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Abstract

Hurdle and zero-inflated models are the two foremost methods
used to deal with excess zeros. However, their reliance on the non-
participation assumption is a drawback when applied to recreation
demand analysis because there is not a theoretical framework con-
vincingly explaining presence of non-participants. This paper dis-
cusses how latent class count models represent a theoretically consis-
tent alternative to handle excess zeros. The theoretical model behind
a latent class model does not require the non-participation assump-
tion. Instead, excess zeros is explained as the accumulation of corner
solutions from individuals belonging to different classes.

1 Introduction

Excess zeros is an empirical regularity in recreation demand analysis.
Because standard count econometric models —i.e. Poisson and negative
binomial models— can not adequately handle excess zeros, hurdle and zero-
inflated models are widespread used instead. These models assume the ex-
istence of non-participants. In this way, a standard count model becomes
a two-part model1 in which behavior can be characterized by two data-
generating processes: the participation decision and, conditional on partici-
pation, the trip demand decision. Accordingly, excess zeros is consequence of

∗Senior researcher, Centre for Energy Policy and Economics (CEPE), ETH-Zurich,
madan@ethz.ch

1This term is borrowed from health economics literature [e.g. Deb and Trivedi (2002)]
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a large portion of the population deciding self-exclusion from the recreational
market under study.

While the argument behind two-part models is intuitive, since their very
seminal applications in recreation demand analysis researchers have apol-
ogized for the absence of a formal economic theory argument explaining
the presence of non-participants (Gurmu and Trivedi, 1996) and the result-
ing arbitrariness in the specification of the participation and trip demand
equations (Haab and McConnell, 1996). This arbitrariness in distinguish-
ing non-participants from participants ultimately affect public policy recom-
mendations because non-participants are excluded from welfare calculations
(Phaneuf and Smith, 2005).

In this paper, latent class count models (LCCM) are shown to be a
theoretically supported alternative to handle excess zeros. The theoretical
framework supporting LCCM assumes individuals belong to exclusive groups.
Groups are associated to an ordinal classification of preferences for trips —
an empirically testable assumption. Conditional on membership, individuals
maximize their utility function with respect to number of visits to the site
under study. Individuals with corner solutions are potentially observed in ev-
ery class. Large proportion of zeros can be interpreted as the accumulation of
corner solutions from individuals belonging to different classes. In constrast
to two-part models, LCCM do not require presence of non-participants to
accommodate excess zeros, and therefore welfare estimations account for ev-
eryone in the sample, avoiding arbitrary exclusions.

Applications of LCCM to recreation demand analysis are very recent and
have not yet discussed how LCCM represent a theoretically consistent al-
ternative to two-part models when handling excess zeros.2 English (2008)
has proposed a strategy that explicitly incorporates nonparticipation into a
behavioral model in the context of nested logit applications. While nested
logit specifications have been used to model number of trips [e.g. (von Hae-
fen et al., 2005)], implementation of these specifications requires researchers
arbitrarily specify the number of choice occasions the individual faces during
the period under study. Specification of choice ocassions raises conceptual
and practical difficulties when estimating welfare (von Haefen and Phaneuf,
2003a). In constrast to those difficulties, welfare estimates from a LCCM are
calculated simply as a weighted sum of groups’ welfare.

Two features from the empirical illustration presented in this paper are

2See Evans and Herriges (2010); Scarpa et al. (2007); Thiene and Morey (2010).
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underlined. First, the latent class specification outperforms two-part mod-
els in replicating empirical frequencies. Second, two-part and latent class
specifications yield similar welfare estimates.

2 Optimization framework

2.1 Homogeneous individuals

The optimization framework for the homogeneous case was first presented
by Hellerstein and Mendelsohn (1993). Assume individuals choose number
of trips, T , and a vector of other goods, C. T ∈ I for I = 0, 1, ...; and
C is a vector of goods that can be acquired in continuous quantities. The
maximization problem is expressed as

max
T∈I

{
max
C

U [(T,C, ε; β) |PCC = Y − PTT ]
}

(1)

where Pk is the price of good of type k = T,C; Y is income; β is a vec-
tor of preference parameters; and ε stands for randomness specific to each
individual. Optimization of (1) yields the marshallian demand for trips,

T ∗ = T (PT ,PC , Y, ε, β) (2)

T ∗ could be inferred if repeated observations on a single individual were
available. Instead, only price variation across individuals is available. Thus
conditional probabilities of observing a level of demand are estimated. A
probability density function summarizing these probabilities is required. Given
the nonnegative, integer nature of trips, the Poisson distribution is a natural
candidate to summarize these probabilities.

