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1 Introduction

1.1 Motivation and model

Motivation

In this paper, we introduce a new dynamic model of two-candidate political competition. The

novelty of the model is that changes in policies are costly for candidates and voters and such

costs increase with the extent of the policy change. We use the model to address policy

polarization both from a positive and normative perspective. Our study is motivated by three

empirical facts: (i) policy changes are often costly; (ii) policy and party polarization have

increased in recent times; (iii) policies are typically more moderate than the positions of parties.

In the following we discuss each of these observations.

When a new policy is implemented, the so-called costs of change refer to expenditures or losses

that occur only due to the presence of an established status-quo policy. Thus, these costs only

materialize because actual policies shift, thereby enabling dynamic links between preferences

and policies across periods. Costs of change can mainly occur either because additional invest-

ments are required to smooth the transition from the status-quo policy to the new policy or

because the policy shift renders original investments in physical and human capital obsolete.1

Whatever the source of the costs of change, they are ultimately borne by citizens—be it in the

form of taxes, of higher prices for products and services, of low returns on assets, or of job

destruction.2 We provide several examples.

The shift with regard to military alliances is an example of a policy reversal that implies

large transaction costs: “The [...] motivation sustaining current alliance relations is the desire

to avoid paying the transaction costs of creating alliances that are better aligned with current

challenges. These costs are unquestionably significant, politically and militarily”.3 In the case

of the Iraq War, estimates of 2006 indicate that demobilizing 20,000 out of the total 160,000

troops would have required $6-10bn—roughly one percent of the total war costs up to that date

(Bilmes and Stiglitz, 2006). Another example of expenditures aimed at smoothing the transition

from the status quo to a new policy is the Patient Protection and Affordable Care Act in the

US (see Public Law (2010b)), which required additional efforts on the part of the government

to facilitate that insurees, insurers, and health care providers comply with the new law. Quite

often, the realization of policy changes also requires substantial government efforts in terms of

1Fixed costs brought about by investments related to new policies are considered in Section 9.1.
2See e.g. Hall (2013) on how changes in labor regulation affects social welfare through job losses.
3Kori Schake in The American Interest. http://www.the-american-interest.com/2011/05/01/

the-allies-we-need/ (retrieved 8 May 2015).
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political bargaining, policy design, communication to citizens, and overcoming resistance from

interest groups—efforts that would not be necessary if there were no established status quo.

Fighting political resistance may thus entail opportunity costs for the parliament. One of the

most famous examples in this respect is the Dodd-Frank Wall Street Reform and Consumer

Protection Act (see Public Law (2010a)), which took up a large amount of Congress time before

it was implemented in 2010.

Implementing new regulations on how to calculate risk and capital requirements—e.g. bank-

ing regulation (see Basel III4)—render existing software and human capital to calculate risk

and capital requirements obsolete. Analogous phenomena occur for environmental regulations,

energy production laws, or health care regulations. A startling example of asset devaluation

associated with policy changes is the immediate phase out of nuclear energy in Germany which

has caused large write-downs of the value of existing capital as such capital becomes idle. More-

over, the implementation of such decisions will require additional investments to shut down the

nuclear plants forever.5

In all the above instances the costs of change are not independent from the extent to which

policies change and, in fact, the larger the policy change is, the higher are the costs for all

citizens.6 In this paper we focus on the type of policies mentioned above—i.e., policies whose

change or reversal brings about significant costs that increase with the extent of the policy

change.7

The second empirical observation that motivates the analysis set out in the present paper is the

substantial increase of political polarization in recent times in the United States—and to a lower

extent in Europe. This will be discussed in detail in Section 2. The term political polarization

refers to various phenomena. While social polarization refers to the degree of polarization of the

citizens’ political preferences, party polarization refers to the gap between the ideal policies of

4See http://www.bis.org/bcbs/basel3.htm (retrieved 16 June 2015).
5One should also note that some policies are only effective in the long run. Aborting such policies before

they pay off would cause losses. Via the Marshall Plan, for instance, the US granted loans to many European
countries after World War II. Changing the US international affair policy toward isolation before the loans had
reached their maturity could have incentivized some of the indebted countries not to pay back the loans, thereby
imposing costs on the US.

6We stress that, as it is the case in our model, citizens may have different preferences over policies. Hence,
citizens and politicians are alike only from the point of view of costs of change. Moreover, it will suffice in our
model that the perceived—but not the real—costs of change be the same for all politically-active voters.

7Of course, there exist policies which can be reversed without causing barely any cost. However, even
for policies whose implementation does not cause large costs—such as legalizing gay marriage for example—a
reversal would be costly due to the partners’ investments into their relationships.
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the different political parties.8,9 Finally, office-holders from different parties implement different

policies. The degree of policy polarization refers to the difference between these implemented

policies.10 The empirical literature suggests that in the United States political polarization

have increased in the last decades.

Finally, our paper is motivated by the evidence that policy polarization tends to be lower than

party polarization (Wiesehomeier and Benoit, 2009). That is, office-holders’ policy choices tend

to be more moderate than their parties’ ideal policies. The results shown in our paper replicate

this observation and thus they offer an explanation for the partial misalignment between the

policies implemented and the positions of parties.

Model

We develop a model in which changes of policies are costly and they increase with the magnitude

of the policy change. The model enables us to study how these costs of change—as well as

social and party polarization—impact on policy polarization and how optimally chosen re-

election hurdles could reduce the latter and increase welfare. A re-election hurdle denotes the

vote-share threshold that an incumbent has to attain in order to be re-elected. It will be

sufficient to consider a two-period setting.

At the beginning of each period, two candidates, whose ideal policies coincide with the ideal

policies of their parties, compete in an election for an executive office.11 Once in office, the

winning candidate faces issues in two different dimensions. On the one hand, he has to decide

with regard to a policy on which citizens have dissenting preferences; on the other hand, he

carries out a public project that benefits every citizen, including himself, in the same way.

Hence, office-holders always carry out the public project. Candidates diverge in their ability to

carry out this public project, and if they belong to different political parties, they also diverge

in their preferred policy position. The ability of a candidate is only learned by everyone (the

candidate himself, the other candidate, and the electorate) at the end of his first term. A

candidate who loses an election is replaced in the next election by a new candidate from the

same political party (i.e. with the same policy preference) but possibly with a different degree

of ability.

8Some authors, e.g. Krasa and Polborn (2014), use the term ideological polarization instead of social polar-
ization.

9The definition of party polarization given here applies to two-party systems—like the one we consider in
this paper—but could be adapted to multi-party systems.

10If parties’ ideal policies (resp. candidates’ policy choices) are located symmetrically with respect to the
median voter’s ideal policy, party polarization (resp. policy polarization) can be equivalently defined by the
distance between parties’ ideal policies (resp. candidates’ policy choices) and the median voter’s preferred
position.

11Our model can also be applied to two-candidate races for parliamentary seats.
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While social and party polarization are given, office-holders endogenously choose policies in

both periods. Consequently, the level of policy polarization arises endogenously, and this is the

object we primarily focus on. As set out above and in contrast to standard models, we assume

that changing the policy from the first period to the second period is costly and, moreover, this

cost of change will increase with the extent of the policy change.12

1.2 Main Results and broader implications

Positive results

It is intuitive that costs of change will constitute an impediment for candidates setting out to

implement their preferred policies once they are in power. The reason is that choosing their

ideal policy positions may require large policy changes which might not be supported by a

majority of voters when such a policy is crucial for the political debate. With regard to the

Iraq War in the US presidential elections of 2004 and 2008, for instance, it is very likely that

the status-quo policy—i.e. the decision to go to war in the first place—may have significantly

affected the voting decision of many voters that were concerned about which candidate could

bring the war to a satisfactory end.

An important result of our paper is that costs of change always moderate the policy choices

of policy-makers, thereby increasing their chances of re-election. Furthermore, we show that

the degree of the reduction in the level of policy polarization varies with the marginal cost of

change, but in a non-monotonic way.13 We prove that there is a range of moderate marginal cost

levels at which policy polarization is minimal but remains positive. The more marginal costs

differ from this range of values, the closer policy polarization will come to party polarization.

In the limit where there are either no costs of change or the marginal cost of change is infinite,

policy polarization matches party polarization.

Our comparative statics analysis regarding variations in the marginal cost of change reveals

further insights in relation to welfare, where the latter is measured by utilitarian welfare or,

equivalently in our model, by the median voter’s utility. Indeed, costs of change weakly increase

welfare. Moreover, welfare is single-peaked in the marginal cost of change. In other words, there

exists a moderate level of marginal costs of change for which welfare is higher than when there

are either no costs of change or marginal costs of change are very large. Therefore, moderate

costs associated with changes in policies not only minimize policy polarization but also have a

12Although in the basic model we consider costs of change to be linear in the absolute difference between
the policies adopted in the two periods, in the last part of the paper we analyze the robustness of our results
by investigating other, more general specifications for these costs.

13Our main positive results are given in Theorem 2.
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socially beneficial effect.14

Normative results: optimal re-election hurdles

Because the currently observed high levels of policy polarization may be a concern for the

society, we also take a normative approach and ask whether higher re-election hurdles for

incumbents might reduce policy polarization. Increased re-election hurdles have been advocated

as a way of counteracting socially detrimental incumbency advantages (Gersbach, 2010), and

they have actually been introduced in democracy.15 For instance, in the Canton of Zurich,

long-term Social-democrat deputies of the Swiss National Council need two thirds of the votes

to be eligible for the next term (see Art. 7 in SP Kanton Zürich (2010)).16

When electoral support for the incumbents tends to persist, re-election hurdles for incumbents

can also emerge implicitly as a combination of two existing institutional features of the political

system: term limits and qualified majorities to amend the rules regulating such limitations.

Indeed, to stay in office beyond the limit imposed by law, the incumbent mostly needs a majority

of more than 50% to remove such limitations.17 In the US, for instance, a two-term limit for

the presidential election exists at the constitutional level, and numerous states and cities have

implemented similar rules both for the executive and the representative branches. An instance

of a legislative modification aimed at enabling an extra term for the incumbent occurred in the

elections for the mayor of New York in 2009. In this example, Michael Bloomberg succeeded

in staying in office for a third term after the City Council of New York agreed to modifiy the

two-term limit that was in place.

In this paper we investigate the effect of increased re-election hurdles on policy polarization.

We use the term extra-hurdle to denote a share of votes that, when added to a 50% share of

the votes, constitutes the re-election hurdle, i.e. the vote-share threshold that an incumbent

has to attain in order to be re-elected. Note that if an incumbent does not obtain enough votes

14We stress that when they materialize, costs of change generate a disutility for both voters and candidates.
15There is a large literature on the existence and causes of incumbency advantages of US congressmen (see

e.g. Alford and Brady (1989), Gelman and King (1990), and Levitt and Wolfram (1997)). Erikson et al. (1993)
find that governors have similar advantages when seeking re-election.

16For the 2011 elections of the Swiss National Council, three candidates had to reach this two-third majority
in order to be nominated for the elections—one of them did not reach the threshold: see http://www.nzz.ch/

aktuell/startseite/sp-nationalraetin-anita-thanei-quorum-1.10577885 (retrieved 13 May 2015).
17Note that unlike explicit extra-hurdles, implicit extra-hurdles operate along two elections: if, e.g., in the

case of a two-term limit, the vote-share obtained by the incumbent—and his supporting coalition—in the election
following his first term is large enough, he can pass a law to remove the term limitation; the incumbent can
then stand for a second re-election only if he obtained a large support in the previous election. Under the
assumption that incumbents can preserve or increase their vote-share, both implicit and explicit extra-hurdles
would, however, bring similar outcomes.
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to attain the re-election hurdle, the challenger will be elected.18,19 In our model with positive

costs of policy change, we find the following four results regarding the effects of extra-hurdles

on policy polarization and welfare:20

The first result shows that higher re-election hurdles induce office-holders to adopt policies in

the first period that are closer to the median voter’s ideal policy, so policy polarization declines

with non-zero extra-hurdles. In our model, the fact that positive extra-hurdles yield more

moderate first-period policies than a zero extra-hurdle is triggered by two forces.

On the one hand, when the share of the electorate needed for re-election is higher than half, the

critical voter for incumbent support is no longer the median voter but a more partisan voter

whose ideal policy is closer to the challenger’s than to the incumbent’s ideal policy. Accordingly,

a positive extra-hurdle raises the office-holder’s interest in choosing a policy closer to the median

voter’s preferred policy. By doing so, the incumbent can become more attractive for voters on

the other side of the political spectrum because policy changes in the second period will be

more moderate if the incumbent wins the election.21 This will occur despite the fact that

the challenger’s ideal policy is closer to the critical voter’s ideal policy, as the election of the

challenger would cause significant costs of change.

