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Abstract

We study the consequences and optimal design of bank deposit insurance
in a general equilibrium model. The model involves two production sectors.
One sector is financed by issuing bonds to risk–averse households. Firms
in the other sector are monitored and financed by banks. Households fund
banks through deposits and equity. Deposits are explicitly insured by a de-
posit insurance fund. Any remaining shortfall is implicitly guaranteed by
the government. The deposit insurance fund charges banks a premium per
unit of deposits whereas the government finances any necessary bail-outs by
lump-sum taxation of households. When the deposit insurance premium is
actuarially fair or higher than actuarially fair, two types of equilibria emerge:
One type of equilibria supports the socially optimal (Arrow–Debreu) allo-
cation, and the other type does not. In the latter case, bank lending is too
large relative to equity and the probability that the banking system collapses
is positive. Next, we show that a judicious combination of deposit insurance
and reinsurance eliminates all non–optimal equilibrium allocations.
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1 Introduction

We study deposit insurance in the framework of a general equilibrium model with

two sectors of production. In particular, we consider a deposit insurance scheme

with two components: First, the regulator obliges banks to pay a premium per unit

of deposits to a deposit insurance fund. Second, the deposit insurance fund buys

reinsurance from households. We show that this deposit insurance scheme guaran-

tees an optimal allocation of inputs to the sectors of production, thus eliminating

distortions which would occur under deposit insurance without reinsurance.

Motivation

In most countries, there is some form of deposit insurance for demand deposits.

Usually, deposits are insured up to some fixed amount per account or per individ-

ual. Such deposit insurance may be either implicit or explicit. During the financial

crisis of 2007-2009, it was a common practice for governments to guarantee de-

posits implicitly by bailing out many banks and thereby keeping deposits safe.

With explicit deposit insurance, banks are required to pay an insurance premium

to a deposit insurance fund. This fund is used to reimburse bank depositors in

case a bank fails to honor its obligations. Several countries have a long history

of explicit deposit insurance schemes. In the US, for instance, federal deposit

insurance started under the (Glass-Steagall) Banking Act of 1933 which created

the Federal Deposit Insurance Corporation (FDIC) in charge of insuring deposits

at commercial banks.1 Calomiris and Jaremski (2016) provide a comprehensive

historical account of the economic and political theories of deposit insurance and

conclude that deposit insurance generally tends to increase systemic risk, rather

than reduce it.

Deposit insurance has obvious benefits. It protects small, risk-averse and po-

tentially unsophisticated savers and it prevents bank runs, which fosters financial

stability. Deposit insurance is also central for the use of bank deposits as a medium

of exchange by market participants. A drawback of deposit insurance, however, is

that it may lead to severe distortions. It is clear that implicit deposit insurance may

encourage excessive risk-taking and excessive balance sheet expansion. It is less

clear–cut how distortions may arise from explicit deposit insurance. One contribu-

tion of the present paper is to use a general equilibrium approach to demonstrate

1A thorough discussion of this scheme can be found in Pennacchi (2009).
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how explicit deposit insurance may distort the allocation of inputs to the sectors

of production. The main result of the paper will be to show that these distortions

can be resolved if explicit deposit insurance is suitably combined with reinsurance.

One important challenge for the appropriate design of an explicit deposit insurance

scheme is the adequate pricing of the insurance. One standard approach is to aim

for an actuarially fair premium. A large literature has addressed the pricing of

deposit insurance.2 Important contributions by Pennacchi (2006) and Acharya

et al. (2010) have shown that actuarially fair pricing of deposit insurance at the

level of an individual bank is insufficient since banks do not represent a pool of

stochastically independent risks. The reason is that bank failures tend to occur

during downturns, or are widespread in a banking crisis. These insights suggest

that it might be appropriate to add a “systemic risk surcharge” to the actuarially

fair premium.

Two rationales for imposing surcharges have been provided. First, as derived in

Pennacchi (2006), premia must exceed expected losses, since the deposit insurer

bears aggregate risk. Without such charges for systemic risk, insured deposits

would be subsidized compared to uninsured funding. This, in turn, may lead to

excessive expansion of risky investments by commercial banks that are financed

by insured deposits.

Second, as derived in Acharya et al. (2010), in a systemic crisis the deposit insur-

ance fund faces particularly low liquidation values of assets of failing banks because

of fire sales and bank interconnectedness (Allen and Gale (2000) and Kahn and

Santos (2005)). The shortfall per dollar of insured deposits is larger than when

only one or few banks default. Hence, to cover the expected losses, higher deposit

insurance premia are required than actuarially fair premia for an individual bank

in isolation would suggest. In other words, the assessment of an actuarially fair

deposit insurance premium must be based on the risk of individual bank failures

together with the risk of widespread bank failures.3

2On the pricing of deposit insurance see Merton (1977, 1978), Marcus and Shaked (1984),
McCulloch (1985), Ronn and Verma (1986), Pennacchi (1987), and Flannery (1991). Its limits
are discussed in Chan et al. (1992) and regulatory forbearance in closing banks is addressed in
Allen and Saunders (1993) and Dreyfus et al. (1994). Freixas and Rochet (1998) indicate that
pricing of deposit insurance can be undesirable.

3Acharya et al. (2010) further show that incentive-efficient risk premia that discourage banks
to take excessive correlation risk are even higher than the actuarially fair premia.
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In this paper, we take a complementary view by focusing on general equilibrium

feedback effects of deposit insurance. Moreover, we offer a deposit insurance

scheme, coupled with reinsurance, that guarantees that all equilibria are socially

optimal. The paper thus provides a foundation for policy proposals that favor some

form of reinsurance as a complement to deposit insurance. This will be discussed

below.

Model

We adopt a general equilibrium perspective to investigate the scope and limits of

deposit insurance, possibly coupled with reinsurance. We study deposit insurance

and reinsurance in the basic modeling framework of a production economy with

two periods and two sectors of production. This model economy has been used

before by Gersbach et al. (2015) for an analysis of capital requirements and their

effects on allocative efficiency. The model economy’s basic characteristics are as

follows:

• There is a continuum of risk-averse households who invest in the capital

market and banks.

• There are two technologies for real investments: One “frictionless technol-

ogy” (henceforth FT) leads to safe (deterministic) returns. Investment into a

“moral hazard technology” (henceforth MT) leads to risky (state–contingent)

returns.

• Banks can monitor MT entrepreneurs, thus alleviating the moral hazard

problem. But households do not have this monitoring ability. Households

fund banks through debt (henceforth deposits) and equity.

• Deposits are insured by a deposit insurance fund that is financed by insur-

ance premia paid by banks. If the deposit insurance fund defaults, it is

bailed out and rescue funds are obtained via taxation. Alternatively, the

deposit insurance fund is required to reinsure itself to avoid a default in all

contingencies. In either case, bank deposits are safe.4

4As discussed in the motivation, the typical rationale for making deposits safe is the protec-
tion of risk–averse households and the guarantee of bank deposits as a means of exchange.
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On purpose, we assume favorable manifestations of the underlying frictions and

distortions.

• Banks can eliminate moral hazard in MT at no cost. There is no moral

hazard on the part of bank managers monitoring entrepreneurs.

• Taxation to bail out a defaulting deposit insurance fund is lump sum and

thus non-distortionary.

Given this set-up it is a priori unclear whether equilibria in such an economy

yield the optimal allocations that would occur in an Arrow-Debreu version of the

economy. Moreover, it is unclear which form of deposit insurance is conducive for

welfare and whether bail-out of defaulting deposit insurance funds or reinsurance

is preferable.

Main Results and Policy Perspectives

One main insight is that only a judicious combination of deposit insurance and

reinsurance can guarantee efficiency and an immediate resolution of banking crises

— should they happen. At a more detailed level we establish the following results.

With deposit insurance, two classes of equilibria exist. In one class, bank equity

completely absorbs losses in bad times and deposit insurance is redundant. The

allocation is optimal in the sense that it maximizes the aggregate utility of house-

holds and coincides with the allocation achieved in the Arrow-Debreu version of

the model.5

In a second class of equilibria, banks default in a bad state and equilibrium allo-

cations are not optimal. This class of equilibria exists with actuarially fair deposit

insurance schemes and even when additional systemic surcharges on deposit in-

surance premia are imposed. In the event of a banking crisis, deposit insurance

schemes cannot cover the entire burden to guarantee deposits and additional gov-

ernment bail-outs financed through taxation become necessary. Non-optimal equi-

librium allocations, however, still exist in extreme cases when deposit insurance

premia are set at high levels that guarantee safe bank deposits even in a banking

crisis.
5Throughout the paper, we will use the terms “optimal” and “non-optimal” in this sense.

We reserve the term “efficient” in order to refer to an allocation which maximizes (expected)
output in the economy. In the next section, it will be made clear that optimality and productive
efficiency do not coincide in our model.
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In order to avoid non–optimal equilibrium allocations associated with deposit in-

surance schemes of any type, deposit insurance must be coupled with a reinsurance

provision. We show that a judicious combination of deposit insurance and reinsur-

ance (provided via the capital market or through reinsurance firms) guarantees an

optimal allocation in any equilibrium. There may be still equilibria with banking

crises, but those crises are immediately resolved through deposit insurance and

reinsurance without government intervention.

Over the last decades, several authors have advocated to use reinsurance as a

complement to deposit insurance in order to avoid or reduce government bail-outs.

Plaut (1991) and Sheehan (2003) have outlined possible reinsurance solutions,

and Madan and Unal (2008) have examined the pricing of reinsurance contracts.6

We provide a general equilibrium foundation of deposit insurance and suggest

that a judicious combination of deposit insurance and reinsurance eliminates all

non–optimal equilibrium allocations and avoids government bail-outs — although

banking crises can still occur. These crises, however, are resolved quickly and

anticipating them does not distort the investment allocation in the economy.