In a Poisson regression, the expected value of the dependent variable
is modeled as a function of prices, income, and other observable variables.
Assuming an exponential form to keep the nonnegativity,

E(T ∗) = λ = exp(β0 + PkβPk
+ βY Y ) (3)

Given (3) and a change in PT from P a
T to the choke price, P̄T , expected value

of the consumer surplus is estimated as

Eε [CS(T )] =
∫

ε

∫ P̄T

Pa
T

T (PT ,PC , Y, ε; β)dpf(ε)dε
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=
∫ P̄T

Pa
T

∫

ε
T (PT ,PC , Y, ε; β)f(ε)dεdp

=
∫ P̄T

Pa
T

λ(PT ,PC , Y ; β)dp = CS[Eε(T )] (4)

As pointed out by Hellerstein (1991), reversal of integration in (4) is
correct as long as estimation of E(T ) is unbiased. Unbiasness implies that
demand function must be independent of the error term. Independence be-
tween demand function and errors is guaranteed when errors only reflect
individual white noise. Thus E[CS(T )] = CS[E(T )] as long as there is a
non-systematic component in the error term.

2.2 Heterogeneous individuals

Suppose individuals belong exlusively to one of G groups, g = 1, ..., G.
Groups are assumed associated to an ordinal classification of preferences for
trips, such that individuals in group g take more average trips than individ-
uals in group g − 1. This assumption can be tested by comparing average
trips across groups once the empirical model has been estimated, and groups
have been indexed accordingly. Conditional on being member of group g,
optimization of (1) yields

T ∗g = Tg(PT ,PC , Y, ε, β) (5)

and expected consumer surplus for group g is calculated as

Eε [CSg(Tg)] =
∫

ε

∫ P̄T,g

Pa
T

Tg(PT ,PC , Y, ε; β)dpf(ε)dε

=
∫ P̄T,g

Pa
T

∫

ε
Tg(PT ,PC , Y, ε; β)f(ε)dεdp

=
∫ PT,g

Pa
T

λg(PT ,PC , Y ; β)dp = CSg[Eε(Tg)] (6)

where P̄T,g is the choke price for group g. For given relative size of groups,
πg for g = 1, ..., G, expected consumer surplus for the entire population is

Eε [CS(T )] =
G∑

g=1

πgEε [CSg(Tg)] =

G∑

g=1

πg

∫ P̄T

Pa
T

λg(PT ,PC , Y ; β)dp =
G∑

g=1

πgCSg [Eε(Tg)] (7)
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Knowing individual’s membership is a non-essential assumption. Let
membership be unobserved. Because membership systematically explains
number of trips, missing membership introduces a systematic component
into the error term. Let η be the systematic error term, and ε remain as the
white noise. In this case, welfare estimation is calculated as follows

Eη,ε [CS(T )] = Eη,ε

[∫ P b
T

Pa
T

T (PT ,PC , Y, η, ε; β)dp

]

=
∫

η

∫ P b
T

Pa
T

∫

ε
[T (PT ,PC , Y, η, ε; β)f(ε)dε] dpf(η)dη

=
∫

η

∫ P b
T

Pa
T

λ(PT ,PC , Y, η; β)dpf(η)dη

=
∫

η
CS[Eε(T )] = EηCS[Eε(T )] (8)

As in the homogeneous case, reversal of integration with respect to the
white noise integral is correct. However, η represents a systematic error term
which makes E(T ) biased.3 Thus reversal of integration with respect to the
systematic error would be inconsistent.

