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Abstract

In non–cooperative bargaining games in the tradition of Rubinstein, the proposer

derives bargaining power from the prospect of a costly delay which would follow

the rejection of a proposal. We consider a unanimity bargaining game in which

the proposer can strategically choose to prolong this delay. Prolonging the delay

increases the proposer’s bargaining power, but is assumed to come at a cost

and thus cause an inefficiency. We use an appropriate refinement of stationary

subgame–perfect equilibrium as the solution concept. We characterize equilibrium

strategies and payoffs. We establish conditions on model parameters under which

equilibrium is or is not efficient. For inefficient equilibria, we quantify the extent of

the inefficiency. Moreover, we study the relation between the number of players and

the degree of inefficiency. We find that inefficient equilibria become more inefficient

the more players there are. Moreover, the parameter region in which an efficient

equilibrium is possible shrinks when the number of players increases.
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1 Introduction

We study a non–cooperative bargaining game for n players in which the proposer can

choose to prolong the time lapse which occurs in the negotiation if her proposal is rejected.

In order to impose a longer time lapse, a proposer must make some costly effort and thus

destroy surplus. Hence, the proposer faces a trade–off between an increase in her bargaining

power and a decrease in the size of the surplus.

Unanimity bargaining games in the tradition of Rubinstein (1982) take the following

form: In each round, one player makes a proposal. Unless the proposal is unanimously

accepted, a new round begins after a costly delay. Typically, one assumes that a payoff

which occurs with a delay of one round is discounted by a fixed factor. The proposer

derives bargaining power from the cost of delay expressed in this discount factor. Hence, in

a unanimity bargaining game, a decision to reject a proposal effectively implies a decision

to destroy some share of the surplus. Consequently, the proposer can appropriate the

amount by which the surplus would shrink if her proposal was rejected. Indeed, Shaked

and Sutton (1984) describe a player’s equilibrium payoff as corresponding to the “sum of the

shrinkages” of the surplus which occur in those rounds where the player is the proposer.

That sum depends on the rate at which the surplus shrinks and on the frequency with

which the bargaining protocol calls on a particular player to be the proposer. While

the original Rubinstein game has been extended to an arbitrary number of players and

various different bargaining protocols, these basic considerations have been confirmed as a

standard result. Using stationary subgame–perfect equilibrium as the appropriate solution

concept, variations of this result have been shown for many different bargaining protocols,

see Britz, Herings, and Predtetchinski (2010, 2014), Kultti and Vartiainen (2010), Laruelle

and Valenciano (2008), Miyakawa (2008).

In the present paper, we consider the following model: There are n players bargaining

over a given surplus. In each bargaining round, one player is the proposer. She chooses

which shares of the current surplus she offers to each player, and which share of the current

surplus she destroys. If all players accept the shares offered to them, then the game ends.

If no agreement is reached in the current bargaining round, then the next bargaining round

takes place after a time lapse. The length of this time lapse increases in the share of the

surplus which the proposer has destroyed. If the proposer has not destroyed any surplus,

then the next bargaining round occurs after an exogenously fixed minimal time lapse,

which may or may not be equal to zero. We assume that players are impatient and have a

common rate of time preference. These modeling choices reflect the idea that the proposer

can “commit” herself to her proposal and forestall any counter–proposal for some time,

but entering into such a commitment is costly.

The bargaining protocol is as follows: Without loss of generality, we assume that the
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first proposal is made by Player 1. Any subsequent proposal is made by the player who

first rejected the previous proposal. Once a proposal has been made, players respond to

the proposal sequentially in a fixed order. It is well–known that this responder order itself

has no bearing on the analysis of equilibrium payoffs, see for example Britz et al. (2014).

In our model, the proposer faces the following trade–off: She can “buy time” during which

no alternative to her proposal can be put forward. This comes at the cost of destroying

surplus which is to the detriment of all players. If she does “destroy surplus and buy time,”

then due to impatience, this makes responding players more reluctant to reject a proposal,

and thus enhances the proposer’s bargaining power.

Stationary subgame–perfect Nash equilibrium is the standard solution concept for n–

player unanimity bargaining games. We adopt a slight technical refinement of this equilib-

rium concept, which we call the “bargaining equilibrium.”

Our main results are as follows: We provide a complete characterization of bargaining

equilibria for any possible configuration of the basic model parameters. These parameters

are the rate of time preference, the share of the surplus which has to be destroyed in

order to gain one unit of extra time lapse, the exogenously fixed minimal time lapse, and

the number of players. On the path of play of any bargaining equilibrium, agreement is

reached immediately on the first proposal. For some values of basic model parameters,

this agreement is efficient in the sense that the proposer finds it optimal not to destroy

any surplus. For other parameter values, however, the equilibrium allocation is inefficient

since the proposer does find it optimal to destroy surplus. A bargaining equilibrium always

exists. Moreover, the bargaining equilibrium is unique except in the knife–edge case where

the exogenously fixed minimal time lapse is equal to zero. In that case, there can be

a multitude of efficient bargaining equilibria which support a range of allocations of the

surplus. We show that the equilibrium level of surplus destruction vanishes in the limit as

the rate of time preference becomes either sufficiently small or sufficiently large. For any

given number of players, we establish a tight upper bound on the equilibrium level of surplus

destruction. No such bound exists, however, if the number of players is taken arbitrarily

large. In principle, the entire surplus could be destroyed in a bargaining equilibrium in the

limit as the number of players grows without bound.

Many authors have considered bargaining models in which surplus destruction is not

(only) an immediate consequence of a rejection of a proposal, but is an independent strate-

gic decision by a player. For instance, Fernandez and Glazer (1991) and Haller and Holden

(1990) model wage bargaining between a firm and a union where the union can decide to go

on strike after an unsuccessful bargaining round. Haller and Holden (1990) point out the

difference between surplus destruction, in this case a strike, as an immediate consequence

of the rejection of a proposal, and surplus destruction as an independent strategic deci-
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sion. Manzini (1999) considers a bargaining model with two players where one player can

destroy some surplus when his proposal is rejected. The Rubinstein equilibrium persists,

but also a new equilibrium arises which is favorable to that player. In Manzini (1996), par-

tial surplus destruction occurs automatically (not as a strategic choice) after every other

rejection. Houba (1997) interleaves the rounds of the bargaining process with the rounds

of some infinitely repeated game so that every time a proposal is rejected, another round

of the underlying game is played.

Avery and Zemsky (1994) and Busch et al. (1998) analyze a class of bargaining games

in which, following the rejection of a proposal, a player can decide to destroy surplus. Due

to a multiplicity of equilibria in these games, the proposer can make a credible threat to

destroy surplus unless her proposal is accepted. In this way, she effectively decreases the

other player’s discount factor, and thus enhances her own bargaining power. Our model

shares with Avery and Zemsky (1994) and Busch et al. (1998) the idea that the proposer

uses surplus destruction in order to effectively reduce the responders’ discount factor. One

crucial difference is, however, that we allow the proposer to destroy surplus only in the

beginning of a bargaining round without conditioning on a rejection. Thus, the multiplicity

of equilibria which drives the results in Avery and Zemsky (1994) and Busch et al. (1998)

does not play a role in our analysis. Another related paper is Yildirim (2007) who has

players in a bargaining game exert costly effort in order to increase their probability of

becoming a proposer, and thus their bargaining power.

The rest of the paper is organized as follows: Section 2 contains the formal description

of the model and the equilibrium concept. A characterization of bargaining equilibria is

derived in Section 3. An analysis of efficient bargaining equilibria is given in Section 4, while

some results pertaining to bargaining equilibria with surplus destruction are displayed in

Section 5. We quantify the equilibrium level of surplus destruction in Section 6, and we

offer some concluding remarks in Section 7.

2 Model description

We consider a unanimity bargaining game with players N = {1, . . . , n} who are negotiating

on the division of an exogenously given surplus. Bargaining proceeds in rounds; the first

bargaining round takes place at some time τ = 0, while the timing of any further bargaining

rounds is endogenously determined. The size of the surplus at any time τ ≥ 0 is denoted

by Πτ . The initial surplus size Π0 is normalized to one, while the size Πτ of the surplus at

any time τ > 0 is endogenously determined.