The paper is organized as follows. In the next section, we outline the detailed set-

up of our model and characterize the Arrow-Debreu equilibrium. In Section 3, we

provide alternative characterizations of the first-best allocation. In Section 4, we

introduce banks and deposit insurance and develop the corresponding equilibrium

concept. In Section 5, we characterize these equilibria and identify the set of

equilibria supporting optimal and non-optimal allocations, respectively. In Section

6, we introduce reinsurance and show that the ensuing equilibrium allocation is

unambiguously optimal.

2 An economy without financial intermediation

2.1 Production side

We start with the description of the production side of our two-period model.

The periods are denoted by t = 1, 2. There is a continuum of measure one of

identical households initially endowed with an amount ω > 0 of an investment

6Also the establishment of a European Deposit insurance scheme (EDIS) involves reinsurance
in particular phases (EU Directive 2014/49/EU, 2014).
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good. The investment good cannot be consumed or stored. For convenience, we

use the variable ω for both the per capita endowment of households and for the

aggregate endowment with the investment good in the economy.

There are two technologies by which the investment good at t = 1 can be trans-

formed into a consumption good at t = 2. The first technology transforms y units

of investment good into f(y) units of consumption good irrespective of the real-

ization of the state s = g, b. The production function f(y) is twice continuously

differentiable, strictly increasing, strictly concave, and satisfies the upper and lower

Inada conditions limy↓0 f ′(y) = +∞ and limy↑ω f ′(y) = 0. Henceforth, we call this

technology the frictionless technology (FT). The returns of the second technology

are risky and depend on the state of the world. The state of the world at t = 2

belongs to the state space {g, b}, that is, the state of the world can be “good” or

“bad.” It is common knowledge that state g occurs with probability σ, and state

b occurs with complementary probability 1− σ.

The second technology transforms y units of investment good into yR units of

consumption good in state g, and into yR units of consumption good in state b,

where R > R ≥ 0. This technology is called the moral hazard technology (MT).

The expected return of investing one unit of the investment good in MT is given

by

RM := E[R̃] = σR + (1− σ)R.

An important remark is in order. Since households are risk–averse, the optimal

allocation is not characterized by an equal expected marginal product in both

sectors. We will give a detailed characterization of the optimal allocation in Section

3.

In the sequel, we denote by (yM , yF ) the factor demands in the MT and FT sectors,

respectively. Several remarks are in order. First, FT is supposed to represent

established business while MT stands for risky new businesses. Second, the Inada

conditions imposed on the production function f(y) ensure existence and interior

solutions. However, the assumption is more stringent than needed. For instance,

the upper Inada condition may be replaced by f ′(w) < R.7

7We refer to Gersbach et al. (2015) for a detailed discussion on how Inada conditions can be
weakened in this type of model.
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In each sector of production, there is competition among a continuum of small and

identical firms who maximize profits while taking all aggregate economic variables

as given.8 Therefore, it is appropriate to focus the analysis on a representative

firm for each sector. One can interpret the representative firm in FT as an estab-

lished company while the representative MT firm may be a small or medium-sized

company or a start-up.

We assume complete contingent commodity markets — or, equivalently, complete

asset structures. For this purpose, we introduce the price vector (1, pg, pb), where

the price of the investment good has been normalized to one. The price at t = 1

for obtaining one unit of the consumption good in the good state and nothing in

the bad state is denoted by pg. The price at t = 1 for obtaining one unit of the

consumption good in the bad state and nothing in the good state is denoted by

pb. The profit function of the representative FT and MT firms, respectively, can

be written as:

ΠF (yF , pg, pb) = (pg + pb)f(yF )− yF ,

ΠM(yM , pg, pb) = (pgR + pbR− 1)yM .

Since the representative firm in either sector is a price–taker, it considers pg and pb

as given and treats its factor demand as its decision variable. Indeed, choosing yF

and yM in order to maximize the representative firms’ profits leads to the first-order

conditions

(pg + pb)
−1 = f ′(yF ),

pgR + pbR = 1.

Observe that competitive markets and constant returns to scale in the MT sector

imply that ΠM = 0 in equilibrium. In the FT sector, however, strictly positive eco-

nomic profit ΠF > 0 is possible despite perfect competition because of decreasing

returns to scale.

8In the case of FT, one often assumes that each firm operates a project of size one and
productivities are project-specific. The distribution of firm productivities generates the function
f(yF ).
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2.2 Consumer side

All households have identical preferences over consumption pairs (cg, cb). These

preferences are represented by a utility function U(cg, cb) which is additively sep-

arable across states and exhibits constant relative risk aversion. Formally, we

assume that

U(cg, cb) = σu(cg) + (1− σ)u(cb),

u(cs) = (1− θ)−1 c1−θ
s , s = g, b,

with θ > 0 and θ 6= 1.

All households are equally endowed with ownership of the FT and MT firms. Due

to market completeness, we need not model any trade in the ownership shares

of the firms. Under these assumptions, we can proceed as if there was a single

representative household with utility function u and an initial endowment ω > 0

of investment good. The profits of firms in both sectors are denoted by ΠF and

ΠM , where we have already argued that ΠM = 0. Profits are distributed equally

to all households, so that the representative household has a budget set

B(ΠF , pg, pb) = {(cg, cb) ∈ R2
+|w +ΠF ≥ pgcg + pbcb}.

The household seeks to maximize utility over this budget set, which leads to the

first-order condition (
cg
cb

)θ

=

(
pb
pg

)(
σ

1− σ

)
.

2.3 Equilibrium without financial intermediation

Before we discuss frictions and introduce banks, we characterize the Arrow-Debreu

equilibrium of the economy without financial intermediation. The representative

firm in both sectors can be financed directly by households and all agents can

trade in complete contingent commodity markets. An equilibrium in this economy

is defined as follows:

Definition 2.1

An equilibrium without financial intermediation is a tuple

8



(p∗g, p
∗
b , c

∗
g, c

∗
b , y

∗
F , y

∗
M ,Π∗

F ) À 09 which satisfies the following system of equations:

(
cg
cb

)θ

=

(
pb
pg

)(
σ

1− σ

)
, (1)

ω = pgcg + pbcb − ΠF , (2)

ΠF = (pg + pb)f(yF )− yF , (3)

f ′(yF ) = (pg + pb)
−1, (4)

yM = ω − yF , (5)

cg = f(yF ) + yMR, (6)

cb = f(yF ) + yMR. (7)

The first equation is the optimal ratio of consumptions in both states for the

household and thus represents the maximization of expected household utility.

The second equation is the household’s budget constraint, taking into account

that the profits of FT firms are distributed to households, while MT firms make

zero profits. The third equation specifies the FT profits, and the fourth equation is

the condition for optimal producer choice. The remaining equations are standard

market–clearing conditions for investment good, consumption good in the good

state, and consumption good in the bad state, respectively.

Substitute the expressions for c∗g, c∗b , and Π∗
F into the budget constraint to find

ω = y∗F + y∗M · (pgR + pbR).

Using the fact that ω = y∗F + y∗M , we see that the condition

pgR + pbR = 1

emanating from optimal producer choice is implied by the system of equations in

the definition of an equilibrium without financial intermediation.

9Throughout the paper we use the vector notation v1 À v2 if vector v1 is strictly greater in
all components than vector v2, and v1 > v2 if v1 is weakly greater in all components than v2
with at least one strict inequality.
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3 The equilibrium allocation

3.1 A first welfare theorem

In this subsection, we characterize the optimal allocation of the investment good

to the two sectors of production. We mean by an optimal allocation an allocation

that maximizes household utility. Because of the CRRA utility function, the

optimal allocation does not coincide with the productively efficient allocation which

maximizes total expected output in the economy. More formally, we give the

following definition of the optimal allocation.

Definition 3.1

The input allocation (ŷF , ω− ŷF ) is optimal if it maximizes the household’s utility

(
σ

1− θ

)(
f(yF ) + (ω − yF )R

)1−θ
+

(
1− σ

1− θ

)
(f(yF ) + (ω − yF )R)1−θ

over yF ∈ [0, ω].

The economy without financial intermediation was previously introduced in Gers-

bach et al. (2015). It has been shown that the optimal allocation exists, is unique,

and allocates strictly positive amounts of the investment good to both sectors.

Moreover, the concomitant Arrow–Debreu equilibrium is unique up to price nor-

malization. For later reference, we denote the Arrow–Debreu equilibrium values

by p̂g, p̂b, ĉg, ĉb, ŷF , ŷM and Π̂F .

Examination of the first–order condition emanating from the optimization problem

in the above definition reveals that the optimal allocation ŷF satisfies

(
σ

1− σ

)(
R− f ′(ŷF )

f ′(ŷF )−R

)
=

(
f(ŷF ) + (ω − ŷF )R

f(ŷF ) + (ω − ŷF )R

)θ

. (8)

The following proposition is the manifestation of the first welfare theorem in the

model at hand.

Proposition 3.2 An equilibrium without financial intermediation involves the op-

timal allocation.

Proof. In an equilibrium without financial intermediation, the market–clearing
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conditions imply that the right–hand side of Eqn. (8) is equal to (cg/cb)
θ.Moreover,

in such an equilibrium, the conditions for optimal producer choice imply that

pgR + pbR = (pg + pb)f
′(ŷF ) = 1.

We can use this expression to show that

(
R− f ′(ŷF )

f ′(ŷF )−R

)
= pb/pg.

We see that the first–order condition for the optimal allocation and the equilibrium

condition for optimal consumer choice coincide. ¤

From the first–order condition describing the optimal allocation and from the

inequalities ω > ŷF and R > R, it can be inferred that if (ŷF , ω − ŷF ) is the

optimal allocation, then

f ′(ŷF ) < σR + (1− σ)R.

Due to the concave technology in FT, the marginal product in the FT sector is

lower than the marginal product in the MT sector at the optimal allocation. Due

to risk aversion, it is not optimal for households to equalize the marginal products

in both sectors. Hence, as pointed out before, the optimal allocation is not the

“productively efficient” allocation.

