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Abstract: 
This paper develops a model of optimal debt maturity in which the government cannot issue state-
contingent debt. As the literature has established, if the government can perfectly commit to fiscal policy, 
it fully insulates the economy against government spending shocks by purchasing short-term assets and 
issuing long-term debt. These positions are quantitatively very large relative to GDP and do not need to 
be actively managed by the government. Our main result is that these conclusions are not robust when 
lack of commitment is introduced. Under lack of commitment, large and tilted debt positions are very 
expensive to finance ex-ante since they ex-post exacerbate the government’s problem stemming from a 
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volatility of fiscal policy distortions. We show that the optimal time-consistent maturity structure is 
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1 Introduction

How should government debt maturity be structured? Two seminal papers by Angeletos (2002) and

Buera and Nicolini (2004) argue that the maturity of government debt obligations can be optimally

structured so as to completely hedge the economy against fiscal shocks. This research concludes that

optimal debt maturity is tilted long, with the government purchasing short-term assets and selling long-

term debt. These debt positions allow the market value of outstanding government liabilities to decline

when spending needs and short-term interest rates increase. Moreover, quantitative exercises imply that

optimal government debt positions, both short and long, are large (in absolute value) relative to GDP.

Finally, these positions are constant and do not need to be actively managed since the combination of

constant positions and fluctuating bond prices delivers full insurance against potential shocks.
In this paper, we show that these conclusions are sensitive to the assumption that the government 

can fully commit to fiscal p olicy. In practice, however, a government chooses taxes, spending, and debt 
sequentially in each period, taking into account its outstanding debt portfolio, as well as the behavior of 
future governments. Thus, a government can always pursue a fiscal policy that reduces (or increases) 
the market value of its outstanding (or newly-issued) liabilities ex-post, even though it would not have 
preferred such a policy ex-ante. Moreover, households lending to the government anticipate its future 
behavior, which affects its ex-ante borrowing costs. We show that once the government’s lack of 
com-mitment is accounted for, it becomes costly for the government to use its debt maturity structure 
to completely hedge the economy against shocks: a tradeoff exists between the cost of funding and 
the benefit of hedging.1 Our main result is that, under lack of commitment, the optimal maturity 
structure of government debt is quantitatively nearly flat, so that the government owes the same amount 
to households at all future dates. Moreover, debt is actively managed by the government.

We present these findings using the dynamic fiscal policy model of Lucas and Stokey (1983). This

framework, which posits an economy with public spending shocks and no capital, has the government

choosing to levy linear taxes on labor and issuing public debt to finance government spending. Our model

features two important frictions. First, as in Angeletos (2002) and Buera and Nicolini (2004), we assume

that state-contingent bonds are unavailable, and that the government can only issue real noncontingent

bonds of all maturities. Second, and in contrast to Angeletos (2002) and Buera and Nicolini (2004), we

assume that the government lacks commitment to policy.

These two frictions combine to create an inefficiency. The work of Angeletos (2002) and Buera and

Nicolini (2004) shows that even in the absence of state-contingent bonds an optimally structured portfolio

of noncontingent bonds can perfectly insulate the government from all shocks to the economy. Moreover,

the work of Lucas and Stokey (1983) shows that even if the government cannot commit to a path of fiscal

policy, an optimally structured portfolio of contingent bonds can perfectly induce a government without

commitment to pursue the ex-ante optimally chosen policy ex-post.2 Even though each friction by itself
1Our framework is consistent with an environment in which the legislature sequentially chooses a primary deficit and the

debt management office sequentially minimizes the financing cost subject to future risks, which is what is done in practice (see
the International Monetary Fund report 2014).

2This result requires the government to lack commitment to taxes or to spending but not to both. See Rogers (1989) for
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does not lead to an inefficiency, the combination of the two frictions leads to a nontrivial tradeoff between

market completeness and commitment in the government’s choice of maturity.

To get a sense of this tradeoff, consider the government’s optimal policy under commitment, which

in the presence of shocks uses debt to smooth fiscal policy distortions. If fully contingent claims were

available, there would be many maturity structures that would support the optimal policy. However,

if the government can only issue noncontingent claims, then there is a unique maturity structure that

replicates full insurance. As has been shown in Angeletos (2002) and Buera and Nicolini (2004), such a

maturity structure is tilted in a manner which guarantees that the market value of outstanding government

liabilities declines when the net present value of future government spending rises. If this situation

occurs when short-term interest rates rise—as in the case of quantitative examples with Markovian fiscal

shocks—then the optimal maturity structure requires that the government purchases short-term assets and

sells long-term debt. Because interest rate movements are quantitatively small, the tilted debt positions

required for hedging are large.

Under lack of commitment, such large and tilted positions are very costly to finance ex-ante if the

government cannot commit to policy ex-post. The larger and more tilted the debt position, the greater a

future government’s benefit from pursuing policies ex-post that will alter bond prices to relax the govern-

ment’s budget constraint. To do so, the government can either reduce the market value of its outstanding

liabilities by choosing policies which increase short-term interest rates, or it can increase the market

value of its newly issued short-term liabilities by choosing policies that reduce short-term interest rates.

Households purchasing government bonds internalize ex-ante the fact that the government will pursue

such policies ex-post, and they therefore require higher interest rates for lending to the government,

which raises the government’s cost of hedging to insure against shocks to the economy.

Our main result is that the problem posed by lack of commitment dominates the problem due to lack

of insurance. Therefore, the optimal maturity structure is not tilted; instead, it is nearly flat so as to ensure

that the government will choose policies guaranteeing ex-post short-term interest rates similar to those

it would prefer ex-ante. We present this result in a Markov perfect competitive equilibrium in which the

government dynamically chooses its policies at every date as a function of payoff-relevant variables: the

fiscal shock and its outstanding debt position at various maturities. Because it is not feasible to conduct

a complete analysis of such an equilibrium in an infinite-horizon economy with an infinite choice of debt

maturities, we present our main result in three exercises.

Our first exercise shows that the optimal debt maturity is exactly flat in a three-period example, as

the volatility of shocks goes to zero or as the persistence of shocks goes to one. In both of these cases,

a government under commitment that is financing a deficit in the initial period chooses a negative short-

term debt position and a positive long-term debt position. These positions are large; for instance, as

persistence goes to one, both positions approach infinity in absolute value.

However, under lack of commitment a government chooses an exactly flat debt maturity structure

with positive short-term and long-term debt positions that are equal to each other. Even though a flat

debt maturity reduces hedging, it guarantees that the government ex-post will choose the same smooth

more discussion.
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fiscal policy with constant consumption in the middle and final periods that the government ex-ante would

prefer. Instead, if all debt were long-term obligations, then a government in the middle period would de-

viate from a smooth policy by reducing short-term consumption and increasing long-term consumption,

which will raise short-term interest rates and benefit the government by reducing the market value of its

outstanding liabilities.3 If all debt were short-term maturities, the government’s deviation would reduce

short-term interest rates and benefit the government by increasing the market value of its newly issued

debt. Thus, only a flat debt maturity guarantees that ex-post short-term interest rates coincide with the

ex-ante preferred interest rates.

In our second exercise, we show that the insights from the three-period example hold approximately

in a quantitative finite-horizon economy under fiscal shocks with empirically plausible volatility and

persistence. We consider a finite-horizon economy since this also allows the government’s debt maturity

choices to be finite. Despite having the ability to choose from a flexible set of debt maturity structures,

we find that the optimal debt maturity is nearly flat, and the main component of the government’s debt

can be represented by a consol, a bond with a fixed nondecaying payment at all future dates.

The intuition for this result is that a flatter debt maturity maximizes the government’s commitment

and lowers its funding costs. For example, if households are primarily buying long-term bonds ex-ante,

then they accurately anticipate that if the government lacks commitment, it will pursue future policies

that will increase future short-term interest rates, thereby diluting the value of their claims. In this case,

households require a higher ex-ante interest rate (relative to commitment) to induce them to lend long-

term to the government. Similar reasoning holds if households are primarily buying short-term bonds

ex-ante. It is clear that a flat debt maturity comes at a cost of less hedging. However, as has been shown

in Angeletos (2002) and Buera and Nicolini (2004), substantial hedging requires massive and tilted

debt positions. Due to their size, financing these positions can be very expensive in terms of average

fiscal policy distortions because of the government’s lack of commitment. Moreover, under empirically

plausible levels of public spending volatility, the cost of lack of insurance under a flat maturity structure

is small. Therefore, the optimal time-consistent policy pushes in the direction of reducing the average

fiscal policy distortion versus reducing the volatility of distortions, and the result is a nearly flat maturity

structure.4

In our third and final exercise, we consider an infinite-horizon economy and show that the optimal

policy under lack of commitment can be quantitatively approximated with active consol management, so

that the optimal debt maturity is again nearly flat. An infinite-horizon analysis allows us to better capture

the quantitative features of this optimal policy and to characterize the policy dynamics, but this approach

also comes entails a cost of not being able to consider the government’s entire range of feasible debt

maturity policies. We consider a setting in which the government has access to two debt instruments: a

nondecaying consol and a decaying perpetuity. Under full commitment, the government holds a highly
3Our observation that long-term debt positions lead to lower fiscal discipline is consistent with other arguments in the

literature on debt maturity (see Missale and Blanchard 1994; Missale, Giavazzi, and Benigno 2002; Chatterjee and Eyigungor
2012; and Broner, Lorenzoni, and Schmukler 2013).

4This conclusion—that the welfare benefit of smoothing economic shocks is small relative to that of raising economic
levels—is more generally tied to the insight in Lucas (1987).
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tilted debt maturity, where each position is large in absolute value and constant. In contrast, under lack

of commitment, the government holds a negligible and approximately constant position in the decaying

perpetuity, and it holds a positive position in the consol which it actively manages in response to fiscal

shocks. Additionally, we show that our conclusion that the optimal debt maturity is approximately flat is

robust to the choice of volatility and persistence of fiscal shocks, to the choice of household preferences,

and to the introduction of productivity and discount factor shocks.

We recognize that our policy prescription differs from the current practices used in advanced economies.

However, we note that the use of consols has been pursued historically, most notably by the British gov-

ernment in the Industrial Revolution, when consols were the largest component of the British govern-

ment’s debt (see Mokyr 2010). Moreover, the reintroduction of consols has received some support in the

press and in policymaking circles (for example Cochrane 2015).5 Our analysis provides an argument for

consols based on the government’s limited commitment to the future path of fiscal policy.

Related Literature
This paper is connected to several literatures. As discussed, we build on the work of Angeletos (2002)

and Buera and Nicolini (2004) by introducing lack of commitment.6 Our model is most applicable to

economies in which the risks of default and inflation surprises are not prominent, but whose governments

are not committed to a path of deficits and debt maturity issuance. Arellano et al. (2013) study a similar

setting to ours but with nominal frictions and lack of commitment to monetary policy.7 In contrast

to Aguiar et al. (2015), Arellano and Ramanarayanan (2012), and Fernández and Martin (2015)—who

consider small-open economy models with the possibility of default—we focus on lack of commitment

to taxation and debt issuance, which affects the path of risk-free interest rates. This difference implies

that, in contrast to their work, short-term debt does not dominate long-term debt in minimizing the

government’s lack of commitment problem. In our setting, even if the government were only to issue

short-term debt, the government ex-post would deviate from the ex-ante optimal policy by pursuing

policies which reduce short-term interest rates below the ex-ante optimal level.8,9

More broadly, our paper is also tied to the literature on optimal fiscal policy which explores the role

of noncontingent debt and lack of commitment. A number of papers have studied optimal policy under
5See Matthew Yglesias, “Don’t Repay the National Debt,” Slate, January 29, 2013. See James Leitner and Ian Shapiro,

“Consols Could Avert Another Debt-Ceiling,” The Washington Post, November 14, 2013.
6Additional work explores government debt maturity while continuing to maintain the assumption of full commitment. Shin

(2007) explores optimal debt maturity when there are fewer debt instruments than states. Faraglia, Marcet, and Scott (2010)
explore optimal debt maturity in environments with habits, productivity shocks, and capital. Lustig, Sleet, and Yeltekin (2008)
explore the optimal maturity structure of government debt in an economy with nominal rigidities. Guibaud, Nosbusch, and
Vayanos (2013) explore optimal maturity structure in a preferred habitat model.

