To see this, notice that the share
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of high-skilled individuals converges to 50% and that, at each moment in time, 11% of high-

skilled individuals are still in the education system and not in the workforce. Altogether, the

Gini coefficient therefore converges towards 55%.

To show our “non-Piketterian” result, we next increase δ to 0.5 (from 0.43) and keep all

other parameters and initial values from the benchmark run. The results are shown by dashed

lines in Figure 2. Due to the assumed higher productivity in R&D, the alternative economy

grows at a faster rate, initially and everywhere along the adjustment path (panel 1). The

higher rate of skill-biased technological progress induces a faster growth of income for the

high-skilled population and triggers more education (panel 2). A better educated workforce

provides more labor supply for R&D (panel 3), which further spurs innovation and economic

growth. Since low-skilled labor is not benefiting from these trends, inequality increases faster

in the high-growth economy (panel 4). Individuals who suffer from ability constraints in

learning, and fail to achieve college graduation are left behind earlier than in the benchmark

run.

4.3. Automation and Declining TFP Growth. The numerical exercise of the previous

section is in line with many related studies in quantitative growth economics in the sense that

TFP growth continued to rise in the second half of the 20th century. However, in actuality,

TFP growth declined mildly during this period. While the counterfactual prediction of the

model may be regarded as harmless in a different context, it is of particular importance for

the issue of automation because it has been argued that, if automation were indeed strongly

affecting the economy, it should be observed in conjunction with rising TFP growth and rising

investment rates.

In an attempt to improve the last section’s calibration, we try to fit U.S. trends for the

second half of the 20th century and beyond for TFP growth (Fernald, 2015), the population

share with a college degree (U.S. Census, 2015), the Gini coefficient of before-tax monetary

income (U.S. Census, 2015; computation taken from Berruyer, 2012), the R&D expenditure

to GDP ratio (Ha and Howitt, 2007), and the investment rate (World Bank, 2017). The

parameters used in the calibration are provided below Figure 3. The most notable change

as compared to the previous exercise is the estimate of φ = 0.7. A value of φ below unity

is needed to fit a mildly declining TFP growth trend. It implies slow convergence towards a

steady state of zero exponential growth. We should say that we do not perform this exercise

because we endorse zero long-run growth in the very distant future, but do so in order to

make the model consistent with declining TFP growth in the recent history and in the near

future. Other parameter changes are an increase of δ to 2.0 to make up for the reduced effect

of the standing-on-shoulders externality in the 20th century and increases of β to 0.64 and ψ
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to 3.3 to generate a steeper rise of college graduates in the 20th century. All other parameter

values are kept from the benchmark run.

Figure 3: Adjustment Dynamics (φ < 1)
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Parameters: α = 0.6; β = 0.64; δ = 2.0, φ = 0.7, λ = 0.2, θ = 0.10, ψ = 3.3.

Solid lines in Figure 3 refer to the predicted adjustment dynamics. Dashed lines refer to

the underlying data. The first panel shows that the calibration supports an almost constant

and mildly falling trend of TFP growth and approximates TFP growth in the late 20th and

early 21st century fairly well. It also shows that decreasing returns in learning from previous

innovations (φ = 0.7) still support 1.4 percent TFP growth at the end of the 21st century.

Although productivity growth is not increasing, all the previously established mechanics

of the model are at work. The reason is that they require only positive TFP growth but

not increasing or constant TFP growth. In the second panel, we see how the rising skill

premium induces an increasing share of the population to acquire higher education. The

model approximates the actual increase of college graduates well, from a population share of

13 percent in the early 1970s to a population share of 33 percent in the year 2015.

The middle panel in Figure 3 shows that the model captures a mildly rising trend in the

R&D-share but predicts a level of R&D that is somewhat too low for the 20th century. This
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shortcoming is due to the simple structure of the model which provides no degrees of freedom

to adjust TFP growth independently from investment in R&D. The difference with respect

to the economy illustrated in Figure 2 is that the rising employment in R&D does not spur

further increases in the innovation rate and in economic growth because it is counter-balanced

by decreasing returns in learning from previous innovations.