3.2 Reformulation of equilibrium

It will be useful to work with a reformulation of the equilibrium without finan-

cial intermediation that does not involve the prices (pg, pb) anymore. In order to

achieve this reformulation, we start by considering the optimization problem of

an individual household, taking choices of all other households as given. The in-

dividual household’s optimization problem is “one–dimensional”: The household

chooses a share β ∈ [0, 1] of its initial endowment to be invested in the risk–free

asset (that is, in FT production), and the complementary share 1 − β to be in-

vested in the risky asset (that is, MT production). Since the individual household

has zero mass, it takes the allocation yF and the concomitant marginal product

11



f ′(yF ) as given. This is in contrast to the previous subsection where we consid-

ered the optimization of the entire allocation in the economy. We can express the

individual household utility as a function of β:

U(β) =

(
σ

1− θ

)(
c1−θ
g (β)

)
+

(
1− σ

1− θ

)(
c1−θ
b (β)

)
,

which leads us to the first–order condition

(
cg
cb

)θ

= −
(

σ

1− σ

)(
∂cg/∂β

∂cb/∂β

)
. (9)

Equation (9) gives a general first–order condition for a one–dimensional consumer

choice problem which will repeatedly be useful in the sequel. In the case at hand,

cg(β) = β(ω + πF )f
′(yF ) + (1− β)(ω + πF )R,

cb(β) = β(ω + πF )f
′(yF ) + (1− β)(ω + πF )R,

and thus Equation (9) becomes

(
cg
cb

)θ

=

(
σ

1− σ

)(
R− f ′(yF )

f ′(yF )−R

)
.

Consider the following theorem.

Theorem 3.3

The tuple (c∗g, c
∗
b , y

∗
F , y

∗
M) À 0 is part of an equilibrium without financial interme-

diation if it solves the following system of equations:

yM = ω − yF , (10)

cg = f(yF ) + yMR, (11)

cb = f(yF ) + yMR, (12)
(
cg
cb

)θ

=

(
σ

1− σ

)(
R− f ′(yF )

f ′(yF )−R

)
. (13)

Proof. In order to prove the theorem, we need to show that for any tuple

(c∗g, c
∗
b , y

∗
F , y

∗
M) À 0 which satisfies Eqns. (11)–(13), one can find prices (p∗g, p

∗
b)

such that (c∗g, c
∗
b , y

∗
F , y

∗
M , p∗g, p

∗
b) is an equilibrium without financial intermediation.
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Indeed, let prices (p∗g, p
∗
b) be given by the equalities

p∗b/p
∗
g =

R− f ′(y∗F )

f ′(y∗F )−R

and

p∗g + p∗b = f ′(y∗F ).

It is now easily verified that all the equations in the definition of an equilibrium

without financial intermediation are satisfied. ¤

In this section, we have discussed a notion of equilibrium for an economy without

financial intermediation. This equilibrium concept only specifies the input allo-

cation and the consumption plan as equilibrium variables. Such an equilibrium

supports the socially optimal allocation. In the sequel, this allocation serves as a

benchmark as we discuss economies with frictions caused by financial intermedia-

tion as well as deposit insurance.

4 An economy with banks and deposit insurance

4.1 Model description

So far, we have considered a frictionless economy in which households directly

invest in the two technologies. In that economy, the equilibrium allocation of the

investment good to the two production technologies is optimal. From now on, we

will add two new features to the model: First, we assume that households can

invest directly in the FT sector, but any investment in the MT sector requires fi-

nancial intermediation by banks. One interpretation is to think of the MT sector as

an industry where firms are subject to moral hazard, and the necessary monitoring

and contract enforcement can only be done by banks and not by households.10

There is a continuum of banks. Contrary to households, banks are able to monitor

MT entrepreneurs, thus dealing with the moral hazard problem in that sector.

Contrary to the earlier model without financial intermediation, households do

10See Freixas and Rochet (2008) for a comprehensive account of the microeconomic founda-
tions of financial intermediation.
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not invest directly in MT but provide funds to banks as deposits and as equity.

Banks act in the interest of their shareholders who have limited liability for losses.

Moreover, the government is committed to ensure the viability of the banking

system. More specifically, a failing bank is bailed out by the government, and the

bail-out is financed by a lump-sum tax on households. This assumption introduces

a distortion into the model economy: Since shareholders benefit from any profits

of the banking sector, but can externalize part of the losses to the households, the

banks have an incentive to over-invest in the risky MT sector.

In addition, we assume that there is a deposit insurance fund to which banks must

contribute a certain share of their deposits as a premium. The deposit insurance

fund invests the premium in the FT sector. If a bank fails to repay its depositors,

then, as a first step, bank equity is used to honor the payment obligation. Once

all equity has been wiped out, the deposit insurance fund reimburses depositors.

If even the deposit insurance fund does not have sufficient means to compensate

the depositors, then the government repays deposits and finances this bail-out

by a lump–sum tax on all households. If the deposit insurance fund is not de-

pleted in the second period, then the remaining funds are distributed equally to

all households.

Observe that this deposit insurance scheme leads to a second distortion in the

model economy because lump–sum refunds in the good state are the result of the

portfolio decisions of all households, but are taken as given in the portfolio choice

of an individual household. The former distortion also persists unless the deposit

insurance premia are sufficiently high to cover the entire shortfall in the bad state.

Provided that the government is committed to bailing out banks, the financial

intermediation and the deposit insurance introduce two distortions into the model

economy compared to the economy without financial intermediation. We will show

that these distortions may lead to non–optimal equilibrium allocations.

In order to focus on the aforementioned distortions, we make three additional

assumptions to rule out other sources of friction: First, we assume that banks can

monitor the representative MT firm perfectly at zero cost — any moral hazard

is eliminated. Consequently, we can think of MT as simply a risky technology

banks can invest in. Second, we assume that the bank acts in the best interest

of its shareholders/equity–holders. In particular, there is no friction between the
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interests of the bank managers as agents and the shareholders as principals. We

do not model any managerial pay. Third, we do not consider any taxation of

households which is not lump–sum, thus eliminating any tax distortions.

As before, all individual actors in the economy (households, firms, and banks) are

atomic and, therefore, ought to be treated as price (or contract) takers. Conse-

quently, an individual decision maker in the economy takes all aggregate values of

economic variables as given. We will now discuss in turn the relevant optimization

problems of firms, banks, and households. This discussion prepares the ground

for the definition of the equilibrium concept for the economy with banks and de-

posit insurance. Ultimately, we will show that both the optimal allocation and a

multitude of non–optimal allocations can be supported by such equilibria.

4.2 Firms

Recall that in the current model setup, households still invest directly in the FT

sector. More formally, we will say that FT firms issue bonds to households. The

bond obliges the firm to pay an amount RF to the household in the second pe-

riod, while its purchase price is normalized to one. FT firms maximize profits by

an appropriate choice of the factor demand yF . That is, an FT firm solves the

optimization problem

max
yF

f(yF )−RFyF .

It is straight–forward that at the solution of this problem, we have

RF = f ′(yF ).

Verbally, given the profit–maximizing behavior of FT firms, the rate of return on

bonds is equal to the marginal product in FT production.

Now consider the MT sector. For the representative MT firm, the only channel of

funding is the financial intermediation by banks.

Due to perfect monitoring, banks can enforce the terms of the loan contract and

make loan repayment rates contingent on the state. We claim that equilibrium

repayment of loans by the representative firm is given as follows: In the good

state, the firm repays R per unit, and repayment in the bad state is R. If the
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pair of repayment rates was different from (R,R), then an MT firm would either

demand an infinite amount of funds or no funds from banks. The former case

occurs if at least one contingent repayment rate is below the equilibrium rate. The

latter occurs if both repayment rates are higher than the equilibrium rate and one

is strictly higher.11 With equilibrium repayment rates (R,R) the representative

MT firm makes zero profits in equilibrium, reflecting the outcome under perfect

competition with a constant returns to scale technology.

4.3 Banks and deposit insurance

There is a continuum of identical banks that are financed by (outside) equity and

interest bearing deposits. The total amounts of debt and equity in the economy are

equally distributed to all banks, and denoted by D and E. Therefore, we proceed

as if there is only one representative bank receiving deposits D and equity E. The

representative bank is passive regarding the choice of the capital structure and lets

households decide about the amounts of deposits and equity. However, the optimal

and non-optimal equilibria we will derive continue to exist if banks actively choose

their capital structure.12

We will make use of an equilibrium concept which requires equilibrium variables,

including D and E, to be strictly positive. In particular, this implies that we

do not consider full equity banking (zero deposits) because then the problem of

deposit insurance would be vacuous. Moreover, we do not consider cases with

zero equity because otherwise it would not make sense to maximize the payoffs of

equity holders. In this subsection, we will therefore assume D and E to be strictly

positive. Given that the price of the investment good has been normalized to one,

and D and E are expressed in terms of investment good, one can alternatively

think of D and E as the number of debt and equity contracts in the economy.

In the sequel, we conduct the analysis for a representative bank that is acting

11One could consider a scenario when the MT firm accepts one or two higher contingent
repayment rates and would default if it cannot repay. If bankruptcy imposes no costs on firms
or does not reduce the investment returns, such a constellation would lead to the same effective
repayment rates R and R, respectively.

12As in the corporate finance literature we could consider a sequential issuance process. For
instance, banks could be financed by equity first and then decide how many deposits to accept.
In addition, one could allow banks to raise additional equity before they receive deposits. All
equilibria we derive continue to exist if banks choose their capital structure in this way. Details
are available upon request.

16



competitively.

Let RD be the rate of return on deposits. That is, for every unit of deposits,

the bank pays the depositor RD in the second period. In the presence of deposit

insurance, bank deposits are a risk–free asset. We can use a standard arbitrage

argument to show that the return on all risk–free assets in the economy must be

equal if households make an optimal portfolio choice. Formally, we have

RD = RF ,

where we recall that RF is the rate of return on bonds. In the previous subsection,

we have shown that profit maximization by the representative FT firm implies

RF = f ′(yF ). In what follows, we will often write RF when we mean the risk–free

return in the economy, whether it is in the context of bonds or of deposits.

The deposit insurance fund works as follows: The regulator obliges a bank to

contribute an amount δD to the deposit insurance fund (DIF), where 0 ≤ δ ≤ 1.