Expressions (7) and (8) show that, in the heterogeneous case, welfare is
measured as the expected consumer surplus of the expected trips. Preference
parameters in a heterogeneous scenario can be recovered using a latent class
count specification, as explained in the next section.

3 Latent class count models

Let di = (di1, ..., diG) be an indicator matrix such that dig = 1 if Ti is
drawn from the gth group for i = 1, ..., n, and

∑
g dig = 1. Estimation of latent

class specifications is carry out by treating membership, dij, as missing data
which is consistent with the theoretical framework explained in section 2.2.4

3.1 Model

Derivation of a latent class model starts by assuming a complete-data
scenario where Vi = (Ti,di). Ti is the observed number of trips and di is the

3See Mullahy (1997) for a mathematical proof.
4Detailed explanation of latent class models as incomplete-data problem is presented

in Cameron and Trivedi (1998); McLachlan and Peel (2000).
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membership matrix. Under a complete-data scenario, (Ti|di, β) is distributed
with density

f(Ti|di, β) =
G∑

g=1

digf(Ti|βg) =
G∏

g=1

f(Ti|βg)dij (9)

where β = [β1, ..., βG], and f(Ti|βg) is a count density, usually Poisson or
negative binomial.

In this complete-data scenario, (dij|π) are assumed iid with multinomial
distribution

G∏

g=1

πdigg , 0 < πg < 1,
G∑

g=1

πg = 1 (10)

where π′ = [π1, ..., πG]. Expressions (9) and (10) together provide the distri-
bution of the complete-data:

(Ti|π, β)
iid∼

G∑

g=1

πdigg fg(T ; βg), 0 < πg < 1,
G∑

g=1

πg = 1 (11)

which is the canonical expression of a latent class model describing Ti as
drawn from group g with probability πg. The consequent likelihood function
is

L(β, π|T) =
n∏

i=1

G∑

g=1

πdigg [fg(T; βg)]
dig (12)

While several approaches can be used in maximization of (12) (Bohning,
1995), explanation of the EM algorithm provides a neat description of how
the incomplete-data problem is handled.

3.2 Estimation through the EM algortihm

The EM algorithm is an iterative algorithm that carries out two steps
in each iteration: the expectation step (E-step) and the maximization step
(M-step). The EM algorithm computes the maximum likelihood estima-
tion (MLE) of an incomplete-data problem by formulating an associated
complete-data problem, and exploiting the simplicity of the latter’s MLE to
compute the former’s MLE (Ng et al., 2004). Both E- and M-steps have
simple forms when the density functions belong to the exponential family
(Ng et al., 2004) which is the case for the most common count distributions,
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Poisson and negative binomial.5 This simplicity relies on the linearity of the
complete-data log likelihood with respect to the unobservable data.

Given an initial guess for π and β, (π0, β0), the EM algorithm maximizes
expression (12) by treating dig as missing data. More specifically, the E-step
deals with the incomplete-data problem by taking the conditional expectation
of the complete-data log likelihood.

If dig were observable, the complete-data log likelihood would be

lnL(β|T,di) =
n∑

i=1

G∑

g=1

dig[lnfg(Ti; βg) + lnπg] (13)

Because the complete-data log likelihood is linear in dig, the E-step re-
places dig by its expected value, E(dig). This strategy yields the expected
log likelihood,

E[lnL(β|T,di)] =
n∑

i=1

G∑

g=1

ẑig[lnfg(Ti; βg) + lnπg] (14)

where E(dig) = ẑig, and ẑig denotes the posterior probability that observation
Ti belongs to the group g. Given initial guesses, (π0, β0), and a vector of
covariates, Xi,

ẑig =
π0
gfg(Ti|Xi, β

0)
∑G
g=1 π

0
gfg(Ti|Xi, β0)

(15)

Consistently, the M-step deals with the incomplete-data problem by re-
placing dig by its expected value, ẑig, when maximizing the first order con-
ditions of (13).

