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Abstract

Dynamic partial adjustment models of residential electricity demand account
for the fact that households may not adjust electricity consumption immediately
in response to changes in prices, income, and other relevant factors, because of
behavioral habits or adjustment costs for the capital stock of appliances. How-
ever, forward-looking behavior is generally neglected. Expectations about future
prices or consumption may have an impact on current decisions. In this paper we
propose rational habit models for residential electricity demand and apply them
to a panel of 48 US states between 1995 and 2011. We estimate lead consumption
models using fixed effects, instrumental variables, and the GMM Blundell-Bond
estimator. We find that expectations about future consumption significantly in-
fluence current consumption decisions, which suggests that households behave
rationally when making electricity consumption decisions. This novel approach
may improve our understanding of the dynamics of residential electricity demand
and the evaluation of the effects of energy policies.
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1 Introduction

In the US, residential electricity consumption accounts for about a third of total elec-

tricity consumption. Understanding the dynamics of household energy consumption

is of great importance in formulating policies to improve the efficient use of energy

services.

Households use energy services (e.g. lightning, TV entertainment, cooling of food,

hot water) by combining electrical appliances and electricity. Therefore, households

face simultaneous consumption and investment decisions: how much energy to con-

sume and what stock of electrical appliances to hold. Households’ reaction to a chang-

ing environment, such as an increase in the price of electricity, may then lead to an

adjustment in the stock of electrical appliances or a change in their use. For in-

stance, households may decide to switch to a more energy efficient lightning system,

or they may adjust their consumption habits by switching off the light more often

when leaving a room.

Rational households, looking at the constant maximization of utility over time

(Becker and Murphy, 1988), take expectations about future electricity consumption

or prices into account when making current consumption and investment decisions.

In addition, because of habits or the constraint generated by the opportunity cost of

changing the stock of electrical appliances, current consumption decisions are affected

by past consumption. Households may not be able to change their electricity consump-

tion or to adjust their stock of electrical appliances immediately to react to changes in

the price of electricity. Therefore, households’ current consumption depends on both

past and future consumption levels.

The recent literature on residential electricity demand neglects rational households

behavior (e.g., Alberini and Filippini, 2011; Blázquez et al., 2013; Cebula, 2012).

Generally, residential electricity demand is estimated using static models, where no

interdependence of consumption decisions over time is assumed, or using dynamic

partial adjustment models that account only for the impact of past consumption. To

our knowledge, only one study considers rational habits in energy consumption (Scott,

2012), but the analysis focuses on gasoline rather than electricity, and the econometric

approach relies on lead price models, i.e. models where current consumption is affected

by future prices, rather than lead consumption models, i.e. models where current and

future consumption are interdependent.

This paper builds on the literature on rational habits (e.g., Becker et al., 1994) to

extend and generalize the existing dynamic partial adjustment approach to electricity
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demand by considering expectations about future consumption. This novel approach

can provide more precise estimates of the dynamics of residential electricity consump-

tion due to behavioural habits and constraints in the stock of appliances. We show

that expectations about changes in future consumption significantly influence current

consumption, which suggests evidence of rational household behavior in electricity

consumption decisions.

The remaining of the paper is organized as follows. Section 2 gives an overview of

the existing literature on residential electricity consumption. In section 3 we derive

a rational habit model of residential electricity consumption. Section 4 presents the

empirical approach and describes the data, and section 5 discusses the econometric

estimation. The results are summarized and discussed in section 6. Section 7 concludes

the paper.

2 Residential electricity demand in the literature

Residential electricity demand has been studied extensively in the economic literature.

Since the early works of Houthakker (1951), Fisher and Kaysen (1962) and Mount

et al. (1973), the focus of most studies has been the relationship between price and

consumption, using rather similar sets of control variables (electricity prices, prices

of substitutes, income, weather and climate conditions). First empirical studies on

energy demand were based on aggregate data sets (state or city level), whereas studies

published in the eighties and afterwards made use of aggregate as well as disaggregate

data sets. In this review of the literature, we are mainly interested in studies based

on aggregate data sets.1

More recent studies largely vary in the estimated short- and long-run price elastic-

ities. These differences are likely due to different time periods, data sets (time series

vs. panel data) and econometric approaches. Okajima and Okajima (2013) and Espey

and Espey (2004) give an overview of estimated short- and long-run price and income

elasticities. Short- and long-run price elasticities of selected studies of residential elec-

tricity demand from different geographic regions are summarized in Table 1. Price

elasticitites vary between -0.05 and -0.4 in the short-run, and between -0.19 and -1.89

in the long-run.