7In addition, Alvarez, Kehoe, and Neumeyer (2004) and Persson, Persson, and Svensson (2006) consider problems of lack
of commitment in an environment with real and nominal bonds of varying maturity when the possibility of surprise inflation
arises. Alvarez, Kehoe, and Neumeyer (2004) find that to minimize incentives for surprise inflation, the government should
only issue real bonds.

8In a small open economy with default, the risk-free rate is exogenous and the government’s ex-post incentives are always to
issue more debt, increasing short-term interest rates (which include the default premium) above the ex-ante optimal level. For
this reason, short-term debt issuance ex-ante can align the incentives of the government ex-ante with those of the government
ex-post.

9Niepelt (2014), Chari and Kehoe (1993a,b), and Sleet and Yeltekin (2006) also consider the lack of commitment under full
insurance, though they focus on settings which allow for default.
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full commitment but noncontingent debt, such as Barro (1979) and Aiyagari et al. (2002).10 In line with

this work, we find that the optimal taxes respond persistently to economic shocks, though in contrast to

this work, this persistence is due to the lack of commitment by the government as opposed to ruling out

the use of long-term government bonds. Other work has studied optimal policy in settings with lack of

commitment, but with full insurance (for example, Krusell, Martin, and Rı́os-Rull 2006 and Debortoli

and Nunes 2013). We depart from this work by introducing long-term debt, which in a setting with full

insurance can imply that the friction due to lack of commitment no longer introduces any inefficiencies.

Our paper proceeds as follows. In Section 2, we describe the model. In Section 3, we define the

equilibrium and characterize it recursively. In Section 4, we show that the optimal debt maturity is

exactly flat in a three-period example. In Section 5, we show that the optimal debt maturity is nearly

flat in a finite-horizon economy with unlimited debt instruments and in an infinite-horizon economy with

limited debt instruments. Section 6 concludes and the Appendix provides all of the proofs and additional

results not included in the main text.

2 Model

2.1 Environment

We consider an economy identical to that of Lucas and Stokey (1983) with two modifications. First, we

rule out the use of state-contingent bonds. Second, we assume that the government cannot commit to

fiscal policy. There are discrete time periods t = {1, ...,∞} and a stochastic state st ∈ S which follows

a first-order Markov process. The initial state, s0, is given. Let st = {s0, ..., st} ∈ St represent a history,

and let π
(
st+k|st

)
represent the probability of st+k conditional on st for t+ k ≥ t.

The economy’s resource constraint is

ct + gt = nt, (1)

where ct is consumption, nt is labor, and gt is government spending.

There is a continuum of mass 1 of identical households that derive the following utility:

E
∞∑
t=0

βt (u (ct, nt) + θt (st) v (gt)) , β ∈ (0, 1) . (2)

The function u (·) is strictly increasing in consumption and strictly decreasing in labor, globally concave,

and continuously differentiable. The function v (·) is strictly increasing, concave, and continuously dif-

ferentiable. Under this representation, θt (st) is high (low) when public spending is more (less) valuable.

In contrast to the model of Lucas and Stokey (1983), we have allowed gt in this framework to be chosen

by the government, as opposed to being exogenously determined. We allow for this possibility to also

consider that the government may not be able to commit to the ex-ante optimal level of public spending.
10See also Farhi (2010).
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In our analysis, we also consider the Lucas and Stokey (1983) environment in which there is no discretion

over government spending, and we show that all of our results hold.

Household wages equal the marginal product of labor (which is one unit of consumption), and are

taxed at a linear tax rate τt. The expression bt+kt R 0 represents government debt purchased by a

representative household in period t, which is a promise to repay one unit of consumption at t + k > t,

and qt+kt represents its price at t. At every period t, the household’s allocation
{
ct, nt,

{
bt+kt

}∞
k=1

}
must

satisfy the household’s dynamic budget constraint,

ct +
∞∑
k=1

qt+kt

(
bt+kt − bt+kt−1

)
= (1− τt)nt + btt−1. (3)

Bt+k
t R 0 represents debt issued by the government at t with a promise to repay one unit of consumption

at t+k > t. At every period t, government policies
{
τt, gt,

{
Bt+k
t

}∞
k=1

}
must satisfy the government’s

dynamic budget constraint,

gt +Bt
t−1 = τtnt +

∞∑
k=1

qt+kt

(
Bt+k
t −Bt+k

t−1

)
.11 (4)

The economy is closed and bonds are in zero net supply:

bt+kt = Bt+k
t ∀t, k. (5)

Initial debt
{
Bk−1
−1

}∞
k=1

is exogenous.12 We assume that debt limits exist to prevent Ponzi schemes:

Bt+k
t ∈

[
B,B

]
. (6)

We let B be sufficiently low and B be sufficiently high so that (6) does not bind in our theoretical and

quantitative exercises.

In this environment, a key friction is the absence of state-contingent debt, since the value of outstand-

ing debtBt+k
t is independent of the realization of the state st+k. If state-contingent bonds were available,

then at any date t, the government would own a portfolio of bonds
{{

Bt+k
t−1 |st+k

}
st+k∈St+k

}∞
k=0

, where

the value of each bond payout at date t + k would depend on the realization of a history of shocks,

st+k ∈ St+k. In our discussion, we will refer back to this complete market case.

The government is benevolent and shares the same utility preferences as the households in (2). We

11We follow the same exposition as in Angeletos (2002) in which the government restructures its debt in every period by
buying back all outstanding debt and then issuing fresh debt at all maturities. This assumption holds without loss of generality.
For example, if the government at t − k issues debt due at date t of size Bt

t−k which it then holds to maturity, then all future
governments at date t− k + l for l = 1, ..., k − 1 will choose Bt

t−k+l = Bt
t−k, implying that Bt

t−k = Bt
t−1.

12Our model implicitly allows the government to buy back the long-term bonds from the private sector. While ruling out bond
buybacks is interesting, 85 percent of countries conduct some form of bond buyback and 32 percent of countries conduct these
buybacks on a regular basis (see the OECD report by Blommestein, Elmadag, and Ejsing 2012). Furthermore, note that even if
our environment did not permit bond buyback, a government can replicate the buyback of a long-term bond by purchasing an
asset with a payout on the same date (see Angeletos 2002).
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assume that the government cannot commit to policy and therefore chooses taxes, spending, and debt

sequentially.

3 Markov Perfect Competitive Equilibrium

3.1 Definition of Equilibrium

We consider a Markov perfect competitive equilibrium (MPCE) in which the government must optimally

choose its preferred policy at every date as a function of current payoff-relevant variables. The govern-

ment takes into account that its choice affects future debt levels and thus affects the policies of future

governments. Households rationally anticipate these future policies, and in turn their expectations are

reflected in current bond prices. Thus, in choosing policy today, a government about future policy.

Formally, let Bt ≡
{
Bt+k
t

}∞
k=1

and qt ≡
{
qt+kt

}∞
k=1

. In every period t, the government enters

the period and chooses a policy {τt, gt,Bt} given {st,Bt−1}. Households then choose an allocation{
ct, nt,

{
bt+kt

}∞
k=1

}
. An MPCE consists of: a government strategy ρ (st,Bt−1) which is a function

of (st,Bt−1); a household allocation strategy ω ((st,Bt−1) , ρt,qt) which is a function of (st,Bt−1),

the government policy ρt = ρ (st,Bt−1), and bond prices qt; and a set of bond-pricing functions{
ϕk (st,Bt−1, ρt)

}∞
k=1

with qt+kt = ϕk (st,Bt−1, ρt) ∀k ≥ 1, which depend on (st,Bt−1) and the

government policy ρt = ρ (st,Bt−1). In an MPCE, these objects must satisfy the following conditions

∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the government

budget constraint (4),

2. The household allocation strategy ω (·) maximizes (2) given ρ (·), ϕk (·) ∀k ≥ 1, and the house-

hold budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

While for generality we assume that the government can freely choose taxes, spending, and debt

in every period, throughout the paper we also consider cases in which the government does not have

discretion either in setting spending or in setting taxes. These special cases highlight how choosing the

right level of government debt maturity can induce future governments to choose the commitment policy.

3.2 Primal Approach

Any MPCE must be a competitive equilibrium. We follow Lucas and Stokey (1983) by taking the primal

approach to the characterization of competitive equilibria since this allows us to abstract away from bond

prices and taxes. Let {{
ct
(
st
)
, nt
(
st
)
, gt
(
st
)}

st∈St

}∞
t=0

(7)
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represent a stochastic sequence, where the resource constraint (1) implies

ct
(
st
)

+ gt
(
st
)

= nt
(
st
)

. (8)

We can establish necessary and sufficient conditions for (7) to constitute a competitive equilibrium.

The household’s optimization problem implies the following intratemporal and intertemporal conditions,

respectively:

1− τt
(
st
)

= −
un,t

(
st
)

uc,t (st)
and qt+kt

(
st
)

=

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
uc,t (st)

. (9)

Substituting of these conditions into the household’s dynamic budget constraint implies the following

condition:

uc,t
(
st
)
ct
(
st
)

+ un,t
(
st
)
nt
(
st
)

+
∞∑
k=1

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t

(
st
)

= (10)

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t−1
(
st−1

)
.

Forward substitution into the above equation and taking into account the absence of Ponzi schemes

implies the following implementability condition:

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)(
uc,t+k

(
st+k

)
ct+k

(
st+k

)
+ un,t+k

(
st+k

)
nt+k

(
st+k

))
= (11)

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t−1
(
st−1

)
.

By this reasoning, if a stochastic sequence in (7) is generated by a competitive equilibrium, then it

necessarily satisfies (8) and (11). In the Appendix we prove that the converse is also true, which leads

to the following proposition that is useful for the rest of our analysis.

Proposition 1 (Competitive Equilibrium) A stochastic sequence (7) is a competitive equilibrium if and

only if it satisfies (8) ∀st and ∃
{{{

Bt+k
t−1
(
st−1

)}∞
k=0

}
st−1∈St−1

}∞
t=0

which satisfy (11) ∀st.

A useful corollary to this proposition concerns the relevant implementability condition in the pres-

ence of state-contingent bonds, Bt+k
t |st+k, which provide payment at t+k conditional on the realization

of a history st+k.

Corollary 1 In the presence of state-contingent debt, a stochastic sequence (7) is a competitive equilib-

rium if and only if it satisfies (8) ∀st and (11) for st = s0 given initial liabilities.
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If state-contingent debt is available, then satisfying (11) at s0 guarantees the satisfaction of (11) for

all other histories st, since state-contingent payments can be freely chosen so as to satisfy (11) at all

future histories st.

3.3 Recursive Representation of MPCE

We can use the primal approach to represent an MPCE recursively. Recall that ρ (st,Bt−1) is a policy

that depends on (st,Bt−1), and that ω ((st,Bt−1) , ρt,qt) is a household allocation strategy that depends

on (st,Bt−1), government policy ρt = ρ (st,Bt−1), and bond prices qt, where these bond prices depend

on (st,Bt−1) and government policy. As such, an MPCE in equilibrium is characterized by a stochastic

sequence in (7) and a debt sequence
{{{

Bt+k
t

(
st
)}∞

k=1

}
st∈St

}∞
t=0

, where each element depends only

on st through (st,Bt−1), the payoff relevant variables. Given this observation, in an MPCE, one can

define a function hk (·) as

hk (st,Bt) = βkE [uc,t+k|st,Bt] (12)

for k ≥ 1, which equals the discounted expected marginal utility of consumption at t+ k given (st,Bt)

at t. This function is useful since, in choosing Bt at date t, the government must take into account how

this choice will affect future expectations of policy which, in turn, affect current bond prices through the

expected future marginal utility of consumption.