Consider a bargaining round which takes place at time τ ≥ 0, when the current surplus

is of size Πτ . Any such bargaining round has the following structure: One player is the
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proposer, let us say for the moment that it is Player i. She announces a proposal θi =

(θi1, . . . , θ
i
n), where θij is the share of the current surplus Πτ which Player i offers to Player j.

Along with the proposal θi, the proposer also chooses the share σti of the surplus which she

destroys. The time lapse which would occur after a rejection of the proposal θi is prolonged

by ti as a result of destroying the share σti of the current surplus. The parameter σ > 0

measures how costly it is to “buy time.” The pair (θi, ti) is restricted to be feasible, that

is, it must satisfy inequalities θi ≥ 0,1 and 0 ≤ ti ≤ 1/σ, and, moreover,
∑

j∈N θ
i
j ≤ 1−σti.

If Player i choses (θi, ti) such that θi = (0, . . . , 0) and ti = 1/σ, then the game ends

and all players receive zero payoffs. If Player i choses (θi, ti) such that ti < 1/σ, then

Players 1, . . . , n respond sequentially (and in this order) to the proposal θi by acceptance

or rejection. If all players accept θi, then the game ends, and each Player j ∈ N receives

the share θij of the current surplus Πτ . As soon as some Player j ∈ N rejects θi, the current

bargaining round ends, and Player j becomes the proposer of the next bargaining round,

which takes place at time τ + ∆ + ti, where ∆ ≥ 0 denotes the exogenously given minimal

time lapse between two bargaining rounds. The remaining surplus in the next bargaining

round is Πτ+∆+ti = (1−σti)Πτ . We have not yet specified which player makes the proposal

in the first bargaining round. Without loss of generality, we assume that it is Player 1.

All players are risk–neutral and impatient, and they share a common discount rate

r > 0. Thus, if Player j receives a share θij of the surplus Πτ at time τ, this corresponds

to a payoff of e−rτθijΠ
τ for Player j. If no proposal is ever accepted (“perpetual disagree-

ment”), then all players receive zero payoffs. We have now completed the description of

the bargaining game G(∆, n, r, σ). In the sequel, we will use the notation Gi(∆, n, r, σ) to

denote a subgame which starts at a history where Player i needs to choose a pair (θi, ti).

We note that a subgame Gi(∆, n, r, σ) is equivalent to the entire game G(∆, n, r, σ) except

for the identity of the initial proposer and the size of the initial surplus.

A stationary strategy for a Player i ∈ N consists of a pair (θi, ti) which Player i choses

whenever she is the proposer, and of a correspondence Ai(t) such that Player i responds

to proposer j’s choice of (θj, tj) by acceptance if θj ∈ Ai(tj), and by rejection otherwise.

Henceforth, we denote a stationary strategy concisely by (θi, ti, Ai(t)).2 A profile of station-

ary strategies (θi, ti, Ai(t))i∈N induces a set A(t) =
⋂
i∈N A

i(t) of unanimously acceptable

proposals for each time lapse t. Observe that a stationary strategy specifies the proposal

1The vector notation is as follows: We write v′ ≥ v′′ if each component of v′ is equal to or greater than

the corresponding component of v′′, with at least one strict inequality. If each component of v′ is strictly

greater than the corresponding component of v′′, then we write v′ � v′′.
2The continuation game after Player i’s rejection of a proposal depends on the time lapse chosen by the

current proposer, but is independent of the current proposer’s identity. Thus, it is appropriate to define

a stationary strategy such that the player cannot condition his acceptance or rejection on the identity of

the current proposer.
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as well as the surplus destruction as shares of the surplus, independently of the current

size of the surplus.

A stationary subgame-perfect Nash equilibrium (SSPE) is a profile of stationary strate-

gies which is a subgame–perfect Nash equilibrium. For the purpose of the present paper,

it is useful to work with an equilibrium concept which slightly refines SSPE in two ways.

We now discuss these two refinements in turn:

Take the profile (θi, ti, Ai(t))i∈N of stationary strategies, and consider a subgame

Gk(∆, n, r, σ) which starts at a node where Player k needs to choose a pair (θk, tk). Sup-

pose that the appropriate restriction of (θi, ti, Ai(t))i∈N is played in that subgame. Let

γk((θ
i, ti, Ai(t))i∈N) denote Player k’s share of the initial surplus of that subgame. In partic-

ular, if playing the appropriate restriction of (θi, ti, Ai(t))i∈N in the subgame Gk(∆, n, r, σ)

leads to an agreement on some proposal θ̃ after a finite delay of length τ̃ , then we have

γk((θ
i, ti, Ai(t))i∈N) = e−rτ̃ θ̃k. If it leads to an immediate agreement on θ̃ in the subgame

under consideration, then γk((θ
i, ti, Ai(t))i∈N) = θ̃k. If the subgame Gk(∆, n, r, σ) ends

with the destruction of the whole surplus or in perpetual disagreement when the appro-

priate restriction of (θi, ti, Ai(t))i∈N is played, then γk((θ
i, ti, Ai(t))i∈N) = 0. The quantity

γk((θ
i, ti, Ai(t))i∈N) is important to define the cut–off above which it is optimal for Player

k to accept a proposal. Indeed, we say that the profile (θi, ti, Ai(t))i∈N) of stationary

strategies satisfies sincere voting if

Ak(t̂) =
{
v ∈ Rn

+|vk ≥ (1− σt̂)e−r(∆+t̂)γk((θ
i, ti, Ai(t))i∈N)

}
, ∀t̂ ∈ [0, 1/σ], ∀k ∈ N.

Verbally, sincere voting means that a player accepts a proposal v if and only if the

implementation of the proposal v would make her weakly better off than becoming the

proposer in the next bargaining round. The factor e−r(∆+t̂) is applied because of the delay

occurring after a rejection of the current proposal. It reflects actual discounting of future

payoffs by impatient players. In addition, the factor (1−σt̂) is applied because any payoffs

in the next bargaining round are expressed as shares of a surplus which has shrunk by the

share σt̂ relative to the current surplus. We can interpret the entire term (1− σt̂)e−r(∆+t̂)

as the “implicit discount factor,” arising endogenously from the proposer’s choice of the

time lapse.

Restricting attention to sincere voting is a simplification which does not affect the

results of our analysis. To be more precise, if we considered subgame–perfect equilibria

in stationary strategies (SSPE) without restricting attention to sincere voting, we would

be able to show that sincere voting must hold on the equilibrium path of play. However,

there could arise SSPE in which sincere voting is violated off the equilibrium path. Such

“inessential multiplicity” is of no interest for our analysis of equilibrium payoffs. These

issues are well–known in the literature on bargaining games. One example of a more

detailed discussion can be found in Britz et al. (2010).
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The second refinement which we impose on SSPE is only relevant for bargaining games

in which ∆ = 0. Loosely speaking, we want to ensure that two “subsequent” bargaining

rounds cannot take place “at the same time” on an equilibrium path of play. While this

is trivially true for games with ∆ > 0, it requires the following refinement in case ∆ = 0:

We say that a profile of stationary strategies (θi, ti, Ai(t))i∈N satisfies no passing if ti > 0

for every i ∈ N such that θi 6∈ A(ti).

A bargaining equilibrium is a profile of stationary strategies which satisfies sincere voting

and no passing, and which is a subgame–perfect Nash equilibrium.

3 A characterization of bargaining equilibria

The purpose of this section is to derive Theorem 3.7 which provides a complete character-

ization of bargaining equilibria. It is the basis for the analysis in the sequel of the paper.