The DIF invests this amount in safe assets, i.e., in the FT sector. If the bank is

able to honor its obligations towards depositors at t = 2 (possibly by wiping out

equity), then the funds of the DIF are distributed to households. If banks cannot

honor their obligations towards depositors, then the DIF reimburses the depositors.

If the funds of the DIF are insufficient to repay all obligations towards depositors,

then the government carries out a bail-out financed by taxing the households.

We consider the optimization problem of the representative bank. We abstract

away from any principal–agent problem between the shareholders and managers

of the bank. Given that the representative bank has obtained investment goods in

the form of deposits and equity, of quantities D and E, respectively, the objective

of the bank is to maximize the payoff to its shareholders. The choice variable of

the bank is the share α which the bank invests in MT, while the complementary

share 1 − α is invested in FT. Due to the market completeness, the choice of α

has no effect on the portfolio problem of a household. Moreover, due to perfect

competition in the banking sector, the representative bank is a price–taker: There

is no feedback effect from the choice of α to the prices prevailing in the economy.

As a result of these considerations, the variables D and E and RF can be taken as

given when maximizing the payoff to bank shareholders. Moreover, this payoff is

given by the following expressions, which take into account that shareholders are

17



not liable for losses.

π(α) = max{0,
(
αR + (1− α)RF

)
((1− δ)D + E)−RFD},

π(α) = max{0, (αR + (1− α)RF ) ((1− δ)D + E)−RFD.}

We use the notation RE(α) = π(α)/E and RE(α) = π(α)/E for the return on

equity in either state. Since E is taken as given in the bank’s optimization prob-

lem, maximizing the expected shareholder payoff is equivalent to maximizing the

expected return on equity.

We want to show that the representative bank chooses α = 1, provided that

households invest sufficiently in FT.

Lemma 4.1

Suppose that RF < σR+(1−σ)R. Then, it is optimal for the bank to choose α = 1.

Proof. Consider first the case where π(α) > 0 = π(α). Then,

∂ (σπ(α) + (1− σ)π(α)) /∂α = σ(R−RF )((1− δ)D + E).

This partial derivative is independent of α. The supposition RF < σR+ (1− σ)R

implies that R−RF > 0, and thus the above partial derivative is strictly positive.

Now consider the case where π(α) > π(α) > 0. Then, the relevant partial derivative

is

∂ (σπ(α) + (1− σ)π(α)) /∂α = σ(R−RF )((1−δ)D+E)+(1−σ)(RF−R)((1−δ)D+E).

Again, invoking the supposition that RF < σR + (1 − σ)R together with the

inequality R > R shows that this partial derivative is strictly positive. Indeed, the

optimization problem of the representative bank has no interior solution. ¤

The bottom line of the analysis of the banking sector is that banks want to invest

fully in the MT sector when the marginal product in FT is sufficiently low. In the

sequel of the paper, we will work with equilibrium concepts which require that the

marginal product in FT is indeed low enough.
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4.4 Consumer choice problem

In this subsection, we discuss the consumer choice problem at the level of the

individual household. Each household chooses a portfolio which consists of direct

investment in FT, deposits, and equity. As discussed in the previous subsection,

the rate of return on deposits is the same as that on direct investment in FT sector.

Hence, the household portfolio problem can be thought of as one–dimensional: The

household chooses to invest some share of its funds in risk–free assets with payoff

structure (RF , RF ), and the complementary share in equity, which is a risky asset

with payoff structure (RE, RE). One unit of either asset can be exchanged for one

unit of the other asset; their price is normalized to one.

We denote by (tg, tb) the state–contingent effect of the deposit insurance fund on

consumption which cannot be affected by the individual household. Recall that we

are looking at a model where banks are obliged to pay a share δ of their deposits

to a deposit insurance fund. This fund invests the premium in the FT sector. In

the good state, the entire deposit insurance fund is distributed to households. In

the bad state, the deposit insurance fund is used to repay depositors, and any

remaining shortfall is financed by a lump–sum tax on all households. Formally,

the deposit insurance fund leads to the following fixed effects (tg, tb) on household

consumption:

tg = δDRF , (14)

tb = [(1− δ)D + E]R + δDRF −DRF . (15)

One more fixed effect to the household consumption comes from the FT firms.

They produce an amount f(yF ), and need to pay their bond–holders an amount

yFRF , so that they are left with a profit

ΠF = f(yF )− yFRF

= f(yF )− yFf
′(yF ) > 0

to be distributed to households.

Since we are considering a continuum economy, the individual household not only

takes (tg, tb) and ΠF as given, but also the allocation yF , the risk–free rate RF , and

the returns on equity (RE, RE). Moreover, the individual household also takes as
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given the aggregate choice of equity E. In what follows, it is therefore necessary to

consider the choice of an individual household while holding the aggregate behavior

of households fixed. This is in contrast to the “representative household” approach

which is used extensively in this paper as well. The reason why one needs to

switch to a different approach is that in the economy with deposit insurance cum

reinsurance in the sequel of the paper, heterogeneous choices by households may

occur in equilibrium. We take η ∈ [0, ω/E] as the choice variable of an individual

household. The interpretation is that if η > 1, then the household chooses to invest

more in equity than the “average” household, while if η < 1, then the household

invests less than “average” in equity. The portfolio choice problem of an individual

household can now be stated formally as follows:

max
η∈[0,ω/E]

(
σ

1− θ

)(
ηERE + (ω − ηE)RF + tg +ΠF

)1−θ
+

(
1− σ

1− θ

)
(ηERE + (ω − ηE)RF + tb +ΠF )

1−θ .

Recalling that E > 0, the first–order condition for this problem can be written as

(
σ

1− σ

)(
RE −RF

RF −RE

)
=

(
ηERE + (ω − ηE)RF + tg +ΠF

ηERE + (ω − ηE)RF + tb +ΠF

)θ

. (16)

The left-hand side is independent of η. For RE > RF > RE, the right-hand side

is strictly increasing in η. That is, only one value of η ∈ [0, ω/E] can solve this

first–order condition. Hence, all households must choose the same portfolio. But

then it follows that η = 1. More formally, we have the following proposition:

Proposition 4.2

Suppose that each individual household chooses an optimal portfolio and that RE >

RF > RE. Then, all households choose the same portfolio, and η = 1.

Household consumption can now be written as

cg = ERE + (ω − E)RF +ΠF + tg, (17)

cb = ERE + (ω − E)RF +ΠF + tb. (18)

Using the notation ψ = D/E for the debt–equity ratio, we can write return on
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equity in the two states as

RE = (1 + ψ − δψ)R− ψRF ,

RE = max{0, (1 + ψ − δψ)R− ψRF}.

Substituting for tg, tb,ΠF , RE, and RE into Eqns. (17) and (18), and using the

condition ω = yF + yM yields

cg = f(yF ) + yMR,

cb = f(yF ) + yMR.

Verbally, households are the ultimate recipients of the FT profit and any “profit”

of the deposit insurance fund, and must finance the bail-out in case the deposit

insurance fund is insufficient to pay off depositors. Hence, ultimately the entire

amount of consumption goods produced by both technologies will find its way back

to households, rationalizing the last expressions for cg and cb.

This is a crucial step in the preparation for the equilibrium definition. In the

next subsection, however, we take a closer look at the deposit insurance scheme.

In particular, we will discuss a deposit insurance fund where the premium δ per

unit of deposits is chosen such that the deposit insurance is actuarially fair, which

seems to be a natural starting point for the analysis.

4.5 Pricing deposit insurance

Recall that δ ∈ (0, 1) denotes the fraction of its deposits that a bank has to pay

as insurance premium. Thus, the bank can freely choose how to invest its equity

as well as a share 1 − δ of the deposits, while the share δ of the deposits is paid

to the DIF. Due to Lemma 4.1, the bank invests the entire amount E + (1− δ)D

in the MT sector. Suppose that D > 0 and the bank defaults in the bad state. In

that case, the shortfall can be written as follows:

Λ = DRF − (E + (1− δ)D)R.

This is the amount which the bank fails to repay to its depositors, and which

would have to be compensated by the DIF. However, the funds available to the
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DIF equal δDRF , which is the insurance premium compounded by the risk–free

rate. Let

µ = µ(δ) =
δDRF

DRF − (E + (1− δ)D)R

be the cover ratio of the deposit insurance fund. Clearly, there is a one–to–one

correspondence between choosing the cover ratio µ of the deposit insurance and

choosing its premium δ. More precisely, we find that

δ =
RF −

(
1 + E

D

)
R(

1
µ

)
RF −R

. (19)

Recall that we are considering equilibria with D,E > 0, so we have the inequality

δ <
RF −R(
1
µ

)
RF −R

, (20)

and we can see that δ < 1 for any µ ≤ 1.

One pricing mechanism for deposit insurance schemes is actuarial fairness. A de-

posit insurance premium is actuarially fair if the DIF expects to break even, that

is, the expected shortfall is equal to the insurance premium compounded at the

risk–free rate.13 In our model, an actuarially fair deposit insurance is character-

ized by a cover ratio of 1 − σ. Choosing a cover ratio µ > 1 − σ is tantamount

to imposing a surcharge on the actuarially fair premium. Observe that for any

µ < 1, the deposit insurance fund is more than exhausted in the bad state, so that

a government bail-out is needed. In particular, since 1− σ < 1, an actuarially fair

deposit insurance does not make government bail-outs dispensable. If µ = 1, then

the DIF perfectly insures the financial system; we refer to this case as full insur-

ance. In the sequel, we are going to demonstrate that non–optimal equilibrium

allocations are possible in economies with banks and deposit insurance as long as

the cover ratio is strictly less than one.

13One might also consider an alternative definition of actuarial fairness which takes the per-
spective of the insured party. In particular, one could define an insurance as being actuarially
fair if the premium equals the expected loss, that is, if δD = (1 − σ)Λ. Mutatis mutandis, the
conclusions of the equilibrium analysis in Section 5 would remain valid.
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4.6 Market clearing for investment good

Recall that households allocate their funds to deposits, equity, and FT investment.