Regarding the econometric approach, most studies employ either static models

or dynamic partial adjustment models. Static residential electricity demand models

are usually estimated using ordinary least squares (OLS) and fixed effects (FE) or
1A comprehensive survey of early studies on electricity demand with a focus on the residential

sector is provided by Taylor (1975) and Bohi and Zimmerman (1984).
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random effects (RE) models. Eskeland and Mideksa (2009) estimate a static model

for residential electricity demand in 31 European countries. The main interest of

the authors lies on the impact of temperature changes on electricity consumption.

Also, Azevedo et al. (2011) estimate residential electricity demand using static models

applied to two panels: 1990-2003 for 15 EU countries, and 1990-2004 for US states.

The authors find short-run price elasticities of -0.2 for the EU-15, and -0.21 to -

0.25 for the US. More recently, Cebula (2012) estimates residential electricity demand

using US state-level data between 2002 and 2005. The emphasis of this study is

on the key influencing factors of residential electricity consumption and the impact

of state energy efficiency policies. Through a two-stage least squares approach, the

author estimates that residential electricity consumption decreases with the adoption

of energy efficiency programmes. Furthermore, electricity consumption decreases with

price, and increases with annual cooling degree days and per capita real disposable

income.

Dynamic partial adjustment models are generally more realistic than static models

and allow for the calculation of short- and long-run prices and income elasticites. Early

studies by Houthakker et al. (1974) and Houthakker (1980) estimate price elasticities

at the national and regional level allowing for a partial adjustment in consumption.

More recently, Bernstein and Griffin (2006) and Paul et al. (2009) employ dynamic

models for energy demand, although they do not address the potential dynamic panel

bias that arises by including the lag of consumption. Both studies estimate residential

electricity demand in the US. The former study uses data between 1977 and 2004, and

finds short- and long-run price elasticities of -0.24 and -0.32 respectively. The latter

study covers the years 1990 to 2004, and estimates short-run price elasticities between

-0.11 and -0.15. The authors claim that attempts to instrument the lag of consumption

using past prices and demand did not succeed, and resulted in unstable estimates.

Therefore, only least squares dummy variable (LSDV) estimates are reported.

Some recent studies account for dynamic panel bias and use more advanced dy-

namic panel data models (e.g., panel cointegration, autoregressive distributed-lag

(ARDL), generalized method of moments (GMM) estimators) or corrected FE models

(e.g., Kiviet (1995) estimator). Dergiades and Tsoulfidis (2008) investigate residen-

tial electricity demand in the US between 1965 and 2006 using the ARDL approach

to panel cointegration. They estimate a short-run price elasticity of -0.39, and a

long-run elasticity of -1.07. Bernstein and Madlener (2011) analyze residential elec-

tricity demand for 18 OECD countries over the time period 1981-2008 using panel

cointegration and Granger causality testing. They find a short-run price elasticity of
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-0.1, and a long-run elasticity of -0.39. Lower values (-0.07 and -0.19) are obtained

by Blázquez et al. (2013), who apply a FE estimator and the Blundell-Bond system

GMM estimator to a Spanish panel. Alberini and Filippini (2011) estimate dynamic

models of residential electricity in the US and obtain slightly larger elasticities: be-

tween -0.08 and -0.15 for the short-run, and between -0.44 and -0.73 for the long-run.

The Kiviet corrected FE estimator and the system Blundell-Bond GMM estimator

are used to account for possible correlation between the lag of consumption and the

error term. To tackle possible endogeneity of electricity price due to measurement

error, the authors also consider an instrumental variable approach.2 Finally, Kamer-

schen and Porter (2004) use both a partial adjustment approach and a simultaneous

equation approach. Simultaneous equation models provide negative price elasticities,

whereas partial adjustment models provide positive price elasticities in some cases.

The authors conclude that partial adjustment models are more appropriate in the case

of energy demand estimation.

To our knowledge, none of the studies in the above literature on residential elec-

tricity demand considers expectations about future prices or consumption. A recent

study by Scott (2012) represents a partial exception since it focuses on gasoline de-

mand. The author estimates rational habit models for gasoline demand in the US

including expectations about gas prices. However, the empirical approach includes

the lead of price as explanatory variable instead of the lead of consumption suggested

by the theoretical model used in this paper. In our empirical analysis of residen-

tial electricity demand in the US, we estimate rational habit models that include both

past and lead consumption as explanatory variables in accordance with the theoretical

approach proposed by Becker et al. (1994).

3 A rational habit model of residential electricity demand

In this section, we build a rational habit model of residential electricity consump-

tion by extending and generalising the existing dynamic partial adjustment model.

Households are assumed to maximize utility from energy services based on electricity

(e.g. lighting, hot water, cooling, and entertainment) and other consumption goods.

Energy services can be produced by combining two inputs: electricity and electrical

appliances.
2Another possibility to account for potential endogeneity of price is to employ simultaneous equa-

tion models. However, Baltagi et al. (2002) and Baltagi (2007) find that generalized least squares
(GLS), FE, and OLS estimation techniques outperform the simultaneous equation approach in most
cases.
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Household utility at time t is then given by:

Ut = u(et, At, ct;xt), (1)

where et is electricity, At is the capital stock of electrical appliances, ct represents

all other consumption goods, and xt is a vector of other (environmental) variables

affecting the consumption of energy services, such as weather and energy substitutes.