In order to arrive at this characterization of bargaining equilibria, we are first going to es-

tablish a sequence of auxiliary results. In particular, we are going to show that on the path

of play induced by a bargaining equilibrium, agreement is reached immediately in every

subgame, and that every player chooses a proposal which makes all other players indifferent

between acceptance and rejection. These equilibrium properties are well–established for

“standard” unanimity bargaining games in which the time lapse between bargaining rounds

is exogenously given. In the present section, the arguments building towards Theorem 3.7

follow similar lines as in the previous work by Banks and Duggan (2000) and Britz et al.

(2010, 2014), but are complicated by the endogenous determination of the time lapse.

One important step towards the characterization of bargaining equilibria is to show that

in such an equilibrium every subgame ends in an agreement. In particular, this means that

no proposer decides to end the game by destroying the entire surplus, and no perpetual

disagreement can occur on the equilibrium path of play. As a first step towards this result,

Lemma 3.1 below claims that in a bargaining equilibrium, there is at least one player whose

proposal is unanimously accepted.

Lemma 3.1. If (θk, tk, Ak(t))k∈N is a bargaining equilibrium, then there is i ∈ N such that

θi ∈ A(ti), and ti < 1/σ.

Proof. In the appendix. �

We have shown that at least one player makes an acceptable proposal in a bargaining

equilibrium. Now we are going to consider a proposal which is unanimously accepted, and

show that such a proposal makes each player other than the proposer indifferent between

acceptance and rejection. Moreover, such a proposal distributes the entire share of the

surplus which is not destroyed. It is a standard result in unanimity bargaining that the
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proposer “extracts all surplus” from the other players by making them exactly indifferent

between acceptance and rejection. Lemma 3.2 below replicates this finding for the game

under consideration here.

Lemma 3.2. Suppose that (θk, tk, Ak(t))k∈N is a bargaining equilibrium, and θi ∈ A(ti),

as well as ti < 1/σ. Then, we have

θij = (1− σti)e−r(∆+ti)γj((θ
k, tk, Ak(t))k∈N), ∀i ∈ N, ∀j ∈ N \ {i},

θii = 1− σti −
∑

j∈N\{i}
θij, ∀i ∈ N.

Proof. In the appendix. �

Recall that we have defined Gi(∆, n, r, σ) as the subgame in which Player i makes the

initial proposal. Given a profile of stationary strategies (θk, tk, Ak(t))k∈N , we have defined

γi((θ
k, tk, Ak(t))k∈N) as the share of the surplus which Player i receives if the appropriate

restriction of (θk, tk, Ak(t))k∈N , is played in the subgame Gi(∆, n, r, σ). Our next step is to

show that γi((θ
k, tk, Ak(t))k∈N) is strictly positive for every Player i.

Lemma 3.3. If (θk, tk, Ak(t))k∈N is a bargaining equilibrium, then it holds that

γj((θ
k, tk, Ak(t))k∈N) > 0 for all j ∈ N.

Proof. In the appendix. �

In the game under consideration, bargaining may continue indefinitely without agree-

ment. Moreover, a proposer could unilaterally end the bargaining process by destroying

the whole surplus. One important implication of Lemma 3.3 above is that neither of these

two outcomes can occur in a bargaining equilibrium. To see this, suppose that either a

perpetual disagreement or the destruction of the entire surplus occurs in some subgame

Gi(∆, n, r, σ). This results in zero payoffs for all players, and in particular for the initial

proposer in the subgame, thus contradicting Lemma 3.3.

Corollary 3.4. In a bargaining equilibrium (θk, tk, Ak(t))k∈N , agreement is reached in finite

time in every subgame Gi((θk, tk, Ak(t))k∈N).

Since no player destroys the entire surplus, it follows that the “implicit discount factor”

given by (1−σti)e−r(∆+ti) is strictly positive for every i ∈ N. Hence, Lemma 3.2 and Lemma

3.3 readily imply that any proposal θi which is accepted in a bargaining equilibrium is

strictly positive in all components. This property is crucial for the proof of Lemma 3.5

below, which claims that, in a bargaining equilibrium, agreement is reached immediately

in every subgame.
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Lemma 3.5. In a bargaining equilibrium (θk, tk, Ak(t))k∈N , agreement is reached immedi-

ately in every subgame Gi((θk, tk, Ak(t))k∈N).

Proof. In the appendix. �

We have now shown that, in a bargaining equilibrium, no delay can occur before an

agreement in any subgame. In the case of a bargaining game with ∆ > 0, this readily

implies that every player’s proposal is unanimously accepted. This result could also be

shown for SSPE in general. However, in the case where ∆ = 0, the immediate agreement

property need not always imply that every player’s proposal is unanimously accepted:

Indeed, the immediate agreement property does not rule out the possibility that a player

might choose a zero time lapse along with a proposal which is rejected. If the following

proposal were accepted, then agreement would still have occurred “immediately.” Under

our definition of a bargaining equilibrium, however, this complication is ruled out by the

no passing property, so that we have the following corollary.

Corollary 3.6. In a bargaining equilibrium, every player’s proposal is unanimously ac-

cepted.

Since every player’s proposal is accepted in a bargaining equilibrium, we have

θii = γi((θ
k, tk, Ak(t))k∈N) > 0

for every i ∈ N. Now Lemma 3.2 implies that in every bargaining equilibrium,

θij = (1− σti)e−r(∆+ti)θjj > 0,

for every i ∈ N and j ∈ N \ {i}. Therefore, if Player i is the proposer, she faces the

following trade–off: If she chooses ti, then she must offer the other players the share

(1 − σti)e−r(∆+ti)
∑

j∈N\{i} θ
j
j in order to obtain their agreement. This term is clearly

decreasing in ti. Choosing a greater time lapse improves Player i’s bargaining position

relative to the other players. On the downside, however, choosing ti implies that a share

σti of the surplus is destroyed. More formally, given proposals θj of all other players

j ∈ N \ {i}, and given that each of these proposals is unanimously accepted, Player i’s

payoff can be thought of as the following function of ti:

ξi(ti) = (1− σti)


1− e−r(∆+ti)

∑

j∈N\{i}
θjj


 .

In a bargaining equilibrium, Player i chooses ti so as to maximize ξi(ti).
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If the profile of stationary strategies (θk, tk, Ak(t))k∈N is a bargaining equilibrium, then

the above analysis implies that

Aj(ti) = {v ∈ Rn
+|vj ≥ θij}, ∀i ∈ N, ∀j ∈ N \ {i}.

From now on, it is therefore appropriate to ease the notation and describe a bargaining

equilibrium only as a profile (θi, ti)i∈N . Theorem 3.7 below unifies the findings derived in

this section into a characterization of bargaining equilibria.

Theorem 3.7. The profile (θi, ti)i∈N is a bargaining equilibrium if and only if it satisfies

the following conditions:

θii = 1− σti −
∑

j∈N\{i}
θij, (1)

θij = (1− σti)e−r(∆+ti)θjj , j ∈ N \ {i}, (2)

ti ∈ arg max
t∈[0,1/σ]

(1− σt)


1− e−r(∆+t)

∑

j∈N\{i}
θjj


 . (3)

Verbally, Eqn. (1) says that the part of the surplus which is not destroyed is completely

distributed to the players. Eqn. (2) says that each player other than the proposer is offered

the share which makes him exactly indifferent between acceptance and rejection. In case

∆ > 0, setting all the time lapses t1, . . . , tn in Eqns. (1)–(2) equal to zero would yield the

equations which are familiar from the equilibrium analysis of standard unanimity bargain-

ing games with an exogenously fixed time lapse ∆ > 0 and concomitant discount factor

e−r∆ < 1. The novel element of the above equilibrium characterization is the optimization

problem (3) which effectively endogenizes the discount factor. We will see that two kinds of

solution to this optimization problem are relevant for the analysis: First, a corner solution

of the optimization problem corresponds to the case where ti = 0 is chosen. Second, an

interior solution corresponds to the case where some ti > 0 is chosen.

More formally, consider the optimization problem (3). Take the derivatives

∂ξi(t)/∂t = −σ + (σ + r(1− σt)) e−r(∆+t)


 ∑

j∈N\{i}
θjj




∂2ξi(t)/∂2t = −rσe−r(∆+t)


 ∑

j∈N\{i}
θjj


− r(σ + r(1− σt))e−r(∆+t)


 ∑

j∈N\{i}
θjj


 .