Denote their direct investment in FT by yF,h, so that we have the identity

ω = E +D + yF,h.

In the presence of deposit insurance, the FT sector is funded not only by households

directly but also by the DIF. We continue to use the notation yF for the factor

demand in the FT sector. Thus, the factor market clears if the following condition

is satisfied:

yF = δD + yF,h.

Using the above identity, we can rewrite the market–clearing condition as

ω = E + (1− δ)D + yF .

Since we require household investment in FT to be non–negative, the market–

clearing condition implies the inequality yF ≥ δD. Intuitively, this means that the

factor demand in the FT sector must be sufficiently large so as to absorb the total

deposit insurance fund. Define

Dµ(E) =
(ω − yF )(RF −Rµ)− ERF

(1− µ)RF

. (21)

Combining Eqn. (19) and the market–clearing condition above, we can see that

Dµ(E) determines the equilibrium amount of deposits as a function of the equi-

librium amount of equity in an economy where the deposit insurance covers the

share µ of the shortfall in the bad state.

4.7 Equilibrium with banks and deposit insurance

We next introduce the equilibrium definition for arbitrary deposit insurance schemes.

Definition 4.3

An equilibrium with banks and δ–deposit insurance is a tuple

(c∗g, c
∗
b , y

∗
M , y∗F , ψ

∗, E∗, R
∗
E, R

∗
E, R

∗
F ) À 0 which solves the following system of equa-
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tions:

(
cg
cb

)θ

=

(
σ

1− σ

)(
RE −RF

RF −RE

)
, (22)

cg = f(yF ) + yMR, (23)

cb = f(yF ) + yMR, (24)

yF = ω − yM , (25)

yM = E + (1− δ)ψE, (26)

RE = (1 + ψ − δψ)R− ψRF , (27)

RE = max {0, (1 + ψ − δψ)R− ψRF} , (28)

RF = f ′(yF ), (29)

and, moreover, satisfies the inequalities f ′(yF ) < σR+(1−σ)R and (1+ψ)E ≤ ω.

Equivalently, we could have included the variables (tg, tb,ΠF ) and Eqns. (14)

through (18) in the equilibrium definition. As we have argued in the previous

subsection, either the pair of Eqns. (23) and (24) or the pair of Eqns. (17) and (18)

would then become redundant. As a result, this alternative equilibrium definition

would consist of three extra variables and three extra independent equations.

Let us discuss the equations in turn. Eqn. (22) is the condition emanating from

optimal portfolio choice of the households. Eqns. (23) through (25) are simple

market–clearing conditions. Eqn. (26) is a consequence of Proposition 4.1: Banks

invest as much as possible of their equity and their deposits in MT, but due to the

deposit insurance this is subject to the restriction that the share δ of the deposits

must be paid to the fund as an insurance premium. Given such investment behavior

by banks, and given that return on deposits equals the bond return RF , it follows

that return on equity in both states is given by Eqns. (27) and (28). Finally, Eqn.

(29) states that the rate of return on bonds corresponds to the marginal product

in the FT sector.

Moreover, the equilibrium definition includes an inequality which says that house-

hold investment in deposits and equity cannot exceed the funds ω available to the

household. Importantly, this inequality combined with Eqn. (26) implies that in

any equilibrium with banks and δ–deposit insurance, we have yF ≥ δψE = δD.

Verbally, this means that the factor demand in the FT sector is sufficiently high
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to absorb all the funds of the deposit insurance.

Let us focus for a moment on the first four equations in the equilibrium definition.

They are analogous to the definition of an equilibrium allocation without financial

intermediation except that the returns (RE, RE) have taken the place of the returns

(R,R). The reason is obvious: In an equilibrium without financial intermediation,

households invest directly in the risky MT technology, whereas in the equilibrium

with banks and δ–deposit insurance, all MT investment is mediated by banks. The

risky asset is bank equity, while the household perceives bank deposits as risk–free

due to the deposit insurance.

Consider the special case of the above equilibrium definition where δ = 0. This case

can be interpreted in two ways: First, it can be seen as the equilibrium concept for

an economy with banks, actuarially fair deposit insurance, and government bail-

out guarantees in which no default occurs. Alternatively, it can also be thought

of as an equilibrium concept for an economy with banks in which deposits are

guaranteed by the government but there is no deposit insurance fund.

5 Equilibrium analysis

In this section, we establish two results: First, in the economy with banks and

deposit insurance, the optimal allocation can be supported by a multitude of equi-

libria. Second, a multitude of non–optimal allocations is also consistent with

equilibrium.

5.1 Equilibria supporting the optimal allocation

Proposition 5.1 Suppose that the tuple (c∗g, c
∗
b , y

∗
M , y∗F ) is an equilibrium allocation

without financial intermediation. Then, there exists a continuum of equilibria with

banks and 0–deposit insurance which supports (c∗g, c
∗
b , y

∗
M , y∗F ).

Proof of Proposition 5.1

The proof is constructive. Let (c∗g, c
∗
b , y

∗
M , y∗F ) be the optimal input allocation and

concomitant consumptions, and choose any ψ∗ ∈ [0, R
R∗

F−R
]. Notice that any choice

of ψ∗ in that interval guarantees that RE ≥ 0. Now define E∗, R
∗
E, and R∗

E as
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follows:

E∗ =
y∗M

1 + ψ∗ ,

R
∗
E = (1 + ψ∗)R− ψ∗R∗

F ,

R∗
E = (1 + ψ∗)R− ψ∗R∗

F .

We need to check that the tuple (c∗g, c
∗
b , y

∗
M , y∗F , ψ

∗, E∗, R
∗
E, R

∗
E) solves Eqns. (22)

through (28) in the definition of the equilibrium with banks and δ–deposit insur-

ance. This is immediate for Eqns. (23) through (28). To see that it is also true

for Eqn. (22), observe that with 0–deposit insurance,

RE −RF

RF −RE

=
(1 + ψ)R− (1 + ψ)RF

(1 + ψ)RF − (1 + ψ)R
=

R−RF

RF −R
.

We now define a special case of an equilibrium with banks and 0–deposit insurance

in which bank default is just avoided in the bad state. That is, no default occurs

in the bad state but the return on equity is equal to zero. Since the deposit

insurance does not need to refund any depositors, its premium is zero. We call this

equilibrium the critical leverage equilibrium. It supports the optimal allocation,

but it will be important as a reference point for the construction of equilibria which

support a non–optimal allocation.

26



Definition 5.2

A critical leverage equilibrium is a tuple

(c∗g, c
∗
b , y

∗
M , y∗F , ψ

∗, E∗, R
∗
E, R

∗
F ) À 0 which solves the following system of equations:

(
cg
cb

)θ

=

(
σ

1− σ

)(
RE −RF

RF

)
, (30)

cg = f(yF ) + yMR, (31)

cb = f(yF ) + yMR, (32)

yF = ω − yM , (33)

yM = E(1 + ψ), (34)

RE = (1 + ψ)R− ψRF , (35)

RF = f ′(yF ), (36)

ψ =
R

RF −R
, (37)

and, moreover, satisfies the inequalities R∗
F < σR+ (1− σ)R and E(1 + ψ∗) ≤ ω.

The critical leverage equilibrium with 0– deposit insurance is a special case of the

equilibrium with banks and δ–deposit insurance. In particular, it is that equilib-

rium with banks and δ–deposit insurance in which all equity is wiped out in the

bad state but bank default is just avoided.

We have shown that an equilibrium with banks and δ–deposit insurance can repli-

cate the optimal allocation of the equilibrium without financial intermediation.

5.2 Non–optimal equilibrium allocations

We next show that there also exist equilibria with banks and δ–deposit insurance

which support non–optimal allocations. Recall that the optimal allocation involves

an investment ŷF in FT, and the complementary investment ω − ŷF in MT. We

are going to show in this subsection that an allocation involving a slight under–

investment in FT can be supported by an equilibrium with banks and δ–deposit

insurance. More formally, let

Y ′
F = {yF ∈ (0, ŷF )| f ′(yF ) < σR + (1− σ)R}.
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We will show that any allocation in Y ′
F is supported by an equilibrium.

Theorem 5.3 For every allocation y′F ∈ Y ′
F and every δ′ <

R−f ′(y′F )

R
, there exists

an equilibrium with banks and δ′–deposit insurance which supports the allocation

y′F .

The proof of Theorem 5.3 is given in the Appendix. One implication of the above

theorem is that a range of non–optimal allocations can be supported by equilibria

if there is no deposit insurance, that is, if δ = 0. Moreover, a range of non–optimal

allocations can also be supported by equilibria as long as the premium δ per unit

of deposits is sufficiently small. More specifically, we see from the statement of the

above theorem that a non–optimal allocation y′F is consistent with equilibrium if

δ < (R− f ′(y′F ))/R. Using the inequality f ′(y′F ) < σR+(1−σ)R, this implies the

following proposition.

Proposition 5.4 Non–optimal equilibrium allocations exist if the deposit insur-

ance premium satisfies

δ < (1− σ)

(
R−R

R

)
.

So far in this subsection, we have shown that non–optimal equilibrium allocations

arise for sufficiently small values of δ. Now we are going to derive a condition on

the cover ratio µ such that the corresponding premium δ is “sufficiently small” in

that sense. We have shown before that a cover ratio of µ ≤ 1 corresponds to a

premium

δ =
f ′(yF )−

(
1+ψ
ψ

)
R

(
1
µ

)
f ′(yF )−R

.

Since the term (1 + ψ)/ψ takes values in the interval (1,∞), we have

f ′(yF )−
(

1+ψ
ψ

)
R

(
1
µ

)
f ′(yF )−R

<
f ′(yF )−R(
1
µ

)
f ′(yF )−R

.

Now suppose that

f ′(ŷF )−R(
1
µ

)
f ′(ŷF )−R

< (1− σ)

(
R−R

R

)
.
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If this inequality holds, then the previous proposition implies that we can find a

non–optimal allocation in the neighborhood of the optimal allocation ŷF which

can be supported by an equilibrium. Suitably rearranging the above inequality,

we obtain the following proposition.