If dig were observable, the maximized first order conditions would be

πg −
∑n
i=1 dig
n

= 0, g = 1, ..., G

n∑

i=1

G∑

g=1

dig
∂lnfg(Ti; βg)

∂βg
= 0 (16)

Instead, the M-step maximizes

πg −
∑n
i=1 ẑig
n

= 0, g = 1, ..., G

n∑

i=1

G∑

g=1

ẑig
∂lnfg(Ti; βg)

∂βg
= 0 (17)

5The negative binomial is a member of the exponential family when the overdispersion
parameter is treated as known and fixed (Congdon, 2005).
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The E- and M-steps are alternated repeatedly until the change in the
log likelihood is smaller than a user-defined value. Thus for a given number
of groups, G, maximization yields probabilities for each individual’s mem-
bership to each group, i.e. N ∗ G individual probabilities. Along with this
probabilities, the relative size of each group, πg, is also obtained. Conse-
quently, the associated G sets of density parameters, βg for g = 1, ..., G, are
estimated.6

Convergence conditions are discussed in Wu (1983). Convergence to a
global maximum is not guaranteed. Thus different starting values should be
tried to find the global maximum. Peters and Walker (1978) and Redner
and Walker (1984) provide regularity conditions in order to find consistent,
efficient, and asymptotically normal estimates. The form of these conditions
suggests they should hold for the distributions in the exponential family
(McLachlan and Peel, 2000).

3.3 Welfare estimation

For the specific case of the latent class Poisson model, estimates are ob-
tained for

f(Ti|PTi , β) =
G∑

g=1

πg
exp(−λg)λTig

Ti!
(18)

where
λg = exp(β0,g + βPT ,gPT ) (19)

With estimated parameters at hand, welfare estimates are carried out as
follows

G∑

g=1

π̂g

∫ P̄T

Pa
T

λ̂g(.)dp =
G∑

g=1

π̂g

∫ P̄T

Pa
T

exp(β̂0,g + β̂P,gPT )dp

= E{CSg [E(Tg)]} (20)

Expression (20) is the expected consumer surplus of the expected trips,
just as in equations (7) and (8).

Reversion between the price integral and the summation over groups in
equation (20) would be inconsistent with theoretical framework explained
in section 2.2. Reversal of integration is not correct if variation in choke

6Wedel et al. (1993) provides a step-by-step explanation for maximization of a latent
class count model.
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price systemativally depends on variation of the unobserved factors (Haab
and McConnell, 1996). This is the case here. To see why, recall that choke
price is the minimum price driving an individual to take zero trips, i.e.,
T (P̄T ,X, η; β) = 0, or P̄T = T−1(X, η; β). The order of integration can
not be reversed when the upper bound of integration on the inner integral
is a function of the variable of integration for the (discrete version of the)
outer integral. In equation (20), choke price varies systematically from one
group to other. This variation is driven by the variation in βPT ,g, such that
P̄T,g = T−1(X; βg) for g = 1, ..., G. This variation is a direct consequence
of membership being missed which is what introduces a systematic error.
Because withe noise —ε in section 2.2— does not induce systematic variation,
reversal integration with respect to ε is implied in expression (20).

4 Two-part models

Hurdle and zero-inflated models are the two foremost methods used to
deal with excess zeros (Hilbe, 2007). Both models assume that some por-
tion of the population self-excludes from the recreational market. Non-
participants may permanently not visit the site under study (hurdle model),
or may be divided in permanent and temporal non-participants (zero-inflated
model). Permanent non-participants will never visit the site under study, no
matter how low price could get. Temporal non-participants are currently
facing a price at or above their choke price, i.e., they are in a corner solution
(Phaneuf and Smith, 2005).7

4.1 Hurdle model

In a hurdle model, trips are positive once a hurdle has been passed. Oth-
erwise, zero trips are observed. This behavior is modeled sequentially. The
first model explains why some individuals take positive trips. Conditional
on taking positive trips, the second model explains number of trips. Statis-
tically, these processes are modeled by a binary model and a zero-truncated

7For detailed description of these models, see Gurmu and Trivedi (1996); Haab and
McConnell (1996); Shonkwiler and Shaw (1996). For details on econometric estimation,
see Hilbe (2007).