Using Eq. (1) we can write the lifetime utility function of the household as:

∞∑

t=1

δt−1Ut =
∞∑

t=1

δt−1u(et, At, ct;xt), (2)

where δ = (1 + r)−1 is the constant rate of time preference and r is the interest rate.

We hypothesize that the stock of electrical appliances is the accumulation of elec-

tricity investments over time, which can be approximated by past electricity use.

Therefore, the current stock electrical appliances develops according to the following

relationship:

At = (1− ρ)At−1 + et−1, (3)

where ρ is the depreciation rate of the stock, i.e. the rate at which electrical appliances

lose their ability to provide satisfactory energy services in the absence of energy in-

vestments. Because this stock adjustment condition relates the stock of appliances to

the consumption of electricity, we can see the stock of electrical appliances as a stock

of behavioural habit. Agents are habituated to some use of energy, which generates a

stock of behavioural habit to electricity consumption.

Using Eqs. (2) and (3) we can write the household lifetime utility maximization

problem. To simplify the analysis we assume that the stock of habit fully depreciates

after one period, i.e. ρ = 1. Consequently, we get:

∞∑

t=1

δt−1u(et, et−1, ct;xt) (4)

s.t. e0 = E0 and
∞∑

t=1

δt−1(ct + Ptet) =W 0, (5)

where E0 is the initial condition defining the level of electricity consumption in period

0, W 0 is the present value of wealth, and Pt is electricity price at period t.

The first-order conditions to solve the problem above imply that the marginal

utility of current electricity consumption plus the discounted marginal effect on the

next period’s utility of current consumption is equal to the marginal utility of wealth

multiplied by the current electricity price. Furthermore, the marginal utility of wealth

6



equals the marginal utility of the composite good in each period. Using a quadratic

utility function, the solution of the first-order conditions leads to the following first-

difference equation:

et = θet−1 + δθet+1 + θ1Pt + θ2xt + δθ3xt+1. (6)

In this equation current electricity consumption is a function of past and future con-

sumption, price, and all other variables, some of which are unobserved. The coefficient

θ depends on the parameters of the quadratic utility function.3 Expectations about

environmental conditions, such weather or price of energy substitutes, are captured

by the coefficient of xt+1.

4 Empirical model and data

To empirically investigate the dynamics of residential electricity consumption, we

modify the first-difference equation (6) to obtain:4

eit = β0 + β1eit−1 + β2eit+1 + β3Pit + β4PGit + β5Yit + β6HDDit +

+β7CDDit + β8HSit + vit, (7)

where eit is residential electricity consumption in the ith state (i = 1, ..., 50) at time t,

PGit is the price of electricity substitutes (gas), Yit is income per capita, HDDit and

CDDit denote, respectively, heating degree days and cooling degree days, and HSit
is the household size. The remaining unobserved variables may be time-invariant or

time-variant. Time-invariant aspects are captured by fixed-effects estimators in our

econometric approach (see section 5). The residual time-variant unobserved hetero-

geneity is included in the disturbance term vit.

The coefficient β1 captures the impact of past consumption on current consump-

tion. Consequently, a positive and significant coefficient is consistent with the hy-

pothesis that electricity consumption is a habit. Moreover, the rational habit model

defined by Eq. (7) allows us to capture the behaviour of forward-looking agents.

How agents adjust their current consumption in response to expectations on future

consumption sheds light on rational behaviour. Rational households are expected to

increase current consumption in anticipation of higher consumption in the future. The

coefficient β2 measures the impact of future consumption on current consumption. A

positive and significant coefficient would be consistent with the hypothesis of rational
3For further details see Baltagi and Griffin (2001). A comprehensive discussion on the interpre-

tation and derivation of Eq. (6) can be found in Becker et al. (1994).
4See also Baltagi and Griffin (2002) for a similar approach, though applied to alcohol consumption.

7



behaviour and would support rejecting the hypothesis of myopic behaviour, which is

implicit in partial adjustment models of electricity demand. From Eq. (7) we can also

obtain the rate of time preference (δ) as the ratio between the estimated coefficient of

eit+1 (β2) and the estimated coefficient of eit−1 (β1).

Short- and long-run price elasticities can be obtained from Eq. (7). We can expect

that electricity demand in the short run is less responsive to price changes than in

the long run, as the stock of electrical appliances or behavioural habits concerning

electricity consumption cannot be changed immediately. Indeed, some habits such as

switching off the lights when leaving a room, can be changed quickly in response to

rising electricity prices. Other habits can be more persistent, for instance TV view-

ing time per day. Moreover, the replacement of most electrical appliances for more

efficient ones represents a considerable financial investment for the majority of house-

holds. Therefore, we cannot expect immediate replacement in response to changing

prices, and short-run electricity consumption may depart from long-run optimal con-

sumption. The demand does not adjust immediately to the long-run equilibrium, but

gradually converges to the optimum level even when consumers are rational and have

expectations about future electricity demand.