On the other hand, positive extra-hurdles can reduce the chances of an incumbent being re-

elected. This might in principle induce him to try steamroller tactics and choose a policy in the

first period that is as close as possible to his preferred policy, as this would subsequently keep

his own policies and the policies of the challenger closer to his ideal policy position. However,

as the latter will undertake a significant change of policy if he is elected, the office-holder will

prefer to moderate his policy choice in exchange for reducing the costs associated with the

likelier event of the challenger being elected in the second election.

Overall, we show that there exists a critical positive extra-hurdle such that, when the actual

extra-hurdle is lower than the critical level, the first effect will moderate the policy chosen in

the first period, while when the actual extra-hurdle is above the critical level, the second effect

will do so.

18The implementation of an extra-hurdle that is strictly larger than 50% but below 100% can be viewed as a
weaker and flexible form of term limits. Similarly to the latter, extra-hurdles treat incumbents and challengers
asymmetrically.

19An alternative would be to set up a second competition involving two new candidates if an incumbent has
been deselected for not surpassing the re-election hurdle but has nevertheless attained a vote-share above 50%.
This modification would ensure that any office-holder is elected with at least half of the votes. The analysis of
this alternative lies beyond the scope of this paper and is left for further research.

20Our main normative results are given in Theorem 1.
21The utility of office-holders depends on being in office, on the policy chosen, and on the level of public

project provision. We assume that the desire to hold office is sufficiently strong to ensure that, once in power
in the first period, candidates will choose a policy ensuring that their re-election chances are maximized.
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The second result concerns the impact of extra-hurdles on welfare. The welfare of the median

voter depends on three components: the policies chosen in both periods, the public project

carried out in each period, and the costs associated with policy changes. Raising the extra-

hurdle from 0% to some level below the critical level mentioned above neither affects expected

benefits from public projects nor the likelihood that an incumbent will be deselected. But it

reduces policy polarization and expected costs of change, and thus increases welfare. If an extra-

hurdle above the critical level is implemented, policy polarization is still reduced compared to

no extra-hurdle being implemented. However, in addition to this, the likelihood of incumbent

deselection rises, which leads to higher expected costs of change. Nevertheless, we find that,

compared to a usual 50% majority, an extra-hurdle above the critical level increases welfare, as

the reduction in policy polarization compensates the increase in expected costs of change.22

Our third result is that the critical extra-hurdle mentioned above is optimal in the sense that

it maximizes welfare and minimizes policy polarization. We also show that below this optimal

extra-hurdle, a marginal increase of the extra-hurdle always weakly increases welfare and weakly

reduces policy polarization. Because the optimal extra-hurdle depends on the parameters of the

model, marginal changes in re-election hurdles are a cautious approach focused on directional

welfare improvements. Moreover, such an optimal extra-hurdle is always positive, and it is

therefore associated with a re-election hurdle higher than 50%.

Finally, for the sake of our fourth result, we allow candidates to offer binding extra-hurdles

themselves instead of complying with the re-election hurdle chosen by the public. We show

that in this scenario candidates will endogenously choose a welfare-maximizing extra-hurdle.

Binding extra-hurdles might take the form of a re-election hurdle contract.23 In such a contract,

a candidate would stipulate an extra-hurdle that, when added to a 50% share of the votes,

constitutes the re-election hurdle that is applied when he seeks re-election.

Broader implications

On the one hand, the preceding results may have broader implications on democracy. Although

our notion of welfare already accounts for policy polarization in one of its components, there

are additional reasons to be concerned about policy polarization per se. Indeed, as we will set

out below, the literature suggests that significant policy polarization may have negative mid-

and long-term consequences on the functioning of democracy and the quality of its outcomes.

22In the US, the success rate of the governors that have sought re-election since World
War II is about 72%. Indeed, see http://governors.rutgers.edu/on-governors/us-governors/

when-governors-seek-re-election (retrieved 13 May 2015). Due to this incumbency advantage, it seems
unlikely that moderate extra-hurdles will strongly reduce the incumbents’ re-election chances.

23This is a special political contract. On the theory and implementation of such contracts, see Gersbach
(2012).
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Our results suggest that higher re-election hurdles can reduce policy polarization and thus also

decrease additional perils associated with the latter.

On the other hand, both the model and the costs of change can be interpreted in a broader

sense. The latter, in particular, may capture psychological fear of change or aversion to the

perceived ambiguity of the outcomes of policy changes instead of costs in material terms. The

higher such psychological costs, the higher the degree of conservatism of the society. Typically,

costs of the latter type would be expected to rise with the extent of the policy change. For

instance, small adjustments in the competition rules for health-care providers may be associated

with negligible psychological costs for the citizens, but such costs may be large if a large-scale

reform of the health care system—like the one in the Patient Protection and Affordable Care

Act in the US—is undertaken. In the latter case, limited information about a multitude of

intended and unintended consequences of these large changes may manifest itself as ambiguity

about benefits and costs for citizens and as aversion towards such ambiguity translating into

psychological costs.24

The rest of the paper is organized as follows: In Section 2 we review the papers related to our

article. In Section 3 we outline our baseline model, where costs of change are linear in the

absolute difference between the policies chosen in the two periods. In Section 4 we compute

equilibrium policy choices and re-election probabilities as a function of the extra-hurdle. In

Section 5 we study the implications of extra-hurdles on policy polarization and welfare and

set out our main positive and normative results. In Section 6 we modify the model and allow

candidates to offer re-election hurdle contracts before the first election. We show that contracts

are offered such that optimal extra-hurdles are implemented. In Section 7 we show that our

main results remain unchanged if we allow the citizenry to have polarized ideal policy positions.

In Section 8 we extend the model so that it accounts for a status quo policy. In Section 9 we

study the case where costs of change are not linear. Section 10 concludes.

2 Relation to the Literature

The present paper is related to several strands of the literature.

Electoral competition

Our model of candidate competition for winner-take-all elections shares features with the stan-

24There may be instances in which information is deliberately withheld from the public by office-holders,
which contributes to the psychological costs as citizens remain unsure whether they have access to the most
important information.
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dard literature on electoral competition. First, as in Hansson and Stuart (1984), Duggan

and Fey (2005), and Krasa and Polborn (2010a,b) for example, each candidate is both office-

motivated and policy-motivated and has some exogenous characteristics: in our model, his most

preferred policy and his randomly chosen ability.

Second, we consider a policy on which agents have dissenting preferences and a public project

regarding which all citizens have common preferences. Voters and candidates have quadratic—

and hence single-peaked—preferences over policies chosen in the two periods.25 Moreover, due

to the existence of costs of change, they also care about the difference between the two policies.

As a consequence, agents’ preferences regarding pairs of policies chosen in different periods are

not separable in time. Non-separable preferences not related to costs of change are considered

e.g. in Krasa and Polborn (2014).

Costs of change in policies

To the best of our knowledge, hardly any models in the literature have considered costs associ-

ated with changes in policies. An exception is Glazer et al. (1998), who show that if the fixed

costs of change are large, the incumbent may choose a policy that is more extreme than his

own ideal policy and the electorate may decide to vote for him to prevent a policy change.

The main novelty of our paper is not to show that costs associated with policy changes can be

exploited strategically, but to analyze how the extent of these costs may influence society. We

show in particular that when the marginal cost of change is intermediate, the existence of costs

of change turns out to be beneficial to the society, as they reduce policy polarization.

Recently, Forand (2014) and Nunnari and Zápal (2014) have examined infinite-horizon models

where candidates can fully commit to a policy before the election and where policies are bound

not to change as long as the office-holder stays in office. Our paper is complementary to this

work because in our model, the costs of change affect all subsequent office-holders, but they

only offer a partial commitment device. Moreover, our main focus is how the existence of such

a partial commitment tool can reduce polarization and increase welfare.

Policy commitment

In electoral competition models, it is a divisive issue whether candidates can commit to policy

positions or not. In the classic formulation of Hotelling (1929) and Downs (1957), politicians can

do so. Yet, various other strands of literature, most notably models of political accountability,

assume that competitive elections are not enough to guarantee—by means of electoral rewards

25The assumption that preferences are quadratic is not crucial, but it considerably simplifies the exposition
of the results.
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and punishments—that politicians who do not stick to their promises are deselected. Standard

theoretical models of electoral accountability—see Barro (1973), Ferejohn (1986), Austen-Smith

and Banks (1989), Persson et al. (1997) or Ashworth (2012) for a recent review—contain two

basic elements: (i) an electorate that decides whether to re-elect an incumbent or elect a

challenger based on some performance measure, and (ii) an incumbent that can anticipate the

electorate’s behavior and respond to it by choosing a certain action during his tenure before

elections are held.

Accordingly, our model can be interpreted as a model of imperfect accountability—with two

periods separated by an election—in which the costs of policy change allow the first-period

incumbent to partially commit to a particular policy. The present paper tries to bridge the

aforementioned divide between full and lack of commitment for politicians. With partial com-

mitment, the first-period policy choice provides an anchor for future behavior, as it influences

the voters’ decisions and potential second-period candidates’ policy choices. One of the main

results in our paper points out that the existence of limited commitment—in the form of costs

of change—can induce some moderation in the policy choices of office-motivated politicians

who care about policies, without reducing welfare.

Political polarization

There is a large body of literature that deals with political polarization, both from a theoretical

and an empirical point of view. The literature informs us that, in a democracy, all three

manifestations of political polarization (party, social, policy) can potentially influence each

other. Our paper adds to this literature by (i) investigating how the degree of policy polarization

arises endogenously from party polarization, social polarization, and costs of change, and (ii)

proposing a novel institutional feature of winner-take-all elections that curbs policy polarization

without creating welfare losses.

The literature on polarization has focused on the existence of and trends in political polar-

ization, their causes and their consequences. We briefly review this literature. In the case of

the United States, the existence and rapid increase of policy polarization is well-established,

as demonstrated e.g. by the evolution of the voting patterns of Democratic and Republican

legislators of the House of Representatives and Senate (see e.g. Poole and Rosenthal (1984,

2001), McCarty et al. (2006), and Theriault (2008)). Whereas the preferences of an ample

fraction of citizens may have been less subject to polarization, the preferences of citizens with

high partisan identification have become more polarized. This has led to an increase in social

polarization and, in turn, to a rise in party polarization, as the views of partisan citizens help

shape party ideology (McCarty et al., 2006).
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The causes for the increase in political polarization in the case of the US Congress are diverse.

On the one hand, an increase in party polarization seems to be a consequence of the geographical

changes in partisan alignment (see e.g. Rohde (2010) or Theriault (2004)). For instance, the

south has become more Republican and, in turn, the policies proposed by the politicians hoping

to win a seat have shifted to the right. Moreover, Layman et al. (2006) point to incumbent-

friendly redistricting. These forces have weakened the potential opposition within each district

and have made policies more coincident with the preferences of their primary constituency,

which is usually dominated by extreme voters. On the other hand, Theriault (2006) suggests

that the degree of party and policy polarization has been promoted by the way in which roll-call

votes are structured and the issues decided by those roll calls, while other authors have pointed

to changes in the legislative agenda and the strategies of party leaders (Roberts and Smith,

2003) or to the leadership selection system (Heberlig et al., 2006), in which extreme candidates

tend to excel. More generally, Grosser and Palfrey (2014) suggest that high party polarization

may arise in the context of open, take-it-all elections when citizens are poorly informed about

candidates’ ideal policies.

Whether high levels of political polarization are beneficial or detrimental for a society is not

clear a priori. Clearly, there may be strong negative consequences. For instance, increased

party polarization may undermine the trust in the policy-making process and lead to legislative

gridlock (Jones, 2001; Binder, 1999). Moreover, high party polarization encourages disinterest

in politics, party disidentification, and a decline in turnout (Fiorina et al., 2005). The vast

literature on political polarization has pointed to a number of other effects—some negative,

some positive—triggered by high political polarization levels.

First, increased party polarization has driven the political debate in America to stark confronta-

tion, which discourages open deliberation on policy issues especially in the media (Sinclair, 2002)

but also in Congress (Jamieson and Falk, 2000). Second, heterogeneous societies tend to be

socially polarized and are more likely to be ruled by governments that choose bad policies (see

Alesina and La Ferrara (2005) for a comprehensive overview) and are more prone to conflict

(see Montalvo and Reynal-Querol (2005)). Third, Testa (2012) shows that societies where so-

cial polarization is large are more likely to be characterized by high party polarization, but this

latter feature helps to control the government by the electorate, as it raises electoral stakes.

Fourth, increasing party and policy polarization levels have clarified party importance (Hether-

ington, 2001) and have made it easier for the citizens to vote ideologically as party platforms

are significantly different from each other. Lastly, we note that trends in economic inequality

and policy polarization have largely moved in tandem over the last 50 years (McCarty et al.,

2006).
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3 The Model

3.1 General set-up

We examine a two-period model (t = 1, 2) in which, before each period begins, a society elects

an office-holder for an executive position to whom it delegates policy-making. The society is

composed of a continuum of voters of measure 1, with each voter being indexed by i ∈ [0, 1].