Furthermore, note that choosing {τt, gt,Bt} at date t is equivalent to choosing {ct, nt, gt,Bt} from

the government’s perspective, and this follows from the primal approach delineated in the previous sec-

tion. Thus, we can write the government’s problem recursively as

V (st,Bt−1) = max
ct,nt,gt,Bt

u (ct, nt) + θt (st) v (gt) + β
∑

st+1∈S
π (st+1|st)V (st+1,Bt)

 (13)

s.t.

ct + gt = nt, (14)

uc,t
(
ct −Bt

t−1
)

+ un,tnt +

∞∑
k=1

hk (st,Bt)
(
Bt+k
t −Bt+k

t−1

)
= 0, (15)

where (15) is a recursive representation of (10). Let f (st,Bt−1) correspond to the solution to (13)−(15)

given V (·) and hk (·). It therefore follows that the function f (·) necessarily implies a function hk (·)
which satisfies (12). An MPCE therefore is composed of functions V (·), f (·), and hk (·), which are

consistent with one another and satisfy (12)− (15).

4 Three-Period Example

We turn to a simple three-period example to provide the intuition for interpreting our quantitative results.

This example allows us to explicitly characterize government policy both with and without commit-
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ment, making it possible to highlight how dramatically different optimal debt maturity is under the two

scenarios.

Let t = 0, 1, 2 and define a low and high shock θL and θH with θH = 1 + δ and θL = 1 − δ

for δ ∈ [0, 1). Suppose that θ0 > θH , θ1 = θH with probability 1/2 and θ1 = θL with probability

1/2. In addition, let θ2 = αθH + (1− α) θL if θ1 = θH and θ2 = αθL + (1− α) θH if θ1 = θL for

α ∈ [0.5, 1). Therefore, all uncertainty is realized in period 1, with δ capturing the volatility of the shock

and α capturing the persistence of the shock between periods 1 and 2.

Suppose that the government lacks commitment to spending and that taxes and labor are exogenously

fixed to some τ and n, respectively, so that the government collects a constant revenue stream in all

periods.13 Assume that the government’s welfare function can be represented by

E
∑

t=0,1,2

βt ((1− ψ) log ct + ψθtgt) (16)

for ψ ∈ [0, 1]. We consider the limiting case in which ψ → 1 and we let β = 1 for simplicity. Initially,

the government has no debt and all debt is repaid in the final period.

In this environment, the government does not have any discretion over tax policy, and any ex-post

deviation by the government is driven by a desire to increase spending since the marginal benefit of

additional spending always exceeds the marginal benefit of consumption.

4.1 Full Commitment

This section shows analytically that a government with commitment chooses highly tilted and large debt

positions to fully insulate the economy from shocks.

The necessary and sufficient conditions for a competitive equilibrium in an economy with noncon-

tingent debt are expressed in Proposition 1. These conditions are more stringent than those prevailing in

an economy with state-contingent debt, which are expressed in Corollary 1. The key result in Theorem

1 of Angeletos (2002) proves that any allocation under state-contingent debt can be approximately im-

plemented with noncontingent debt. This result implies that there is no inefficiency stemming from the

absence of contingent debt. Our example explicitly characterizes these allocations to provide a theoreti-

cal comparison with those under lack of commitment.

The analog of the implementability condition at date zero in (10) can be written as a weak inequality

constraint (since it binds in the optimum):

c0 − n (1− τ)

c0
+ E

(
B1

0

c1
+
B2

0

c2

)
≥ 0, (17)

13Such a situation would prevail for example if taxes are constant and the underlying preferences satisfy those of Greenwood,
Hercowitz, and Huffman (1988).
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which after substitution yields the analog of (11) (which also binds in the optimum):

c0 − n (1− τ)

c0
+ E

(
c1 − n (1− τ)

c1
+
c2 − n (1− τ)

c2

)
≥ 0. (18)

Moreover, the date one implementability condition (11), which can also be written as a weak inequality

constraint, is:
c1 − n (1− τ)

c1
+
c2 − n (1− τ)

c2
≥ B1

0

c1
+
B2

0

c2
. (19)

Now let us consider an economy under complete markets. From Corollary 1, in a complete market

economy the only relevant constraints on the planner are the resource constraints and the period zero

implementability constraint (18). It can be shown that maximizing social welfare under these constraints

leads to the following optimality condition,

ct =
1

θ
1/2
t

n (1− τ)

3
E

 ∑
k=0,1,2

θ
1/2
k

 ∀t. (20)

Equation (20) implies that in the presence of full insurance, spending is independent of history and

depends only on the state θt, which takes on two possible realizations in the second and third periods.

The main result in Angeletos (2002) is that this allocation can be sustained even if state-contingent

bonds are not available. To see this, note that from Proposition 1, the absence of state-contingent bonds

leads to an additional constraint (19), which binds in the optimum. It can be shown that this constraint

does not impose any additional inefficiency. Namely, the optimal solution under complete markets in

(20) can be implemented under incomplete markets by choosing appropriate values of B1
0 and B2

0 which

simultaneously satisfy (19) (which holds with equality) and (20). This implies that

(
θH
)1/2 (

n (1− τ) +B1
0

)
+
(
αθH + (1− α) θL

)1/2 (
n (1− τ) +B2

0

)
= (21)(

θL
)1/2 (

n (1− τ) +B1
0

)
+
(
αθL + (1− α) θH

)1/2 (
n (1− τ) +B2

0

)
.

By algebraic substitution, it can be shown that

B1
0 < 0 and B2

0 > 0.

Why does such a maturity structure provide full insurance? Consider the allocation at t = 1 and

t = 2 under full insurance, as defined in (20). This allocation implies that the net present value of the

government’s primary surpluses is lower if the high shock is realized. This implication follows from

the fact that the left-hand side of the government budget constraint (19) is lower if θ1 = θH and is

higher if θ1 = θL. In a complete market economy with state-contingent bonds, the government is able

to offset this increase in the deficit during the high shock with a state-contingent payment it receives

from households. In an economy without state-contingent debt, such a state-contingent payment can be

replicated with a capital gain on the government’s bond portfolio. More specifically, the market value of
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the government’s outstanding bond portfolio at t = 1 is represented by

B1
0 +

c1
c2
B2

0 , (22)

where we have substituted (9) for the one-period bond price. Since the shock is mean-reverting, it follows

from (20) that the one-period bond price at t = 1, c1/c2, is lower if the shock is high. As such, if the

government issued long-term debt at date zero (B2
0 > 0), then the market value of government bonds in

(22) declines during the high shock. The reason that the government purchases short-term assets at date

zero (B1
0 < 0) is to be able to buy back some of outstanding long-term debt at date one. If the date one

fiscal shock is high and the government needs resources, it will be able to buy this debt back at a lower

price.

How large are the debt positions required to achieve full insurance? The following proposition shows

that these positions can be very high.

Proposition 2 (Full Commitment) The unique solution under full commitment is characterized by:

1. (Deterministic Limit) As δ → 0,

B1
0 = −n (1− τ)

θ
1/2
0 + 2

3
(2α− 1) + (1− α)

1− α
< 0 , (23)

B2
0 = n (1− τ)

θ
1/2
0 + 2

3
− (1− α)

1− α
> 0. (24)

2. (Full Persistence Limit) As α→ 1,

B1
0 → −∞ and B2

0 →∞.

The first part of Proposition 2 characterizes the optimal value of the short-term debtB1
0 and the long-

term debt B2
0 as the variance of the shock δ goes to zero. There are a few points to note regarding this

result. First, it should be emphasized that this is a limiting result. At δ = 0, the optimal values of B1
0 and

B2
0 are indeterminate. This is because there is no incentive to hedge, and any combination of B1

0 and B2
0

which satisfies

B1
0 +B2

0 = 2n (1− τ)
θ
1/2
0 − 1

3
(25)

is optimal, since the market value of total debt—which is what matters in a deterministic economy—is

constant across these combinations. Therefore, the first part of the proposition characterizes the solution

when δ is arbitrarily small, in which case the hedging motive still exists, leading to a unique maturity

structure. Second, in the limit, the debt positions do not go to zero, and the government maintains a

positive short-term asset position and a negative long-term debt position. This happens, even though the

need for hedging goes to zero as volatility goes to zero, since the volatility in short-term interest rates
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goes to zero as well. The size of a hedging position partly depends on the variation in the short-term

interest rate at date one captured by the variation in c1/c2 in the complete market equilibrium. The

smaller this variation, the larger is the required position to generate a given variation in the market value

of debt to generate insurance. This fact implies that the positions required for hedging do not need to go

to zero as volatility goes to zero. As a final point, note that the debt positions can be large in absolute

value. For example, since θ0 > 1 and α ≥ 0.5, B1
0 < −n (1− τ) and B2

0 > n (1− τ), so that the

absolute value of each debt position strictly exceeds the disposable income of households.

The proposition’s second states that as the persistence of the shock between dates one and two goes to

one, the magnitude of the government’s chosen debt positions explode to infinity, so that the government

holds an infinite short-term asset position and an infinite long-term debt position. As already discussed,

the size of a hedging position depends in part on the variation in the short-term interest rate at date one

captured by the variation in c1/c2 in the complete market equilibrium. As the persistence of the shock

goes to one, the variation in the short-term interest rate at date one goes to zero, and since the need for

hedging does not go to zero, this leads to the optimality of infinite debt positions. Under these debt

positions, the government can fully insulate the economy from shocks since (20) continues to hold.

The two parts of Proposition 2 are fairly general and do not depend on the details of our particu-

lar example. These results are a consequence of the fact that in any application of our environment,

fluctuations in short-term interest rates should go to zero as the volatility of shocks goes to zero or the

persistence of shocks goes to one. To the extent that it is possible to complete the market using various

debt maturities, the reduced volatility in short-term interest rates is a force that increases the magnitude

of the optimal debt positions required for hedging. In addition, note that our theoretical result is con-

sistent with the quantitative results of Angeletos (2002) and Buera and Nicolini (2004). These authors

present a number of examples in which volatility is not equal to zero and persistence is not equal to one,

yet the variation in short-term interest rates is very small, and the optimal debt positions are very large

in magnitude relative to GDP.

4.2 Lack of Commitment

We now show that the optimal policy changes dramatically once we introduce lack of commitment. We

solve for the equilibrium under lack of commitment by using backward induction. At date two, the

government has no discretion in its choice of fiscal policy, and it chooses c2 = n (1− τ) +B2
1 .

Now consider government policy at date one. The government maximizes its continuation wel-

fare given B1
0 and B2

0 , the resource constraint, and the implementability condition (19). Note that if

n (1− τ) + Bt
0 ≤ 0 for t = 1, 2, then no allocation can satisfy (19) with equality. Therefore, such a

policy is not feasible at date zero and is never chosen. The following lemma characterizes government

policy for all other values of
{
B1

0 , B
2
0

}
.

Lemma 1 If n (1− τ) + Bt
0 > 0 for t = 1, 2, the date one government under lack of commitment
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chooses:

ct =
1

2

(
n (1− τ) +Bt

0

θt

)1/2
∑
t=1,2

θ
1/2
t

(
n (1− τ) +Bt

0

)1/2 for t = 1, 2. (26)

If n (1− τ) + Bt
0 ≤ 0 for either t = 1 or t = 2, the date one government can maximize welfare by

choosing ct arbitrarily close to zero for t = 1, 2.