Static models of electricity consumption can be derived from our rational habit

model. In the static case, there is no delay in the adjustment process since there is

no link between consumption in different periods. Static models assume that there

are no costs of adjustment nor expectations that affect current decisions. The tradi-

tional dynamic partial adjustment model is more realistic as it allows for the sluggish

adjustment process between optimal (long-run) consumption levels and short-run con-

sumption. This model can be obtained from Eq. (7) assuming that agents do not take

information about the future into account. Therefore, households appear to be my-

opic. Myopic households maximize current period utility instead of the lifetime utility

function (2) under the assumption that current electricity consumption is affected by

past consumption as hypothesized by Eq. (3). Finally, our full empirical model may

disclose evidence of rational habits in residential electricity consumption if households

take into account expectations about the future when making current consumption

decisions.

An alternative to the lead consumption model (7) is to define a lead price model,

which assumes that future prices represent the relevant information for rational con-

sumers. This empirical approach builds on the theoretical model developed by Brown-

ing (1991), who defines a demand system for many goods starting from intertemporal

nonseparability in preferences. Inspired by this work, Scott (2012) estimates a lead-
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price rational habit model for gasoline demand based on a single equation and using

a log-log functional form. Since the theoretical framework fails to derive closed-form,

analytical solutions, the author uses simulation to discuss the model implications.

Consequently, the parameters of the suggested empirical model cannot be interpreted

straightforwardly using the theoretical model. In the following empirical analysis we

will focus on lead consumption models, which derive directly from our theoretical

framework.5

4.1 Data

To test the hypothesis of rational behaviour in the consumption of residential elec-

tricity, we use a data set covering 51 US states (including the District of Columbia)

from 1995 to 2011. For the analysis, three states (Alaska, Hawaii, and Rhode Island)

are excluded because of incomplete observations. Descriptive statistics for electricity

consumption and prices, and other important covariates for the remaining 48 states

are presented in Table 2.

Data on residential electricity consumption (e), electricity price (P ) and gas price

(PG) are provided by the US Energy Information Agency (EIA). The average electric-

ity and gas prices are obtained by dividing utilities revenues by sales in the residential

sector (EIA calculation). Information on income (Y ), number of inhabitants in the

state (POP ) and the number of housing units necessary to calculate average house-

hold size (HS = POP/housing units), are from the Bureau of Economic Analysis of

the US Census Bureau. Heating degree days (HDD) and cooling degree days (CDD)

are obtained from the National Climatic Data Center at the National Oceanic and

Atmospheric Administration (NOAA).6

The box-and-whiskers graph (Figure 1) shows the variation in residential electric-

ity consumption across states over time. Residential electricity consumption slighly

increases over time. We observe that the variation within states (between variation)

largely overcome the variation over time (within variation).7 The increasing trend in

residential electricity consumption is associated to a decrease in price in the first half

of the period. Conversely, during the second half of the period residential electricity
5Some results from the estimation of a lead price model are reported in the Appendix (Table 7).
6Degree day is an index that reflects demand for energy to heat or cool houses. The index is

obtained from daily temperature observations at major weather stations in the US. Heating (cooling)
degree days are summations of negative (positive) differences between the mean daily temperature
and the 65◦F base during a year.

7In the box and whiskers plot the horizontal line inside the shaded box represents the mean
consumption of residential electricity across states in each year. The width of the shaded box includes
consumption in the second quartile, i.e. 50% of the states in a given year. Finally, the length of the
two whiskers illustrates the third quartile of observations, i.e. 75% of the states.
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price increased.

As we will discuss in more detail later, instrumental variables for the lead and the

lag of consumption as well as for the prices are needed to estimate our model (7). For

a preliminary investigation of potential instruments, Table 3 shows cross-correlations

between residential electricity consumption (et), price of residential electricity and

gas (Pt and PGt), lead electricity price (Pt+1) and spatial lag of electricity price

(P−i,t), and price of gas and coal for the energy production sector (PGp
t and PCp

t ).

Also, Figure 2 provides a graphical illustration of some price figures. The spatial

lag of electricity price is calculated as the average price of bordering states for each

state included in the data set. Some of these figures are clearly of interest as external

instruments for the lead of consumption and electricity prices in our lead consumption

models.