The fourth panel shows that the model matches the increasing trend in inequality well,

which is predicted to rise further and to converge to 0.55 percent when the relative income

and wealth of low-skilled individuals converge to zero. The computational experiment clearly

refutes the view that declining or constant productivity growth and declining investment is

incompatible with increasing automation and increasing inequality. As explained above, for

these trends to be simultaneously observed, we only need positive TFP growth, i.e., further

innovation in automation.

4.4. Redistributive Taxation. Since only high-skilled individuals benefit from technolog-

ical progress, it seems appropriate to support the losers in the race between education and

technology by means of redistributive taxation. Aside from redistribution through progressive

income taxation, the implementation of a robot tax has recently been proposed. However,

when technology and education are endogenous, redistributive taxation can entail less benign

outcomes in a dynamic context than suggested by thought experiments that treat education

and technology as given. In a fully dynamic context, redistribution can actually be coun-

terproductive and hurt low-skilled labor more than a laissez-faire policy. Before we discuss

redistribution in the calibrated economy, we first briefly develop some intuition for this result

by means of an analytical discussion.

Lemma 1. As long as a∗t > ā, an increasing wage tax or an increasing transfer to low-skilled

labor reduces education.

The proof is obtained by differentiating the wage premium in monetary terms, ŵ ≡ [(1 −

τw)(1 − η)wH − T ]/[(1 − τw)(1 − η)wH − T ], for the case where TL ≥ TH > 0. Intuitively,

higher taxes on wage income or higher transfers TL reduce the incentive to increase wages

through higher education. In a dynamic context, this means that along the transition path,

i.e., as long as the low-skilled labor share has not yet settled at ā, redistribution slows down

the take up of higher education, and thereby innovation and economic growth.

The response employment in R&D (and thus economic growth) to an increase in the robot

tax can be discussed with the help of the equilibrium condition (22). From visual inspection,

the response is seemingly ambiguous. On the one hand, an increase of τR leads to less

machine production, less profits in the machine producing sector, a lower equilibrium price

for blueprints of new machines; thus, lower wages and employment in R&D. Formally, this
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implies that the left-hand side of (22) declines. On the other hand, the reduction of machine

input leads to lower wages for high-skilled workers in goods production and therefore to a

shift of high-skilled labor towards R&D. Formally, this implies that the right-hand side of (22)

declines. By implicitly differentiating (22), it can be shown that the negative effect through

profits in the machine sector dominates.

Lemma 2. An increasing robot tax τR leads to less employment in R&D and slower growth.

Figure 4: Adjustment Dynamics Redistributive Taxation (κ = 1)
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The proof of Lemma 2 is stated in the Appendix. While the static responses of educa-

tion and innovation to redistributive taxation can be assessed analytically, the impact on

low-skilled income and income inequality can only be assessed numerically in the dynamic

equilibrium. For that purpose, we take the model as calibrated in Figure 3 and first discuss

the border case in which only low-skilled individuals receive income transfers, i.e., κ = 1 such

that TL = T and TH = 0. The results are shown in Figure 4. To facilitate comparisons, solid

(blue) lines replicate the benchmark case without redistribution from Figure 3.

Adjustment dynamics for a robot tax of τR = 0.1 are shown by green (dashed) lines in

Figure 4. Confirming Lemma 2, the robot tax depresses R&D and TFP growth (top panel).

As a result, wages for high-skilled labor increase at a lower rate, which causes a slower high-

skilled labor expansion (second panel). Redistribution reduces the high-skilled labor supply

also in the long-run. Since, in the limit, transfers are growing at the rate of technological

progress, some individuals with abilities above but close to ā are permanently discouraged

from obtaining a college degree. In the limit, LH converges to 0.45 (instead of to 0.5).

Redistribution also depresses low-skilled wages (middle panel). Because there is less higher

education, there is a more abundant supply of low-skilled labor compared to the benchmark

run such that LH,t/LL,t is lower in (8). Even after-tax income of low-skilled individuals,

shown in the fourth panel, is somewhat lower than without redistribution until the mid-

21st century (wages are normalized such that the initial wage without redistribution equals

1). As time passes, however, the effect of redistribution dominates the general equilibrium

effect on gross wages. In the limit, transfers TL grow at the rate of high-skilled income,

whereas low-skilled wages stagnate such that low-skilled income is dominated by transfers,

limt→∞wL/TL = 0. Already at the turn of the 21st century, low-skilled individuals are twice

as rich with redistribution than without.