We see that

∂2ξi(t)/∂2t < 0 on [0, 1/σ].
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Moreover, evaluating the first–order derivative at the points t = 0 and t = 1/σ, we see that

∂ξi(t)/∂t|t=0 = −σ + (σ + r)e−r∆


 ∑

j∈N\{i}
θjj


 ,

∂ξi(t)/∂t|t=1/σ
= −σ + σe−r(∆+1/σ)


 ∑

j∈N\{i}
θjj


 .

We can conclude that there are two possible cases:

1. If e−r∆
(∑

j∈N\{i} θ
j
j

)
≤ σ/(σ + r), then the first–order derivative ∂ξi(t)/∂t is non–

positive for t ∈ [0, 1/σ] and strictly negative for t ∈ (0, 1/σ). Hence, the optimization

problem (3) has only a corner solution at t = 0.

2. If e−r∆
(∑

j∈N\{i} θ
j
j

)
> σ/(σ+r), then the first–order derivative ∂ξi(t)/∂t is strictly

positive at t = 0, and strictly monotonically decreasing on the interval [0, 1/σ]. If

∂ξi(t)/∂t|t=1/σ
≥ 0, then we would find a corner solution at t = 1/σ. However, we have

seen in Corollary 3.4 that this does not occur in a bargaining equilibrium. So we need

to consider only the case where ∂ξi(t)/∂t|t=1/σ
< 0, in which we find a unique interior

solution at some t ∈ (0, 1/σ). This solution is given by the first–order condition

∂ξi/∂t = 0, which can be written as
∑

j∈N\{i} θ
j
j = σer(∆+t)

σ+r(1−σt) .

We have found that Player i chooses the level of surplus destruction and the concomitant

time lapse depending on the basic model parameters and on the value of
(∑

j∈N\{i} θ
j
j

)
.

Since every responder becomes the next proposer after he rejects the current proposal, this

quantity is the (un–discounted) sum of the reservation payoffs of all players. It can be

interpreted as the “price of agreement.”

Theorem 3.8. Let (θk, tk)k∈N be a bargaining equilibrium. For every Player i ∈ N, it

holds that either
∑

j∈N\{i} θ
j
j ≤ σer∆

σ+r
and ti = 0, or

∑
j∈N\{i} θ

j
j >

σer∆

σ+r
and ti > 0. In the

latter case, ti > 0 is the solution to
∑

j∈N\{i} θ
j
j = σer(∆+t)

σ+r(1−σt) .

In the next section, we are going to discuss bargaining equilibria in which all players

choose zero surplus destruction. We call such equilibria efficient bargaining equilibria. In

Section 5, we then turn to bargaining equilibria in which at least one player chooses to

destroy some surplus. We call such equilibria bargaining equilibria with surplus destruction.

In the sequel of the paper, we will show that all bargaining equilibria are “symmetric,” that

is, all players choose the same surplus destruction. Moreover, we will show that for any

given choice of the model parameters, there exists either an efficient bargaining equilibrium,

or a bargaining equilibrium with surplus destruction, but not both.
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4 Efficient bargaining equilibria

In this section, we study bargaining equilibria in which all players choose not to destroy any

surplus. The following theorem restates the characterization of a bargaining equilibrium

for this case.

Theorem 4.1. The proposals (θi)i∈N are part of an efficient bargaining equilibrium if the

following conditions hold for all i ∈ N and all j ∈ N \ {i}:

θii = 1−
∑

j∈N\{i}
θij, (4)

θij = e−r∆θjj , (5)

θii ≥ r/(σ + r). (6)

Proof. If ti = 0, then Eqns. (1)–(2) specialize to Eqns. (4)–(5). Moreover, due

to Theorem 3.8, the inequality e−r∆(
∑

j∈N\{i} θ
j
j) ≤ σ/(σ + r) is satisfied in an efficient

bargaining equilibrium. Combined with Eqns. (4)–(5), this implies Ineq. (6) above.

�

In unanimity bargaining games in the tradition of Rubinstein, one standard result is the

uniqueness of SSPE payoffs in the limit as the discount factor goes to one. If the discount

factor were exactly equal to one, however, this uniqueness result would break down and

every allocation of the surplus could be supported by an SSPE. We will see that efficient

bargaining equilibria in our model exhibit a similar discontinuity around the point where

the exogenously given minimal time lapse ∆ is zero. Therefore, in what follows, we will

discuss efficient bargaining equilibria for the two cases ∆ > 0 and ∆ = 0 in turn:

Indeed, let us first consider a bargaining game G(∆, n, r, σ) with ∆ > 0. In this case,

Eqns. (4)–(5) above amount to a system of n2 independent equations which allow us to

solve for a unique array of proposals (θ1, . . . , θn). This solution is

θii =
1

1 + (n− 1)e−r∆
, ∀i ∈ N,

θij =
e−r∆

1 + (n− 1)e−r∆
, ∀i ∈ N, ∀j ∈ N \ {i}.

Of course, these proposals are the same proposals which would be made in an SSPE of an

n–player bargaining game in which ∆ > 0 and t1 = . . . = tn = 0 are exogenously fixed.

Henceforth, we refer to the allocation which gives the proposer a share 1
1+(n−1)e−r∆ of the

surplus, and which gives each player other than the proposer a share e−r∆
1+(n−1)e−r∆ of the

surplus as the fixed schedule allocation. This allocation will be an important benchmark

in our later analysis of bargaining equilibria with surplus destruction. If ∆ > 0, then any

11



efficient bargaining equilibrium leads to the fixed schedule allocation. However, depending

on the basic model parameters, the fixed schedule allocation may or may not be supported

by a bargaining equilibrium. More specifically, for the fixed schedule allocation to be

a bargaining equilibrium, an additional restriction given by Ineq. (6) must be satisfied.

The intuition is as follows: If the fixed schedule allocation does not give the proposer a

sufficiently large share of the surplus, then the proposer has an incentive to choose a strictly

positive time lapse in order to enhance her bargaining power, and thus depart from the

fixed schedule allocation.

Now let us turn to the case of a bargaining game G(∆, n, r, σ) with ∆ = 0. From Eqn.

(5), it is immediate that in an efficient bargaining equilibrium, all players make the same

proposal, say θ∗. As before, Eqn. (4) simply says that the proposal θ∗ made by all players

distributes the entire surplus to the players. Eqns. (4)–(5) do not say anything about

the allocation of the surplus to the different players in an efficient bargaining equilibrium.

Indeed, this allocation is only restricted by Ineq. (6), which becomes θ∗i ≥ r/(σ + r) for

each i ∈ N. Thus, there is a set of surplus allocations that can be supported by efficient

bargaining equilibria. The only restrictions are that every player receives at least the share

r/(σ+ r), and that the whole surplus is allocated to the players. Recall that in unanimity

bargaining games in which the discount factor is exogenously fixed to exactly one, every

efficient allocation can be supported by an SSPE. Here, the analogue of the discount factor

is the term e−r∆ which is exactly equal to one if ∆ = 0. However, it is not generally true

that every allocation can be supported by an efficient bargaining equilibrium if ∆ = 0. The

intuition is as follows: In an efficient bargaining equilibrium, every player’s payoff must be

sufficiently large so that this player does not find it in his interest to deviate from efficient

bargaining equilibrium by choosing a strictly positive time lapse. This condition is satisfied

exactly when the player’s payoff is at least r/(r + σ). In the limit as r goes to zero, this

condition becomes ever weaker, and thus any efficient allocation of the surplus is consistent

with an efficient bargaining equilibrium. On the other hand, if r = σ/(n − 1), then each

player requires a share 1/n in order to be willing to refrain from surplus destruction. Thus,

as r grows towards σ/(n − 1), the range of efficient bargaining equilibrium allocations

shrinks and eventually collapses into the equal division. If r > σ/(n − 1), each player

requires more than a share 1/n of the surplus in order to be willing to refrain from surplus

destruction. Hence, no agreement can be reached without surplus destruction, and an

efficient bargaining equilibrium does not exist. We conclude that, in a bargaining game

with ∆ = 0, surplus destruction can only be avoided if r is sufficiently small.