Policy-makers differ in their policy orientation; there are right-wing and left-wing policy-makers.

We denote by R and L the pool of all right-wing and left-wing policy-makers, respectively.

We assume that there are at least two candidates in each pool. At both election dates, two

candidates—one from R and one from L—compete for office. The defeated candidate from

the first election does not run for office in the second election, and he is replaced by another

candidate. Hence, while the first election is an open race, i.e. a race between two new candidates,

in the second election one candidate is the incumbent and the other candidate is the challenger.

Throughout the paper, we denote policy-makers by k, k′, or k′′. Independently of his policy

orientation, each candidate is one of three types : Candidate k ∈ R ∪ L is characterized by

his ability ak, which is drawn from a discrete symmetric distribution with support {−A, 0, A},
where A > 0. We assume that

P{ak = 0} = ρ and P{ak = A} = P{ak = −A} =
1− ρ

2
, (1)

where ρ ∈ (0, 1).26 A candidate with ability A has outstanding ability. If a candidate has

ability −A, he is considered to have very low skills. We note that E[ak] = 0, so the ability of a

candidate with zero ability coincides with expected ability.27,28 In each period t ∈ {1, 2}, the

office-holder, denoted by k ∈ R ∪ L, faces issues in two different dimensions:

26We will see in Section 4.2 that, according to our model, the larger ρ is, the larger will be the advantage that
incumbents enjoy in elections against challengers. That is, ρ is correlated with the incumbency advantage. For an
illustration of the bias towards incumbents in the US, see http://governors.rutgers.edu/on-governors/

us-governors/when-governors-seek-re-election (retrieved 13 May 2015). Since World War II, the re-
election rates of governors have increased almost every decade up to nearly 90% in the period 2010–2013.

27For simplicity and without loss of generality we normalize expected ability to zero. Note that this normal-
ization does not affect our results.

28We stress that the ability of the challenger in the second election is again drawn from {−A, 0, A}, according
to the probabilities given in (1).
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• Public Project P : He undertakes a public project, denoted by gkt. For simplicity, we

assume that the output of the project is directly proportional to the ability of the office-

holder, i.e.

gkt = ak.
29

Hence, with regard to the public project, only the ability of the office-holder matters. The

public project includes all business-as-usual activities of the government and office-holders

always carry out P .

• Policy I: He chooses a policy I from a one-dimensional policy space [0, 1], which impacts

each voter and each candidate differently. We use ikt ∈ [0, 1] to denote his policy choice.

Candidates in their first term observe their ability during or after the public project P has been

realized. For each period t ∈ {1, 2}, voters observe both ikt and gkt during the term. From

gkt voters can infer the ability of the incumbent in the first term. Accordingly, at the end of

period t = 1 and before the second election takes place, the ability of the incumbent is common

knowledge. The sequence of events is summarized in Figure 1.

6 6 6 6 6 6

t = 0 t = 1 t = 2

First
election

Choice of
policy I

in period 1

Public
project P is
undertaken;

ability is
realized

Second
election

Choice of
policy I

in period 2

Public
project P is
undertaken;

ability is realized
if first term of
office-holder

Figure 1: Timeline of the sequence of events.

3.2 Utilities of voters and policy-makers

3.2.1 Instantaneous utilities

Voters and policy-makers derive utility from P and I. Suppose that k ∈ R ∪ L is in office in

period t. First, all voters and policy-makers derive the same utility from the public project,

29Any linear production function gkt = γak, with γ > 0, would yield the same results. To reduce notational
complexity, we set γ = 1. Moreover, by choosing an alternative functional form for gkt, such as gkt = ak + d,
with d > A, one could ensure that output is always positive.
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given by the instantaneous utility function

UP (gkt) = gkt.

Second, agents have dissenting preferences on policy I. We order voters according to their most

preferred choice of I, thus voter i’s ideal policy regarding I is i. Then voter i ∈ [0, 1] derives

utility from a choice ikt in period t according to

U I
i (ikt) = −(ikt − i)2.

Note that the assumption of a continuum of voters indexed by i ∈ [0, 1] implies that the voters’

ideal policies are uniformly distributed in the electorate. Arbitrary candidates k′ ∈ R and

k′′ ∈ L have ideal policies µk′ = µR and µk′′ = µL, respectively. We assume that

1

2
< µR ≤ 1 and µL = 1− µR. (2)

Hence, the ideal policies of the candidates are distributed symmetrically around the median

position. If ikt ∈ [0, 1] has been chosen by office-holder k in period t, a candidate k′ ∈ R ∪ L
derives utility

U I
k′(ikt) = −(ikt − µk′)2

from policy I. Additionally, an office-holder obtains private benefits b > 0 from holding office in

a particular period. The benefits b account for all sources of utility that politicians derive from

office beyond policy choices. Those benefits include such things as ego rents and satisfaction

from holding power and heading a branch of government, plus additional career opportunities

after office-holding.

3.2.2 Linear costs of change

A key feature in our model is that policy changes are assumed to be costly for voters and

candidates. More precisely, given a policy ik1 ∈ [0, 1], the policy choice in the second period,

ik′2 ∈ [0, 1], imposes additional costs (or utility losses) on voters and policy-makers alike, equal

to

U c(ik1, ik′2) = −c · |ik1 − ik′2|. (3)

The parameter c > 0 is the marginal cost of a policy change.30 Hence, the so-called costs

of change linearly increase with the absolute difference between the policies adopted in both

periods. The existence of such costs has been discussed in detail in the Introduction.

30We assume that c is a common parameter for voters and policy-makers. As long as the costs are low,
assuming otherwise does not change our results qualitatively but complicates notation unnecessarily.
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We point out that the specification of the costs of change given in (3) does not include the

possibility that these costs may be non-linear. In Section 9 we analyze convex cost functions

and fixed costs of change.

3.2.3 Lifetime utility

Voters and policy-makers discount utility in the second period with a common factor β, where

0 < β ≤ 1. Let candidates k ∈ R∪L and k′ ∈ R∪L be in power in t = 1 and t = 2, respectively.

Then the lifetime utility of any voter i ∈ [0, 1] is given by

UP (gk1) + U I
i (ik1) + β ·

[
UP (gk′2) + U I

i (ik′2) + U c(ik1, ik′2)
]
. (4)

Similarly, the lifetime utility of any policy-maker k′′ ∈ R ∪ L is given by

UP (gk1) + U I
k′′(ik1) + Ik′′(k) · b+ β ·

[
UP (gk′2) + U I

k′′(ik′2) + U c(ik1, ik′2) + Ik′′(k′) · b
]
,

where Ik′′(·) is an indicator variable for holding (resp. not holding) power, i.e.

Ik′′(x) =

{
1 if k′′ = x,

0 otherwise.

3.3 Majority rule and tie-breaking rules

In the first election, a candidate is elected according to the simple majority rule. We assume

that, in the case of a tie, each candidate wins the election with a probability equal to 1
2
.

In the second election, we allow a potentially different majority rule to be used in deciding who

will hold office. Specifically, the incumbent is re-elected if his vote-share in the second election

is equal to or larger than 1
2

+ δ, where δ ∈
[
0, 1

2

]
. The value of δ measures the increase of

the re-election hurdle for the incumbent; we therefore call it extra-hurdle. For instance, δ = 0

corresponds to the simple majority rule, while δ = 1
2

implies that an incumbent is re-elected

only if he obtains unanimous support. If the incumbent’s vote-share is strictly less than 1
2
+δ, he

will be deselected and the challenger wins the election. For ease of presentation, the incumbent

is assumed to win the election if he receives a vote-share of exactly 1
2

+ δ.31

3.4 Assumptions on the parameters

For the sake of analytical tractability, we assume that policy-makers’ benefits from holding

office, b, are sufficiently large to ensure that any policy-maker will prefer being in office to not

31Without this assumption we would need to discretize the set of possible policy choices in order to guarantee
the existence of a best response of the office-holder in t = 1.
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being in office under any constellation of parameters that we analyze in the model.32 This

assumption guarantees that, in equilibrium, the office-holder’s policy choice always maximizes

his re-election probability. Moreover, A is assumed to be large enough to ensure that, in

equilibrium, an incumbent with ability A is always re-elected, while an incumbent with ability

−A never is.33 To simplify notation, we further suppose that β = 1, as results can easily be

extended to any value of β ∈ (0, 1]. Finally, all voters are assumed to vote sincerely, i.e., each

of them votes for the policy-maker from whom he expects the highest utility.34,35

3.5 Notion of equilibrium and informational assumptions

Voters observe the policy choice and the output of the public project during the term. From

the latter they infer the ability of the incumbent. An equilibrium in our model is a perfect

Bayesian Nash equilibrium of the game displayed in Figure 1. We use G to denote this game.

4 Analysis of the Game

In this section, we determine the equilibria of game G in order to assess how key parameters

and variables determine policy choices. Because left- and right-wing candidates’ ideal policy

positions are symmetrically distributed around the median (see (2)) and are common knowl-

edge, and since the distribution of ak is independent of the policy orientation of candidate k,

the median voter is indifferent between the left-wing and the right-wing candidate when the

first election takes place and each candidate receives a vote-share of 1
2

in the first election.36

According to the election rule, both candidates have a 50% chance of winning the first election.

We assume that, without loss of generality, a right-wing politician is in office in the first period.

Let GR (resp. GL) be the game that starts after a candidate from pool R (resp. L) has been

chosen as first office-holder. We note that once the equilibria of GR have been determined, the

equilibria of GL, and therefore of G, immediately follow by symmetry. In the following, we solve

GR by looking for sequentially rational equilibria.

32It will suffice to assume that b > 2 + c+ 4A.
33It will suffice to assume that A > 1 + c.
34As there are binary decisions in each period, there is nothing to be gained from strategic voting.
35This assumption mirrors the voting behavior of individuals in a large but finite society when each individual

might be pivotal.
36Whether indifferent voters vote for the left- or the right-wing candidate does not influence the outcome of

the election. Indeed, since the median voter has measure zero, the election is tied, independently of his behavior.

17



4.1 The second period

We start with the analysis of the policy-makers’ behavior in the second period. As there is no

further election, the office-holder will choose his policy to maximize his expected utility at the

beginning of t = 2.

Proposition 1

Let k ∈ R and k′ ∈ R ∪ L be the office-holders in t = 1 and t = 2, respectively. In t = 2, the

best response of k′ to a policy ik1 chosen in the first period is given by

ik′2(ik1) = min
{
max

{
µk′ −

c

2
, ik1

}
, µk′ +

c

2

}
=:

{
i∗R2(ik1) if k′ ∈ R,
i∗L2(ik1) if k′ ∈ L, (5)

where µk′ is the ideal policy of policy-maker k′.

Proof: See Appendix A.

The expression in (5) comprises several cases in one compact formula. It is thus useful to

provide intuition and some special cases. We first observe from Proposition 1 that for any

given first-period policy choice ik1 ∈ [0, 1], the second-period responses of right- and left-wing

policy-makers satisfy

i∗R2(ik1) ≥ i∗L2(ik1),

as right-wing candidates gain more (or lose less) from shifting policies to the right than left-

wing candidates. Second, in order to assess the impact of costs of change on policy choices in

t = 2, the following corollary, which immediately follows from Proposition 1, is useful.

Corollary 1

Suppose that k ∈ R is the office-holder in both periods and that he has selected ik1 ≤ µR.

Then,

(i) If c = 0, then i∗R2(ik1) = µR.

(ii) i∗R2(ik1) = max{µR − c
2
, ik1}.

(iii) Suppose that ik1 = 1
2
, c = µR − 1

2
. Then i∗R2(ik1) = 1

2
·
(
µR + 1

2

)
.

Corollary 1 illustrates that the second-period office-holder does not select his ideal policy, as

costs of change prevent him from completely indulging in his own preferences. If, as in case

(iii), the previous office-holder has adopted the median position, the costs of change will induce

the office-holder to select a policy somewhere between his ideal policy and the median position.
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4.2 The first period

We next study the decisions taken in the first period. We distinguish two cases. In one case, we

will consider circumstances where costs of change are not too large and allow significant policy

changes by office-holders with opposing preferences. Specifically, we assume that

0 <
c

2
< µR −

1

2
. (6)

We note that the upper bound in the above inequality,

Π := µR −
1

2
∈
(

0,
1

2

]
,

measures the degree of party polarization. Indeed, if Π is close to a half, parties’ ideal policies

are very far away, so the interests of both parties are opposed. By contrast, if Π is close to

zero, parties’ ideal policies are very close, so both parties will primarily focus on the interests

of those voters located close to the median voter. Assumption (6) ensures that costs of change

are small compared to the level of party polarization. In the main body of the text, we will

focus on this case, while in Appendix B we consider the case c ≥ 2Π. Our results regarding

polarization are qualitatively similar in both cases—and the technical steps for proving them

are substantially the same. Nevertheless, some properties of the solutions do not carry over

from low costs of change to higher costs.37

Next we analyze the second election, in which all citizens select either the incumbent, k ∈ R,

or the new left-wing candidate.