9



count model, respectively. Welfare is estimated as

CS[E(T )] =
∫ P̄T

Pa
T

Prob1(T > 0)

Prob2(T > 0)
λ̂(.)dp =

Prob1(T > 0)

Prob2(T > 0)

∫ P̄T

Pa
T

λ̂(.)dp (21)

where Prob1(T > 0) is the probability of positive trips according to the binary
model, and Prob2(T > 0) is the probability of positive trips according to the
count model.

4.2 Zero-inflated model

Unlike a hurdle model, a zero-inflated model allows zero counts be gen-
erated by both the binary process and the count process. In this way, zero-
inflated models distinguish permanent non-participants —zeros in the binary
model— from temporal non-participants —zeros in the count model. A zero-
inflated model is a double-hurdle model in the sense that positive trips are
observed if the individual overcomes the hurdle modeled by the binary model,
and then overcomes the probability of taking zeros under the count model.
Because the count model is not truncated, welfare is estimated as

CS[E(T )] =
∫ P̄T

Pa
T

Prob1(T > 0)λ̂(.)dp = Prob1(T > 0)
∫ P̄T

Pa
T

λ̂(.)dp (22)

4.3 Drawbacks

Hurdle models do not explain presence of non-participants. In a hurdle
model, the same vector of explanatory variables is included in both parts. In
this sense, no specific reason to self-exclusion from the recreational market
is offered.

Zero-inflated models offer a theroretically arbitrary explanation for non-
participation. Unlike the hurdle model, the binary process in a zero-inflated
model may include different predictors than in the count model. However, the
estimation process typically faces difficulties discriminating between covari-
ates affecting participation from covariates affecting number of trips (Haab
and McConnell, 2002). This difficulties arise because of the lack of a theoret-
ical framework guiding researchers in the understanding of how individuals
choose to participate in a recreational market. However, a theoretical frame-
work supporting separation of determinants of participation and demand
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would need to deal with an inconsistency: separate determinants imply re-
searchers are estimating different preference functions (Phaneuf and Smith,
2005).8

The ultimate concern from a public policy perspective is exclusion of the
arbitrarily-classified as permanent non-participants from welfare estimations.
Permanent non-participants are excluded in two ways. First, estimation
of the impact of travel cost on number of trips (price parameter) is based
on a subsample that does not include zero counts at all (hurdle model),
or includes zero counts from only temporal non-participants (zero-inflated
model). Second, welfare estimates are weighted such that only participants
(hurdle model) or participants and temporal non-participants (zero-inflated
model) are accounted for [see expressions (21) and (22)].

5 Empirical illustration

5.1 Data

Empirical strategies explained in previous sections are applied to recre-
ation data from the 1997 Iowa Wetlands Survey conducted at Iowa State
University. This mail survey gathered information from a sample of all Iowa
residents on actual and hypothetical use of wetlands in the state. Sociode-
mographic characteristics and information to calculate travel costs were also
collected. Focus in this study is on the actual visitation data, analyzed previ-
ously by Phaneuf and Herriges (1999) and von Haefen and Phaneuf (2003b).

From a sample of 6000 Iowa households, 2891 usable surveys were ob-
tained. Individuals were provided with a copy of a map where Iowa was
divided into 15 zones. Individuals were asked to record the number of trips
made to wetlands in each zone during 1997. This study focuses on zone 11,
the zone with the largest dispersion on trips —variance on trips ranges from
2.41 (zone 2) to 23.39 (zone 11). People taking zero trips to zone 11 repre-
sent 78.17% of the sample. The mean number of trips is 1.64 trips, with a
maximum of 45 trips.

8“In a fully consistent model with non-participation, a comparison between the market
price and the individual’s reservation price, derived from all arguments in the utility
problem, implies an extensive margin of choice between conditional utilities representing
participation and non-participation. Importantly, the same factors determine participation
and consumption” (Phaneuf and Smith (2005),p. 71).
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Summary statistics of variables included in econometric specifications are
presented in table 1. Travel costs were calculated as the sum of the estimated
round trip travel distance multiplied by $0.21 and the estimated travel time
valued at one-third the wage rate.9 For this application, substitute site is
the cheapest alternative for each individual.