5 Econometric approach

For the estimation of the electricity demand equation (7), we have a balanced panel

data set for 48 US states observed over the period 1995 to 2011. Therefore, the data

set is characterized by a relatively long time dimension (T= 17) and a relatively small

number of units (N=48). In the choice of the estimator for the dynamic model we

should consider three potential econometric problems. First, due to the relatively low

number of explanatory variables, a possible unobserved heterogeneity bias could be

present. Second, the lagged and lead electricity consumption could be endogenous

and create the so called “dynamic panel bias” (Nickell, 1981; Roodman, 2009). This

bias arises because the lagged and lead dependent variable are positively correlated

with the unobserved fixed effects. Since the individual fixed effects are part of the

error terms in all periods, et−1 and et+1 will be correlated with the current error term.

Third, as discussed in Alberini and Filippini (2011), the electricity price variable could

suffer from a measurement error problem. This measurement error could be due to the

fact that electricity price has been calculated by the US Energy Information Agency

by dividing the total revenue from sales in the residential sector by total kWh sold to

residential customers.

Generally, to account for unobserved heterogeneity bias using panel data, we can

specify models with either fixed effects (FE) or random effects (RE). Further, to

solve the endogeneity problem of some of the explanatory variables we can use a two-

stage least squares (2SLS) estimator or estimators based on a the general method of

moments (GMM). Arellano and Bond (1991) as well as Blundell and Bond (1998)

propose two different estimators based on GMM. For instance, Blundell and Bond
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(1998) propose a system GMM estimator (GMM-BB), which uses lagged first differ-

ences as instruments for equations in level as well as the lag variable in first-difference

equations. However, as discussed by Baltagi et al. (2002), one possible problem of

these two GMM estimators is that their properties hold for N large, so the estimation

results can be biased in panel data with a small number of cross-sectional units as in

our case.8

In this study, we choose to estimate model (7) using the following three estimators:

FE, 2SLS fixed effects (FE2SLS) and the two-step system GMM estimator proposed

by Blundell and Bond (1998).9 The FE and GMM estimators are used for comparison

purposes. Note that Baltagi and Griffin (2002) and Filippini and Masiero (2011) have

successfully applied the FE2SLS estimator in dynamic demand models that include

both lead and lagged values of consumption as explanatory variables. In this approach,

lagged and lead values of prices, income and other covariates are used as instruments

for past and future consumption. One of the advantage of the FE2SLS estimator is

that it can be also used with a relatively small N.

The battery of instruments used in our estimations is quite generous. The instru-

ments used in the FE2SLS model are the one- and two-period lags and future values

of the spatial lag of electricity price, the input prices of coal and gas for the electricity

sector, and the one-period lag and lead of heating degree days. To be a valid instru-

ment, the variable has to be correlated with the regressors and uncorrelated with the

error term. We are instrumenting three regressors: the lag of electricity consumption,

the lead of electricity consumption, and the price of electricity. The price of electric-

ity is largely determined by the generation costs of electricity. In the US, the main

inputs for electricity generation are coal and natural gas. In 2014, coal and natural

gas accounted for 39% and 27% of total US electricity generation, respectively. The

input prices for coal and gas are the main determining factors for generation costs.

The other major generation source, nuclear energy, accounts for around 19% of to-

tal electricity generation. However, production costs for nuclear electricity do not

change considerably over time and, therefore, are not suitable as instruments. Coal

and natural gas input prices for the power generation sector have no direct influence

on residential electricity consumption. Hence, they are expected to be uncorrelated

with the error term of our model. Furthermore, we take the first and the second lag

and lead of the spatial lag of electricity price as instruments. The spatial lag of elec-
8For a general presentation and discussion of the estimators for dynamic panel models, see Baltagi

et al. (2002).
9In a preliminary analysis we also explored the possibility to use the corrected version of the fixed

effects estimator proposed by Kiviet (1995). However, this estimator is not suitable in the presence
of several endogenous variables.
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tricity price represents an obvious instrument since the average of prices generated

in neighbouring states is likely to be exogenous to electricity consumption within the

state. Therefore, to instrument both lag and lead of consumption, we use the first

lag and lead of the spatial lag of electricity price (direct effect) as well as the second

lag and lead of the spatial lag of electricity price (indirect effect through past and

future consumption). To account for changing weather conditions that may have an

important impact on residential electricity consumption, we also include the lag and

lead of heating degree days. Finally, for our GMM estimation we use the lagged values

of electricity consumption and price and their first differences, the input prices of coal

and gas for the electricity sector, the spatial lag of electricity price and heating degree

days as well as their one- and two-period lags.

6 Estimation Results

We estimate Eq. (7) using the fixed effects estimator, the system GMM estimator

and two FE2SLS specifications. As previously mentioned, GMM estimators might

not be suitable since we have a relatively small number of cross-sectional observations

(N small), which may lead to biased results. This potential bias arises because of

possible serial correlation of the idiosyncratic error term in system GMM specifica-

tions. Therefore, due to the potential problems of the GMM estimator and although

our results are quite robust across different specifications, the FE2SLS estimator is

our preferred estimation method. To control for potential endogeneity of electricity

price, we also estimate the FE2SLS model by instrumenting the price as well as the

lag and lead of consumption. The estimation results of the full dynamic models of

residential electricity demand are summarized in Table 4. For comparison purposes,

we also provide the results of the partial adjustment model in the Appendix (Table

6).