Proposition 5.5 A non–optimal allocation in a sufficiently small neighborhood of

the optimal allocation ŷF can be supported by an equilibrium in the presence of a

deposit insurance with any cover ratio µ such that:

µ <
(1− σ)f ′(ŷF )(

f ′(ŷF )−R

R−R

)
R + (1− σ)R

.

The right–hand side of the inequality in the above proposition depends only on

the primitive model parameters. For any configuration of the parameters, there is

a critical cover ratio below which deposit insurance cannot rule out non–optimal

equilibrium allocations. As pointed out before, a cover ratio of 1−σ corresponds to

an actuarially fair deposit insurance, while a cover ratio of one corresponds to full

insurance. In the next subsection, we are going to show by example that even cover

ratios very close to one can be consistent with non–optimal equilibrium allocations.

Intuitively, consider a sequence of economies such that along the sequence, the term

R − R goes to zero. This implies that the term f ′(ŷF ) − R converges to zero as

well, but since f ′(ŷF ) < R, the latter convergence is “faster” than the former.

Consequently, the expression on the right–hand side of the inequality in the above

proposition goes to one in the limit of this sequence of economies. Thus, in the

“limit economy,” even full insurance cannot rule out non–optimal allocations.

In this section, we have shown how financial intermediation cum deposit insur-

ance can change the equilibrium allocation. While the optimal allocation is still

supported by a continuum of equilibria, there is also a continuum of non–optimal

allocations which can be supported by equilibria of this economy. Even in the pres-

ence of deposit insurance, the incentive of banks to maximize expected return on

equity can result in over–investment in the risky technology, and under–investment

in the safe technology, relative to what is optimal for the households.
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5.3 Unavoidable Inefficiencies

We first present two examples that have the property that the premium for ac-

tuarially fair deposit insurance does not exceed the factor demand in FT. More-

over, in the second example we allow that the upper Inada condition is weak-

ened. We explore the fact that with µ = 1 − σ, Eqn. (19) implies δD ≤
ω · (RF −R)(1− σ)/(RF −R(1− σ)).

Example 1: Let ω = 1, f(yF ) = 2
√
yF − yF , θ = 2, σ = 2/3, R = 1/2,

R = 2. In this example, R̂F = 1 and ŷF = 1/4. Further, since ω = 1 and

(R̂F −R)(1−σ)/(R̂F −R(1−σ)) = 1/5, it can be achieved that the entire deposit

insurance premium is invested in FT when an equilibrium with riskless rate R̂F or

close to R̂F is realized.

Example 2: We set ω = 1, σ = 1/2, θ = 1/2, R = 0, R = 2, and assume that

f(yF ) = 2(yF − y2F
2
). In this example, R̂F = 2/(1 +

√
2) and ŷF = 2 −

√
2. Since

ω = 1 and (R̂F −R)(1−σ)/(R̂−R(1−σ)) = 1/2 < 2−
√
2, it can be achieved that

the entire deposit insurance premium is invested in FT in equilibria with riskless

rates close to R̂F .

We next provide a proof that non–optimal equilibrium allocations can arise un-

der actuarially fair deposit insurance.14 This will help prove that non–optimal

equilibrium allocations can occur under any deposit insurance scheme.

Proposition 5.6 Suppose the Arrow-Debreu equilibrium allocation satisfies R̂F ≤
1. Suppose that the deposit insurance is actuarially fair. Then there exist equilibria

with financial intermediation where the investment in FT is strictly smaller than

ŷF , the investment in the risky technology is E+(1−δ)D, banks only invest in the

risky technology and default in the bad state. In addition to coverage by deposit

insurance, government bail-out of banks is necessary in the bad state. The resulting

equilibrium allocation is non–optimal.

The proof of Proposition 5.6 is given in the Appendix. Notice that the hypothesis

14Without deposit insurance, Gersbach et al. (2015) have already shown that non–optimalities
can arise. We extend this proof to the case of deposit insurance.
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of the proposition and the assumption that the deposit insurance premium does

not exceed the factor demand of the risk-free sector are satisfied for certain model

specifications as we have seen in Examples 1 and 2.

The argument in the proof of Proposition 5.6 relies on the fact that households

(a) are taxed in the bad state and (b) receive a refund in the good state. Thus,

the argument still applies when deposit insurance is slightly actuarially unfair.

Actually, the validity of (a) or (b) suffices. Therefore, the proof of the proposition

works even when deposit insurance covers a huge fraction of the banks’ deficit in

case of default, provided that (c) the deposit insurance can invest all its premium

revenue in the risk-free sector, that is the factor demand of the risk-free sector is

high enough and (d) Eqn. (21) can be applied. The right-hand side of (21) is ill

defined and (21) is not applicable if µ = 1. While (c) does not hold in general,

it does hold with µ = 0.99 in some model specifications as the following example

demonstrates.

Example 3: Let n > 1 be a natural number. Put ω = 1, R = (n+1)1/2 − 1, R =

(n+ 1)1/2, y+F = 1− 1/(n+ 1), y0F = 1− 1/(n+ 2) and

f(yF ) =





2n1/2 · (yF )1/2 for yF ∈ [0, y0F ];

2n1/2 · (yF )1/2 − [n1/2 · (n+ 2)3/4](yF − y0F )
4 for yF ≥ y0F .

Then p̂gR + p̂bR = 1 implies (p̂g + p̂b)(n+ 1)1/2 > 1 and consequently (p̂g + p̂b) >

(n + 1)−1/2. Profit maximization in FT requires (p̂g + p̂b)f
′(ŷF ) = 1. Now (p̂g +

p̂b)f
′(y+F ) > (n+1)−1/2 ·n1/2 ·(y+F )−1/2 = (n/(n+1))1/2 ·(n/(n+1))−1/2 = 1. Hence

ŷF > y+F = 1− 1/(n+ 1). Dividing R, R and f by (4/3)(n+ 1)1/2 yields a model

with identical ŷF and (3/4)(1−(n+1)−1/2) = R < R̂F < R = 3/4. Next let n = 24.

Then y∗F = ŷF > 24/25 = 0.96, E∗ = y∗M/(1 + ψ∗) = ŷM/(1 + ψ∗) ∈ (0, 1/25) and

R∗
F = R̂F ∈ (3/5, 3/4) at the critical leverage equilibrium. For RF ≈ R̂F , we

obtain yF ≈ y∗F and 0 < E ≈ E∗. If in in addition, we set µ = 0.99 in (21), then

Dµ(E) < 100 · [(ω − yF ) · (1 − 0.99R/R)] ≤ (100/25) · 0.208 = 0.832 < yF . This

means that the entire insurance premium can be invested in FT when deposit

insurance provides 99% coverage. It follows that the proof of Proposition 5.6

can be repeated with 99% deposit insurance coverage. Hence it is possible to

have equilibria where banks default in the bad state, there is 99% coverage by

deposit insurance, government bail-out of banks is necessary, and the equilibrium
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allocation is non–optimal.

6 Deposit insurance with reinsurance

6.1 The Reinsurance scheme

In the previous section, we have seen that in the presence of a deposit insurance, it

is still possible to support equilibria with default and with a non-optimal allocation

of input to the two sectors. Non–optimal equilibria can exist not when deposit

insurance is actuarially fair but even when a premium above the actuarially fair

level is charged, as with “systemic risk surcharges.” In the present section, we

introduce a deposit insurance with reinsurance, and we show that under that

deposit insurance scheme, all equilibria of the model economy support the optimal

allocation, even if they may involve bank default.

A deposit insurance with reinsurance works as follows: Banks pay a share δ of their

deposits to a deposit insurance fund as a premium. The deposit insurance fund

writes reinsurance contracts with households: A household which is willing to pay

an amount q to the deposit insurance fund if the bad state occurs at t = 2, receives

a payment of one from the deposit insurance at time t = 1. It is assumed that the

amount q adjusts to clear the market for reinsurance contracts. Thus, the deposit

insurance fund collects a total amount of δD from the banks as a premium, passes

all these funds on to households under a reinsurance contract, and the households

have a payment obligation of δDq in the bad state.

In this section, we define a reinsurance equilibrium. This equilibrium concept is

based on the previously defined equilibrium with banks and δ–deposit insurance,

but is adapted to the economy in which the deposit insurance fund contracts

reinsurance rather than investing in the FT technology. Our claim is that for a

suitable choice of δ, all reinsurance equilibria support the optimal allocation. More

precisely, we claim that optimality is achieved if the deposit insurance premium is

determined as follows:

δRIE(ψ, yF ) =




0 if ψf ′(yF ) ≤ (1 + ψ)R,

1/ψ if ψf ′(yF ) > (1 + ψ)R.
(38)
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We discuss the two cases in turn. In the first case, the amount of deposits in

the economy is sufficiently low so that banks will not default in the bad state.

Hence, we have trivial deposit insurance with zero premium which never leads

to any payment obligation. It is intuitive that the same logic as in Theorem 3.3

applies: The equilibrium without financial intermediation can be replicated. The

interesting case is where the amount of deposits in the economy is sufficiently large

so that banks default in the bad state. In that case, the deposit insurance receives

premium payments δD = (1/ψ)D = E. That is, every unit of equity is balanced

by one reinsurance contract. Next, we consider the portfolio choice problem of the

household in the presence of deposit insurance with reinsurance:

max
η∈[0, ω/E], κ∈R+

(
σ

1− θ

)(
ηERE + (ω + κE − ηE)RF + πF

)1−θ

+

(
1− σ

1− θ

)
((ω + κE − ηE)RF + πF − κEq)1−θ .