Next, we state a necessary and sufficient condition for the existence of an efficient

bargaining equilibrium, which covers both cases ∆ > 0 and ∆ = 0.

12



Lemma 4.2. An efficient bargaining equilibrium exists if and only if er∆ ≥ (n− 1)(r/σ).

Proof. If. Consider an array of proposals (θ̄i)i∈N defined for every i ∈ N by

θ̄ii = 1
1+(n−1)e−r∆ and θ̄ij = e−r∆

1+(n−1)e−r∆ for j ∈ N \ {i}. These proposals satisfy Eqns.

(4)–(5). If er∆ ≥ (n − 1)(r/σ), then e−r∆(n − 1) ≤ σ/r, and so θ̄ii ≥ 1
1+σ/r

= r
r+σ

, and so

Ineq. (6) is satisfied. Indeed, we have shown that proposals (θ̄i)i∈N are part of an efficient

bargaining equilibrium.

Only If. Suppose that (θ̄i)i∈N is an array of proposals of an efficient bargaining

equilibrium. Then, for any i ∈ N, we have 1 = θii +
∑

j∈N\{i} θ
i
j = θii + e−r∆

∑
j∈N\{i} θ

j
j .

Due to Ineq. (6), it holds that θkk ≥ r/(σ + r) for every k ∈ N, so we have the inequality(
r

σ+r

)
+ (n − 1)e−r∆

(
r

σ+r

)
≤ 1. Equivalent transformation yields er∆ ≥

(
r
σ

)
(n − 1), as

desired.

�

For the case where ∆ = 0, we have argued before that an efficient bargaining equilibrium

exists if r is sufficiently small. This is confirmed by the above theorem. If ∆ > 0, however,

notice that the term er∆/r grows without bound both as r goes to zero and as r goes to

infinity. Thus, in bargaining games with ∆ > 0, an efficient bargaining equilibrium exists

for sufficiently small as well as for sufficiently large r. The intuition is as follows: If r is very

large, the exogenously given minimal time lapse ∆ > 0 already confers so much bargaining

power to the proposer that she does not find it worthwhile to destroy surplus in order to

gain extra bargaining power. In Section 6, we will give a condition for the existence of

an intermediate range of r so that a bargaining equilibrium with surplus destruction does

exist.

5 Bargaining equilibria with surplus destruction

As a next step, we are going to complement the previous section with an analysis of

bargaining equilibria with surplus destruction. By definition, a bargaining equilibrium

with surplus destruction is a bargaining equilibrium in which at least one player destroys

surplus. One of the results in this section is that all bargaining equilibria are “symmetric,”

that is, in a bargaining equilibrium, all players choose the same surplus destruction and thus

the same time lapse. In particular, this will imply that in a bargaining equilibrium with

surplus destruction, all players choose a strictly positive amount of surplus destruction.

As in the previous section, we begin the analysis with a statement which specializes

Theorem 3.7.
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Lemma 5.1. Suppose that (θk, tk)k∈N is a bargaining equilibrium with surplus destruction.

Then, the following equalities hold for every i ∈ N such that ti > 0:

θii =
r(1− σti)2

σ + r(1− σti) , (7)

∑

j∈N\{i}
θij =

σ(1− σti)
σ + r(1− σti) , (8)

∑

j∈N\{i}
θjj =

(
σ

σ + r(1− σti)

)
er(∆+ti). (9)

Proof. If ti > 0 in a bargaining equilibrium, then ti > 0 must be an interior solution to

the optimization problem (3). The corresponding first–order condition is Eqn. (9). From

Eqns. (1)–(2), we find θii = 1 − σti − (1 − σti)e−r(∆+ti)
∑

j∈N\{i} θ
j
j . By substitution from

Eqn. (9) above, we find

θii = 1− σti − σ(1− σti)
σ + r(1− σti) =

r(1− σti)2

σ + r(1− σti) ,

thus establishing Eqn. (7). Combining the above equality with Eqn. (1), we find Eqn. (8),

as desired. �

We show next that there cannot be a bargaining equilibrium in which one player de-

stroys surplus and another player does not.

Lemma 5.2. If (θk, tk)k∈N is a bargaining equilibrium and ti > 0 for some i ∈ N, then

(t1, . . . , tn)� 0.

Proof. Suppose by way of contradiction that (θk, tk)k∈N is a bargaining equilibrium,

and ti > 0 but tj = 0 for some j ∈ N \ {i}. Using Eqns. (1)–(2), it follows that θjj +

e−r∆
∑

k∈N\{j} θ
k
k = 1, which can be rewritten as

(1− e−r∆)θjj + e−r∆
∑

k∈N
θkk = 1.

We consider a unilateral deviation by Player i from the supposed bargaining equilibrium.

Under this deviation, Player i chooses a zero time lapse instead of ti > 0, and instead of

the proposal θi, she makes a proposal θ̃i defined as follows:

θ̃ik = e−r∆θkk , ∀k ∈ N \ {i},
θ̃ii = e−r∆θii + (1− e−r∆)θjj .

We see that
∑

k∈N θ̃
i
k = 1, so that the pair (θ̃i, 0) is feasible. Due to sincere voting, we

have θ̃i ∈ A(0), so the proposal θ̃i is unanimously accepted. We see that the deviation is
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profitable for Player i if the inequality e−r∆θii+(1−e−r∆)θjj > θii is satisfied, or, equivalently,

if θjj > θii. Indeed, due to Theorem 3.8, we know that e−r∆
∑

k∈N\{j} θ
k
k ≤ σ

σ+r
. By Eqns.

(1)–(2), it follows that θjj ≥ r
σ+r

. But from Eqn. (13), we have that θii = r(1−σti)2

σ+r(1−σti) <
r

σ+r
,

and thus θii < θjj . Indeed, we have constructed a profitable deviation for Player i and thus

obtained a contradiction.

�

The next lemma claims that in a bargaining equilibrium with surplus destruction, all

players choose the same level of surplus destruction, and thus the same time lapse.

Lemma 5.3. If (θk, tk)k∈N is a bargaining equilibrium with surplus destruction, then t1 =

t2 = . . . = tn.

Proof. Define a function

ψ(t) =
r(1− σt)2 + σer(∆+t)

σ + r(1− σt) . (10)

Suppose that (θk, tk)k∈N is a bargaining equilibrium with surplus destruction. We have

already shown that this implies (t1, . . . , tn) � 0. Thus, Eqns. (7) and (9) holds for all

i ∈ N. Summing up these two equations we find that ψ(ti) =
∑

k∈N θ
k
k for every i ∈ N.

We have left to show that the function ψ(t) is strictly monotonic on the relevant interval

t ∈ (0, 1/σ]. Indeed, consider the first–order derivative

ψ′(t) =

(
rσer(∆+t) − 2rσ(1− σt)

σ + r(1− σt)

)
+ rσ

(
σer(∆+t) + r(1− σt)2

(σ + r(1− σt))2

)

=

(
rσ

σ + r(1− σt)

)(
er(∆+t) − 2(1− σt) + ψ(t)

)
.

Observing that the denominator σ + r(1 − σt) is strictly positive for any t ∈ (0, 1/σ], we

only have to show that

er(∆+t) + ψ(t) > 2(1− σt).

For any t > 0, we have

er(∆+t) > er∆ ≥ 1 > 1− σt.

Moreover, invoking once more the fact that σ + r(1 − σt) > 0 for t ∈ (0, 1/σ], it is easily

verified that ψ(t) > 1− σt, and the proof is complete.