The bottom panel in Figure 4 shows that redistribution quite strongly affects the after-tax

Gini coefficient. Until the mid-21st century, the reduction in the Gini was mostly a product of

the lower income of high-skilled labor (compared to the benchmark simulation) rather than by

improvements in disposable income of low-skilled individuals. These temporary effects, how-

ever, vanish as the economy converges towards the balanced growth path. In the long-run, the

after-tax Gini coefficient settles at a lower level, because, through redistribution, low-skilled

individuals participate in the gains from automation and economic growth. The before-tax

Gini, however, is higher than in the laissez-fair benchmark run because the population share

of high-skilled individuals declines. In our example, the before-tax Gini increases towards 0.6

(from 0.55), whereas the after-tax Gini is 0.46.

Alternatively, transfers could be financed by the labor income tax. Red (dash-dotted) lines

in Figure 4 show the outcome for τw = 0.1 (and τR = 0). In contrast to the robot tax, the
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wage tax has a direct effect on education and an indirect effect on technological progress and

growth. Lower net wages reduce the gains from education such that higher education increases

at a lower rate with economic development. As a result of reduced high-skilled labor supply,

there is less employment in R&D, and thus less innovation and lower productivity growth.

In effect, the labor income tax reduces the progress of technology and education similarly

to the robot tax and it therefore has similar consequences on the adjustment dynamics for

low-skilled income and inequality (panels 3 to 5 in Figure 4).

Figure 5: Adjustment Dynamics: Education Subsidy (κ = 0)
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Parameters as for Figure 3: blue (solid) lines: τR = τW = 0 (replication of Figure 3);
green (dashed) lines: τR = 0.1; red (dashed-doted) lines: τW = 0.1.
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Next, we consider the case of κ = 0 such that all transfers are channeled to high-skilled

individuals. Since, these transfers are designed to be granted conditionally on a college degree,

they could be conceptualized as an education subsidy. The results are shown in Figure 5,

where again blue (solid) lines replicate the benchmark run from Figure 3, green (dashed) lines

reflect the case of τR = 0.1 and red (dash-dotted) lines reflect the case of τW = 0.1.

Figure 5 shows that an education subsidy financed by a robot tax is counterproductive

because it reduces education. As explained above, the robot tax reduces the demand for

machines and innovations and slows down TFP growth (top panel). The effect from reduced

high-skilled income through lower growth dominates the positive direct effect of the transfer

on education such that the supply of high-skilled labor increases at a lower rate than in the

benchmark run (second panel). An education subsidy financed by labor income taxation, in

contrast, has no direct impact on technology such that it indeed motivates more education (red

lines in the second panel). As a result of the greater supply of high-skilled labor, employment

in R&D rises and productivity grows at a higher rate than in the benchmark case.

As shown in the middle panel, gross wages of low-skilled labor actually improve by sub-

sidizing high-skilled labor because low-skilled labor becomes relatively scarce in the produc-

tion process. Because of this counterbalancing general equilibrium response, the effect of

the subsidy on the net wages of low-skilled workers is relatively small during the transition.

Eventually, however, low-skilled wages stagnate and are thus permanently lower than without

the education subsidy (fourth panel). The Gini coefficient is higher in the early phase of the

transition because of the faster increasing population share with high skills and high income.

In the long-run, when population shares and before-tax income of low-skilled individuals are

constant, the Gini settles at 0.55, as in the benchmark case (bottom panel in Figure 5).