This portfolio choice problem is best understood when compared to the analogous

problem in the previous section. As before, the choice variable η measures the

individual household’s equity purchases in relation to the equity purchase of the

“average” household. Contrary to the previous section, the deposit insurance does

not lead to a restitution tg nor to a loss tb for all households – participation in the

reinsurance contract is a decision of the individual household. Hence, there is a

second choice variable κ. While the “average” household receives δD = (1/ψ)D =

E in the first period under the reinsurance contract, the individual household

receives κE. The amount which the individual household can invest in equity or

in risk–free assets is thus ω + κE rather than just ω. In the bad state, however,

the household is obliged to pay κEq. The profit πF remains a fixed effect which

is paid to every household in both states, regardless of the household’s individual

choices. Now let us consider the first–order conditions emanating from the above

portfolio problem:

(
ηERE + (ω + κE − ηE)RF + πF

(ω + κE − ηE)RF + πF − κEq

)θ

=

(
σ

1− σ

)(
RE −RF

RF

)
, (39)

(
ηERE + (ω + κE − ηE)RF + πF

(ω + κE − ηE)RF + πF − κEq

)θ

=

(
σ

1− σ

)(
RF

RF − q

)
. (40)
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These portfolio conditions admit multiple optimal portfolios for an individual

household. The model economy includes two states, so two independent assets

suffice for market completeness. The reinsurance contracts are therefore a redun-

dant asset. As a result, the individual household is indifferent between a continuum

of possible portfolio choices. All these portfolio choices, however, lead to the same

consumption bundle. Let us now turn to that consumption bundle by considering

the aggregate consumption demanded by all households. In the good state, we

find

cg = ERE + ωRF + πF

= ((1− δ)D + E)R−DRF + ωRF + f(yF )− yFRF

= DR + f(yF ) +RF (yM −D)

= yMR + f(yF ).

In order to understand this chain of equalities, we need the following consider-

ations: Banks can choose how to invest an amount (1 − δ)D + E, and as by

Proposition 4.1, they invest this entire amount in MT. Since only the banks can

invest in MT, this implies (1−δ)D+E = yM . Moreover, since δ = 1/ψ = E/D, we

have yM = D. Finally, the above chain of equalities uses the market–clearing con-

ditions for investment good so that yM = ω − yF . Using the same considerations,

we can also show that

cb = yMR + f(yF ).

Analogously to the previous section, the market–clearing condition for investment

good combined with appropriate definitions of return on equity and of q implies

market–clearing for the consumption good in both states. This observation allows

us to rewrite Eqns. (39) and (40) above as

(
cg
cb

)θ

=

(
σ

1− σ

)(
RE −RF

RF

)
,

(
cg
cb

)θ

=

(
σ

1− σ

)(
RF

RF − q

)
.

We are now ready for the statement of the equilibrium definition.
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6.2 Reinsurance equilibrium

Definition 6.1

A reinsurance equilibrium is a tuple (c∗g, c
∗
b , y

∗
M , y∗F , E

∗, ψ∗, R
∗
E, R

∗
E, R

∗
F , q

∗, δ∗) which

solves the following system of equations:

(
cg
cb

)θ

=

(
σ

1− σ

)(
RE −RF

RF −RE

)
, (41)

cg = f(yF ) + yMR, (42)

cb = f(yF ) + yMR, (43)

yF = ω − yM , (44)

yM = (1 + ψ − δψ)E, (45)

RE = (1 + ψ − δψ)R− ψRF , (46)

RE = max{0, (1 + ψ − δψ)R− ψRF}, , (47)

RF = f ′(yF ), (48)

δψq = −min{0, (1 + ψ − δψ)R− ψRF}, (49)

δ = δRIE(ψ, yF ), (50)

as well as the additional restriction

(
cg
cb

)θ

=

(
σ

1− σ

)(
RE

q

)
(51)

in case δψq > 0, and moreover, satisfies the inequalities R∗
F < σR+ (1− σ)R and

E(1 + ψ) ≤ ω.

Eqns. (41) through (47) correspond to the equations in the earlier definition of

the equilibrium with banks and δ–deposit insurance. Eqn. (49) simply says that

the payment obligation of households under the reinsurance contract corresponds

exactly to the amount of the shortfall in the bad state. Eqn. (50) reiterates the

above construction of the deposit insurance premium. Finally, Eqn. (51) only

becomes relevant if a shortfall does occur in the bad state, and a non–zero deposit

insurance is concluded. In that case, the portfolio decision of the household is

no longer one–dimensional. Instead, the household can be thought of as choosing

two portfolio variables. As before, in equilibrium, the household should have no
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incentive to move an infinitesimal amount of its investment from bank equity to

bank deposits (or to FT investment). This requirement is already formalized in

Eqn. (41) above. In addition, the household should not have an incentive to

contract an infinitesimal extra amount of reinsurance and invest the proceeds at

time t = 1 into bank equity. This requirement is represented by Eqn. (51).

6.3 Optimality of the reinsurance equilibrium

Theorem 6.2 below is the main result of the present paper. It claims that in

an economy where the deposit insurance fund contracts reinsurance rather than

invest in risk–free assets, non–optimal allocations can no longer be consistent with

equilibrium.

Theorem 6.2 All reinsurance equilibria support the optimal allocation.

Proof of Theorem 6.2

Comparing the system of Eqns. (41)-(51) above with the system of Eqns. (10)-(13)

describing the optimal allocation, we see that a reinsurance equilibrium supports

the optimal allocation if the equilibrium variables R
∗
E and y∗F satisfy

R
∗
E −R∗

F

R∗
F −R∗

E

=
R−R∗

F

R∗
F −R

.

In order to verify that this equality holds in any reinsurance equilibrium, we dis-

tinguish two cases. The first case is a reinsurance equilibrium in which ψ∗R∗
F ≤

(1 + ψ∗)R. In such an equilibrium, δ∗ = 0 and R∗
E ≥ 0. Then, substituting for the

returns on equity from Eqns. (46) and (47), we have

R
∗
E −R∗

F

R∗
F −R∗

E

=
(1 + ψ∗)R

∗ − (1 + ψ∗)R∗
F

(1 + ψ∗)R∗
F − (1 + ψ∗)R

=
R−R∗

F

R∗
F −R

,

as desired. The second case is that of a reinsurance equilibrium in which ψ∗R∗
F >

(1 + ψ∗)R. In such an equilibrium, δ∗ = 1/ψ∗ and δ∗ψ∗q∗ = q∗ > 0. Thus, by

applying Eqn. (51) and by substitution for R
∗
E and q∗ from Eqns. (46) and (49),

we obtain the chain of equalities

R
∗
E −R∗

F

R∗
F −R∗

E

=
R

∗
E

q
=

ψ∗R− ψ∗R∗
F

ψ∗R∗
F − ψ∗R

=
R−R∗

F

R∗
F −R

.
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Indeed, all reinsurance equilibria support the optimal allocation.

The existence of a reinsurance equilibrium can be shown by a similar construc-

tion as the existence of an equilibrium with banks and δ–deposit insurance which

supports the optimal allocation. Moreover, a reinsurance equilibrium with default

also exists, but it is unique. That is, only one debt–equity ratio ψ is consistent

with such an equilibrium.

Corollary 6.3 All reinsurance equilibria with default (if any) involve the same

debt–equity ratio.

Proof of Corollary 6.3 Consider a reinsurance equilibrium with default, and let

R
∗
E be the return on equity in the good state and ψ∗ be the debt–equity ratio in

that equilibrium. From the previous theorem, it follows that

R
∗
E − R̂F

R̂F

=
R− R̂F

R̂F −R
.

Moreover, in a reinsurance equilibrium with default, Eqn. (46) reduces to

R
∗
E = ψ∗(R− R̂F ).

Substituting this expression for R
∗
E in the previous equation, and suitably rear-

ranging terms yields

ψ∗ =
R̂F

R̂F −R
+

R̂F

R− R̂F

.

The uniqueness result can also be derived from the uniqueness of the Arrow-Debreu

price system of the form (1, p̂g, p̂b). In the equilibrium with default, one unit of

equity provides R
∗
E = ψ · (R − RF ) units of consumption in the good state and

nothing in the bad state. The reinsurance contract delivers q units of consumption

in the bad state, where Eq = Λ = D · (RF −R), hence q = ψ · (RF −R). But then

1/p̂g = R
∗
E and 1/p̂b = q. Each of these two equations fixes ψ.

As a next step, we show constructively that a reinsurance equilibrium with de-

fault exists. Indeed, let a tuple (c?g, c
?
b , y

?
M , y?F , E

?, ψ?, R
?

E, R
?
E, q

?, δ?) be defined as
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follows:

ψ? =
R̂F

R̂F −R
+

R̂F

R− R̂F

,

y?F = ŷF ,

y?M = ŷM ,

R
?

E = ψ?(R−R?
F ),

R?
E = 0,

q? = ψ?(R?
F −R),

E? = y?M/ψ?,

δ? = 1/ψ?.

Proposition 6.4 The tuple (c?g, c
?
b , y

?
M , y?F , E

?, ψ?, R
?

E, R
?
E, q

?, δ?) is a reinsurance

equilibrium.

Proof of Proposition 6.4

It is immediate that our construction satisfies Eqns. (44) through (50). Now

consider Eqn. (51). By substitution from the above construction of c?g, c
?
b , R

?

E and

q?, we can reduce Eqn. (51) to

(
f(ŷF ) + ŷMR

f(ŷF ) + ŷMR

)θ

=

(
σ

1− σ

)(
R− R̂F

R̂F −R

)
.

This equality is true due to the definition of ŷF and ŷM . Indeed, our construction

satisfies Eqn. (51). Finally, we have to verify that our construction also satisfies

Eqns. (41)–(43). Given the previous step, it is sufficient to show that the following

equality is satisfied:

ψ?R− (1 + ψ?)R̂F

R̂F

=
R− R̂F

R̂F −R
.

Solving this expression for ψ?, we see that it is simply equivalent to the definition

of ψ?. Indeed, we have now shown that our construction satisfies all the Eqns. (41)

through (51).

Theorem 6.5 A reinsurance equilibrium with default exists.

Several remarks are in order. First, all reinsurance equilibria involve the optimal
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allocation, even if banks default. The reason is that neither in the good nor

in the bad state, portfolio decisions of households are impacted by transfers from

governments — refunds from the deposit insurance fund or taxes to bail out banks.