Proposition 2

Let δ ∈
[
0, 1

2

]
and k ∈ R be in office in t = 1. Then, in equilibrium of GR, k will be re-elected

in the second election if and only if his policy choice in t = 1, denoted by ik1, and his ability

level, ak, satisfy

ak ≥ aδ(ik1), (7)

where

aδ(ik1) =

(
i∗R2(ik1)−

(
1

2
− δ
))2

+ c |i∗R2(ik1)− ik1|

−
(
i∗L2(ik1)−

(
1

2
− δ
))2

− c |i∗L2(ik1)− ik1| (8)

and i∗R2(·) and i∗L2(·) are given in (5).

37For instance, we will see later that the minimization of ex-ante policy polarization and the maximization
of social welfare have unique solutions only if (6) holds.
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Proof: See Appendix A.

Proposition 2 indicates that for any fixed first-period policy choice ik1, the larger the extra-

hurdle δ, the higher the ability level needed to achieve re-election. Indeed, under (6), i∗R2(ik1)

is strictly larger than i∗L2(ik1) for all ik1 ∈ [0, 1] and thus, for fixed ik1,

daδ(ik1)

dδ
= 2(i∗R2(ik1)− i∗L2(ik1)) > 0.

Next we analyze how the office-holder in t = 1, k ∈ R, chooses his policy ik1 depending on

δ ∈
[
0, 1

2

]
.

Proposition 3

Let δ ∈
[
0, 1

2

]
, and let k ∈ R be in office in t = 1. Then k’s policy choice in t = 1, in equilibrium

of GR, will be

ik1(δ) = i∗R1(δ) :=





µR − c
2
· 1−ρ
3+ρ

if δ ∈
[
0, c

3+ρ

]
,

µR + c
2
− 2δ if δ ∈

(
c

3+ρ
, c
2

]
,

µR − c
2
· 1+ρ
3−ρ if δ ∈

(
c
2
, 1
2

]
.

(9)

Proof: See Appendix A.

In Figure 2(a), we illustrate Proposition 3 with a plot of i∗R1(δ) for µR = 0.8, c = 0.5, and

ρ = 1
3
. We see that any non-zero extra-hurdle δ weakly moderates the first-period policy choice

compared to δ = 0. Moreover, i∗R1(δ) is closest to the median voter at δ = c
2
. The following

expression for k’s re-election probability is computed in the proof of Proposition 3 and is helpful

for a more detailed interpretation of the plot in Figure 2(a):38

p∗(δ) =

{
1+ρ
2

if δ ∈
[
0, c

2

]
,

1−ρ
2

if δ ∈
(
c
2
, 1
2

]
.

(10)

Function p∗(δ) is illustrated in Figure 2(b). As (10) shows, the re-election probability of an in-

cumbent is larger than 1
2

when extra-hurdles are low. This indicates an incumbency advantage.

Let us briefly outline the intuitive reasons for the shape of function i∗R1(δ) and the incumbency

advantage. There are two different mechanisms that induce the first-period office-holder to

choose a weakly more moderate policy when a non-zero extra-hurdle is in force. First, if δ is

non-zero, the critical voter is closer to the challenger’s ideal policy. Therefore the office-holder

chooses a more moderate policy in order to be more attractive to the critical voter. This behav-

ior may help to ensure re-election of the office-holder if he turns out to have an ability of zero,

38More precisely, (10) follows from the combination of (48), (49), (50), and (51) from Appendix A.
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(b) Re-election probability in equilibrium.

Figure 2: Illustration of the equilibrium analysis in t = 1 using the parameter values µR = 0.8,
c = 0.5, A = 2, and ρ = 1

3
.

because the challenger would create significant costs of change.39 Second, if δ is sufficiently

large, re-election cannot be reached when ability is zero. In this case, the office-holder will still

choose a moderate policy in order to reduce the expected costs of change, which are increasing

in the probability of deselection. Note that for δ ∈
[
0, c

2

]
, the first mechanism takes effect and

p∗(δ) = 1+ρ
2

. That is, the incumbent is re-elected when he has at least zero ability, and he has

an incumbency advantage. However, for extra-hurdles above c
2
, re-election with zero ability

cannot be ensured. In this case, the second mechanism kicks in, and p∗(δ) = 1−ρ
2

. Since ability

is drawn from a discrete distribution, p∗(δ) and i∗R1(δ) are discontinuous at δ = c
2
.

4.3 Equilibrium outcomes

Sections 4.1 and 4.2 enable us to describe the equilibrium outcomes of game G. From Propo-

sitions 1 and 3, it immediately follows that the equilibrium policy choices in GR are given

by

i∗R1(δ) = i∗R2(δ) =





µR − c
2
· 1−ρ
3+ρ

if δ ∈
[
0, c

3+ρ

]
,

µR + c
2
− 2δ if δ ∈

(
c

3+ρ
, c
2

]
,

µR − c
2
· 1+ρ
3−ρ if δ ∈

(
c
2
, 1
2

]
and i∗L2(δ) = µL +

c

2
, (11)

for each given δ ∈
[
0, 1

2

]
. Note that for all δ, i∗L2(δ) is strictly smaller than i∗R1(δ). Due to

(2), and because the distribution of ak is independent of the policy orientation of candidate

k, the equilibrium policy choices of GR and GL are symmetrically distributed around 1
2
. More

39Note that benefits from holding office are large, so the office-holder will choose a policy that maximizes his
re-election probability.
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precisely, the equilibrium policy choices in GL are given by

i∗∗L1(δ) = i∗∗L2(δ) =





µL + c
2
· 1−ρ
3+ρ

if δ ∈
[
0, c

3+ρ

]
,

µL − c
2

+ 2δ if δ ∈
(

c
3+ρ

, c
2

]
,

µL + c
2
· 1+ρ
3−ρ if δ ∈

(
c
2
, 1
2

]
and i∗∗R2(δ) = µR −

c

2
. (12)

In G, there are four possible voting outcomes: (R,R), (R,L), (L,L), and (L,R), depending on

the types of first- and second-period office-holders. For each δ ∈
[
0, 1

2

]
, the equilibrium policy

choices for each of these voting outcomes are entirely characterized once the policy orientations

of both office-holders are known. In particular, for each δ ∈
[
0, 1

2

]
, there are four different

outcomes that can appear in an equilibrium of game G. Those outcomes can be denoted by

(R,R), (R,L), (L,L), and (L,R). In (R,R) and (R,L), the equilibrium policy choices, as

functions of δ, are given by i∗R1(δ), i
∗
R2(δ), and i∗L2(δ) from (11). Similarly, in (L,L) and (L,R),

the equilibrium policy choices are given by i∗∗L1(δ), i
∗∗
L2(δ), and i∗∗R2(δ) from (12). We note that the

realization of ability in the first period only influences whether the office-holder gets re-elected,

but it has no impact on the policy choice for a given office-holder in the second period. We

mentioned earlier that the probability of winning the first election is equal to 1
2

for both initial

candidates. Furthermore, in equilibrium, the re-election probability, conditional on being in

office in t = 1, is given by (10) for both candidates. Hence, the equilibrium outcomes of G
occur with probabilities

p(R,R)(δ) = p(L,L)(δ) =
p∗(δ)

2
and p(R,L)(δ) = p(L,R)(δ) =

1− p∗(δ)
2

, (13)

where p∗(δ) is given by (10).

We conclude this section by focusing for a moment on the specific situation where c = 0. In

this case, both candidates will choose their ideal policies whenever they are in office, since there

are no costs to prevent them from indulging in their own preferences. Considering (11) and

(12) at the limit where c tends to zero shows that, in equilibrium, we indeed approximate this

solution.40

5 Policy Polarization and Welfare

In this section we explore how the levels of policy polarization and welfare depend on the model

parameters and the institutional variable δ. Specifically, we assess how c, µR, and ρ impact

policy polarization when δ = 0 and how policy polarization and welfare vary with δ ∈
[
0, 1

2

]
.

40Another extreme case corresponds to the situation where c is very large. In Appendix B, we show that
for c ≥ 4Π, the office-holder of the first period chooses his ideal policy and, due to large costs of change, the
office-holder in t = 2 is forced to choose the same policy.
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We show that choosing certain strictly positive values for δ reduces ex-ante policy polarization.

Moreover, we prove that policy polarization is minimized for the same value of δ that maximizes

welfare or, equivalently, the expected lifetime utility of the median voter. If δ = 0, we find that

moderate levels of c reduce policy polarization and increase welfare, relative to the case where

there are no costs of change.

5.1 Polarization and welfare concepts

First we define the concept of ex-post policy polarization.41

Definition 1

Let k ∈ R ∪ L and k′ ∈ R ∪ L be the office-holders in t = 1 and t = 2, respectively, and let

(ik1, ik′2) ∈ [0, 1]× [0, 1] be their respective policy choices. Then, ex-post policy polarization is

defined as

EPP (ik1, ik′2) =

∣∣ik1 − 1
2

∣∣+
∣∣ik′2 − 1

2

∣∣
2

.

Because candidates may or may not be deselected after the first term, what matters for voters

is ex-ante policy polarization, i.e. the expected value of ex-post policy polarization over all

possible equilibrium outcomes. Accordingly, we define ex-ante policy polarization as follows:

Definition 2

Ex-ante policy polarization is the expected value of ex-post policy polarization.

From the analysis of Section 4.3, it follows that ex-ante policy polarization can be written as

EAP (δ) =p(R,R)(δ) · EPP (i∗R1(δ), i
∗
R2(δ)) + p(R,L)(δ) · EPP (i∗R1(δ), i

∗
L2(δ))

+ p(L,L)(δ) · EPP (i∗∗L1(δ), i
∗∗
L2(δ)) + p(L,R)(δ) · EPP (i∗∗L1(δ), i

∗∗
R2(δ)),

where the equilibrium policy choices, i∗R1(δ), i
∗
R2(δ), i

∗
L2(δ), i

∗∗
L1(δ), i

∗∗
L2(δ), and i∗∗R2(δ) are given

by (11) and (12), and the equilibrium outcome probabilities, p(R,R)(δ), p(R,L)(δ), p(L,L)(δ), and

p(L,R)(δ) are given by (13). From Section 4.3, we know that i∗R1(δ) and i∗∗L1(δ) are symmetric

around 1
2
. The same holds for i∗R2(δ) and i∗∗L2(δ), and i∗L2(δ) and i∗∗R2(δ), respectively. Moreover,

we know that p(R,R)(δ) = p(L,L)(δ) and p(R,L)(δ) = p(L,R)(δ). Therefore, EAP (δ) coincides with

the ex-ante policy polarization of GR, that is,

EAP (δ) = p∗(δ) · EPP (i∗R1(δ), i
∗
R2(δ)) + (1− p∗(δ)) · EPP (i∗R1(δ), i

∗
L2(δ)), (14)

41Ex-post policy polarization could be defined in different ways. Note that, qualitatively, the results
of this paper would be the same if, in Definition 1, we were to define ex-post policy polarization as, say,

EPP (ik1, ik′2) := 1
2

(
ik1 − 1

2

)2
+ 1

2

(
ik′2 − 1

2

)2
.
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where p∗(δ) is given by (10).

To measure welfare, we take the integral over all voters’ expected lifetime utilities. As voters’

ideal policy positions are symmetrically distributed around the median voter’s ideal policy,

i = 1
2
, and since all voters are affected in the same way by the public project and by costs

of change, maximizing the utilitarian welfare function is equivalent to maximizing the median

voter’s expected lifetime utility. According to (4), expected lifetime utility of the median voter

consists of three terms, the expected lifetime utility from public projects (EUP ), the expected

lifetime utility from policies (EU I
1
2

), and the expected lifetime utility from costs of change

(EU c). As in the case of policy polarization, it suffices to consider expected lifetime utility

over all equilibrium outcomes of GR. This is due to the symmetries of the equilibrium policy

choices and the fact that the distribution of ak is independent of the policy orientation of k.