5.2 Econometric specifications

Table 2 shows estimates from a latent class Poisson model with four
classes. This model performs the best among the latent class specifications
in terms of likelihood criteria (see table 3). Groups are indexed such that
individuals in group g take more average trips than individuals in group g−1.
According to comparisons presented in table 4, differences in average trips
across groups are significant and consistent with the order implied by the
index assigned.10 Table 5 presents distribution of trips inside groups.

Thus the data can be described as a sample from a population that is
composed by four groups of visitors. The first group represents 56% of the
population and includes very infrequent visitors — most of them take zero
trips, with a maximum of 5. The fourth group represents 11% of the popu-
lation and includes the very frequent visitors — 50% of them take at least
23 trips, with a maximum of 45. Groups 2 and 3 represent 33% of the popu-
lation together and include two groups of relatively frequent visitors — 50%
of visitors in group 2 take at least 4 trips with a maximum of 15, and 50%
of visitors in group 3 take at least 10 trips with a maximum of 30.

Table 6 shows hurdle and zero-inflated specifications. In contrast to the
hurdle specification, zero-inflated specifications II and III describe trips with
two different sets of variables, one for the binary process and other for the
count process. The zero-inflated specification performing the best in terms
of likelihood criteria is the third one. Both hurdle model specification and
zero-inlfated III specification perform poorer than latent class poisson spec-
ification in terms of likelihood criteria.

Signs of travel cost parameters are theoretically consistent in hurdle,
zero-inlfated and latent class specifications. However, magnitudes differ.
While hurdle and zero-inflated specifications yield own travel cost parameters

9For further details, see von Haefen and Phaneuf (2003b).
10These comparisons correct for experiment-wise error implied by multiple comparisons,

i.e., for the increase in probability of making a type I error when doing multiple compar-
isons [see Daniel (1990)].
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around −0.18, latent class specification yields a similar magnitude (−0.19)
only for the third group which represents 6% of the population. Impact from
travel cost is considerable larger in groups 1 and 4 — −5.52 and −7.27,
respectively.

Table 7 provides insights on how each specification replicates the empirical
frequencies. The latent class specification outperforms both hurdle and zero-
inflated specifications not only on replicating the empirical frequency of zeros
but also the empirical frequencies in the upper tail.

5.3 Welfare estimations

Welfare estimations are presented in table 8. Average estimates from
hurdle and zero-inflated specifications are larger than estimates from latent
class specification. These differences, however, do not hold when confidence
intervals are considered. These conclusions remain for intervals at 90% of
confidence (not shown).

6 Conclusions and further research

In a latent class specification, corner solutions can potentially be orig-
inated in different groups of visitors. In this specific application, corner
solutions are originated only in the group of very infrequent visitors.

Latent class specification outperforms two-part models in replicating em-
pirical frequencies. Interestingly, improvement in frequency prediction does
not translate into different welfare estimates. Whether this is a general result
requires further research. Clearly, even when latent class specifications yield
similar welfare estimates, an advantange in using latent class specifications
is the chance to provide targeted public policy recommendations. Also, data
requirement in a latent class model is smaller than in a zero-inflated model,
in the sense that latent class models do not need to explain non-participation
with variables different than those included in the count process.

For this specific application, we still can distinguish a tendency in two-
part models to yield larger welfare estimates — in addition to larger average
estimates, upper bounds in two-part models are larger than the upper bound
in latent class specification by at least 34%. This tendency is a consequence of
two-part models yielding a travel cost parameter that captures the behavior

13



of visitors from groups 2 and 3. These visitors obtain the largest per trip
consumer surplus.