5. Automation, Fair Wages, and Involuntary Unemployment

In principle, there are several gateways for rising unemployment due to automation in such

a framework. For example, in an earlier version of this paper (Prettner and Strulik, 2017), we

introduced unemployment via the social welfare system and a reservation wage. The notion

that automation causes voluntary unemployment through frictions on the labor supply side is,

however, not entirely compelling. In the following, we integrate involuntary unemployment

based on Akerlof and Yellen’s (1990) fair wage theory into our model. Akerlof and Yellen

motivate the fair wage theory from different perspectives, including equity theory, relative

deprivation theory, and social exchange theory, which all seem particularly relevant in the

present context, where only one group of workers benefits from technological progress. Since

it turns out that unemployment occurs only for low-skilled labor, we can speak of involuntary

technological unemployment.
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The basic idea is that workers compare their payment with that of coworkers and exert

full effort at work only when they perceive their remuneration as fair. Specifically, effort at

work ej is given by e = min(wj/w
∗

j , 1), in which w∗

j is the wage that is perceived as fair by

workers of group j. In our context, fair wage considerations are made only in the final goods

sector because this is the sector in which high-skilled workers and low-skilled workers meet. In

equilibrium, high-skilled workers receive the same wage in R&D as in goods production. To

include effort considerations, we rewrite the goods production function such that ej is taken

into account

Yt = (eH,t · LH,Y,t)
1−α

[

(eL,t · LL,t)
α +

At
∑

i=1

xαi,t

]

.

Following Akerlof and Yellen, we assume that the fair wage of group j is a weighted average

of the wage received by the reference group and the market-clearing wage

w∗

L,t = µwH,t + (1− µ)wc
L,t, w∗

H,t = µwL,t + (1− µ)wc
H,t, (26)

where wc
j,t is the market clearing wage of group j and µ measures the strength of wage

comparisons. The market-clearing wage is defined as the wage that would clear the market

for group-j labor in the neoclassical case (i.e., when workers unconditionally exert full effort).

Let Lj, t denote labor supply of group j. We then have

wc
H,t = (1− α)(LH,t)

−α(Lα
L,t + Ãtx

α
t ), wc

L,t = αL1−α
H,t (LL,t)

α−1, (27)

where we made use of the shorthand notation Ãt according to (17). In principle, multiple

equilibria are possible on the labor market. Here, we follow Akerlof and Yellen (1990) and

consider the so-called integrated equilibrium as the most relevant one. At this equilibrium,

all workers exert full effort. High-skilled workers receive a wage that exceeds the fair wage

and full employment results such that LH,t = LH,t. Low-skilled workers receive a fair wage

that exceeds the market-clearing wage and low-skilled unemployment results. The indirect

demand function for low-skilled labor is given by

wL,t = α(LH,t)
αLα−1

L,t ≡ LD(wL,t). (28)

Inserting (27) into (26) and using wH,t = wc
H,t provides the “fair wage constraint”, i.e., the

wage at which low-skilled workers exert full effort:

wL,t = µ(1− α)(LH,t)
−α(Lα

L,t + Ãtx
α
t ) + (1− µ)α(LH,t)

1−α(LL,t)
α−1 ≡ Fw(wL,t). (29)

Labor market equilibrium prevails when (28) and (29) hold simultaneously. It is depicted

in Figure 6. Labor demand according to (28) is represented by the falling curve LD. The

upward-sloping curve FW represents the fair wage constraint. Low-skilled workers perceive it

as fair to earn more as their employment rises. The full-employment constraint is represented
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by the vertical LL line. The initial labor market equilibrium is obtained at LL,0 and initial

unemployment is obtained as LL,0 − LL,0.

Figure 6: The Fair Wage Constraint and Equilibrium Unemployment
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LD

Technological progress shifts the fair wage constraint FW

upwards and the low-skilled workforce LL inwards.

The implications from the race between education and technology for unemployment can

be qualitatively deduced from Figure 6. Technological progress (rising Ãt) shifts the fair

wage constraint upwards to FW,1. Low-skilled workers demand a higher wage because they

notice that wages for high-skilled workers rise with increasing automation. Due to the rising

reference level, they perceive a higher wage for themselves as fair. Intuitively, low-skilled

workers want to take part in the advances from technology, although their labor productivity

does not improve. Without a pay rise, however, labor productivity would deteriorate due to

declining effort. The new equilibrium employment level is at LL,1.