�

Consider a bargaining equilibrium (θk, tk)k∈N with surplus destruction. We have shown

that all players choose the same strictly positive time lapse. Our next step is to determine
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this time lapse. Using Eqns. (2) and (7), we can conclude that in a bargaining equilibrium

with surplus destruction, there is a “proposer share” x > 0 such that x = θii for every

i ∈ N, and there is a “responder share” y > 0 such that y = θij for every i ∈ N and

j ∈ N \ {i}. From Eqns. (7)–(9) above, we can infer that in any bargaining equilibrium

with surplus destruction, the proposer share x, the responder share y, and the time lapse

t satisfy the following equalities:

x/y = er(∆+t)(1− σt)−1,

x/y =
( r
σ

)
(1− σt)(n− 1),

and, consequently, the equilibrium choice of the time lapse satisfies

er(∆+t) =
( r
σ

)
(1− σt)2(n− 1).

Now we can state our results concisely as the following characterization of bargaining

equilibria with surplus destruction:

Theorem 5.4. In a bargaining equilibrium with surplus destruction, every player chooses

the time lapse t which solves

er(∆+t) =
( r
σ

)
(1− σt)2(n− 1). (11)

Moreover, every Player i ∈ N chooses the proposal θi given by:

θii =
r(1− σt)2

σ + r(1− σt) , (12)

θij =

(
σ(1− σt)

σ + r(1− σt)

)
/ (n− 1) , ∀j ∈ N \ {i}. (13)

Consider Eqn. (11) which determines the time lapse in a bargaining equilibrium with

surplus destruction. The left–hand side of the equality is increasing on t ∈ [0, 1/σ], while

the right–hand side is decreasing on t ∈ [0, 1/σ]. Therefore, Eqn. (11) can be solved for

t > 0, and thus a bargaining equilibrium with surplus destruction exists, if and only if the

intercept at t = 0 of the left–hand side lies below the intercept at t = 0 of the right–hand

side. Indeed, we are now going to give a necessary and sufficient condition for the existence

of a bargaining equilibrium with surplus destruction.

Lemma 5.5. A bargaining equilibrium with surplus destruction exists if and only if er∆ <(
r
σ

)
(n− 1).

Proof. If. Suppose that er∆ <
(
r
σ

)
(n − 1). Then, there is t̄ > 0 such that

er(∆+t̄) =
(
r
σ

)
(1 − σt̄)2(n − 1). For every i ∈ N, define θ̄ii = r(1−σt̄)2

σ+r(1−σt̄) , and
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θ̄ij =
(

σ(1−σt̄)
σ+r(1−σt̄)

) (
1

n−1

)
for j ∈ N \ {i}. Moreover, let t̄k = t̄ for every k ∈ N. It is

now easily verified that (θ̄k, t̄k)k∈N is a bargaining equilibrium.

Only If. Suppose that (θ̄k, t̄k)k∈N is a bargaining equilibrium. Then, for every

k ∈ N, the equality er(∆+t̄k) =
(
r
σ

)
(1−σt̄k)2(n−1) is satisfied. Since t̄k ∈ (0, 1/σ], it holds

that
(
r
σ

)
(1− σt̄k)2(n− 1) <

(
r
σ

)
(n− 1) and er(∆+t̄k) > er∆, and hence er∆ <

(
r
σ

)
(n− 1),

as desired.

�

Lemma 4.2 and Lemma 5.5 readily imply results on the existence and uniqueness of

bargaining equilibria which we summarize in the following theorem.

Theorem 5.6. 1. In a bargaining game G(∆, n, r, σ) with ∆ > 0, there exists a unique

bargaining equilibrium. It is efficient if the inequality er∆ ≥
(
r
σ

)
(n− 1) holds, and it

involves surplus destruction otherwise.

2. In any bargaining game G(0, n, r, σ) where ∆ = 0, there exists a bargaining equilib-

rium. If 1/r ≤ σ/(n − 1), then there is a range of efficient bargaining equilibria.

Otherwise the bargaining equilibrium is unique, and it involves surplus destruction.

In the previous section, we have introduced the notion of the “fixed schedule allocation.”

This is the equilibrium allocation which would result in a unanimity bargaining game in

which players cannot destroy surplus and thus cannot affect the time lapse ∆ > 0 which

occurs between bargaining rounds. Intuitively, the bargaining game which we consider

gives the proposer an additional source of power by allowing her to destroy surplus and

thereby prolong the time lapse between rounds. It is therefore intuitive that the advantage

of the proposer over the other players is greater in a bargaining equilibrium with surplus

destruction than under the fixed schedule allocation. On the other hand, the fixed schedule

allocation is efficient. Hence, the question arises whether the proposer is better off in the

bargaining game under consideration here than in a more standard unanimity bargaining

setting which leads to the fixed schedule allocation. We show next that this is indeed the

case.

Lemma 5.7. In a bargaining equilibrium with surplus destruction, the proposer receives

more than his fixed schedule allocation.

Proof. In the appendix.

�

17



Together with the immediate agreement property, this result says that introducing the

possibility of surplus destruction into a unanimity bargaining game is beneficial for the

initial proposer only, but harmful for all other players.

6 Quantifying equilibrium surplus destruction

In this section, we address in more detail the question how much of the surplus is destroyed

in a bargaining equilibrium. In particular, we are interested in the effect that the basic

model parameters (∆, n, r, σ) have on the equilibrium level of surplus destruction. We have

found in the previous section that, in a bargaining equilibrium with surplus destruction,

the time lapse t satisfies the equality

er(∆+t) −
( r
σ

)
(1− σt)2(n− 1) = 0.

We can easily verify that the partial derivatives relevant for a comparative statics analysis

can be signed as follows:

∂
(
er(∆+t) −

( r
σ

)
(1− σt)2(n− 1)

)
/∂t > 0,

∂
(
er(∆+t) −

( r
σ

)
(1− σt)2(n− 1)

)
/∂∆ > 0,

∂
(
er(∆+t) −

( r
σ

)
(1− σt)2(n− 1)

)
/∂σ > 0.

The above derivatives with respect to t and with respect to ∆ have the same sign: Indeed,

if the exogenously fixed minimal time lapse ∆ increases slightly, then the equilibrium level

of surplus destruction decreases. Loosely speaking, the exogenously fixed time lapse and

the additional time lapse chosen by the proposer are substitutes.

Likewise, the above derivatives with respect to t and with respect to σ have the same

sign. Indeed, the parameter σ can be interpreted as the cost of gaining more bargaining

power. If this cost slightly decreases, then the proposer finds it attractive to enhance her

bargaining power by choosing a higher time lapse.

An analysis of the effect of the model parameters r and n on the equilibrium time lapse

is less straight–forward: First, the number of players being an integer, it would not be

meaningful to consider the effect of an infinitesimal change in n. Second, with regard to

the parameter r, examining the derivative

∂
(
er(∆+t) −

( r
σ

)
(1− σt)2(n− 1)

)
/∂r = (∆ + t)er(∆+t) − (1− σt)2(n− 1)

σ
,

we see that the effect of a small change of r on the equilibrium time lapse cannot be signed

unambiguously.
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In the remainder of this section, we will study in more detail the role of parameters

r and n in determining the equilibrium time lapse as well as the concomitant amount

of surplus destruction. In particular, we are going to show the following results: Given

any number of players n, we can compute an upper bound η(n) on the level of surplus

destruction which can occur in a bargaining equilibrium. We demonstrate that this bound

is increasing in the number of players. It is approximately equal to 0.22 when there are two

players, and it approaches one in the limit as the number of players grows without bound.

For any number of players n, the concomitant bound on equilibrium surplus destruction

η(n) is “tight” in the sense that it can actually be attained in the bargaining equilibrium

if ∆ is sufficiently small and if r is chosen appropriately. Equilibrium surplus destruction

is increasing in r for small r, and decreasing in r for large r. Consequently, for any level

of surplus destruction strictly below η(n), and given some sufficiently small ∆, there are

always two values of r so that this level of surplus destruction is supported by a bargaining

equilibrium.

For a more formal analysis, it is convenient to rewrite Eqn. (11) as follows:

er(∆+t)

r
=

(
(1− σt)2

σ

)
(n− 1).