Given this policy function at dates one and two, the government at date zero chooses a value of c0
and

{
B1

0 , B
2
0

}
given the resource constraint and given (17) so as to maximize social welfare.

It is straightforward to see that the government never chooses n (1− τ) + Bt
0 ≤ 0 for either t = 1

or t = 2. In that case, ct is arbitrarily close to zero for t = 1, 2, which implies that (18) is violated

since a positive value of c0 cannot satisfy that equation. Therefore, date zero policy always satisfies

n (1− τ) +Bt
0 > 0 for t = 1, 2 and (26) applies.

We proceed by deriving the analog of Proposition 2 but removing the commitment assumption. We

then conclude by discussing optimal debt maturity away from the limiting cases considered therein.

4.2.1 Deterministic Limit

If we substitute (26) into the social welfare function (16) and the date zero implementability condition

(17), we can write the government’s problem at date zero as:

max
c0,B1

0 ,B
2
0

−θ0c0 − 1

2
E

∑
t=1,2

θ
1/2
t

(
n (1− τ) +Bt

0

)1/22 (27)

s.t.

c0 =
n (1− τ)

3− 2n (1− τ)E

∑t=1,2 θ
1/2
t

(
n (1− τ) +Bt

0

)−1/2∑
t=1,2 θ

1/2
t (n (1− τ) +Bt

0)
1/2

 . (28)

We can simplify the problem by substituting (28) into (27) and defining

κ =
(
n (1− τ) +B2

0

)
/
(
n (1− τ) +B1

0

)
, (29)

so that (27) can be rewritten as:

max
B1

0 ,κ


−θ0 n(1−τ)

3−2n(1−τ)(n(1−τ)+B1
0)
−1E

θ1/21 + θ
1/2
2 κ−1/2

θ
1/2
1 + θ

1/2
2 κ1/2


−1

2

(
n (1− τ) +B1

0

)
E
(
θ
1/2
1 + θ

1/2
2 κ1/2

)2
 . (30)
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Optimality of a Flat Maturity Structure Proposition 3 states that as the volatility of the shock δ

goes to zero, the unique optimal solution under lack of commitment admits a flat maturity structure with

B1
0 = B2

0 . This implies that for arbitrarily low levels of volatility, the government will choose a nearly

flat maturity structure, in stark contrast to the case of full commitment described in Proposition 2. In that

case, debt positions take on opposing signs and are bounded away from zero for arbitrarily low values of

volatility.

Proposition 3 (Lack of Commitment, Deterministic Limit) The unique solution under lack of commit-

ment as δ → 0 satisfies

B1
0 = B2

0 = n (1− τ)
θ
1/2
0 − 1

3
=

1

2
B > 0. (31)

When δ goes to zero, the cost of lack of commitment also goes to zero. As in Lucas and Stokey

(1983), the reason is that the government utilizes the debt maturity structure in order to achieve the same

allocation as under full commitment characterized in (20). More specifically, while the program under

commitment admits a unique solution for δ > 0, when δ = 0, any combination of B1
0 and B2

0 satisfying

B1
0 +B2

0 = B

is optimal. Whereas the government with commitment can choose any such maturity, the government

under lack of commitment must by necessity choose a flat maturity in order to achieve the same welfare.

Why is a flat maturity structure optimal as volatility goes to zero? To see this, let δ = 0, and consider

the incentives of the date one government, which only cares about raising spending. This government

would like to reduce the market value of what it owes to the private sector which, using the intertemporal

condition, can be represented by

B1
0 +

c1
c2
B2

0 . (32)

Moreover, the government would also like to increase the market value of newly issued debt which can

be represented by
c1
c2
B2

1 . (33)

If the debt maturity structure were tilted toward the long end, then the date one government would

deviate from a smooth policy so as to reduce the value of what it owes. For example, suppose that

B1
0 = 0 and B2

0 = B. Under commitment, it would be possible to achieve the optimum under this debt

arrangement. However, under lack of commitment, (26) implies that the government deviates from the

smooth ex-ante optimal policy by choosing c1 < c2. This deviation, which is achieved by issuing higher

levels of debt B2
1 relative to commitment, serves to reduce the value of what the government owes in

(32), therefore freeing up resources to be utilized for additional spending in period one.

Analogously, if the debt maturity structure were tilted toward the short end, then the government

would deviate from a smooth policy so as to increase the value of what it issues. For example, suppose

that B1
0 = B and B2

0 = 0. As in the previous case, this debt arrangement would implement the optimum

under commitment. However, rather than choosing the ex-ante optimal smooth policy, the date one
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government lacking commitment chooses policy according to (26), with c1 > c2. This deviation, which

is achieved by issuing lower levels of debt B2
1 relative to commitment, serves to increase the value of

what the government issues in (32), therefore freeing up resources to be utilized for additional spending

at t = 2.

It is only when B1
0 = B2

0 = B/2 that there are no gains from deviation. In this case, it follows from

(26) that B2
1 = B2

0 , and therefore any deviation’s marginal effect on the market value of outstanding

debt is perfectly outweighed by its effect on the market value of newly issued debt. For this reason, a flat

debt maturity structure induces commitment.

Tradeoff between Commitment and Insurance More generally, what this example illustrates is that,

whatever the value of δ, the government always faces a tradeoff between using the debt maturity structure

to fix the problem of lack of commitment and using the maturity structure to insulate the economy from

shocks. To see this, note that under lack of commitment, the date one short-term interest rate captured by

c2/c1 is rising in B2
0 and declining in B1

0 and this follows from (26). The intuition for this observation is

related to our discussion above. As B2
0 rises, the date one government’s incentives to reduce the market

value of what it owes rises, which leads to an increase in the date one short-term interest rate. As B1
0

rises, the date one government’s incentives to increase the market value of newly issued debt rises, which

leads to a reduction in the date one short-term interest rate.14

To see how a flat maturity structure minimizes the cost of lack of commitment, it is useful to consider

how the value of c1/c2 differs under commitment relative to under lack of commitment. Equation (20)

implies that under full commitment the solution requires c1/c2 = (θ2/θ1)
1/2. From (26), this can only

be true under lack of commitment if B1
0 = B2

0 , since in this case,

c1/c2 = (θ2/θ1)
1/2 ((n (1− τ) +B1

0

)
/
(
n (1− τ) +B2

0

))1/2
.

Therefore, the short-term interest rate at date one under lack of commitment can only coincide with that

under full commitment if the chosen debt maturity is flat under lack of commitment. This observation

more generally reflects the fact that, conditional on B1
0 = B2

0 , the government under full commitment

and the government under lack of commitment always choose the same policy at date one. In this sense,

a flat debt maturity structure minimizes the cost imposed by lack of commitment.

To see how a tilted maturity structure minimizes the cost of incomplete markets, let cHt and cLt

correspond to the values of c at date t conditional on θ1 = θH and θ1 = θL, respectively, under

full commitment. From (20), under full commitment it is the case that cH1 /c
L
1 =

(
θL/θH

)1/2 and

cH2 /c
L
2 =

((
αθL + (1− α) θH

)
/
(
αθH + (1− α) θL

))1/2. From (26), this can only be true under lack

of commitment if (21) is satisfied, requiring B1
0 6= B2

0 . In other words, under lack of commitment the

variance in consumption at date one can only coincide with that under full commitment if the chosen
14One natural implication of this observation is that the slope of the yield curve at date zero is increasing in the maturity of

debt issued at date zero. Formally, starting from a given policy, if we perturb B1
0 and B2

0 so as to keep the primary deficit fixed
at date zero, one can show that q10/q20 is strictly increasing in B2

0 . This result is in line with the empirical results of Guibaud,
Nosbusch, and Vayanos (2013) and Greenwood and Vayanos (2014).
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debt maturity under lack of commitment is tilted in a similar fashion.

Thus, the government at date zero faces a tradeoff. On the one hand, it can choose a flat maturity

structure to match the short-term interest rate between dates one and two which it would prefer ex-

ante under full commitment. On the other hand, it can choose a tilted maturity structure to match the

variance in consumption at dates one and two which it would prefer ex-ante under full commitment. This

example illustrates the key tradeoff between insurance and commitment that the government considers

at date zero.

In Appendix A-2 we formally analyze this tradeoff through a second-order approximation to welfare

(30), in a neighborhood of the deterministic case (δ = 0). Up to this approximation, for any value of the

variance δ > 0, we find that the cost of lack of commitment is of higher order importance than the cost of

lack of insurance. Thus, the debt maturity should be structured to fix the problem of lack of commitment,

and therefore should be flat.

4.2.2 Full Persistence Limit

The previous section considered an economy in which the volatility of the shock is arbitrarily low, and

we showed that optimal policy is a flat debt maturity that minimizes the cost of lack of commitment. In

this section, we allow the volatility of the shock to take any value, and we consider what the optimal

policy should be as the persistence of the shock, α, goes to one.

Proposition 4 (Lack of Commitment, Full Persistence Limit) The unique solution under lack of com-

mitment as α→ 1 satisfies

B1
0 = B2

0 = n (1− τ)
θ
1/2
0 − 1

3
=

1

2
B > 0. (34)

This proposition states that as the persistence of the shock α goes to one, the unique optimal solution

under lack of commitment admits a flat maturity structure with B1
0 = B2

0 . This means that for arbitrarily

high values of persistence, the government will choose a nearly flat maturity structure, which is in stark

contrast to the case of full commitment described in Proposition 2. In that case, debt positions are tilted

and are arbitrarily large in magnitude for high values of persistence, since B1
0 diverges to minus infinity

and B2
0 diverges to plus infinity as α approaches one. Given (20) which holds under full commitment

and (26) which holds under lack of commitment, this proposition implies that under lack of commitment,

the government no longer insulates the economy from shocks, since the level of public spending at dates

one and two is no longer responsive to the realization of uncertainty at date one. Therefore, as α goes to

one, the cost of lack of commitment remains positive.

The reasoning behind this proposition is as follows. As the shock’s persistence between dates one and

two goes to one, the government at date zero would prefer to smooth consumption as much as possible

between dates one and two. From (26), the only way to do this, given the government’s incentives at date

one, is to choose a flat debt maturity with B1
0 = B2

0 . Clearly, choosing B1
0 = B2

0 reduces hedging, since

from (26) it implies that consumption, and therefore public spending, is unresponsive to the shock. If, as
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under commitment, the government were to attempt some hedging with B1
0 < 0 and B2

0 > 0, it would

need to choose debt positions of arbitrarily large magnitudes, since the variation in the short-term interest

rate at date one across states diminishes as persistence goes to one. From Lemma 1, such offsetting debt

positions lead to very nonsmooth consumption and an increasing short-term interest rate between dates

one and two. Moreover, if B1
0 ≤ −n (1− τ), this leads the date one government to choose c1 and c2

arbitrarily close to zero, which violates (18) since a solution for c0 does not exist.

Since any hedging has an infinite cost in the limit, the date zero government chooses to forgo hedging

altogether, and instead chooses a flat debt maturity structure that induces the date one government to

implement a smooth consumption path. While under commitment such a smooth consumption path

could be implemented with a number of maturity structures, under lack of commitment it can only be

implemented with a flat debt position. In doing so, the government minimizes the welfare cost due to

lack of commitment.15

4.2.3 Discussion

The two limiting cases that we have described provide examples in which the optimal debt maturity under

lack of commitment is flat. This is because large and tilted debt maturities—which would be optimal

under full commitment—are very costly to finance under lack of commitment.

More generally, away from these limiting cases, any attempt by the government to hedge will be

costly in terms of commitment. To illustrate this insight, recall that at t = 1, the government pursues

policies which reduce the market value of outstanding debt and increase the market value of newly issued

debt. More specifically, the date one government is interested in relaxing the implementability condition

(19) by reducing the right-hand side of (19) as much as possible. This is why if B1
0 < (>)B2

0 , the

government chooses to set c1 < (>) c2. If B1
0 and B2

0 are very different, then there is greater scope for

deviating from a smooth policy in period one. For example, suppose that B1
0 < B2

0 with c1 < c2 chosen

according to (26). Clearly, if B1
0 were to be reduced by some ε > 0 and B2

0 increased by ε, then (19)

could be relaxed even further, and the date one government would choose a policy which further reduces

the right-hand side of (19).