Technological advances, however, also trigger higher education such that the workforce of

low-skilled individuals declines. The workforce constraint shifts to the left to L̄L,1. Taking

both moves together, it is generally ambiguous as to whether low-skilled unemployment, given

by L̄L−LL, increases or declines due to high-skilled labor-augmenting technological progress.

However, once education has converged to its upper bound, only the effect of technology on fair

wages remains and low-skilled unemployment increases inevitably as automation technology

advances.

Proposition 6. Once higher education converged towards its upper bound, more innovation

and faster economic growth lead to more involuntary unemployment.

The proof is obvious from Figure 6. When education is stationary, the vertical LL-line does

not move. More innovation leads to a faster increasing TFP level Ã and a faster upward
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movement of the fair wage constraint. As a result, low-skilled wages increase at a higher rate

and employment declines faster. The result is intuitive. More innovation and higher growth of

high-skilled wages leads to a faster increase of the reference level for fair wage considerations

and low-skilled workers need a faster increase of wages to induce full effort. Since low-skilled

productivity does not rise, firms respond with reduced demand for low-skilled labor.

Figure 7: Adjustment Dynamics (Unemployment)
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Parameters as for Figure 3 and µ = 0.006: blue (solid) lines: τR = τW = 0, replication of Figure 3; green
(dashed) lines: τR = 0.1; red (dashed-doted) lines: τW = 0.1.

Finally, we consider the evolution of unemployment along the transition to balanced growth.

For that purpose, we employ the model as calibrated for Figure 3 and set µ such that fair wage

considerations generate an unemployment rate of 5 percent at the end of the 20th century.

This leads to the estimate of µ = 0.004. The relative importance of the reference wage is thus

estimated to be relatively small. Figure 7 shows the implied adjustment dynamics.

Blue (solid) lines in Figure 7 reflect the case without income redistribution. The Gini co-

efficient in the 20th century is about 5 percent higher than in the benchmark case because
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there is a (small) group of individuals receiving no wage income. In the long run, however,

the Gini coefficient is not affected by unemployment since relative income of low-skilled labor

converges to zero irrespective of whether these individuals are employed or not. The bottom

panel shows that unemployment actually declines mildly during the 20th century, indicating

that the effect of reduced low-skilled labor supply (the inward movement of the LL-curve in

Figure 6) dominates the effect of reduced labor demand due to technological progress and

rising reference levels of the fair wage. Eventually, however, before labor supply becomes sta-

tionary, unemployment begins to rise as the level of TFP and wages of high-skilled individuals

increase further.

We next reconsider the effects of redistributive taxation and assume that individuals com-

pare gross wages and not their disposable income after redistribution. We assume that all

transfers go to low-skilled labor and again consider a 10 percent robot tax (dashed, green lines)

and a 10 percent labor income tax (dash-dotted, red lines). The response of TFP growth and

education to redistribution is familiar and is analyzed in detail in the discussion of Figure

4. Here, it is interesting to see that redistribution increases unemployment. This response

is not driven by labor supply considerations of low-skilled individuals because transfers are

granted irrespective of the employment status and labor supply is inelastic by assumption.

Instead, low-skilled unemployment rises because of the depressing effect of redistribution on

education. As a result of reduced high-skilled labor supply, high-skilled wages are higher at

any level of technology, and thus low-skilled individuals consider a higher wage as fair. In

order to elicit full effort, firms pay higher wages and reduce labor demand. In contrast to the

case without redistribution, unemployment is increasing during the 20th century.

6. Conclusion

In this paper, we proposed a model of endogenous technological progress and economic

growth according to which R&D-based innovations in machine technology lead to more au-

tomation, a higher skill premium, and more inequality in terms of income and wealth. The

model predicts that more sophisticated technology induces more education but only to a cer-

tain degree because, eventually, some individuals will be left behind who do not manage to

obtain higher education (a college degree) due to ability constraints. The feature that low-

skilled labor does not benefit from automation creates rising inequality because the wages

of high-skilled individuals increase at the rate of technological progress. Considering the

other big race mentioned in the introduction, the model suggests that it could be difficult

and eventually impossible to “run with the machine” instead of against it (as suggested by