For r ∈ (0,∞), and ∆ + t > 0, define the function µ(r) = er(∆+t)/r, and consider its

derivatives

µ′(r) = er(∆+t)(r(∆ + t)− 1)r−2,

µ′′(r) = er(∆+t)((r(∆ + t)− 1)2 + 1)r−3.

Since µ′′(r) > 0 for r > 0, we can use the first–order condition µ′(r) = 0 to show

that µ(r) attains the minimum at r = 1/(∆ + t), and, at that minimum, it evaluates to

µ(1/(∆ + t)) = (∆ + t)e. Moreover, given that ∆ + t > 0, we can verify that µ(r) grows

without bound in the limit as r ↓ 0 and in the limit as r →∞. Hence, we have the following

lemma.

Lemma 6.1. 1. Let the parameters ∆, n, σ and a time lapse t be such that (∆ + t)e >(
(1−σt)2

σ

)
(n − 1). Then, whatever the value of r, there is no bargaining equilibrium

with the time lapse t.

2. Let the parameters ∆, n, σ and a time lapse t be such that (∆ + t)e =
(

(1−σt)2

σ

)
(n−

1). Then, there is exactly one r such that the bargaining game G(∆, n, r, σ) has a

bargaining equilibrium with time lapse t.

3. Let the parameters ∆, n, σ and a time lapse t be such that (∆+t)e <
(

(1−σt)2

σ

)
(n−1).

Then, there exist values r̄ > 1/(∆ + t) and r < 1/(∆ + t) such that the bargaining
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games G(∆, n, r̄, σ) and G(∆, n, r, σ) each have a bargaining equilibrium with time

lapse t.

The above lemma implies that a bargaining equilibrium with the time lapse t is only

possible when the inequality (∆ + t)e ≤ (n− 1)(1− σt)2/σ is satisfied. Since ∆ ≥ 0, this

implies the inequality te ≤ (n− 1)(1− σt)2/σ, which can be written in the quadratic form

as

(σt)2 −
(

2 +
e

n− 1

)
(σt) + 1 ≥ 0.

Taking into account the restriction that t ∈ [0, 1/σ], this yields the solution

σt ≤ 1 +
e

2(n− 1)
−
√

1

4

(
2 +

(
e

n− 1

))2

− 1 =: η(n).

We have now derived an upper bound on the amount of surplus destruction which can

occur in a bargaining equilibrium, whence the following theorem.

Theorem 6.2. In a bargaining equilibrium with surplus destruction, we have σt ≤ η(n).

Notice that the upper bound η(n) on the equilibrium amount of surplus destruction

does not depend on σ at all. Instead of saying that the level of surplus destruction in a

bargaining equilibrium is bounded above by η(n), we could equivalently say that the time

lapse in a bargaining equilibrium is bounded above by η(n)/σ.

From the above argument, we can conclude that if ∆ = 0, then for any arbitrary value

of σ, we can find r such that the bargaining equilibrium does involve the level of surplus

destruction η(n). In this sense, the upper bound on surplus destruction is “tight.” If ∆ > 0,

however, then not all levels of surplus destruction below η(n) are possible in a bargaining

equilibrium.

Observe that η(n+1) > η(n) for any n ≥ 2: More surplus destruction becomes possible

as the number of players increases. If there are two players, then the surplus destruction is

bounded above by η(2) ≈ 0.22. For any n ≥ 3, it holds that η(n) ≥ 1−η(n)
n

. That is, if there

are at least three players, then for suitable choices of ∆ and r, there can be a bargaining

equilibrium in which the amount of surplus which is destroyed exceeds the amount of

surplus allocated to the “average” player. Destroying half of the surplus in equilibrium is

possible if there are seven or more players. Notice that η(n) approaches one in the limit

as n grows without bound. In principle, with a very large number of players, almost the

entire surplus could be destroyed in equilibrium. This does not, however, contradict our

earlier finding that a bargaining equilibrium with surplus destruction gives the proposer a

higher payoff than the fixed schedule allocation. The reason is that the proposer’s fixed

schedule allocation tends to zero as the number of players becomes sufficiently large.
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We conclude that in the bargaining game under consideration, a higher number of

players harms the efficiency of the bargaining process in two different ways: First, we have

shown in Section 4 that an efficient bargaining equilibrium exists if and only if er∆/r ≥
(n− 1)/σ. For any fixed values of the other model parameters, this inequality fails to hold

when n is too large. Indeed, the scope for an efficient bargaining equilibrium vanishes

as the number of players becomes large. Second, we have shown in the present section

that a bargaining equilibrium with surplus destruction can involve a higher level of surplus

destruction the more players there are.

One more implication of Lemma 6.1 and of Theorem 5.6 is that a bargaining game

G(∆, n, r, σ) does not have a bargaining equilibrium with surplus destruction if ∆ ≥ n−1
σe
. If,

however, 0 < ∆ < n−1
σe
, then one can find an intermediate range of values for r such that the

game G(∆, n, r, σ) admits a bargaining equilibrium with surplus destruction, while values of

r which are lower or higher than this range lead to an efficient bargaining equilibrium. Using

the continuity of µ(r), we can show that the equilibrium time lapse and the concomitant

level of surplus destruction vanish in the limit as r approaches either end point of this

range.

Finally, we note that a similar continuity property holds in the case where ∆ = 0. In

that case, t is given by the equality

ert/r =
(1− σt)2(n− 1)

σ
.

We know from Theorem 5.6 that a bargaining equilibrium with surplus destruction exists

if r > σ/(n − 1). Since t ∈ (0, 1/σ] in a bargaining equilibrium with surplus destruction,

the right–hand side belongs to the interval [0, (n − 1)/σ), and is therefore bounded. For

any fixed t, however, the expression ert/r grows without bound as r goes to infinity. Hence,

in the limit as r goes to infinity, the equilibrium time lapse t must vanish. Now consider

the limit as r approaches σ/(n − 1) from above. In the limit, we find ert/r = (1 − σt)2,

and hence t = 0. We conclude that the amount of surplus destruction in a bargaining

equilibrium peaks for some intermediate value of the discount rate, but vanishes if players

are either sufficiently patient or sufficiently impatient.

7 Conclusion

We have revisited a unanimity bargaining game in the tradition of Rubinstein (1982). In

this kind of non–cooperative bargaining game, a proposer derives bargaining power from

the loss of surplus which would occur if her proposal were rejected. The longer is the

delay which occurs after such a rejection, and the more impatient the players are, the

greater is the proposer’s bargaining power. There is a vast literature on such unanimity

21



bargaining games in which both the time lapse and the players’ impatience are exogenously

given model parameters. We have augmented this type of unanimity bargaining game by

modeling the time lapse following the rejection of a proposal as a strategic choice by the

proposing player. The proposer can engage in an activity which costs a share of the

surplus but prolongs the time lapse which would follow the rejection of her proposal. We

have identified parameter conditions under which the proposer does not find it optimal to

prolong the time lapse, and so the “standard” equilibrium results are replicated. Moreover,

we have characterized parameter scenarios under which the proposer does destroy some

amount of surplus in order to prolong the time lapse. In equilibrium, the proposer is

better off than in a bargaining game in which the time lapse is exogenously fixed. For any

given number of players, we have established a tight upper bound on the amount of surplus

destruction. This bound depends only on the number of players. In the limit as the number

of players becomes very large, the entire surplus can be dissipated. The relation between

the number of players and surplus destruction is twofold: First, in a bargaining equilibrium

with surplus destruction, the maximal amount of surplus destruction increases with the

number of players. Second, the parameter region which admits an efficient bargaining

equilibrium shrinks as the number of players increases.
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Appendix

Proof of Lemma 3.1.

Suppose by way of contradiction that (θk, tk, Ak(t))k∈N is a bargaining equilibrium, and that

for every k ∈ N, it holds either that θk 6∈ A(tk), or that tk = 1/σ. Then, on the path of

equilibrium play, either there is perpetual disagreement, or the entire surplus is destroyed. In

either case, all players receive zero payoffs. Hence, in the supposed bargaining equilibrium, we

have γk((θ
k, tk, Ak(t))k∈N ) = 0 for all k ∈ N. Due to sincere voting, this implies that A(0) = Rn+.