The greater scope for deviation ex-post is very costly from an ex-ante perspective. This is because if

the right-hand side of (19) is lower, then the left-hand side of (17) is also lower. Therefore, by relaxing

the implementability condition at date one, the date one government is tightening the implementability

condition at date zero, which directly reduces the ex-ante welfare at date zero.

In both of the limiting cases we considered, the date zero government is principally concerned about

the date one government’s lack of commitment to fiscal policy and the date zero government chooses a

flat debt maturity. In the case where the volatility of the shock goes to zero, the benefit of hedging goes

to zero, and for this reason, the government chooses a flat maturity structure to minimize the cost of lack
15Using numerical methods, one can easily show that the results in Propositions 3 and 4 do not depend on the details of our

particular example. In any application of our environment, a smooth policy between dates one and two can only be guaranteed
with a flat debt maturity structure. Moreover, as the persistence of the shock goes to one, any hedging has an infinite cost in the
limit. Our example allows us to show the optimality of a flat maturity theoretically, since we are able to solve for the date one
policy in closed form using Lemma 1.
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of commitment. A similar reasoning applies in the case where the persistence of the shock goes to one,

since the cost of any hedging becomes arbitrarily large. Thus, the optimal debt maturity under lack of

commitment starkly contrasts to the optimal maturity structure under full commitment. In this case, the

government continues to hedge in the limit by choosing large and tilted debt positions.

A natural question concerns what happens to the optimal debt maturity under lack of commitment

once we move away from these limiting cases. This is a quantitative question which we explore in detail

in the following section. What our examples make clear is that the smaller the volatility of the shock

and the greater the persistence of the shock, the more likely it that the optimal policy under lack of

commitment admits a flat debt maturity structure. The reason is that in these circumstances, utilizing the

debt maturity to fix the problem of lack of commitment is more important than utilizing the debt maturity

to fix the problem of lack of insurance.

5 Quantitative Exercise

We first consider a finite-horizon economy. The advantage of a finite horizon over an infinite horizon is

that it is computationally feasible to allow the government to choose any arbitrary debt maturity structure.

We then move to consider an infinite-horizon economy with limited debt instruments, as this approach

allows us to more suitably capture the quantitative features of optimal policy and to characterize policy

dynamics. In these exercises we show that the optimal debt maturity is nearly flat.

We use the same parameterization as in Chari, Christiano, and Kehoe (1994). More specifically, we

set the per period payoff of households to

c1−σct − 1

1− σc
+ η

(1− nt)1−σl − 1

1− σl
+ θt

g
1−σg
t − 1

1− σg
, (35)

with σc = σl = σg = 1. We calibrate η = 3.33, since this value implies that hours worked n = 0.23

under full commitment. Each period is a year, and hence β = 0.9644, such that the riskless interest rate

is 4 percent. We consider an economy with two shocks, θL and θH , following a symmetric first-order

Markov process. The levels and persistence of the shocks imply that under full commitment, the average

spending to output ratio is 0.18, the standard deviation of spending equals 7 percent of average spending,

and the autocorrelation of spending is 0.89. All these values match the statistics and steady-state values

in Chari, Christiano, and Kehoe (1994). We set θ0 = θH .

5.1 Finite-Horizon Analysis

We begin our quantitative analysis in a finite-horizon economy with t = 0, ..., T , where the set of avail-

able maturities is unrestricted. In order to compare our results with those of the three-period example

developed in Section 4, showing that a flat debt maturity (that is, B1
0 = B2

0) is optimal, we allow the

government at every date t to issue a consol BL
t R 0, which represents a promise by the government to

pay a constant amount BL
t at each date t + k for k = {1, ..., T − t}. In addition, the government can
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issue a set of zero-coupon bonds {Bt+k
t }T−t−1k=1 . It follows that for t < T − 1, the government’s dynamic

budget constraint (4) can be rewritten as:

gt +Bt
t−1 +BL

t−1 = τtnt +
T−t−1∑
k=1

qt+kt

(
Bt+k
t −Bt+k

t−1

)
+ qLt

(
BL
t −BL

t−1
)

,

where qLt corresponds to the price of the consol. This budget constraint takes into account that at date

t, the government: i) makes a flow payoff to households equal to Bt
t−1 + BL

t−1 according to their hold-

ings of one-period bonds and consols, ii) exchanges old zero-coupon bonds Bt+k
t−1 for new zero-coupon

bonds Bt+k
t at price qt+kt , and iii) exchanges old consols BL

t−1 for new consols BL
t at price qLt . In this

environment, a flat debt maturity—which we found to be optimal in the theoretical example of Section

4—corresponds to one in which Bt+k
t = 0 ∀k.16

We choose initial conditions so that, under full commitment, the debt’s value equals 2.1 percent of

the net present value of GDP, out of which 28 percent has a maturity of less than one year, with the

rest equally distributed across the remaining maturities.17 The main results are unaffected by our choice

of initial conditions, as shown below. All debt must be repaid at the terminal date. As in Section 4’s

theoretical example, we let θT be deterministic from the government’s perspective at T − 1, and equal

to its expected value, conditional on the realization of θT−1. This modification implies that full hedging

is possible under full commitment, so that any inefficiencies in our setting arise purely from the lack of

commitment. All of our results continue to hold if instead θT is stochastically determined.

Table 1 summarizes the main results. Panel A describes our results in a three-period economy,

and Panel B describes our results in a four-period economy. In all cases, we display bond positions

as a fraction of GDP and, with some abuse of the textual notation, the bond positions B represent B

normalized by GDP. Panel A describes the benchmark simulation under full commitment. In this case,

B1
0 =–10,057 andBL

0 =5,120 (percent of GDP). These large magnitudes are consistent with the analysis

of Angeletos (2002) and Buera and Nicolini (2004). In the case of lack of commitment, B1
0 = 0.07 and

BL
0 = 2.32, so the optimal debt maturity is nearly flat. This characterization is consistent with Section

4’s theoretical three-period model in which the optimal debt maturity is exactly flat.

In Panel B, we find similar results when the horizon is extended to a four-period economy. In this

circumstance, under commitment the optimal maturity structure at date zero is indeterminate since there

are more maturities than shocks. If confined to a one-period bond and a consol, the government chooses

a one-period bond equal to –7,317 percent of GDP and a consol equal to 2,529 percent of GDP. In

contrast, under lack of commitment, B1
0 = −0.04, B2

0 = 0.00, and BL
0 = 2.41, so that the optimal

16At t = T − 1, the dynamic budget constraint is

gt +Bt
t−1 +BL

t−1 = τtnt + qLt

(
BL

t −BL
t−1

)
, (36)

since there are no zero-coupon bonds that can be issued. We can exclude T -period zero-coupon bonds BT
t because these

securities are redundant given the presence of the consol BL
t .

17These values are consistent with our parameterization of the infinite-horizon economy which matches the U.S. data from
1988 to 2007 described in the next section. Given a discount factor β = 0.9644, a debt equal to 2.1 percent of the net present
value of output corresponds to a debt-to-GDP ratio of roughly 60 percent in an infinite-horizon economy.
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maturity structure is nearly flat. Moreover, the optimal government debt maturity is even flatter at date

1, since B2
1 = 0.00 and BL

1 = 2.44.

In the second, third, and fourth columns of Table 1, we consider the robustness of our results as we

increase the volatility of shocks and decrease their persistence, since this moves us further away from the

limiting cases considered in Section 4. We find that the optimal debt maturity under lack of commitment

remains nearly flat if the standard deviation of shocks is two and four times larger than in the benchmark

simulation. We find the same result if shocks have zero persistence and are i.i.d.

In the last two columns of Table 1, we explore whether our results depend on the initial tilt of the

maturity structure. We consider an extreme case where the majority of the debt consists of one-period

bonds, so that these constitute 72 percent instead of 28 percent of liabilities, and the total amount of

debt is unchanged. We find that under lack of commitment, the optimal debt maturity at date 0 remains

nearly flat both in the three-period and four-period models; however, it is less flat than in the benchmark

case since the one-period bond B1
0 is larger in absolute value. In part, this is because the initial debt

position is itself highly tilted and there is a large flattening out that occurs during the initial period. In the

four-period model, the optimal debt maturity becomes even flatter with time (date one policies involve a

nearly flat maturity with B2
1 = 0.05 and BL

1 = 2.59). In the last column, we consider the consequences

of having the initial debt be exactly flat, and we find that the optimal maturity structure under lack of

commitment is nearly flat in all cases.

In the bottom of Panel B, we consider the consequences of restricting the set of maturities to a one-

year bond and a consol. Our main results continue to hold and the optimal debt maturity is nearly flat

even when using this restricted set of debt instruments.

Our quantitative results from the finite-horizon environment are in line with our theoretical results.

The optimality of a flat debt maturity emerges because of the combination of two forces. First, substantial

hedging requires massive and tilted debt positions, as has been shown in Angeletos (2002) and Buera and

Nicolini (2004). Due to their size, financing these positions can be very expensive in terms of average

tax distortions because of the government’s lack of commitment. Second, under empirically plausible

levels of public spending volatility, the cost of lack of insurance under a flat maturity structure is small.

Therefore, the optimal policy choice is directed at reducing average tax distortions versus reducing the

volatility of tax distortions, and the result is a nearly flat maturity structure.

5.2 Infinite-Horizon Analysis

The previous section suggested quantitatively that, in a finite-horizon economy, a government lacking

commitment should principally issue consols. We now consider the robustness of this result in an infinite-

horizon. In an infinite-horizon economy, the set of tradeable bonds is infinite, and to facilitate computa-

tion, we reduce the set of tradeable bonds in a manner analogous to the work of Woodford (2001) and

Arellano et al. (2013). Namely, we consider an economy with two types of bonds: a decaying perpetuity

and a nondecaying consol. We allow for a nondecaying consol since our analysis in the previous sections

suggest that the optimal debt maturity is nearly flat. We then consider whether or not the government
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makes use of the nondecaying perpetuity in its financing strategy.

Let BS
t−1 R 0 denote the value of the coupon associated with the decaying perpetuity issued by

the government at t − 1. Moreover, let BL
t−1 R 0 denote the value of the coupon associated with the

nondecaying consol issued by the government at t− 1. It follows that the government’s dynamic budget

constraint becomes:

gt +BS
t−1 +BL

t−1 = τtnt + qSt
(
BS
t − γBS

t−1
)

+ qLt
(
BL
t −BL

t−1
)

. (37)

Relative to (36), the only difference relates to the decaying perpetuity. Besides the consol, the govern-

ment exchanges nondecayed perpetuities γBS
t−1 for new perpetuities BS

t at price qSt , where γ ∈ [0, 1).

We focus on a MPCE in which the value and policy functions are differentiable. We cannot prove

that this MPCE is unique, but we have verified that our computational algorithm converges to the same

policy when starting from a large grid with many different initial guesses.18 In our benchmark simulation

we let γ = 0, so that BS represents a one-year bond. We choose initial debt positions to match the U.S.

statistics for the 1988–2007 period, with total debt having an average market value of 60 percent of GDP,

28 percent of which has a maturity of less than one year.19

5.2.1 Benchmark Simulation

Figure 1 displays the path of the one-year bond and the consol relative to GDP. The left panel shows the

path of these quantities under full commitment. From t ≥ 1 onward, the value ofBS is –2,789 percent of

GDP and the value of BL is 102 percent of GDP. The price of the consol is significantly higher than that

of the one-year bond, which explains why the position is significantly lower; in fact, the consol’s market

value is 2,858 percent of GDP. These large and highly tilted quantities are consistent with previous results

under commitment. These debt positions are not actively managed and remain constant over time.