Thus, welfare as a function of δ ∈
[
0, 1

2

]
is given by

W (δ) = EUP (δ) + EU I
1
2
(δ) + EU c(δ). (15)

Here we use δ as the argument of the utility functions because δ uniquely determines both the

expected output of the public project and the expected policy choice in both periods. We note

that if k ∈ R is the first-period office-holder and k′ ∈ L is the challenger in the second election,

the three components of welfare are given by

EUP (δ) = p∗(δ) · 2E [ak|k re-elected and pδ(ik1) = p∗(δ)]

+ (1− p∗(δ)) · {E [ak|k not re-elected and pδ(ik1) = p∗(δ)] + E[ak′ ]} , (16)

EU I
1
2
(δ) = p∗(δ) ·

[
−
(
i∗R1(δ)−

1

2

)2

−
(
i∗R2(δ)−

1

2

)2
]

+ (1− p∗(δ)) ·
[
−
(
i∗R1(δ)−

1

2

)2

−
(
i∗L2(δ)−

1

2

)2
]
, (17)

EU c(δ) = p∗(δ) · [−c|i∗R1(δ)− i∗R2(δ)|]
+ (1− p∗(δ)) · [−c|i∗R1(δ)− i∗L2(δ)|] , (18)

with p∗(δ) from (10) and i∗R1(δ), i
∗
R2(δ), and i∗L2(δ) from (11).

In order to compare different extra-hurdles, it is useful to introduce the following optimality

concepts:

Definition 3

An extra-hurdle δ ∈
[
0, 1

2

]
is called

• W-optimal if it maximizes welfare,

• P-optimal if it minimizes ex-ante policy polarization.
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Furthermore, when comparing a setting where non-zero extra-hurdles have been implemented

to a setting without extra-hurdles, it is useful to introduce the following definitions:

Definition 4

An extra-hurdle δ ∈
(
0, 1

2

]
is called

• W-increasing if W (δ) > W (0),

• weakly W-increasing if W (δ) ≥ W (0),

• P-reducing if EAP (δ) < EAP (0),

• weakly P-reducing if EAP (δ) ≤ EAP (0).

5.2 Optimal extra-hurdles (our normative results)

We can now state our main normative results.

Theorem 1

In equilibrium of G, the following holds:

(i) Any extra-hurdle δ ∈
(
0, 1

2

]
is both weakly W-increasing and weakly P-reducing.

(ii) There exists some δ∗ ∈
(
0,Π

)
that is both W- and P-optimal. Moreover,

{δ∗} = argmin
δ∈[0, 12 ]

EAP (δ) = argmax
δ∈[0, 12 ]

W (δ).

Proof: See Appendix A.

According to (ii) of Theorem 1, it is optimal, in terms of both welfare and ex-ante policy

polarization, to introduce δ∗ as the extra-hurdle for incumbents.42 In the proof of Theorem 1

we show that δ∗ = c
2
. Statement (i) in Theorem 1 shows that the introduction of any non-

zero extra-hurdle weakly increases welfare and weakly reduces ex-ante policy polarization with

respect to the simple majority rule. That is, δ = 0 is never optimal. The intuition and

understanding of Theorem 1 is developed with the illustrations in Figures 3(a) and 3(b), where

EAP (δ) and W (δ) are plotted for µR = 0.8, c = 0.5, A = 2 and ρ = 1
3
. The behavior of ex-ante

policy polarization as a function of δ immediately follows from the shape of i∗R1(δ), which is

depicted in Figure 2(a) and driven by the two mechanisms described at the end of Section 4.2.

The behavior of W (δ) is more subtle. Note that EUP (δ) is constant and equal to A(1−ρ)
2

,

42Note that not only EAP (δ) but also ex-post policy polarization of each equilibrium outcome of G is
minimized at δ∗. Moreover, besides total welfare, W (δ), two of its components, EU I1

2

(δ) and EU c(δ), are

uniquely maximized at δ∗.
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Figure 3: Illustration of the equilibrium values of ex-ante policy polarization and welfare, using
the parameter values µR = 0.8, c = 0.5, A = 2 and ρ = 1

3
.

independently of δ. Thus, it suffices to analyze EU I
1
2

(δ) and EU c(δ). EU I
1
2

(δ) is increasing

(decreasing) when EAP (δ) is decreasing (increasing). For δ ∈ [0, δ∗], expected costs of change

are weakly decreasing because the re-election probability, p∗(δ), is constant, the first-period

policy choice approaches the median when δ increases, and i∗R1(δ) = i∗R2(δ). Hence, welfare is

weakly increasing for δ ∈ [0, δ∗]. For δ > δ∗, expected costs of change are larger than for δ = 0,

because the deselection probability of the incumbent is larger. Nevertheless, since the increase

in expected costs of change is outweighed by the reduction in ex-ante policy polarization, any

extra-hurdle above δ∗ is W-increasing. Moreover, W (δ) is uniquely maximized at δ∗, since

EUP (δ) is constant and both EU I
1
2

(δ) and EU c(δ) are maximized at δ∗.

The plots in Figures 3(a) and 3(b) also reveal that below the critical value δ∗, a marginal increase

in the extra-hurdle weakly increases welfare and weakly reduces ex-ante policy polarization.

This is an important result. Indeed, because the exact value of c—and thus of δ∗ = c
2
—may

be uncertain, a cautious approach to improving welfare might consist in marginally increasing

the extra-hurdle.

5.3 Comparative statics (our positive results)

It is also instructive to consider comparative statics effects for the case of δ = 0. The results

stated in this section immediately follow from the expressions of EAP (δ) and W (δ) computed

in the proof of Theorem 1. First we examine what happens when the cost parameter c varies

and all other quantities are held constant. Our main positive results are given in the following

theorem:43

43We stress that Theorem 2 holds for all c > 0, i.e. (6) need not be satisfied for Theorem 2 to hold.
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Theorem 2

Let δ = 0. Then, the following holds:

(i) EAP (c|δ = 0) ≤ EAP (0|δ = 0) and W (c|δ = 0) ≥ W (0|δ = 0), for any c > 0.

(ii) There exists a unique c∗ > 0 such that, for all 0 ≤ c1 < c2 < c∗ < c3 < c4,





EAP (c1|δ = 0) ≥ EAP (c2|δ = 0) ≥ EAP (c∗|δ = 0)

EAP (c∗|δ = 0) < EAP (c3|δ = 0) ≤ EAP (c4|δ = 0)

W (c1|δ = 0) < W (c2|δ = 0) < W (c∗|δ = 0)

W (c∗|δ = 0) > W (c3|δ = 0) ≥ W (c4|δ = 0)

hold.

Proof: See Appendix A.

The behavior of ex-ante policy polarization and welfare as a function of the cost parameter—

in the absence of extra-hurdles, i.e. for δ = 0—is depicted in Figure 4(a) and Figure 4(b).

These plots illustrate Theorem 2. Figure 4(b) shows that (i) welfare is weakly higher when

policy changes are costly than when there are no costs of change and (ii) W (c|δ = 0) is

single-peaked as a function of c. In particular, the fact that moderate overhead costs of policy

changes could be welfare-improving is a very interesting insight. Figure 4(a) shows that (i)

EAP (c|δ = 0) ≤ EAP (0|δ = 0) for all non-zero values of c, and (ii) the larger the difference

is between c and c∗, the (weakly) larger ex-ante policy polarization will be.44 Statement (i) of

Theorem 2 follows from the fact that positive values of the cost parameter c yield weakly more

moderate policy choices than c = 0. For small c, the behavior of EAP (c|δ = 0) and W (c|δ = 0)

in response to marginal changes in the cost parameter can be explained in the following way:

For c < 2Π, any marginal increase in c yields strictly more moderate policy choices in both

periods. Thus EAP (c|δ = 0) is strictly decreasing for c < 2Π. Moreover, welfare is strictly

increasing for small c, since the effect of moderated policies outweighs the effect of increasing

the marginal cost of change.

According to the results in Theorem 2, it would be socially desirable to increase the costs of

policy changes if such costs stay sufficiently low. One possibility to make changes more costly

could be to require qualified majorities—proportional to the desired policy change—in the law-

making process of parliament. These obstacles would most likely impose additional opportunity

costs on citizens, as parliamentary members would have to devote more time to reaching an

agreement. A second insight of Theorem 2 that relies on the interpretation of costs of change as

44In the proof of Theorem 2 we show that c∗, the unique value of c that maximizes welfare and minimizes
ex-ante policy polarization, is given by c∗ = (3 + ρ)Π.
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Figure 4: Comparative statics for δ = 0: Ex-ante policy polarization and welfare as a function
of c > 0, for the parameter values µR = 0.8, A = 2 and ρ = 1

3
.

psychological costs is the following: Welfare is higher in societies with an intermediate degree

of conservatism compared to both “wavering societies” (i.e. societies where policy changes do

not impose utility losses on citizens) and “highly-conservative societies” (i.e. societies where

policy changes impose huge utility losses on citizens).

Second, we consider changes in party polarization Π. We know from (11) that if Π increases,

the equilibrium policy choices become more extreme, and thus EAP (0) will increase. In other

words, if party polarization increases, so does ex-ante policy polarization, since policy-makers

aspire to move towards their ideal policy positions when choosing their policies. Because

more extreme policy choices additionally yield higher costs of change in those cases where

the first-period office-holder is deselected, increasing Π (or, equivalently, increasing µR) will

lower welfare. These two effects are confirmed by the proof of Theorem 1, from which we know

that, for δ = 0, ex-ante policy polarization and welfare are given by

EAP (0) = Π− c(1− ρ)

4
(19)

and

W (0) =
A(1− ρ)

2
− 2Π2 +

c2(1− ρ)

2(3 + ρ)
, (20)

respectively.

Third, consider changes in ρ. Expression (19) reveals that ex-ante policy polarization increases

linearly in ρ. The reason for this is twofold. On the one hand, the equilibrium value of re-election

probability p∗(δ), given in (10), increases with ρ, which induces the first-period office-holder to

choose a policy that is closer to his ideal policy. On the other hand, this more extreme policy

enters into the expression of EAP (0) with a weight that is increasing in p∗(δ).45 Finally, as

45This can be seen from (73) in Appendix A.
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can be seen from (20), W (0) is decreasing in ρ. The effect of more extreme policies and lower

expected lifetime utility from the public project is stronger than the influence of the lower

probability of deselecting the first-period office-holder.

6 Re-election Hurdle Contracts

In this section we extend our model in such a way that the choice of the extra-hurdle δ is

now made by the candidates themselves. More specifically, before the first election, candidates

k ∈ R and k′ ∈ L choose δk ∈
[
0, 1

2

]
and δk′ ∈

[
0, 1

2

]
, respectively. Then they both announce

their choices simultaneously and publicly and commit to them. Such commitments can occur

through re-election hurdle contracts—special political contracts outlined in Gersbach (2012).

In the first election, the simple majority rule applies; in the case of a tie, each candidate wins

the election with probability 1
2
. All voters know the announced values of δk and δk′ when they

vote in the first election. In the second election, if k (resp. k′) is the office-holder, he will be

re-elected if his vote-share is equal to or larger than 1
2

+ δk (resp. 1
2

+ δk′). We denote this new

game by G ′. The sequence of events in the extended model is shown in Figure 5.

6 6 6 6 6 6 6

t = 0 t = 1 t = 2

Public
announcement
of δk and δk′

and commitment
to them

First
election

Choice of
policy I

in period 1

Public
project P is
undertaken;

ability is
realized

Second
election

Choice of
policy I

in period 2

Public
project P is
undertaken;

ability is
realized if

first term of
office-holder

Figure 5: Timeline of the sequence of events in the extended model.

Under the mechanism described above, the following result holds:

Theorem 3

In equilibrium of the game G ′, k ∈ R and k′ ∈ L will commit to δ∗ = c
2

and both will win the

first election with probability equal to 1
2
.

Proof: See Appendix A.
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Theorem 3 shows that in equilibrium the two candidates will voluntarily commit to δ∗ = c
2
,

which is the unique extra-hurdle that is both W- and P-optimal. As a consequence, δ∗ = c
2

will

be implemented in equilibrium, which makes re-election hurdle contracts a legitimate method

for implementing the concept of extra-hurdles in practice. The intuition for the result in

Theorem 3 is straightforward. If one candidate commits to a different value, say δk 6= δ∗, the

other candidate can secure election (with probability 1) by announcing δ∗, because δ∗ is the

unique maximizer of the expected lifetime utility of the median voter. Hence, the choice δk 6= δ∗

cannot be a best response, because a candidate is elected with (at least) probability 1
2

if he

chooses δ∗.

7 Social Polarization and Policy Polarization

Up to now, we have assumed that the electorate’s ideal policies are distributed uniformly

across the interval [0, 1]. In the present section, we relax this assumption and allow for non-

zero social polarization. We examine the implications of extra-hurdles on welfare and ex-ante

policy polarization under different degrees of (exogenously given) social polarization. To that

purpose, we define the following family of density functions, where α ∈ [0, 1]:

fα(i) =

{
−4αi+ (1 + α) if i ∈

[
0, 1

2

]
,

4αi+ (1− 3α) if i ∈
(
1
2
, 1
]
.