While this is a single-site application, results are relevant for multi-site ap-
plications. For instance, von Haefen and Phaneuf (2003b) find zero-inflated
count model and Kuhn-Tucker econometric model yield similar welfare es-
timates in a multi-site application. Future research will focus on checking
whether their result holds when using a latent class specification instead of
a zero-inflated model.
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Variable Mean Std Dev Min Max
Trips in 1997 1.65 4.83 0.00 45.00
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Maleb 0.74 0.44 0.00 1.00
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a 1997 $; b 1 if characteristic is observed; c thousands of 1997 $
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Table 3: Likelihood criteria for latent class specifications
Number of classes

Poisson Negative Binomial LLa Parameters AIC BIC
2 0 -2605.71 12 5235.42 5252.95
1 1 -2740.11 13 5506.22 5525.21
0 2 -2608.05 14 5244.10 5264.55
3 0 -1894.31 18 3824.60 3850.89
2 1 -2267.56 19 4573.12 4600.87
1 2 -2420.52 20 4881.07 4910.22
0 3 -2340.72 21 4723.44 4754.12
4 0 −1782.83 24 3613.60 3648.66
3 1 -2189.77 25 4429.54 4466.06
2 2 -2062.09 26 4176.18 4214.16
1 3 -2269.95 27 4593.90 4633.34
0 4 -2140.48 28 4336.96 4377.86

a Log-likelihood

Table 4: Comparison of average trips across groupsa

95% confidence interval
Comparison lower bound upper bound
T4 − T1 21.39 24.27
T4 − T2 16.92 20.04
T4 − T3 11.43 14.95
T3 − T1 8.56 10.72
T3 − T2 4.05 6.53
T2 − T1 3.64 5.06
Based on Tukey-Kramer method for multiple

comparisons.
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Table 5: Distribution of trips inside groups
Percentile Sample Group 1 Group 2 Group 3 Group 4

0 0 0 1 1 2
25 0 0 2 4 16
50 0 0 4 10 23
75 0 0 6 13 30
90 5 0 10 20 35
99 25 2 12 26 44
100 45 5 15 30 45
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Table 7: Difference between predicted and empirical frequencies
Sample Difference in frequencies

Trips frequency HNB ZINB III LCPM
0 78.17 6.61 -30.23 -1.28
1 2.87 -2.87 13.94 1.76
2 3.70 -3.70 6.61 -1.31
3 2.80 -2.80 4.43 -0.83
4 1.52 -1.52 4.05 0.93
5 1.83 -1.83 2.21 -0.07
6 1.25 -1.14 3.29 0.90
7 0.31 1.83 1.97 0.76
8 0.93 1.63 0.10 0.10
9 0.14 3.77 0.07 0.24
10 2.01 1.90 -2.01 -1.31
11 0.03 2.11 -0.03 0.55
12 0.76 -0.42 0.24 -0.55
13 0.07 0.03 -0.07 0.28
14 0.14 -0.14 -0.14 0.03
15 0.59 -0.59 -0.59 -0.31
16 0.10 -0.10 -0.10 0.17
17 0.10 -0.10 -0.10 0.17
18 0.00 0.00 0.00 0.17
19 0.03 -0.03 -0.03 0.17
20 1.07 -1.07 -1.07 -0.86
21 0.00 0.00 0.00 0.24
22 0.03 -0.03 -0.03 0.35
23 0.07 -0.07 -0.07 0.00
24 0.00 0.00 0.00 0.17
25 0.59 -0.59 -0.59 -0.55
26 0.03 -0.03 -0.03 0.10
27 0.00 0.00 0.00 0.31
28 0.03 -0.03 -0.03 0.17
29 0.00 0.00 0.00 0.10
30 0.48 -0.48 -0.48 -0.48
32 0.00 0.00 0.00 0.03
33 0.00 0.00 0.00 0.07
34 0.03 -0.03 -0.03 0.00
35 0.07 -0.07 -0.07 -0.03
40 0.17 -0.17 -0.17 -0.17
45 0.03 -0.03 -0.03 -0.0321



Table 8: Consumer surplus per tripa (1997 $)
HNB ZINB III LCPM

Group 1 — — 0.18
(0.07-1.09)

Group 2 — — 1.49
(1.37-1.63)

Group 3 — — 5.28
(4.77-5.86)

Group 4 — — 0.14
(0.10-0.19)

Total 1.65 1.46 0.89
(1.37-2.04) (1.18-1.84) (0.73-1.37)

a Bootstrapped 95% confidence interval in parantheses

(10,000 replications). b Weighted sum across groups.

Weights are relative size of gropus.
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