The right panel considers the economy under lack of commitment, and in this scenario debt is actively

managed from t ≥ 1 onward. Since it is actively managed, we plot the average value of debt for each

time period taken from 1,000 simulations. Between t = 1 and t = 100, the average value of BS is –0.01

percent of GDP and the average value of BL is 2.22 percent of GDP.20 Therefore, the maturity structure

of debt is approximately flat. Additionally, the total amount of debt maturing in one period (that is, the

value of the one-period bond plus the consol’s coupon payment) is positive and equals 2.21 percent of

GDP. At the same horizon, a government with commitment instead would hold assets valued at about 26

times the GDP.

Figure 2 considers an equilibrium sequence of shocks and shows that BS is approximately zero and

constant in response to shocks, whereas BL is actively managed. More specifically, the level of the
18Further details regarding our computational method are available in the Appendix Section A-3.
19This calculation ignores off-balance sheet liabilities, such as unfunded mandatory spending obligations that are significantly

more long term. Taking this additional debt into account and changing initial conditions would not alter our main conclusion
that the optimal debt maturity under lack of commitment is nearly flat.

20We calculate the average starting from t = 1 rather than t = 0 since the simulation suggests that debt quickly jumps
towards its long-run average between t = 0 and t = 1.
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consol rises (declines) during high (low) spending shocks. This pattern occurs because the government

runs larger deficits (surpluses) when spending is high (low). Therefore, in contrast to the case of full

commitment, the government actively manages its debt, which is primarily composed of consols.

Figure 3 presents the policy path under this sequence of shocks. Whereas under full commitment

taxes are nearly constant—a claim that is consistent with the complete market results of Chari, Christiano,

and Kehoe (1994)—they are volatile and respond persistently to shocks under lack of commitment. More

specifically, during periods of high (low) expenditure, taxes jump up (down) and continue to increase

(decrease) the longer the fiscal shock persists. Periods of high (low) expenditure are periods with lower

(higher) primary surpluses in the case of full commitment and lack of commitment but, in contrast to the

case of full commitment, under lack of commitment the surplus responds persistently to shocks. This

persistence is reflected in the debt’s total market value, which contrasts with the transitory response of

the debt’s market value in the case of full commitment.21

We can calculate the welfare cost of lack of commitment in this setting. Specifically, we compare

welfare under full commitment to that under lack of commitment and report the welfare difference in

consumption-equivalent terms. We find that this welfare cost is 0.0038 percent. In comparison, the

welfare cost of imposing a balanced budget on a government with full commitment is 0.04 percent, more

than ten times larger.22 These numbers mean that the welfare cost of lack of commitment is very low—as

long as the maturity is structured optimally, which implies a nearly flat maturity.

In addition, we can compute the welfare cost of imposing a completely flat maturity. To do this, we

compare welfare under lack of commitment when the government can freely choose BS to that when

BS is constrained to zero in all periods (so that debt issuance is exactly flat). We find that the difference

in welfare is less than 0.00001 percent. Such a negligible welfare cost implies that optimal policy under

lack of commitment can be approximated by constraining debt issuance to consols.

5.2.2 Robustness: Alternative Debt Maturities

One limitation of our infinite-horizon analysis is that we have restricted the horizon of the short-term

debt instrument. We now show that the optimal maturity structure is flat even if alternative horizons are

considered. Figure 4 displays the average values of BS and BL under commitment and under lack of

commitment for different values of γ (the decay rate of the perpetuity BS).23 Under full commitment,

the optimal value of BL is positive and nearly unchanged by different values of γ, whereas the optimal

value of BS is negative, large, and decreasing in magnitude as γ rises. The reason is that the higher is γ,

the lower is the decay rate of BS and the higher its price, implying that a smaller position is required for

hedging. In contrast, under lack of commitment, the average value of the perpetuityBS is zero regardless
21Shin (2007) considers a model under full commitment and shows that if there are N possible states of the shock but at any

moment only N1 < N can be reached, then N1 bonds of different maturities can provide full insurance. Such a model would
require active management of debt positions. Our model under lack of commitment also captures the active management of
debt. This result, however, is not achieved by limiting the maturities available; instead it follows from the tradeoff between
hedging and the cost of borrowing.

22This corresponds to the cost of forcing a government to set BS
t = BS

−1 and BL
t = BL

−1 ∀t.
23For this exercise, the initial conditions are calculated for each γ so as to keep fixed the market value of initial debt.
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of the value of γ, and the value of the consol BL is large and unaffected by γ. As such, the optimal debt

maturity remains flat, even when considering alternative debt maturities.

5.2.3 Robustness: Variance and Persistence of Fiscal Shocks

The quantitative results are consistent with the theoretical results from the three-period model that consid-

ered the limiting cases as volatility declined to zero and persistence increased to one. A natural question

concerns the degree to which our results depend on the parameterization of public spending shocks. To

explore this question, we return to the benchmark environment with γ = 0 and choose different values

of volatility and persistence for the public spending shock.

Figure 5 displays the average values of BS and BL under different assumptions for the shocks’ pro-

cess. In the case of full commitment, debt positions are large and tilted independently of the volatility

and persistence of the shocks. Moreover, consistent with our three-period example, the debt positions

become arbitrarily large as the autocorrelation of the shock goes to 1. In contrast, the optimal maturity

structure under lack of commitment is nearly flat for all volatilities and persistence levels of public spend-

ing. We also find that the debt positions decrease in size as volatility increases. This occurs because the

volatility of the marginal utility of consumption increases, which facilitates hedging through the consol

with a smaller debt position. As such, our result is robust to changes in the stochastic characteristics of

fiscal shocks.

5.2.4 Robustness: Additional Shocks

We have thus far considered an economy in which the only shocks to the economy are fiscal. In Table

2, we show that our main result—that the optimal debt maturity is flat—is robust to the introduction of

productivity and discount factor shocks. We consider each shock in isolation in the first two columns.

We then increase the number of shock realizations in the third column (so that the number of shock real-

izations exceeds the number of debt instruments), and in the last two columns we consider combinations

of different shocks.

Panel A reports the debt position in our benchmark model with fiscal shocks θt and replicates our

results described in the previous sections. Panel B introduces a productivity shock in an environment

in which θt is constant and equal to its average value. More specifically, we replace nt in the resource

constraint (1) with Atnt, where At captures the productivity of labor and therefore equals the wage. Let

At =
{
AL, AH

}
follow a symmetric first-order Markov process with unconditional mean equal to 1. We

choose AL, AH , and the persistence of the process so that, as in Chari, Christiano, and Kehoe (1994),

the standard deviation of At equals 0.04 and the autocorrelation equals 0.81. The first column of Panel

B shows, consistently with the results in Buera and Nicolini (2004), that under commitment the average

debt positions are tilted, though the magnitudes of debt are smaller than those under fiscal shocks. In the

second column, it is clear that optimal debt positions under lack of commitment are nearly flat.

Panel C of Table 2 introduces a discount factor shock in an economy in which θt and At are constant
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and equal to the average value. We replace the utility function in (35) with

ζt

(
c1−σct − 1

1− σc
+ η

(1− nt)1−σl − 1

1− σl
+ θt

g
1−σg
t − 1

1− σg

)

for some ζt =
{
ζL, ζH

}
, which follows a first-order Markov process. The symbol ζt represents a

discount factor shock that can impact the variance of short-term interest rates without affecting the time

series properties of other variables in the model. As discussed in Angeletos (2002) and Buera and

Nicolini (2004), the large debt positions required for hedging under commitment are partly driven by

the fact that fluctuations in short-term interest rates are small in the benchmark economic environment.

Introducing the discount factor shock allows us to increase the volatility of interest rates and determine

whether the optimality of a flat debt maturity in our setting depends on the presence of low interest rate

volatility.

To that end, we choose the stochastic properties of ζt so that under commitment, the mean of the

one-year interest rate is 4 percent, its standard deviation is 0.73 percent of the mean, and its persistence

is 0.78, which matches the properties of the real one-year interest rate in the United States from 1988

to 2007.24 The first column of Panel C shows that, in this situation, the maturity structure is exactly

flat under commitment; this is because optimal policy is smooth from date one onward. As such, a flat

debt maturity allows the consol’s market value to fluctuate one-to-one with the present value of future

surpluses. Analogous logic implies that under lack of commitment, the optimal debt maturity structure

is flat, and the flat maturity also mitigates the commitment problem.25

In the third column of Table 2, we increase the number of shocks so that these exceed the number

of debt instruments. In each panel, we extend the environment by allowing the shocks to take on 20

realizations that approximate a Gaussian AR(1) process. This exercise is performed while preserving the

mean, standard deviation, and persistence of the shocks. We find that our results are unchanged, and that

the optimal debt maturity remains flat under lack of commitment.

In Table 2, the last two columns consider our results in environments with two types of shocks, where

we take all combinations of the shocks previously analyzed. This allows us to analyze situations where

the government may have greater incentives to hedge, even under lack of commitment. For instance,

discount factor shocks combined with either fiscal or productivity shocks means that fluctuations in the

government’s financing needs come hand-in-hand with larger fluctuations in short-term interest rates.

These larger interest rate fluctuations imply that hedging does not require very large debt positions and

is therefore less expensive. In fact, in all the situations considered, we find that the maturity is slightly

more tilted, but it remains nearly flat.

In Panel B, we consider an environment with fiscal and productivity shocks, where we setCorr(θt, At) =

−0.33 so that our simulation matches the correlation between total factor productivity and primary
24The real interest rate is calculated as the difference between the nominal one-year rate and realized inflation (using the

GDP deflator).
25Note that because the government lacks commitment to both spending and taxes, in this case a flat debt maturity does not

completely solve the government’s lack of commitment problem in this case (as it would if there was lack of commitment to
taxes only).
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deficits in the United States from 1988 to 2007.26 We find that the optimal debt maturity continues

to be approximately flat, though it is a little more tilted compared to the case in which the impact of each

shock is assessed separately.

In Panel C, we consider an environment with fiscal shocks and discount factor shocks. We set

Corr(θt, ζt) = −0.51 so that our simulation matches the correlation between real interest rates and

primary deficits in the United States from 1988 to 2007. In this case, the maturity structure is slightly

more tilted than in the case that excludes the discount factor shock (the one-year bond is 0.068 percent of

GDP), but the optimal debt maturity remains essentially flat.27 In the final column of Panel C, we con-

sider an environment with productivity and discount factor shocks, and we set Corr(At, ζt) = −0.43, so

that our simulation matches the correlation between total factor productivity and real interest rates. We

find that the maturity structure is slightly more tilted than in the case which excludes the discount factor

shock, but that the maturity remains approximately flat.

5.2.5 Robustness: Commitment to Spending

So far, we have considered an economy in which the government lacks commitment to taxes, spending,

and debt issuance. In the economy of Lucas and Stokey (1983), public spending is exogenous and can

therefore not be chosen by the government. Table 3 shows that our results hold, even if the government

is able to commit to the spending level, as is the case in their model. Under commitment the optimal

maturity structure is tilted, and the optimal tilt is extremely sensitive to the particular type of shocks

affecting the economy. Instead, under lack of commitment the maturity remains nearly flat under all

types of shocks considered.

5.2.6 Robustness: Alternate Preferences

We now consider the robustness of our results compared to other preference specifications. In Figure 6,

the top panel considers the consequences of altering the coefficient of relative risk aversion, σc. In the

case of full commitment, lower values of σc generate larger and more tilted debt positions. A lower value

of σc reduces the volatility of the marginal utility of consumption and therefore makes it more difficult

to achieve significant hedging with smaller debt positions. In the case of lack of commitment, a similar

force emerges since both the tilt and the size of debt positions rise. Note however that, quantitatively, the

maturity structure remains nearly flat as σc declines. The reason is that even though more tilted positions

are useful for hedging, more tilted positions also exacerbate the problem of lack of commitment, so that

the best way to deal with this problem is still to choose a nearly flat maturity structure.
26The series of the total factor productivity shock and the primary deficit are taken from the World Penn Table and the U.S.