(21)

Any distribution in (21) with α > 0 is bimodal, with kinks in i = 0 and i = 1. Accordingly,

this is the description of an electorate with voters centered around two extreme positions.46

Parameter α reflects the degree of social polarization. In particular, if α = 0, the distribution

defined by fα(·) will reduce to a uniform distribution on [0, 1], whereas α = 1 captures the sit-

uation where there are few centrist voters. The density functions defined in (21) are illustrated

in Figure 6.

Since the degree of social polarization can be measured by α, we denote welfare and ex-ante

policy polarization by Wα(·) and EAPα(·), respectively. The following theorem contains the

main results on how extra-hurdles impact EAPα(·) and Wα(·):
46Different distributions capturing social polarization could be used instead of the family of distributions

given in (21). The results regarding the consequences of extra-hurdles on policy polarization and welfare are
likely to be qualitatively the same, but the analysis would become significantly more complex.
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Theorem 4

Let α ∈ [0, 1], and let the distribution of the voters’ ideal policies have a density fα(·). Then,

(i) Theorem 1(i) holds.

(ii) Theorem 1(ii) holds. That is, there exists some δ∗α ∈ (0,Π) such that

{δ∗α} = argmin
δ∈[0, 12 ]

EAPα(δ) = argmax
δ∈[0, 12 ]

Wα(δ).

(iii) δ∗α is continuous and decreasing in α ∈ [0, 1].

(iv) If some fixed δ ∈ [0, δ∗1] is chosen, EAPα(δ) is weakly decreasing in α and Wα(δ) is weakly

increasing in α.47

Proof: See Appendix A.
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Figure 6: The density functions fα(i) describe a socially polarized electorate. The parameter
α ∈ [0, 1] measures the degree of social polarization.

Statements (i) and (ii) of Theorem 4 establish that the results of Theorem 1 hold even when

the electorate is socially polarized. However, the uniquely determined W- and P-optimal δ is

not equal to c
2

for each value of α ∈ [0, 1]. Indeed, the effect of increasing the extra-hurdle is

leveraged by the degree of social polarization. That is, the more polarized a society is, the lower

the optimal extra-hurdle will be, so δ∗α is decreasing in α, as stated in (iii). From the proof of

Theorem 4, we immediately see that for δ = 0, i.e. in the absence of extra-hurdles, welfare and

ex-ante policy polarization do not depend on the level of social polarization.48 Hence, policy

polarization is not driven by the level of social polarization when the simple majority rule is

applied at all stages. As a consequence, the positive results stated in Section 5.3 are robust

to the electorate being socially polarized. In particular, Theorem 2 holds independently of the

level of social polarization.

47Note that δ∗1 = c2

2 , which is lower than c
2 .

48More precisely, this follows from (87) and (88).
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8 Initial Costs of Change

An implicit assumption in the baseline model is that there are no costs of change in t = 1,

or, equivalently, that there is no status quo policy. That is, in the basic version of our model

we have focused on a situation where the significance of costs of change occurs only after the

policy in t = 1 is chosen. It is thus worth analyzing how our results change if we assume the

existence of a status quo policy in t = 0, denoted by i0 ∈ [0, 1]. Suppose that such a status quo

policy imposes additional costs of change in t = 1, given by

U c̃(i0, ik1) = −c̃ · |i0 − ik1|,

where ik1 is the policy chosen by office-holder k in t = 1 and c̃ ∈ (0, c]. These costs are added

to the lifetime utility of all agents.

Using methods similar to those used in Sections 4.2 and 5.2, the following theorem can be

shown:49

Theorem 5

Let the status quo policy be i0 = 1
2
, and let c̃ ∈ (0, (1− ρ) · c). Then, Theorem 1 holds.

Theorem 5 reveals that our normative results on welfare and ex-ante policy polarization are

robust against introducing a status quo policy i0 = 1
2
, under the condition that c̃, the unitary

cost of change in the first period, is smaller than (1 − ρ) · c. The intuition for this result

is the following: The first-period policy choice is still driven by the two effects mentioned in

Section 4.2. That is, up to some critical value of δ, the office-holder will move closer to the

median voter when δ grows larger, in order to ensure re-election with ability zero. For extra-

hurdles above the critical level, he cannot ensure re-election with ability zero and will thus

choose a more partisan policy. Due to costs of change in the first period, there is now an

additional third effect that induces the first-period office-holder to choose a moderate policy.

Indeed, for given δ ∈
[
0, 1

2

]
, the larger c̃ grows, the closer the first-period policy choice will

be to the median voter, because the office-holder minimizes the cost of change that he incurs.

Thus, the initial costs of change reinforce the policy-moderating effect of extra-hurdles and,

if c̃ is small, leave the maximizer of welfare and the minimizer of ex-ante policy polarization

unchanged. Much as in Theorem 5, it can be shown that, for (1 − ρ) · c < c̃ ≤ c, statement

(i) of Theorem 1 still holds but (ii) does not, because the third effect is overly strong when

c̃ is close to c and when δ is above the critical level mentioned above. In this case, the W-

optimal and the P-optimal extra-hurdles may differ. However, both are still larger than zero,

49The detailed proof is available upon request. Note that the most challenging part of the proof is finding
an expression for i∗R1(δ), but this can be done similarly to the proof of Proposition 3.
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and any W-optimal extra-hurdle is P-reducing. Similarly, any P-optimal δ is W-increasing. If,

for instance, c̃ = c, then

argmin
δ∈[0, 12 ]

EAP (δ) =

(
c

2
,
1

2

]

and, conditional on c being smaller than 2(2µR−1)
4+ρ

,

argmax
δ∈[0, 12 ]

W (δ) =
{ c

2

}
.

That is, the sets of W-optimal and P-optimal extra-hurdles are disjoint. However, all δ ∈
(
c
2
, 1
2

]

are W-increasing, and δ = c
2

is P-reducing.
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Figure 7: Comparative statics for δ = 0, i0 = 1
2
, and c̃ = θ · c: Ex-ante policy polarization

and welfare as a function of c > 0, for the parameter values µR = 0.8, A = 2, ρ = 1
3
, and

θ = 1−ρ
2

= 1
3
.

Next, we analyze the robustness of Theorem 2 with respect to the introduction of a status quo

policy and initial costs of change. For this purpose, let i0 = 1
2

and δ = 0. Moreover, we assume

that c̃ = θ ·c, for some θ ∈ [0, 1]. Then we can show that any non-zero cost level c > 0 still yields

more moderate policy choices than c = 0.50 This is why Theorem 2(i) still holds in the present

setting. However, statement (ii) of Theorem 2 is not satisfied anymore, because first-period

policy choices are no longer single-dipped in c. The behavior of ex-ante policy polarization and

welfare as a function of c (and implicitly, of c̃) is illustrated in Figures 7(a) and 7(b). These

plots illustrate that with i0 = 1
2

and c̃ = θ · c, large marginal costs of change (in contrast

to moderate levels of c) will minimize ex-ante policy polarization and maximize welfare. The

intuition for this result is clear: If c and c̃ are very large, candidates choose their policies to be

equal to i0 in both periods, which minimizes costs of change and maximizes the median voter’s

utility from policies.

50The detailed computations are available upon request.
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9 Non-linear Costs of Change

Throughout the paper, we have assumed that costs of change are linear in the difference between

the policies adopted in the two periods. Under linear costs, we have fully characterized the

equilibrium of the game G depending on Π and c, and we have shown that (i) setting a threshold

for re-election higher than the usual majority rule weakly reduces ex-ante policy polarization

and weakly increases the median voter’s welfare, and (ii) there exists a unique non-zero extra-

hurdle that is simultaneously polarization-minimizing and welfare-maximizing. In this section,

we explore the robustness of our results for other and more general specifications: additional

presence of fixed costs and convex cost functions.

9.1 Fixed costs of change

In the Introduction, we mentioned the possibility that changing policy I will entail fixed costs.

In this section, we assume that in addition to the linear costs of change, there are also fixed

costs of change. More specifically, when policies ik1 ∈ [0, 1] and ik′2 ∈ [0, 1] are implemented in

t = 1 and t = 2, respectively, all voters and policy-makers incur costs in t = 2 equal to

U c(ik1, ik′2) = −c · |ik1 − ik′2| −K · 1(ik1, ik′2),

with K > 0 and

1(ik1, ik′2) =

{
1 if ik1 6= ik′2,

0 otherwise.

As in the baseline model, we focus on comparatively small values of c. More precisely, we

assume that

0 <
c

2
< Π−

√
K. (22)

We obtain the following theorem:

Theorem 6

Theorem 1 holds if

0 < K < min
{
K1, K2

}
, (23)

where

K1 =
(2Π− c)4

36
and K2 =

2c2(1− ρ)

(3− ρ)2
.

The logical steps for proving Theorem 6 are the same as for Theorem 1.51 The intuition for the

result in Theorem 6 is as follows: Fixed costs that are not too large
(
i.e. below min

{
K1, K2

})

51The detailed and involved calculations, covering all the different cases that need to be distinguished, are
available upon request. As in the baseline model, the most challenging part of the proof is finding an expression
for the first-period policy choice in equilibrium, similar to the proof of Proposition 3.
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increase the incumbency advantage of the first-period office-holder. Indeed, the critical extra-

hurdle up to which he can reach re-election with ability zero is increasing as a function of

K and for any given δ below this critical value he can reach re-election with ability zero by

choosing a weakly more polar position compared to the case without fixed costs. This effect

does not fundamentally change the equilibrium dynamics, it merely increases the unique W-

and P-optimal extra-hurdle. As a consequence, the results of Theorem 1 hold with

δ∗ =
c

2
+

√
K(2Π− c)

2(2Π− c−
√
K)

>
c

2
,

given that (22) and (23) are satisfied. Figure 8 illustrates the constraints on c and K given in

(22) and (23). The area below the solid curve contains all pairs of values (K, c) that satisfy

0
K

c

Figure 8: Sketch of the conditions (22) and (23): All pairs (K, c) below the solid curve satisfy
(22). If (K, c) lies to the left of the dotted (resp. dashed) curve, then it additionally satisfies
K < K1(c) (resp. K < K2(c)). The shaded area represents all (K, c) that fulfill (22) and (23).

condition (22). The shaded area represents all such pairs that additionally satisfy condition

(23). More precisely, if (K, c) lies to the left of the dotted curve, then K < K1(c) is satisfied.

Similarly, any pair (K, c) to the left of the dashed curve satisfies K < K2(c).

Next, we analyze the behavior of EAP (c|δ = 0) and W (c|δ = 0) as functions of c. It can

be shown that for all K and c that satisfy (22) and K < K1(c) (i.e. for all pairs (K, c) to

the left of the dotted curve in Figure 8), any marginal increase in c will reduce ex-ante policy

polarization and increase welfare.52 That is, for small values of c, the behavior of EAP (c|δ = 0)

and W (c|δ = 0) is in line with Theorem 2. However, there exists no K > 0 such that our results

would enable us to compute EAP (c|δ = 0) and W (c|δ = 0) for all c < 2Π− 2
√
K, because the

dotted curve in Figure 8 is strictly below the solid curve for all K > 0. This is why our results

52The detailed proof is available upon request.
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do not enable us to confirm that Theorem 2 holds for all c > 0 in a setting with fixed costs of

change.

9.2 Convex costs of change

In this section, we investigate the robustness of our results when the cost function in (3) is

replaced by

U c(ik1, ik′2) = −c · |ik1 − ik′2|η,

with η ∈ (1, 2].53 On the one hand, η > 1 implies that costs are strictly convex in the difference

between the policies adopted in the two periods. On the other, η ≤ 2 implies that the relative

utility losses of voters and candidates from policies that differ from their ideal policy positions

is higher than the relative increase of costs to engineer the policy change.

We can show the following theorem:54

Theorem 7

Let η ∈ (1, 2] and c > 0. Then, the following holds:

(i) There exists η∗ ∈ (1, 2) such that, if η ∈ (1, η∗) and c < 2Π, Theorem 1 holds.

(ii) There exists δ∗∗ ∈ (0,Π) such that any extra-hurdle δ ∈
(
δ∗∗, 1

2

]
is P-reducing.

(iii) If η = 2:

(iii.a) Any extra-hurdle δ ∈
(
0, 1

2

]
is P-reducing, and W (δ) is constant for all δ ∈

[
0, 1

2

]
.

(iii.b) The set of extra-hurdles that are both W- and P-optimal is given by

argmin
δ∈[0, 12 ]

EAP (δ) ∩ argmax
δ∈[0, 12 ]

W (δ) =

(
0,

1

2

]
.