Brynjolfsson and McAfee, 2011).
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Similar to the related R&D-based growth literature, we focused on the manufacturing

sector, which, in principle, leaves the loophole that non-routine, low-skilled labor finds em-

ployment in an expanding service sector. However, one could argue that the service sector is

included in the reduced-form of our model. According to the aggregate production function,

low-skilled labor is not benefiting from automation, but it is also not made redundant by the

arrival of new machines. It could be conceptualized as moving to different tasks. Moreover,

in general equilibrium, low-skilled labor benefits indirectly from technological progress. Skill-

biased technological progress induces more higher education in the population, and thus a

relative decline of low-skilled labor supply and an increase of low-skilled wages. Of course,

this positive indirect effect vanishes when technology no longer triggers increasing higher

education. A more serious simplification in our model is perhaps the assumption that (at

least some) high-skilled labor is non-automatable. For future research, the model could be

generalized by assuming that more recent vintages of machines are able to substitute, to an

increasing degree, high-skilled labor.

In our overlapping generations setting, increasing wage inequality explains a secular decline

of the aggregate savings rate and a secular increase of wealth inequality. These effects are

stronger at higher rates of technological progress. Our theory therefore refutes the view that

high economic growth is conducive to lower inequality (Piketty 2014). We have also shown

that it is difficult to improve income of low-skilled individuals as long as both technology and

education are endogenous. This is true irrespective of whether redistribution is financed by

progressive wage taxation (which reduces higher education and growth through lower high-

skilled labor supply) or by a robot tax (which reduces demand for machines and growth

through less R&D). Only when higher education is stationary, does redistribution unambigu-

ously benefit the poor. Designing redistribution policies that circumvent the repercussions

through adjustments of education and technology appears to be a serious challenge for the

future.

In an extension of the model, we considered the impact of automation on involuntary unem-

ployment of low-skilled workers through fair wage constraints. This approach appears to be

natural when automation benefits only one group at the workplace. If workers refuse to exert

full effort when they are not allowed to share in the gains from technological progress, unem-

ployment results. Interestingly, as long as higher education is non-stationary, technological

progress does not necessarily lead to more technological unemployment. The reason is that it

also triggers more higher education, and thus reduces the low-skilled workforce. For brevity,

we focused on the integrated equilibrium of the fair wage model. In future work, it could

be interesting to investigate segregated equilibria as well, i.e., conditions where automation

under consideration of fair wage and effort concerns motivates firms to (completely) abandon
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the employment of low-skilled labor. It would also be interesting to investigate a case where

workers compare disposable income rather than wages, which could motivate the introduction

of a universal basic income or other redistribution schemes from the winners to the losers of

the race between education and technology.

Appendix

Proof of Lemma 2. To analyze the impact of education on R&D and economic growth we

re-write (22) as the implicit function

F ≡
R̄

α

[

α2

R̄(1 + τR)

]

1

1−α

(LH,t − LH,A,t)
δA

φ
t−1

L1−λ
H,A,t

−

(

LL,t

LH,t − LH,A,t

)α

− Ãt

[

α2

R̄(1 + τR)

]

α
1−α

= 0.

Differentiation of F provides and ∂F/∂LH,A,t < 0 and

∂F

∂(1 + τR)
= −

1

1− α

1

1 + τR

R̄

α

[

α2

R̄(1 + τR)

]
1

1−α

(LH,t − LH,A,t)
δAφ

t−1

L1−λ
H,A,t

+
α

1− α

1

1 + τR
Ãt

[

α2

R̄(1 + τR)

]
α

1−α

< −
1

1− α

1

1 + τR

{

R̄

α

[

α2

R̄(1 + τR)

]
1

1−α

(LH,t − LH,A,t)
δAφ

t−1

L1−λ
H,A,t

− Ãt

[

α2

R̄(1 + τR)

]
α

1−α

}

= −
1

1− α

1

1 + τR

(

LL,t

LH,t − LH,A,t

)α

< 0

and thus, by the implicit function theorem, dLH,A,t/dτR < 0. Then, from (10) and (11),

dgA,t/dτR < 0.
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