Office of Management and Budget, respectively.
27The optimal debt maturity is tilted to the short end in this case since there is a negative correlation between interest rates

and the government’s financing needs.We have also explored the extent to which one can put an upper bound on the degree of
tilt in the government’s debt maturity. For example, in the case when interest rates and fiscal shocks are perfectly positively
correlated, the value of the one-year bond is –0.23 and the consol is 2.14 percent of GDP, so that even in this extreme case, the
bulk of public debt is in the consol.
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The exercise in the bottom panel considers the equilibrium under different values of σl, which relates

to the utility function’s curvature with respect to leisure. We find that for all values of σl below 2, the

optimal debt maturity under lack of commitment is essentially flat. Higher values of σl have a two-fold

effect. First, higher values of σl imply that it is socially costly to have labor supply volatility, and conse-

quently, oscillations in consumption play a greater role in absorbing public spending shocks. This force

increases the volatility in the marginal utility of consumption and implies that smaller debt positions are

required to generate hedging. Second, higher values of σl also imply that it is more beneficial to engage

in hedging as a way of smoothing out labor-market distortions. This force implies larger debt positions

since the value of hedging increases. In the case of full commitment, we find that, quantitatively, the first

force dominates since debt positions become less tilted as σl increases. In the case of lack of commit-

ment, we find that the second force dominates since the consol position become larger as σl increases,

which facilitates hedging. It continues to be the case throughout, however, that the debt maturity is nearly

flat under lack of commitment.

6 Conclusion

The current literature on optimal government debt maturity concludes that the government should fully

insulate itself from economic shocks. This complete insulation is accomplished by choosing a maturity

structure that is heavily tilted towards the long end, with a constant short-term asset position and long-

term debt position, and both positions extremely large relative to GDP. In this paper, we show that

these conclusions strongly rely on the assumption of full commitment by the government. Once lack of

commitment is taken into account, then full insulation from economic shocks becomes impossible; the

government then faces a tradeoff between the benefit of hedging and the cost of funding. Borrowing long-

term provides the government with a hedging benefit since the value of outstanding government liabilities

declines when short-term interest rates rise. However, borrowing long-term lowers fiscal discipline for

future governments unable to commit to policy, which leads to higher future short-term interest rates.

Through a series of exercises we show that the optimal debt maturity structure under lack of commitment

is nearly flat, with the government actively managing its debt in response to economic shocks. Thus,

optimal policy can be approximately achieved by confining government debt instruments to consols.

Our analysis leaves several interesting avenues for future research. First, our framework follows

Angeletos (2002) and Buera and Nicolini (2004) and therefore ignores nominal bonds and the risk of

surprise inflation. Taking this issue into account is important since it incorporates a monetary authority’s

ability to change the value of outstanding debt in response to shocks, and it also brings forward the

issues of dual commitment to monetary and fiscal policy. We believe that our work is a first step in

studying this more complicated problem. Second, our framework does not incorporate investment and

financing frictions that may be affected by the supply of public debt. It has been suggested that short-

term government debt is useful in alleviating financial frictions (see for example Greenwood, Hanson,

and Stein 2015), and an open question remains how quantitatively important this friction is relative to

the lack of commitment. Finally, our analysis ignores heterogeneity and the redistributive motive for
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fiscal policy (see for example Werning 2007 and Bhandari et al. 2013). An interesting question for future

research involves how incentives for redistribution can affect the public debt’s maturity structure.
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Table 1: Debt Positions as a Percentage of GDP in Finite-Horizon Economies
Benchmark Std. Dev. Std. Dev. i.i.d. Initial Debt Initial Debt

(x2) (x4) Tilted Short Flat
Panel A: Three-Period Model

Commitment
One-Year Bond –10,057.38 –9,879.06 –9,500.32 –597.68 –9,941.93 –10,039.59
Consol 5,120.42 5,030.48 4,839.23 304.32 5,063.44 5,111.64

Lack of Commitment
One-Year Bond 0.07 0.06 0.02 –0.10 –0.41 –0.02
Consol 2.32 2.37 2.47 2.68 2.78 2.40

Panel B: Four-Period Model

Commitment
One-Year Bond –7,317.73 –7,189.12 –6,914.89 –447.65 –7,230.17 –7,320.67
Consol 2,529.06 2,485.42 2,392.17 154.97 2,500.39 2,530.03

Lack of Commitment (All Maturities)
Date 0 Policies

One-Year Bond –0.04 –0.08 –0.10 –0.16 –0.45 –0.02
Two-Year Bond 0.00 0.00 0.00 0.00 –0.01 0.00
Consol 2.41 2.47 2.55 2.65 2.73 2.40

Date 1 Policies
One-Year Bond 0.00 –0.03 –0.10 –0.06 0.05 0.00
Consol 2.44 2.54 2.73 2.63 2.59 2.43

Lack of Commitment (One-Year and Consol)
Date 0 Policies

One-Year Bond –0.04 –0.08 –0.09 –0.16 –0.45 –0.02
Consol 2.41 2.47 2.55 2.64 2.72 2.40

Date 1 Policies
One-Year Bond –0.02 –0.04 –0.10 –0.07 0.06 –0.02
Consol 2.45 2.55 2.73 2.63 2.59 2.45

Source: Authors’ calculations.

Notes: The table reports the debt positions in three-period (Panel A) and four-period (Panel B) economies with and without

commitment.
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Table 2: Debt Positions with Alternate Shocks
Commitment Lack of Commitment

Benchmark Benchmark 20 Shocks w/Fiscal Shock w/Prod. Shock
Panel A: Fiscal Shocks
One-Year Bond –2,789.46 –0.005 –0.005 – –
Consol 101.76 2.22 2.23 – –

Panel B: Productivity Shocks
One-Year Bond –13.49 –0.007 –0.007 –0.028 –
Consol 2.71 2.21 2.24 2.15 –

Panel C: Discount Factor Shocks
One-Year Bond 0.00 0.000 0.000 0.062 -0.014
Consol 2.26 2.26 2.36 2.24 2.15

Source: Authors’ calculations.

Notes: The table reports the average debt position (% of GDP) over 1,000 simulations of 200 periods. The shock processes

follow discrete Markov-chains with two states (columns 1 and 2), 20 states (column 3), and four states (last 2 columns).

Table 3: Debt Positions with Commitment to Spending (Lucas and Stokey (1983) model)
Commitment Lack of Commitment

Benchmark Benchmark 20 Shocks
Panel A: Fiscal Shocks
One-Year Bond –2789.32 –0.006 –0.008
Consol 101.76 2.22 2.21

Panel B: Productivity Shocks
One-Year Bond –90.06 –0.062 –0.060
Consol 5.54 2.24 2.31

Panel C: Discount Factor Shocks
One-Year Bond 0 0 0
Consol 2.27 2.27 2.37

Source: Authors’ calculations.

Notes: The table reports the average debt position (% of GDP) over 1,000 simulations of 200

periods for a model with exogenous public expenditure. The shock processes follow a discrete

Markov chain with two states (columns 1 and 2) or 20 states (column 3). In the model with fiscal

shocks (Panel A), public expenditure takes the same values as in the model with endogenous

spending under commitment shown in Table 2. With different shocks (Panels B and C), public

expenditure is fixed at the average of the values taken in the corresponding endogenous spending

models under commitment.
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Figure 1: Debt Positions Over Time With and Without Commitment
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Source: Authors’ calculations.

Notes: The figure shows the optimal debt positions over time with commitment (left panel) and without

commitment (right panel). For the case where commitment is lacking, we report averages across 1,000

simulations.

Figure 2: Active Debt Management

%
 o

f 
G

D
P

One−year Bond

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

%
 o

f 
G

D
P

Consol

0 10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

Source: Authors’ calculations.

Notes: The figure shows the evolution of debt positions for a particular sequence of shocks. The shaded

areas indicate periods in which the fiscal shock is low.
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Figure 3: Fiscal Policy without Commitment
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Notes: The figure shows the evolution of tax rates, primary surpluses, and total debt for a particular

sequence of shocks. The horizontal axis refers to years.
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Figure 4: Debt Positions with Different Debt Maturities
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Notes: The figure shows the optimal debt positions with commitment (left column) and without com-

mitment (right column) under alternative values for the decay rate of the perpetuity. For the case with

lack of commitment we report averages across 1,000 simulations of 200 periods.
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Figure 5: Debt Positions under Alternative Variances and Persistences of Fiscal Shocks
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Notes: The figure shows the optimal debt positions with commitment (left column) and without com-

mitment (right column) under alternative values for the standard deviation (first row), and persistence

(second row) of public expenditure. For the case with lack of commitment we report averages across

1,000 simulations of 200 periods.
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Figure 6: Debt Positions under Alternative Preferences
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Notes: The figure shows the optimal debt positions with commitment (left column) and without com-

mitment (right column) under alternative values for the risk aversion (first row) and curvature of leisure

(second row). For the case with lack of commitment we report averages across 1,000 simulations of

200 periods.
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Appendix

A-1 Proofs

Proof of Proposition 1
The necessity of these conditions is proved in the text. To prove sufficiency, let the government

choose the associated level of debt
{{{

Bt+k
t

(
st
)}∞

k=1

}
st∈St

}∞
t=0

and a tax sequence
{{
τt
(
st
)}

st∈St

}∞
t=0

that satisfies (9). Let bond prices satisfy (9). From (11), (10) is satisfied, which given (8) implies that

(3) and (4) are satisfied. Therefore household optimality holds and all dynamic budget constraints are

satisfied along with the market clearing requirement, so the equilibrium is competitive.�

Proof of Corollary 1
Let us consider an environment with state-contingent debt. Specifically, let Bt+k

t |st+k
(
st
)

corre-

spond to a state-contingent bond purchased at date t and history st with a payment contingent on the

realization of history st+k at t+ k. The analog in this case to condition (9) is

1− τt
(
st
)

= −
un,t

(
st
)

uc,t (st)
and qt+kt |st+k

(
st
)

=
βπ
(
st+k|st

)
uc,t+k

(
st+k

)
uc,t (st)

, (A-1)

and the analog to (11) is:

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)(
uc,t+k

(
st+k

)
ct+k

(
st+k

)
+ un,t+k

(
st+k

)
nt+k

(
st+k

))
= (A-2)

∞∑
k=0

∑
st+k∈St+k

βkπ
(
st+k|st

)
uc,t+k

(
st+k

)
Bt+k
t−1 |s

t+k
(
st−1

)
.