The results in Theorem 7 add to the robustness of Theorem 1. First, as stated in (i), if costs

of change are moderately convex, the results of Theorem 1 are unchanged. This is due to the

continuity of EAP (δ) and W (δ) with respect to η. Second, in the special case where η = 2,

the results of Theorem 1 also hold, except that the set of extra-hurdles that are both W- and

P-optimal is not a singleton. Third, (ii) shows that for arbitrary values of η ∈ (1, 2), δ = 0 is

never optimal in terms of ex-ante policy polarization, because any sufficiently large extra-hurdle

53Case η > 2 remains for further investigation.
54The detailed proof is available upon request. Note that for convex costs of change, there is no explicit

expression for the best response of the second-period office-holder. Thus, the main challenge consists in finding
an expression for i∗R1(δ), based on a set of implicit functions.
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(b) Welfare with ρ = 0.1.
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(c) Ex-ante policy polarization with ρ = 1
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Figure 9: Equilibrium values of ex-ante policy polarization and welfare as a function of δ ∈[
0, 1

2

]
, using the parameter values µR = 0.8, c = 0.5, A = 2, and ρ = 0.1 (resp. ρ = 1

3
). Each

figure shows three different values of η: η = 1 (dashed), η = 1.5 (solid), and η = 2 (dotted).

yields a lower ex-ante policy polarization than δ = 0. Figures 9(a)–9(d) illustrate the results

of Theorem 7. The graphs show welfare and ex-ante policy polarization for both linear (η = 1)

and convex costs of change (η = 1.5 and η = 2).55 The plots for η = 1.5 (solid lines) suggest

that, for arbitrary η ∈ (1, 2), even stronger results than statement (ii) of Theorem 7 might

hold. More precisely, the solid plots of Figure 9(b) and Figure 9(d) suggest that, even if there

are convex costs of change, δ = 0 cannot be optimal in terms of welfare, because any sufficiently

large extra-hurdle is W-increasing. Moreover, Figures 9(a)–9(d) suggest that for η ∈ (1, 2), any

non-zero extra-hurdle is both weakly W-increasing and weakly P-reducing. Thus, although for

convex costs of change there does not always exist an extra-hurdle that is both W- and P-

optimal, there is numerical evidence for the fact that any W-optimal extra-hurdle is P-reducing

55The equilibrium policy choices (and the resulting values of ex-ante policy polarization and welfare) in the
case of η = 1.5 have been computed numerically. Details of the calculations are available upon request.
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and any P-optimal extra-hurdle is W-increasing. An example for a situation where there is no

extra-hurdle that is both W- and P-optimal is given in Figure 9(c) and Figure 9(d) for the case

of η = 1.5. Indeed, in this case,

argmin
δ∈[0, 12 ]

EAP (δ) ∩ argmax
δ∈[0, 12 ]

W (δ) = ∅.

It is also helpful to consider some comparative statics results in the case of convex costs of

change. In Figures 10(a)–10(f), we plot ex-ante policy polarization and welfare as a function

of Π, c, and ρ, for δ = 0 (i.e. in the absence of extra-hurdles) and η = 1.5. The graphs reveal

the same qualitative comparative statics results as in Section 5.3 for linear costs of change. In

particular, Theorem 2 is robust in a setting with convex costs of change.
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Figure 10: Comparative statics for δ = 0. Behavior of ex-ante policy polarization and welfare
as a function of Π ∈

[
0, 1

2

]
, c > 0, and ρ ∈ (0, 1), respectively. In all three plots we use η = 1.5

and A = 2. In the plots where the parameters µR, c, and ρ are fixed, we have set them to
µR = 0.8, c = 0.5, and ρ = 1

3
, respectively.

As noted above, we have not yet considered a situation where the relative utility losses of

voters and candidates from policies that differ from their ideal policy positions is lower than

the relative increase of costs to engineer the policy changes.56 In order to analyze whether our

results are robust to frameworks where this is the case, it is of interest to analyze a situation

56We have in fact assumed that η ∈ [1, 2], and that the utility of voters and candidates from the policy is
quadratic in the distance between the policy choice and their ideal position.
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where voters and candidates derive a utility of

U I
i (ikt) = −|ikt − i|

from the policy choice ikt in period t and costs of change are given by

U c(ik1, ik′2) = −c · (ik1 − ik′2)2,

if ik1 and ik′2 are the policies chosen in the first and the second period, respectively. It is

easy to show that in this framework, at least for small values of c, EAP (δ) ≥ EAP (0) and

W (δ) ≤ W (0) for all δ > 0.57 Thus, δ = 0 is both W- and P-optimal in this case.

10 Conclusion

We have presented a novel model of electoral competition in which changes of policies are costly

for voters and candidates and these costs increase with the magnitude of the policy change.

The model has allowed us to endogenize the degree of policy polarization in two-candidate

elections. We have found that moderate costs of change yield lower ex-ante policy polarization

and higher welfare than large costs of change or no costs at all. We have further suggested a way

to curb ex-ante policy polarization without reducing welfare, namely by setting the re-election

hurdle higher than 50%. Of course, numerous extensions beyond those already analyzed in the

paper can be pursued. For instance, exploring the impact of costs of change in democracies with

more than two parties, where governments typically consist of a coalition of parties, could reveal

how such costs influence the say of parties in government policy-making. Another interesting

avenue for further inquiry would be to allow fluctuations of the citizens’ and the median voter’s

ideal policy position. This would imply that some policy changes would occur simply because

electorate preferences change. These and other extensions can be expected to further enrich

our understanding of policy-making in democracy.

57The detailed proof is available on request.
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Appendix A

This appendix contains all proofs from the main body of the paper.

Proof of Proposition 1

Let k ∈ R and k′ ∈ R ∪ L be the office-holders in t = 1 and t = 2, respectively. For a given

first-period policy choice ik1, the second-period office-holder k′ chooses his policy ik′2 ∈ [0, 1] so

that his second period utility,

vik1(ik′2) := UP (gk′2) + U I
k′(ik′2) + U c(ik1, ik′2) + b

= ak′ − (ik′2 − µk′)2 − c|ik′2 − ik1|+ b,

is maximized. We note that vik1(ik′2) is differentiable with respect to ik′2 on (0, 1)\{ik1}. We

distinguish two cases, depending on the relative size of ik1 and µk′ .

Case 1: ik1 < µk′

In this case,

dvik1(ik′2)

dik′2
=

{
−2(ik′2 − µk′) + c if 0 < ik′2 < ik1,

−2(ik′2 − µk′)− c if ik1 < ik′2 < 1.

Therefore vik1(ik′2) is strictly increasing if and only if

0 < ik′2 < max
{
µk′ −

c

2
, ik1

}
,

which implies that

argmax
ik′2∈[0,1]

vik1(ik′2) =
{
max

{
µk′ −

c

2
, ik1

}}
.

Case 2: ik1 ≥ µk′

Analogous reasoning leads to

argmax
ik′2∈[0,1]

vik1(ik′2) =
{
min

{
µk′ +

c

2
, ik1

}}
.

Finally, combining Case 1 and Case 2 yields

argmax
ik′2∈[0,1]

vik1(ik′2) =
{
min

{
max

{
µk′ −

c

2
, ik1

}
, µk′ +

c

2

}}
.

This completes the proof.
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Proof of Proposition 2

Let i ∈ [0, 1] be an arbitrary voter. The ability of the incumbent, k ∈ R, is common knowledge

when citizens vote the second time. However, the ability of the challenging left-wing candidate,

say k′ ∈ L, is not known, because he is a new candidate. According to (1), E[ak′ ] = 0. If k wins

the second election, i will expect the policy to be i∗R2(ik1), while i will expect i∗L2(ik1) if k′ wins.

Thus, since i will vote for k if he strictly prefers office-holder k to win the second election, he

will vote for k if

ak − (i∗R2(ik1)− i)2 − c|i∗R2(ik1)− ik1| > E[ak′ ]− (i∗L2(ik1)− i)2 − c|i∗L2(ik1)− ik1|.

The above inequality is equivalent to

ak > (i∗R2(ik1)− i)2 + c|i∗R2(ik1)− ik1| − (i∗L2(ik1)− i)2 − c|i∗L2(ik1)− ik1|︸ ︷︷ ︸
=:(†)

. (24)

Under (2) and (6), we have

i∗R2(ik1) > i∗L2(ik1) for all ik1 ∈ [0, 1]. (25)

Indeed, by (2) and (6), µR − c
2
> µL + c

2
holds and by (5) we know that i∗R2(ik1) ≥ µR − c

2
and

i∗L2(ik1) ≤ µL + c
2
. From (25) it follows that (†) defined in (24) is strictly decreasing in i, since

d(†)
di

= 2 (i∗L2(ik1)− i∗R2(ik1)) < 0.

Thus, because an incumbent is re-elected in the second election if he receives a vote-share of

1
2

+ δ or larger, the critical voter in the second election is58

i =
1

2
− δ. (26)

Inserting (26) into (24) proves that office-holder k will be re-elected if and only if (7) holds.59

2

Proof of Proposition 3

For given δ, office-holder k aims at maximizing his expected utility at the beginning of t = 1,

which depends on ik1, his policy choice in the first period. It will be useful to introduce the

following notation:

58This builds on the assumption that voters are uniformly distributed on [0, 1]. Note that, qualitatively, the
main results of our paper would also hold for any other symmetric distribution of the voters, as detailed in
Section 7.

59Whether indifferent voters vote for the incumbent or the challenger does not influence the outcome of the
election. Indeed, the critical voter has measure zero, so the election is tied whenever he is indifferent between
both candidates, independently of his voting behavior.
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• EUδ(ik1) denotes k’s expected utility at the beginning of t = 1 as a function of ik1 and

parametrized by δ ∈
[
0, 1

2

]
, and

• pδ(ik1) denotes k’s re-election probability in the second election as a function of ik1 and

parametrized by δ ∈
[
0, 1

2

]
.60

By Proposition 2, we have

pδ(ik1) = P [ak ≥ aδ(ik1)].

Moreover, we have assumed in Section 3.4 that A is sufficiently large, so

−A < aδ(ik1) < A

for all δ ∈
[
0, 1

2

]
and all ik1 ∈ [0, 1]. Therefore, for every fixed value of δ, pδ(·) is a piecewise

constant function with pδ(ik1) ∈
{

1−ρ
2
, 1+ρ

2

}
for all ik1 ∈ [0, 1]. More precisely,

pδ(ik1) =

{
1+ρ
2

if aδ(ik1) ≤ 0,
1−ρ
2

if aδ(ik1) > 0.
(27)

We can now formulate the maximization problem that k faces in t = 1. For a given δ ∈
[
0, 1

2

]
,

k chooses ik1 ∈ [0, 1] so that

EUδ(ik1) =pδ(ik1) ·
{

2b+ 2E[ak|ak ≥ aδ(ik1)]

− (ik1 − µR)2 − (i∗R2(ik1)− µR)2 − c|ik1 − i∗R2(ik1)|
}

+(1− pδ(ik1)) ·
{
b+ E[ak|ak < aδ(ik1)]

− (ik1 − µR)2 − (i∗L2(ik1)− µR)2 − c|ik1 − i∗L2(ik1)|
}

(28)

is maximized. Since b is large and the ability distribution is discrete, maximization of the re-

election probability pδ(ik1) is a necessary condition to maximize EUδ(ik1). Hence office-holder

k’s re-election probability is given by

p∗(δ) = max
ik1∈[0,1]

pδ(ik1). (29)

We now define I∗(δ) as

I∗(δ) = argmax
ik1∈[0,1]

pδ(ik1). (30)

We next observe that solving

argmax
ik1∈[0,1]

EUδ(ik1)

60Note that this is the re-election probability as perceived before ak has been realized. Furthermore, pδ(ik1)
is to be understood conditionally on k being in office in t = 1.
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is equivalent to solving

argmax
ik1∈I∗(δ)

EUδ(ik1|p∗(δ)),

where EUδ(ik1|p∗(δ)) denotes k’s expected utility at the beginning of t = 1, conditional on

pδ(ik1) being equal to p∗(δ). Subsequently, we therefore proceed in three steps to maximize

EUδ(ik1). In Step 1, we compute p∗(δ) and I∗(δ) as a function of δ ∈
[
0, 1

2

]
. Then, in Step 2,

we solve

argmax
ik1∈[0,1]

EUδ(ik1|p∗(δ)).

Finally, in Step 3, we restrict the solutions of Step 2 to I∗(δ), that is we compute

argmax
ik1∈I∗(δ)

EUδ(ik1|p∗(δ)).