Take a Player i, and consider a history at which Player i choses a proposal and a time lapse.

Suppose that he deviated from (θk, tk, Ak(t))k∈N by choosing a zero time lapse along with the

proposal (1/n, . . . , 1/n) ∈ A(0). This proposal is unanimously accepted, and so the deviation is

profitable for Player i.

�

Proof of Lemma 3.2.

Part 1. Due to sincere voting, θi ∈ A(ti) implies θij ≥ (1− σti)e−r(∆+ti)γj((θ
k, tk, Ak(t))k∈N )

for all i, j ∈ N. Suppose by way of contradiction that (θk, tk, Ak(t))k∈N is a bargaining equilibrium,

but there are Players i ∈ N and j ∈ N \ {i} such that

θij > (1− σti)e−r(∆+ti)γj((θ
i, ti, Ai(t))i∈N ).

Let θ̃ij = θij − ε and θ̃ii = θii + ε while θ̃ik = θik for all k ∈ N \ {i, j}. For ε > 0 sufficiently small,

it holds that θ̃i ∈ A(ti). Hence, making the proposal θ̃i instead of θi is a profitable deviation for

Player i.

Part 2. Since equilibrium proposals are required to be feasible, the inequality

θii ≤ 1 − σti − ∑j∈N\{i} θ
i
j holds in a bargaining equilibrium. We have to show that it

must hold with equality. Suppose not. Then, a proposal θ̃i defined by θ̃ii = θii + ε and θ̃ij = θij
for j ∈ N \ {i} would be acceptable and still satisfy the inequality 1 − σti ≥∑k∈N θ̃

i
k for ε > 0

sufficiently small.

�

Proof of Lemma 3.3.

Step 1. Suppose by way of contradiction that (θk, tk, Ak(t))k∈N is a bargaining equilibrium,

but there is j ∈ N such that γj((θ
k, tk, Ak(t))k∈N ) = 0. Suppose that there is some t′ ∈ [0, 1/σ]

such that

(1− σt′)e−r(∆+t′)
∑

k∈N
γk((θ

k, tk, Ak(t))k∈N ) < 1− σt′.

Then, let θ′ be a proposal given by θ′k = (1 − σt′)e−r(∆+t′)γk((θ
k, tk, Ak(t))k∈N ) for every k ∈

N \ {j}, and θ′j = ε > 0. Due to the above inequality, the proposal θ′ is feasible for ε > 0

sufficiently small. Moreover, due to sincere voting, it holds that θ′ ∈ A(t′). So, Player j can
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profitably deviate from the supposed bargaining equilibrium by choosing (θ′, t′), thus receiving

the share θ′j = ε > 0 instead of the share γj((θ
k, tk, Ak(t))k∈N ) = 0. We have now shown by

contradiction that

(1− σt)e−r(∆+t)
∑

k∈N
γk((θ

k, tk, Ak(t))k∈N ) ≥ 1− σt, ∀t ∈ [0, 1/σ]. (14)

Step 2. It follows from Lemma 3.1 that there is i ∈ N such that ti < 1/σ and θi ∈ A(ti).

Due to sincere voting, this implies the inequality

(1− σti)e−r(∆+ti)
∑

k∈N
γk((θ

k, tk, Ak(t))k∈N ) ≤ 1− σti.

But in Step 1 above, we have shown that the reverse inequality (14) holds for all t ∈ [0, 1/σ], and

in particular for ti. Therefore,

(1− σti)e−r(∆+ti)
∑

k∈N
γk((θ

k, tk, Ak(t))k∈N ) = 1− σti. (15)

Step 3. Due to Lemma 3.2, we have that θik = (1 − σti)e−r(∆+ti)γk((θ
k, tk, Ak(t))k∈N ) for

every k ∈ N \ {i}. Moreover, since the proposal θi is accepted, it holds by definition of γi(.) that

θii = γi((θ
k, tk, Ak(t))k∈N ). Now the equality (15) derived in Step 2 above can be written as

(1− σti)e−r(∆+ti)θii +
∑

k∈N\{i}
θik = 1− σti.

But due to Lemma 3.2, it holds that θii +
∑

k∈N\{i} θ
i
k = 1 − σti. Hence, we conclude that

(1 − σti)e−r(∆+ti) = 1, and thus ti = 0 and ∆ = 0. If ∆ > 0 in the bargaining game under

consideration, then we have obtained a contradiction, and the proof of the lemma is complete.

We have left to show the lemma for the case ∆ = 0.

Step 4. We are considering the case with ∆ = 0, and we have shown in Step 3 above that

ti = 0. Hence, the Eqn. (15) derived in Step 2 above simplifies to

∑

k∈N
γk((θ

k, tk, Ak(t))k∈N ) = 1.

Substituting into the Ineq. (14) derived in Step 1 above, and taking into account ∆ = 0, we find

that

(1− σt)e−rt ≥ 1− σt, ∀t ∈ [0, 1/σ].

The interval [0, 1/σ] is non–degenerate, hence there is t∗ ∈ (0, 1/σ) which satisfies the inequality

(1− σt∗)e−rt∗ ≥ 1− σt∗.
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Since t∗ < 1/σ, we can divide by 1− σt∗ to show that there is t∗ ∈ (0, 1/σ) such that e−rt
∗ ≥ 1,

the desired contradiction.

�

Proof of Lemma 3.5. Let (θk, tk, Ak(t))k∈N be a bargaining equilibrium. Now suppose that

there is a Player j ∈ N such that θj 6∈ A(tj). We have shown before that there is no perpetual

disagreement in a bargaining equilibrium, and no player destroys the entire surplus. Thus, the

subgame following rejection of θj ends in agreement on the proposal θi of some Player i. Denote

the delay between the rejection of θj and the acceptance of θi by τ̂ . Consider a deviation by

Player j, who chooses (θ̃j , t̃j) = (θi, ti) instead of (θj , tj). Since θi ∈ A(ti), this deviation leads

to immediate acceptance of the proposal θ̃j , and Player j receives the share θ̃jj = θij . But in

the supposed bargaining equilibrium, Player j receives that same share θij without the delay

τ̂ . Moreover, combining Lemma 3.3 with Lemma 3.2, we see that θij > 0. Therefore, due to

impatience, the deviation is profitable unless τ̂ = 0, as claimed by the lemma.

�

Proof of Lemma 5.7.

Suppose that t̄ > 0 is a time lapse chosen by all players in a bargaining equilibrium with

surplus destruction, and let x̄ = r(1−σt̄)2

σ+r(1−σt) be the “proposer share” in that bargaining equilibrium.

Suppose by way of contradiction that x̄ ≤
(

1
1+(n−1)e−r∆

)
. In this bargaining equilibrium, a Player

j ∈ N accepts any proposal which gives him at least the payoff (1− σt̄)e−r(∆+t̄)x̄. In particular,

due to the suppositions that t̄ > 0 and x̄ ≤
(

1
1+(n−1)e−r∆

)
, this implies that Player j accepts the

proposal θ̃ defined as follows:

θ̃j = (1− σt̄)e−r∆
(

1

1 + (n− 1)e−r∆

)
, j ∈ N \ {i},

θ̃i = 1− (n− 1)(1− σt̄)e−r∆
(

1

1 + (n− 1)e−r∆

)
.

In a bargaining equilibrium, there is no profitable deviation for Player i, so in particular, it is not

profitable for this player to propose θ̃ and obtain the concomitant payoff θ̃i. Hence, we have the

inequality θ̃i ≤ x̄ ≤
(

1
1+(n−1)e−r∆

)
. Substituting for θ̃i in this inequality yields

1−
(

(n− 1)(1− σt̄)e−r∆
1 + (n− 1)e−r∆

)
≤
(

1

1 + (n− 1)e−r∆

)
.

Equivalent transformation yields (n− 1)e−r∆σt̄ ≤ 0, contradicting the supposition that t̄ > 0.

�
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