It is therefore necessary that (7) satisfies (8) ∀st and (11) for st = s0, where the last condition is

identical to (A− 2) for st = s0. To prove sufficiency, let the government choose one-period state

contingent debt Bt
t−1|st

(
st−1

)
so that the right-hand side of (A− 2) equals uc,t

(
st
)
Bt
t−1|st

(
st−1

)
and choose

{{
Bt
t−1|st

(
st−1

)}
st∈St

}∞
t=0

so as to satisfy (A− 2) ∀st. Let τt
(
st
)

and qt+kt |st+k
(
st
)

satisfy (A− 1). Arguments analogous to those in the proof of Proposition 1 imply that the equilibrium

is competitive.�

Proof of Proposition 2
The debt positions are derived from combining (19) and (20). Let cHt and cLt correspond to the

values of c at date t, conditional on θ1 = θH and θ1 = θL, respectively. Using this notation, (19) implies
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that

B1
0 =

2
(
cH2 − cL2

)
− n (1− τ)

(
cH2
cH1
− cL2
cL1

)
cH2
cH1
− cL2
cL1

, and

B2
0 =

2
(
cH1 − cL1

)
− n (1− τ)

(
cH1
cH2
− cL1
cL2

)
cH1
cH2
− cL1
cL2

,

which after substituting (20) yields:

B1
0 = n (1− τ)



2E

1
3

∑
k=0,1,2

θ
1/2
k

− (θH)1/2
 /

(
αθH + (1− α) θL

)1/2
−

2E

1
3

∑
k=0,1,2

θ
1/2
k

− (θL)1/2
 /

(
αθL + (1− α) θH

)1/2


(
θH1 / (αθH + (1− α) θL)

)1/2 − (θL1 / (αθL + (1− α) θH)
)1/2 < 0, (A-3)

B2
0 = n (1− τ)



2E

1
3

∑
k=0,1,2

θ
1/2
k

− (αθH + (1− α) θL
)1/2 /

(
θH
)1/2

−

2E

1
3

∑
k=0,1,2

θ
1/2
k

− (αθL + (1− α) θH
)1/2 /

(
θL
)1/2


((αθH + (1− α) θL) /θH)1/2 − ((αθL + (1− α) θH) /θL)1/2

> 0, (A-4)

where we appeal to the fact that θH > θL and 2E

1
3

∑
k=0,1,2

θ
1/2
k

 > θH . To prove the first part, note that

all of the terms in the numerator and in the denominator of (A-3) and (A-4) go to zero as δ goes to zero.

Applying L’Hopital’s rule implies (23) and (24). To prove the second part, consider the value of the two

terms in (A-3) and (A-4) as α −→ 1. The denominator in (A-3) and (A-4) approaches 0. In contrast,

the numerator in (A-3) and (A-4) approaches 2
(

1−
(
θH/θL

)1/2)
< 0. Therefore, B1

0 → −∞ and

B2
0 →∞.�

Proof of Lemma 1
(26) follows from the government’s first order conditions and (19). If n (1− τ) + B1

0 ≤ 0 and

n (1− τ) +B2
0 > 0, then (19) can be satisfied with equality by choosing c1 and c2 arbitrarily close to 0.

The same argument holds if n (1− τ) +B1
0 > 0 and n (1− τ) +B2

0 ≤ 0.�

Proof of Proposition 3
From our discussion regarding Lemma 1, the optimal values of Bt

0 satisfy Bt
0 > −n (1− τ) for

t = 1, 2 and this is true ∀δ ∈ [0, 1). Moreover, given (18), which binds, and (26), the optimal values
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of Bt
0 satisfy Bt

0 < ∞ for t = 1, 2, since otherwise c1 and c2 are arbitrarily large and the government

achieves an arbitrarily low level of welfare. This is also true ∀δ ∈ [0, 1), implying that the solution to

(30) must admit an interior solution.

Consider the optimum characterized by the first-order conditions to (30) with respect to B1
0 and κ.

Algebraically combining these first-order conditions implies the following optimality condition:

d

dκ
logE

(
θ
1/2
1 + θ

1/2
2 κ−1/2

θ
1/2
1 + θ

1/2
2 κ1/2

)
+

d

dκ
logE

(
θ
1/2
1 + θ

1/2
2 κ1/2

)2
= 0. (A-5)

Let Ω (δ) correspond to the set of κ satisfying (A-5) given δ. Because the left-hand side of (A-5) is

continuous in κ ∈ [0,∞] and δ ∈ [0, 1), Ω (δ) is closed and the set must contain all of its limit points.

Therefore, limδ→0 Ω (δ) = Ω (0). Consider the solution to (A-5) if δ = 0. In that case, (A-5) can be

rewritten as
d

dκ
log

(
1 + κ−1/2

1 + κ1/2

)
+

d

dκ
log
(

1 + κ1/2
)2

= 0,

which simplifies to
κ−3/2

1 + κ−1/2
=

κ−1/2

1 + κ1/2

which holds if and only if κ = 1. Therefore, if δ = 0, the unique κ under lack of commitment satisfies

κ = 1. By continuity, this solution coincides with the solution as δ → 0. To complete the proof, note

that the value of B1
0 and B2

0 satisfying (31) implies from (26) that (20) is satisfied. Therefore, the same

welfare as under full commitment is achieved, which must be optimal since the welfare under lack of

commitment is weakly bounded from above by welfare under full commitment. Moreover, there cannot

exist any other policy with B1
0 = B2

0 which yields higher welfare, since from (26), such a policy cannot

satisfy (20).

To complete the proof consider the first-order condition to (30) with respect to B1
0 given κ = 1

θ0
n (1− τ)(

3− 2n (1− τ)
(
n (1− τ) +B1

0

)−1)2 2n (1− τ)
(
n (1− τ) +B1

0

)−2
=

1

2
E
(
θ
1/2
1 + θ

1/2
2

)2
.

(A-6)

By some algebra (A-6) yields (31).�

Proof of Proposition 4
The analogous steps to those of the proof of Proposition 3 can be utilized to show that (34) must hold

as α −→ 1.�

A-2 Welfare Cost of Lack of Commitment and Insurance

The analytical example in Section 4 also allows us to compare the welfare cost of lack of commitment to

the welfare cost of lack of insurance. In particular, it is useful to consider the welfare cost of a suboptimal

debt maturity structure in settings with and without lack of commitment, and to see whether the maturity
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structure matters more in one setting relative to another.

Formally, let us compare the government’s problem under full commitment—when the government is

only concerned with hedging—to the government’s problem under lack of commitment—when the gov-

ernment is concerned both with hedging and lack of commitment. In these two environments, consider

how important it is to choose the optimal debt maturity. We can show that, for low values of volatility,

choosing the right maturity structure to address the lack of commitment is an order of magnitude more

important than choosing the maturity to address lack of insurance.

Formally, note that (10) implies that government welfare in our model (16) can be written as a func-

tion of four variables: B1
0 , B2

0 , B2
1 conditional on θ1 = θH , and B2

1 conditional on θ1 = θL. Now

suppose that a government were forced to choose some B1
0 and B2

0 , but it could freely choose B2
1 con-

ditional on the shock. A government under full commitment would choose the optimal stochastic value

of B2
1 to maximize ex-ante (date 0) welfare. In contrast, a government under lack of commitment would

choose the optimal stochastic value of B2
1 to maximize ex-post (date 1) welfare. With this observation in

mind, let

WC (x) for x =
{
B1

0 +B2
0 , B

2
0 −B1

0 , δ
}

(A-7)

correspond to the value of government welfare under commitment conditional on specific values of

B1
0 + B2

0 , B2
0 − B1

0 , and δ, where B2
1 is optimally chosen by a fully committed government. This

representation is feasible since B1
0 + B2

0 and B2
0 − B1

0 uniquely pin down B1
0 and B2

0 . Define WN (x)

analogously for the case of lack of commitment, where B2
1 is now optimally chosen by a government

without commitment. Given our discussion in the main text, WC (x) = WN (x) if B2
0 − B1

0 = 0.

In other words, a flat debt maturity minimizes the cost of lack of commitment since both governments

choose the same values of B2
1 .

Let

xC =

{
B, 2n (1− τ)

(
θ
1/2
0 + 2

3

α

1− α
+ 1

)
, 0

}
and xN =

{
B, 0, 0

}
for B = 2n (1− τ)

(
θ
1/2
0 − 1

)
/3. Embedded within xC and xN are the optimal values of B1

0 and B2
0

conditional on δ → 0 under commitment and lack of commitment, as follows from Propositions 2 and

3. Therefore, WC
(
xC
)

and WN
(
xN
)

represent welfare under the optimal choices of B1
0 and B2

0 given

δ −→ 0 in the cases of full commitment and lack of commitment, respectively.

Using this notation, we can evaluate the sensitivity of welfare to the debt maturity B2
0 − B1

0 in the

cases of full commitment and lack of commitment. We can show that welfare is much less sensitive to

debt maturity under full commitment than under lack of commitment. Letting j = C,N , it follows that

we can achieve the following second-order approximation of welfare around xj :

W j
(
xj+∆x

)
≈W j

(
xj
)

+
1

2
∆xTHj

(
xj
)

∆x, (A-8)

where Hj
(
xj
)

is the Hessian matrix of W j (·) evaluated at xj , and ∆x =
[
∆B1

0+B
2
0
,∆B2

0−B1
0
,∆δ

]
corresponds to the perturbations in the vector x. Equation (A-8) takes into account that the first-order
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terms are all equal to zero, and this follows from the fact that in each case the objective is evaluated at

the optimum at zero volatility with δ = 0.

Now consider the sensitivity of W j (·) with respect to debt maturity by evaluating the term in (A-8)

for some ∆x. The elements of (A-8) which depend on ∆B2
0−B1

0
are

W j
12

(
xj
)

∆B1
0+B

2
0
∆B2

0−B1
0

+W j
22

(
xj
)

∆2
B2

0−B1
0

+W j
23

(
xj
)

∆B2
0−B1

0
∆δ

2
. (A-9)

Note that W j
23

(
xj
)

= 0 for j = C,N , and this follows from the fact that the derivative is evaluated at

the optimum at zero volatility.

Now let us consider the value of (A-9) in the case of full commitment with j = C. With some

algebra manipulation, it can be shown that WC
12

(
xC
)

= WC
22

(
xC
)

= 0. This result is consistent with

our previous discussion that in the knife edge case with δ = 0, optimal debt maturity is indeterminate.

Since these terms are zero, under full commitment, welfare is insensitive to the debt maturity B2
0 − B1

0

given a second-order approximation. Clearly, welfare is sensitive to the total value of debt B1
0 +B2

0 , but

it is not, however, sensitive to the maturity of this debt. Note that this fact does not mean that welfare is

independent of debt maturity; it just means that it is not dependent up to a second-order approximation

around zero volatility. A higher order approximation of welfare around zero volatility does yield that

welfare depends on the maturity of debt B2
0 −B1

0 , and it does so through the interaction of debt maturity

with the volatility of the shock δ.

In comparison, let us consider the value of (A-9) in the case of lack of commitment with j = N .

Algebraically, it can be shown that WC
22

(
xC
)
< 0. This result is consistent with our previous discussion

that the optimal values of B1
0 and B2

0 are uniquely determined in the case of δ = 0. More specifically,

any deviation from a flat maturity structure withB1
0 = B2

0 strictly reduces welfare, and welfare is strictly

concave at the optimum with W j
22

(
xj
)
< 0. Therefore, under lack of commitment, welfare is sensitive

to the debt maturity B2
0 −B1

0 to a second-order approximation.

Thus, choosing a suboptimal debt maturity under full commitment is less costly than choosing a

suboptimal debt maturity under lack of commitment. In this regard, the cost of lack of commitment is

of higher-order importance than the cost of lack of insurance, and, when the variance is low, the debt

maturity should be structured to fix the problem of lack of commitment.

A-3 Numerical Algorithm for Solving Infinite-Horizon Economy

In the numerical algorithm, we use a collocation method on the recursive problem’s first-order conditions.

We solve for an MPCE in which the policy functions are differentiable and we directly approximate the

set of policy functions {c, n, g, BS , BL, qL}.28 The approach finds a fixed point in the policy function

space using an iterative method to find the solution. We cannot prove that this MPCE is unique, though

our iterative procedure always generates the same policy functions independently of our initial guesses.
28In the cases in which there is commitment to taxes or spending, we either impose the additional constraint or, equivalently,

approximate a smaller set of policy functions.
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The stochastic shock processes are discretized using the procedure described in Adda and Cooper

(2003). The functions are approximated on a coarse grid, where the debt’s market value ranges from

−500 percent to 500 percent of GDP. The results are very similar whether we use a different amplitude for

the grid, and different types of functional approximation (splines, complete, or Chebyshev polynomials).
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