The estimated coefficients of the lag and lead of consumption have the expected

positive sign and are highly significant in all estimation approaches. The values of the

coefficients are fairly robust across all estimation methods, and vary between 0.422

and 0.483 for the lag and between 0.206 and 0.374 for the lead. These results indi-

cate that households are taking into account both past consumption and expectations

about future consumption in their current consumption decisions. This suggests that

households are not myopic and seems to disagree with the specification of the tradi-

tional dynamic partial adjustment model. Although current electricity consumption

is partially driven by past consumption, there is evidence that expectations about

future consumption play a role in habit formation.
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The coefficient of electricity price is negative and significant in all estimations.

Income has a positive effect on current electricity consumption. The coefficient of the

price of gas exhibits a negative sign in the FE and the FE2SLS estimations, although

it is never significant. This might indicate that gas is not a good substitute for

electricity. The main energy service produced with gas or electricity - room heating

- is a long-run decision and, therefore, may not be affected by variations in current

prices. The coefficients of heating and cooling degree days are highly significant and

have a positive effect in all the estimations. This indicates that the use of electricity

increases if there is more need to heat or cool the house. Finally, the coefficient of the

size of the household is negative and significant, except in the GMM estimation.

For the system GMM estimation, we report the Arrelano-Bond test for serial cor-

relation of the idiosyncratic error term and the Hansen test of overidentifying restric-

tions. The result of the Hansen test shows that we cannot reject the null hypothesis of

joint validity of the moment conditions (p-value of 0.52), suggesting that the instru-

ments used are exogenous (i.e. uncorrelated with the error term) and the excluded

instruments are correctly excluded. The null hypothesis of no serial correlation of the

idiosyncratic error term can be rejected at the 10% level of significance (p-value of

0.087).

To test the validity of the FE2SLS estimation, we report several test statistics.

The underidentification test shows that the model is identified (we reject the null

hypothesis of underidentification with a p-value of 0.0000). To exclude the possibility

of weak identification, we report the Kleibergen-Papp rK Wald F statistic for weak

identification, and the 5% critical value. We furthermore provide the Hansen J statistic

as overidentification test for the instruments used. A rejection of the null hypothesis

of joint validity would cast doubt on the validity of the instruments. The Hansen J

statistic is consistent in the presence of heteroskedasticity. For both FE2SLS models

we cannot reject the null hypothesis of joint validity with a p-value well above 0.1.

We can therefore conclude that our preferred estimation strategy (FE2SLS) passes all

the relevant tests.

From Eq. (7) we can obtain short- and long-run price elasticities (εt and ε∞)

of electricity demand. These are evaluated at the means of the data (e and P ) and

can be calculated using the formulas derived by Becker et al. (1994). The effect on

current consumption of a permanent reduction in electricity price, i.e. the short-run

elasticity, is given by εt = (det/dPt)(P/e) with det/dPt = 2β3/[1−2β2+(1−4β1β2)
0.5].

The long-run effect of a permanent reduction in electricity price on consumption is

measured by ε∞ = (de∞/dP )(P/e) with de∞/dP = β3/(1 − β1 − β2). Similarly, we
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can calculate short- and long-run income elasticities using the above formulas and

substituting β3 for β5 and P/e for Y/e. When consumers are not forward-looking, as

in the traditional partial adjustment model, we can use these formulas assuming that

β2 is zero.

Table 5 reports the short- and long-run price elasticities calculated for all the es-

timation strategies. Short-run price elasticities in rational habit models range from

0.1077 in the FE2SLS model to 0.2708 in the GMM specification, whereas long-run

price elasticities range from 0.2087 (FE2SLS) to 0.7355 (GMM). Our calculated elas-

ticities are fairly robust across all models and are in line with elasticities found in

the literature. Overall, we can argue that residential electricity demand is relatively

inelastic in the short-run. This is probably due to the cost of adjusting immediately

the stock of electrical appliances in response to a change in the price or to behavioural

habits in the use of electricity. Conversely, residential electricity demand is more elas-

tic to price changes in the long run. Agents have more opportunities to adapt their

behavioural habits and replace their electrical equipment.

7 Conclusions

The understanding of factors affecting residential electricity demand and its respon-

sinevess to price changes is of relevance to design effective energy saving policies. So

far, residential electricity demand has been investigated by means of dynamic par-

tial adjustment models, making restrictive assumptions on the behaviour of economic

agents. Our empirical analysis suggests that the traditional dynamic partial adjust-

ment model is not sufficient to explain households’ behaviour in energy consumption.