Second, as regards the constructed excessive risk taking: While bank shareholders

still would like to leverage as much as possible - and to benefit from limited liability

- the banking system receives the socially optimal aggregate amount of investment

goods in the form of deposits and equity and the banking system cannot increase

the scale further.

Third, while a continuum of possible capital structures and associated non–optimal

equilibria with default deposit insurance exist, only one equilibrium capital struc-

ture under reinsurance exists in which banks default. The reason is as follows.

Since all reinsurance equilibria involve the optimal allocation, the amount of risky

assets for households is equal to the amount in the Arrow-Debreu world. A par-

ticular amount of bank equity contracts and thus a particular capital structure

requires a particular combination of deposit insurance and reinsurance contracts

to avoid government bail-out. Only for one particular capital structure will the

ensuing portfolio of risky assets (bank equity and reinsurance contracts) mimic the

amount of risky assets in the Arrow-Debreu setting. Thus, the equilibrium capital

structure in the reinsurance equilibrium with default is unique.

Fourth, we have assumed that households honor their obligations when they (freely)

choose to acquire reinsurance contracts. One might be concerned about strategic

default of households in this context. This is no concern in our representative

agent set-up, as households never have an incentive to default since they would be

pushed to a minimal consumption level if they chose to go bankrupt.15

Fifth, one may wonder how our main results would carry over to a model with

an arbitrary (finite) number of states of nature. Indeed, the existence of non-

optimal equilibrium allocations requires only that there is (at least) one state in

which the cover ratio of the deposit insurance is strictly less than one. Suppose

that there are n states of nature, and the cover ratio of the deposit insurance

fund is strictly less than one in m < n of those states. Then, we can guarantee

that the optimal allocation obtains in any equilibrium by allowing for a set of m

15With heterogeneous households – rich and poor – such concerns are accurate and may require
some wealth or collateral thresholds for households to qualify for the acquisition of reinsurance
contracts.
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independent reinsurance contracts.

7 Conclusion

We have performed a simple general equilibrium analysis of deposit insurance and

have suggested that a combination of deposit insurance and reinsurance will avoid

non–optimal equilibria. Indeed only a judicious combination of deposit insurance

and reinsurance promises that societies can avoid distortions associated with in-

sured deposits.

Of course numerous extensions deserve further scrutiny. For instance, the rein-

surance scheme can be viewed as a form of catastrophe bond. Since the risk of

banking crises is notoriously difficult to assess, reinsurance of deposit insurance

might need professional expertise. One might thus ask whether the same role for

reinsurance as in our main theorem could be performed by reinsurance companies

which households finance by equity contracts. One might also consider circum-

stances when there is ambiguity about the occurrence of banking crises and how

reinsurance has to be designed in such circumstances. These and other exten-

sions will further enrich the socially valuable dual role that deposit insurance and

reinsurance can have in insuring the financial system.
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A Appendix

Proof of Theorem 5.3

Step 1. Fix y′F ∈ Y ′
F and δ′ <

R−f ′(y′F )

R
. Consider RE as a function of ψ, thus

RE(ψ) = (1 + ψ − δ′ψ)R− ψf ′(y′F )

= R + ψ[(1− δ′)R− f ′(y′F )].

Observe that the term in brackets is strictly positive, hence we find the limit be-

havior limψ→0 RE(ψ) = R and limψ→∞RE(ψ) = ∞. Since RE(ψ) is continuous

on R+, we can invoke the intermediate value theorem to find that for any ρ > R,

there exists ψ > 0 such that RE(ψ) = ρ.

Step 2. Now let us define the function

ρ(yF ) =

(
f(yF ) + (ω − yF )R

f(yF ) + (ω − yF )R

)θ (
1− σ

σ

)
f ′(yF ) + f ′(yF ).

Observe that ρ is continuous and strictly decreasing in yF . Thus for y′F we have

ρ′ := ρ(y′F ) > ρ(ŷF ) ≥ R̂.16 We have now established that there is ψ′ such that

RE(ψ
′) = ρ′.

Step 3. Consider the tuple (c′g, c
′
b, y

′
M , y′F , E

′, ψ′, R
′
E, R

′
E), where y

′
F is as fixed in

Step 1, ψ′ is as defined in Step 2, R
′
E = RE(ψ

′), and the remaining variables are

16Regarding the latter inequality: By (30), the critical leverage equilibrium with 0–deposit

insurance yields ρ(ŷF ) = R
∗
E . By (35) and (37),

R
∗
E =

1

f ′(ŷF )−R
· {[R−R+ f ′(ŷF )] ·R−R · f ′(ŷF )}

=
(R−R) · f ′(ŷF )

f ′(ŷF )−R
≥ R

where the last inequality follows from R > f ′(ŷF ) > R ≥ 0. Hence ρ(ŷF ) ≥ R. Actually, >
holds for R > 0 and = holds for R = 0.

41



given by:

y′M = ω − y′F ,

E ′ = y′M/(1 + ψ′ − δ′ψ′),

c′g = f(y′F ) + y′MR,

c′b = f(y′F ) + y′MR.

It is now easily verified that the tuple under consideration satisfies Eqns. (22)–(28),

and therefore, it is an equilibrium with banks and δ′–deposit insurance.

Proof of Proposition 5.6

Take the critical leverage equilibrium introduced in Definition 3.5 where investment

in FT is y∗F , investment in the risky sector is y∗M = ω − y∗F , deposits assume the

threshold value D∗ =
R

R∗
F

y∗M , equity assumes the value E∗ = (1 − R

R∗
F

)y∗M and

the equilibrium bond return R∗
F satisfies σR + (1 − σ)R > R∗

F . Similar to the

earlier proof, let us fix a bond return (denoted by ŘF ) slightly above R∗
F such that

σR + (1− σ)R > ŘF and the bank chooses α = 1. Given the higher bond return

ŘF , the representative FT firm chooses a profit maximizing input denoted by y̌F ,

with y̌F < y∗F . The resulting profit is denoted by Π̌F and satisfies Π̌F < Π∗
F .

At the critical leverage equilibrium, the demand for equity is E∗ when tb = 0 and

δ = 0, the return on bonds is R∗
F and a unit of equity pays R(1 + D∗

E∗ )− R∗
F

D∗
E∗ in

the good state and zero in the bad state. If one replaced R∗
F by ŘF > R∗

F , Π
∗
F

by Π̌F , δ = 0 by the actuarially fair rate given by (19) when µ = 1 − σ, E = E∗

and D = D∗, and tb = 0 by ťb = (1− δ)ŘFD
∗ −R(E∗ + (1− δ)D∗) > 0, then the

household would demand more of the risk-free asset.17

Now assume E ∈ (0, E∗] andD = D1−σ(E) given by (21). Consider the household’s

17Observe first of all that cg > cb and homothetic preferences of the household (together
with standard properties) imply that |MRS| is smaller at the consumption bundle (čg, čb) =
(cg − (ΠF − Π̌F ) + δD∗ŘF , cb − (ΠF − Π̌F ) − ťb) than at (cg, cb). Next consider normalized
gradients of the form (|MRS|, 1). Denote by∇ the household’s normalized gradient at (cg, cb) and
by ∇̌ its normalized gradient at (čg, čb). If in the reference equilibrium situation, the household
replaces one unit of the bond by one unit of equity, then consumption is changed in the direction
υ = (R(1 + D∗

E∗ ) − RF
D∗

E∗ − RF ,−RF ) and at equilibrium, portfolio choice is optimal, that is
∇ · υ = 0. If in the new situation, the household replaces one unit of the bond by one unit of
equity, then consumption is changed in the direction υ̌ = (R(1 + D∗

E∗ ) − ŘF
D∗

E∗ − Řf ,−ŘF ). It

follows that 0 = ∇ · υ > ∇ · υ̌ > ∇̌ · υ̌. But ∇̌ · υ̌ < 0 means that the household benefits from
reducing its equity holding and increasing its bond holding by the same amount.
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portfolio choice when the profit distributed is Π̌F , δ is given by (19) with µ = 1−σ,

tb = (1−δ)ŘFD−R(E+(1−δ)D), the return on bonds is ŘF and a unit of equity

pays R(1 + (1−δ)D
E

) − ŘF
D
E

in the good state and zero in the bad state. There

is a unique optimal γ(E) ∈ [0, 1] so that the household invests γ(E)ω in bonds

and [1− γ(E)]ω in equity. By Berge’s maximum theorem (or the explicit solution

of the household’s portfolio choice problem), γ(E) is a continuous function of E.

Set η(E) = [1 − γ(E)]ω. As reasoned above, η(E∗) < E∗. Like in the proof

of Proposition 6 of Gersbach et al. (2015), the examination of the solution of

the household’s portfolio choice problem shows existence of Eo ∈ (0, E∗) with

η(Eo) > Eo. By the intermediate value theorem, there exists E ∈ (Eo, E
∗) with

η(E) = E. At this E and the corresponding values for D, δ and tb, the asset

market is cleared — as well as the consumption good market in both states —

while the bond return is ŘF and FT production is less than at the Arrow-Debreu

equilibrium. Hence the equilibrium allocation is non–optimal. By 4.5, bail-out is

necessary if the bank defaults.

It remains to check whether the bank is actually going to default in the bad state.

In the reference equilibrium, R(E∗ + D∗) − RFD
∗ = 0. Let ∆ = y∗F − y̌F >

0. Then R(E∗ + D∗ + ∆) − ŘF (D
∗ + ∆) < 0. Further E∗ + D∗ = ω − y∗F ,

E+D(1− δ) = ω− y̌F and E < E∗. Hence E∗+D∗+∆ = ω− y̌F = E+D(1− δ)

and D∗+∆ = ω−E∗−y∗F +y∗F − y̌F = ω−E∗− y̌F < ω−E− y̌F = (1−δ)D < D.

It follows that R(E + (1 − δ)D) − ŘFD < R(E∗ + D∗ + ∆) − ŘF (D
∗ + ∆) < 0

which means that the bank is going to default in the bad state, indeed.
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