This model assumes that agents do not take into account expectations about future

consumption or prices when taking current consumption decisions. We provide evi-

dence that agents are forward looking when choosing electricity services to maximize

intertemporal utility. Therefore, partial adjustment models may lead to biased esti-

mations of the impact of energy policies that change the price of electricity or have an

impact on future consumption. Indeed, the current effect of policies may depend on

their impact on future consumption. In other words, their effect can be reinforced by

an anticipated effect on future consumption. Conversely, temporary policies that are

not expected to have permanent effects on future consumption may have a negligible

impact on current consumption decisions.
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Tables and Figures

Table 1: Short- and long-run price elasticies of residential electricity demand from
panel data models.

Study Time period Country Price elasticities
Short-run Long-run

Fisher and Kaysen (1962) 1937-1938 US -0.16 to -0.24
Houthakker and Taylor (1970) 1946-1957 US -0.13 -1.89
Mount et al. (1973) 1960-1071 US -0.14 -1.20
Maddala et al. (1997) 1970-1990 US -0.28 to -0.06 -0.87 to 0.24
Bernstein and Griffin (2006) 1977-2004 US -0.24 -0.32
Narayan et al. (2007) 1978-2003 G7 -0.11 -1.45 to -1.56
Dergiades and Tsoulfidis (2008) 1956-2006 US -0.39 -1.07
Paul et al. (2009) 1990-2004 US -0.15 to -0.11
Eskeland and Mideksa (2010) 1994-2005 Europe -0.2
Nakajima (2010) 1975-2005 Japan -1.13 to 1.20
Azevedo et al. (2011) 1990-2004 US -0.21 to -0.25

1990-2003 EU-15 -0.20 to -0.21
Bernstein and Madlener (2011) 1981-2008 OECD -0.05 to -0.06 -0.39
Alberini and Filippini (2011) 1995-2007 US -0.08 to -0.15 -0.44 to -0.73
Blázquez et al. (2013) 2000-2008 Spain -0.07 -0.19
Okajima and Okajima (2013) 1990-2007 Japan -0.4 -0.49

Table 2: Summary statistics of main variables for the whole panel (1995-2011).

Label Variable description Mean Std. Dev. Min. Max.
e Electricity consumption per capita (in kWh) 4612.931 1229.059 2147.104 7425.204
P Electicity price (per kWh) 0.049 0.013 0.03 0.095
PG Gas price (per thousand BTU) 0.005 0.001 0.003 0.01
Y Income per capita (in US $) 15227.339 2641.341 10239.206 29294.364
HDD Heating degree days 5137.783 2012.525 555 10745
CDD Cooling degree days 1142.414 803.909 128 3870
HS Household size (POP/housing units) 2.323 0.167 1.836 2.994
POP Population/1000 5976.993 6407.277 485.16 37683.934

Table 3: Cross-correlation between price and consumption and between different price
figures.

Variables et Pt Pt+1 PGt P−it PGp
t PCp

t

et 1.000
Pt -0.635 1.000
Pt+1 -0.619 0.981 1.000
PGt 0.156 0.302 0.350 1.000
P−it -0.514 0.716 0.695 0.005 1.000
PGp

t 0.153 -0.042 0.038 0.569 -0.304 1.000
PCp

t 0.001 0.517 0.533 0.493 0.240 0.084 1.000
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Table 4: Rational (full dynamic) models of residential electricity demand.

FE FE2SLS GMM
Instrumented variables: et−1, et+1 et−1, et+1, Pt et−1, et+1, Pt

Model: (1) (2) (3) (4)
et−1 0.476∗∗∗ 0.432∗∗∗ 0.422∗∗∗ 0.483∗∗∗

(14.97) (4.90) (4.70) (24.29)
et+1 0.309∗∗∗ 0.221∗∗ 0.206∗∗ 0.374∗∗∗

(10.84) (2.85) (2.80) (9.64)
Pt -5602.4∗∗∗ -6787.8∗∗∗ -8196.7∗∗ -9894.1∗

(-3.80) (-4.19) (-2.60) (-2.53)
PGt -10921.8 -1243.3 -121.5 66831.5

(-1.08) (-0.12) (-0.01) (1.88)
Yt 0.0114 0.0309∗∗ 0.0325∗∗ 0.103∗

(1.36) (2.87) (3.02) (2.38)
HSt -306.9∗ -562.0∗∗ -588.6∗∗ 960.5∗

(-2.28) (-3.11) (-3.29) (2.09)
HDDt 0.181∗∗∗ 0.185∗∗∗ 0.182∗∗∗ 0.225∗∗∗

(9.72) (10.16) (9.21) (13.32)
CDDt 0.724∗∗∗ 0.641∗∗∗ 0.635∗∗∗ 0.741∗∗∗

(14.18) (16.84) (16.76) (24.91)
Constant 182.5 -4846.5∗∗∗

(0.51) (-4.48)
N 719 611 611 658
R2 0.918 0.912 0.910
Underidentification testa 41.495 42.007

[0.0000] [0.0000]
Weak identification testb 7.096 6.164
5% critical valuec 3.78 NA
Hansen J statisticd 9.848 10.210

[0.1312] [0.1161]
Arellano-Bond test AR(2) 1.71

[0.087]
Hansen test of overid. restrictions 35.90

[0.520]
Notes: The instruments used in the FE2SLS regression (Model 2) are PCp

t , PGp
t , the one- and

two-period lags and future values of P−i,t, and the one-period lag and lead of HDDt. First-stage
regressions on the excluded instruments yield significant F-tests. The instruments used in the
GMM regression are all lagged levels of electricity consumption and price, their first differences,
PGp

t , PCp
t , P−i,t, and HDDt, and their one- and two-period lags.

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets; p-values in square brackets;
a Kleibergen-Papp rK LM statistic;
b Kleibergen-Papp rk Wald F statistic;
c Stock-Yogo weak ID test critical value (10% maximum LIML size);
d Overidentification test of all instruments.
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Table 5: Short- and long-run price elasticities

Myopic model Rational model
Model Short run Long run Short run Long run

FE (1) 0.1073 0.2603 0.1167 0.2777
FE2SLS (2) 0.0931 0.2847 0.1077 0.2087

(3) 0.0942 0.2207 0.1254 0.2352
GMM (4) 0.0858 0.9858 0.2708 0.7355

Figure 1: Variation in residential electricity consumption per capita across states and
over time.
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Figure 2: Lead and spatial-lag prices for residential electricity over time, and price of
gas and coal for the production sector over time.
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Table 6: Myopic (partial adjustment) models of residential electricity demand.

FE FE2SLS GMM
Instrumented variables: et−1 et−1, Pt et−1, Pt

Model: (1) (2) (3) (4)
et−1 0.588∗∗∗ 0.673∗∗∗ 0.573∗∗∗ 0.913∗∗∗

(15.09) (5.31) (5.41) (18.75)
Pt -10051.1∗∗∗ -8715.3∗∗∗ -8824.7∗∗ -8032.4

(-5.67) (-4.86) (-2.63) (-1.83)
PGt -11236.9 -11463.9 -9937.6 48735.5∗

(-0.78) (-1.06) (-0.90) (1.98)
Yt 0.0326∗ 0.0454∗∗∗ 0.0505∗∗∗ 0.00718

(2.29) (4.47) (4.80) (0.29)
HSt -681.7∗∗∗ -704.7∗∗∗ -812.1∗∗∗ -352.5

(-3.79) (-3.71) (-4.57) (-1.12)
HDDt 0.190∗∗∗ 0.191∗∗∗ 0.195∗∗∗ 0.0463

(9.30) (10.54) (10.26) (1.28)
CDDt 0.704∗∗∗ 0.718∗∗∗ 0.711∗∗∗ 0.187∗

(15.57) (18.69) (18.59) (2.47)
Constant 1676.3∗∗∗ 705.0

(4.48) (0.61)
N 766 752 752 670
R2 0.896 0.896 0.898
Underidentification testa 16.880 20.522

[0.0007] [0.0000]
Weak identification testb 6.758 8.028
5% critical valuec 6.46 5.44
Hansen J statisticd 3.729 0.756

[0.1550] [0.3847]
Arellano-Bond test AR(2) 1.57

[0.116]
Hansen test of overid. restrictions 40.45

[0.991]
Notes: The instruments used in the FE2SLS regressions are PGp

t (PCp
t in Model 2), its one-

period lag, and the spatial lag of electricity price lagged one period. First-stage regressions on
the excluded instruments yield significant F-tests. The instruments used in the GMM regression
are lagged levels of electricity consumption and price dated t− 2 to t− 3, their first differences,
the spatial lags of electricity price and their time lags and first differences until period t− 3.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; t statistics in round brackets; p-values in square brackets;
a Kleibergen-Papp rK LM statistic;
b Kleibergen-Papp rk Wald F statistic;
c Stock-Yogo weak ID test critical value (10% maximum LIML size);
d Overidentification test of all instruments.
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Table 7: Lead price model.

FE

et−1 0.652∗∗∗

(13.51)
Pt -5559.7∗

(-2.05)
Pt+1 -4596.9∗

(-2.64)
PGt -17162.4

(-1.11)
Yt 0.0254∗

(2.12)
HSt -485.6∗∗

(-2.70)
HDDt 0.173∗∗∗

(8.36)
CDDt 0.746∗∗∗

(14.02)
Constant 1272.6∗∗

(2.99)
N 719
R2 0.901
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001;
t statistics in round brackets.
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