Step 1: Computation of p∗(δ) and I∗(δ) as functions of δ ∈
[
0, 1

2

]

First, it is useful to define

Aδ := {ik1 ∈ [0, 1] | aδ(ik1) ≤ 0} , (31)

for each δ ∈
[
0, 1

2

]
. Aδ is the set of policies that ensure re-election when the office-holder turns

out to have zero ability.61 By (27), (29), and (30), we know that

p∗(δ) =

{
1+ρ
2

if Aδ 6= ∅,
1−ρ
2

if Aδ = ∅ (32)

and

I∗(δ) =

{
Aδ if Aδ 6= ∅,
[0, 1] if Aδ = ∅. (33)

Second, in order to determine Aδ, it is useful to define the sets

I1 :=
[
0,max

{
µL −

c

2
, 0
})

, (34)

I2 :=
[
max

{
µL −

c

2
, 0
}
, µL +

c

2

]
, (35)

I3 :=
(
µL +

c

2
, µR −

c

2

)
, (36)

I4 :=
[
µR −

c

2
,min

{
µR +

c

2
, 1
}]

, (37)

I5 :=
(
min

{
µR +

c

2
, 1
}
, 1
]
, (38)

since the expressions in (5) for i∗R2(ik1) and i∗L2(ik1) depend on whether ik1 ∈ I1, ik1 ∈ I2,

ik1 ∈ I3, ik1 ∈ I4 or ik1 ∈ I5.62 Since

I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 = [0, 1],

61We stress that the office-holder does not know his ability when he chooses ik1. Moreover, recall that an
office-holder with ability A will always be re-elected and an office-holder with ability −A will never be.

62Note that [0, 0) and (1, 1] are empty sets.
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we can use the decomposition

Aδ =
{
Aδ ∩ I1

}
︸ ︷︷ ︸

Step 1a

∪
{
Aδ ∩ I2

}
︸ ︷︷ ︸

Step 1b

∪
{
Aδ ∩ I3

}
︸ ︷︷ ︸

Step 1c

∪
{
Aδ ∩ I4

}
︸ ︷︷ ︸

Step 1d

∪
{
Aδ ∩ I5

}
︸ ︷︷ ︸

Step 1e

(39)

to determine Aδ. Subsequently, in Steps 1a to 1e, we compute expressions for the subsets of

Aδ listed in (39). In Step 1f, we use Steps 1a to 1e to obtain expressions for p∗(δ) and I∗(δ),

for all δ ∈
[
0, 1

2

]
.

Step 1a: Computation of Aδ ∩ I1

If ik1 ∈ I1, then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = µL −

c

2
> ik1.

Thus, by (8),

aδ(ik1) =

(
µR −

c

2
−
(

1

2
− δ
))2

+ c
(
µR −

c

2
− ik1

)

−
(
µL −

c

2
−
(

1

2
− δ
))2

− c
(
µL −

c

2
− ik1

)

=
(
µR −

c

2

)2
−
(
µL −

c

2

)2
− 2

(
1

2
− δ
)

(µR − µL) + c(µR − µL)

=(2µR − 1)(1− c)− (2µR − 1)(1− c) + 2δ(2µR − 1)

=2δ(2µR − 1),

where we have used µL = 1− µR. By (31), this yields

Aδ ∩ I1 =

{
I1 if δ = 0,

∅ if δ ∈
(
0, 1

2

]
.

(40)

Step 1b: Computation of Aδ ∩ I2

If ik1 ∈ I2, then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = ik1.

Hence, by (8),

aδ(ik1) =

(
µR −

c

2
−
(

1

2
− δ
))2

+ c
(
µR −

c

2
− ik1

)
−
(
ik1 −

(
1

2
− δ
))2

=− i2k1 + (1− 2δ − c)ik1 +
(
µR −

c

2

)2
−
(
µR −

c

2

)
(1− 2δ − c).
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The discriminant of

−i2k1 + (1− 2δ − c)ik1 +
(
µR −

c

2

)2
−
(
µR −

c

2

)
(1− 2δ − c)

is

∆ := (2δ + 2µR − 1)2.

Hence,

Aδ ∩ I2 =
{(
−∞, µL −

c

2
− 2δ

]
∪
[
µR −

c

2
,+∞

)}
∩ I2

=

{{
µL − c

2

}
if δ = 0 and µL − c

2
≥ 0,

∅ otherwise.
(41)

Step 1c: Computation of Aδ ∩ I3

If ik1 ∈ I3, then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = µL +

c

2
< ik1,

and, by (8),

aδ(ik1) =

(
µR −

c

2
−
(

1

2
− δ
))2

+ c
(
µR −

c

2
− ik1

)

−
(
µL +

c

2
−
(

1

2
− δ
))2

+ c
(
µL +

c

2
− ik1

)

=
(
µR −

c

2

)2
−
(
µL +

c

2

)2

︸ ︷︷ ︸
=2µR−1−c

−2

(
1

2
− δ
)

(2µR − 1− c) + c(1− 2ik1)

=2δ(2µR − 1− c)− 2ik1c+ c.

Hence,

aδ(ik1) ≤ 0⇔ ik1 ≥
2δ(2µR − 1− c) + c

2c
(42)

and

Aδ ∩ I3 =

[
2δ(2µR − 1− c) + c

2c
,+∞

)
∩ I3.

We observe that
2δ(2µR − 1− c) + c

2c
≥ 1

2
> µL +

c

2
,

for all δ ≥ 0, and
2δ(2µR − 1− c) + c

2c
< µR −

c

2
⇔ δ <

c

2
.

Therefore,

Aδ ∩ I3 =

{[
2δ(2µR−1−c)+c

2c
, µR − c

2

)
if δ ∈

[
0, c

2

)
,

∅ if δ ∈
[
c
2
, 1
2

]
.

(43)
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Step 1d: Computation of Aδ ∩ I4

If ik1 ∈ I4, then, by (5),

i∗R2(ik1) = ik1 and i∗L2(ik1) = µL +
c

2
< ik1,

and thus, by (8),

aδ(ik1) =

(
ik1 −

(
1

2
− δ
))2

−
(
µL +

c

2
−
(

1

2
− δ
))2

+ c
(
µL +

c

2
− ik1

)

= i2k1 + (2δ − 1− c)ik1 −
[(
µL +

c

2

)2
+
(
µL +

c

2

)
(2δ − 1− c)

]
.

The discriminant of

i2k1 + (2δ − 1− c)ik1 −
[(
µL +

c

2

)2
+
(
µL +

c

2

)
(2δ − 1− c)

]

is

∆ := (2δ − 2µR + 1)2.

Hence,

Aδ ∩ I4 =

[
1 + c− 2δ − |2δ − 2µR + 1|

2
,
1 + c− 2δ + |2δ − 2µR + 1|

2

]
∩ I4

=

{[
µL + c

2
, µR + c

2
− 2δ

]
∩ I4 if δ < µR − 1

2
,[

µR + c
2
− 2δ, µL + c

2

]
∩ I4 if δ ≥ µR − 1

2
.

=

{[
µL + c

2
, µR + c

2
− 2δ

]
∩ I4 if δ < µR − 1

2
,

∅ if δ ≥ µR − 1
2
,

(44)

where the last equality follows since µL + c
2
< µR − c

2
. Moreover, since

µR +
c

2
− 2δ ≥ µR −

c

2
⇔ δ ≤ c

2

and µL + c
2
< µR − c

2
, the case where δ < µR − 1

2
can be reformulated as

Aδ ∩ I4 =

{[
µR − c

2
,min

{
µR + c

2
− 2δ, 1

}]
if δ ∈

[
0, c

2

]
,

∅ if δ ∈
(
c
2
, µR − 1

2

)
.

(45)

Finally, combining (44) and (45) yields

Aδ ∩ I4 =

{[
µR − c

2
,min

{
µR + c

2
− 2δ, 1

}]
if δ ∈

[
0, c

2

]
,

∅ if δ ∈
(
c
2
, 1
2

]
.

(46)

Step 1e: Computation of Aδ ∩ I5

If ik1 ∈ I5, then, by (5),

i∗R2(ik1) = µR +
c

2
< ik1 and i∗L2(ik1) = µL +

c

2
< ik1.
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Thus, by (8),

aδ(ik1) =

(
µR +

c

2
−
(

1

2
− δ
))2

− c
(
µR +

c

2
− ik1

)

−
(
µL +

c

2
−
(

1

2
− δ
))2

+ c
(
µL +

c

2
− ik1

)

=
(
µR +

c

2

)2
−
(
µL +

c

2

)2
− 2

(
1

2
− δ
)

(µR − µL)− c(µR − µL)

=(2µR − 1)(1 + c)− (2µR − 1)(1 + c) + 2δ(2µR − 1)

=2δ(2µR − 1).

By (31), this yields

Aδ ∩ I5 =

{
I5 if δ = 0,

∅ if δ ∈
(
0, 1

2

]
.

(47)

Step 1f: Computation of p∗(δ) and I∗(δ)

Let us now combine (40), (41), (43), (46), and (47) to obtain compact expressions for Aδ.
These expressions will enable us to compute p∗(δ) and I∗(δ) with the help of (32) and (33). We

distinguish three different cases.

Case 1: δ = 0

We consider two subcases, depending on the value of the parameter c.

Case 1a: c ≤ 2(1− µR)

In this case, µL − c
2
≥ 0, so

A0 =
[
0, µL −

c

2

]
∪
[

1

2
, 1

]
,

which, by (32) and (33), yields

p∗(0) =
1 + ρ

2
and I∗(0) =

[
0, µL −

c

2

]
∪
[

1

2
, 1

]
. (48)

Case 1b: c > 2(1− µR)

In this case, µL − c
2
< 0, so

A0 =

[
1

2
, 1

]
,

which, by (32) and (33), yields

p∗(0) =
1 + ρ

2
and I∗(0) =

[
1

2
, 1

]
. (49)
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Case 2: δ ∈
(
0, c

2

]

In this case, (40), (41), (43), (46), and (47) yield

Aδ =

[
2δ(2µR − 1− c) + c

2c
,min

{
µR +

c

2
− 2δ, 1

}]
,

which in turn implies

p∗(δ) =
1 + ρ

2
and I∗(δ) =

[
2δ(2µR − 1− c) + c

2c
,min

{
µR +

c

2
− 2δ, 1

}]
, (50)

by (32) and (33).

Case 3: δ ∈
(
c
2
, 1
2

]

For such extra-hurdles

Aδ = ∅,

so, by (32) and (33),

p∗(δ) =
1− ρ

2
and I∗(δ) = [0, 1]. (51)

Step 2: Solution to argmaxik1∈[0,1]EUδ(ik1|p∗(δ))

We obtain from (28) that

EUδ(ik1|p∗(δ)) =p∗(δ) ·
{

2b+ 2E[ak|k re-elected and pδ(ik1) = p∗(δ)]

− (ik1 − µR)2 − (i∗R2(ik1)− µR)2 − c|ik1 − i∗R2(ik1)|
}

+(1− p∗(δ)) ·
{
b+ E[ak|k not re-elected and pδ(ik1) = p∗(δ)]

− (ik1 − µR)2 − (i∗L2(ik1)− µR)2 − c|ik1 − i∗L2(ik1)|
}
. (52)

This expression of EUδ(ik1|p∗(δ)) can be simplified using

E[ak|k re-elected and pδ(ik1) = p∗(δ)] =
A(1− ρ)

2p∗(δ)
(53)

and

E[ak|k not re-elected and pδ(ik1) = p∗(δ)] = − A(1− ρ)

2(1− p∗(δ)) . (54)

Recall that, by (27),

p∗(δ) ∈
{

1− ρ
2

,
1 + ρ

2

}
.
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Then, (53) follows from

E[ak|k re-elected and pδ(ik1) = p∗(δ)] =

{
E[ak|ak = A] if p∗(δ) = 1−ρ

2
,

E[ak|ak ∈ {0, A}] if p∗(δ) = 1+ρ
2
,

=

{
A if p∗(δ) = 1−ρ

2
,

A(1−ρ)
1+ρ

if p∗(δ) = 1+ρ
2
,

=
A(1− ρ)

2p∗(δ)
.

The proof of (54) is similar. Inserting (53) and (54) into (52) yields

EUδ(ik1|p∗(δ)) =
A(1− ρ)

2
+ b · (1 + p∗(δ))

+ p∗(δ) ·
[
−(ik1 − µR)2 − (i∗R2(ik1)− µR)2 − c|ik1 − i∗R2(ik1)|

]
(55)

+ (1− p∗(δ)) ·
[
−(ik1 − µR)2 − (i∗L2(ik1)− µR)2 − c|ik1 − i∗L2(ik1)|

]
.

We now analyze the behavior of EUδ(ik1|p∗(δ)), given by (55), as a function of ik1 ∈ [0, 1]. We

observe from (5) and (55) that, for each δ ∈
[
0, 1

2

]
, EUδ(ik1|p∗(δ)) is continuous in ik1 on [0, 1]

and differentiable on

(0, 1)\
{
µL −

c

2
, µL +

c

2
, µR −

c

2
, µR +

c

2

}
.

Accordingly, in Steps 2a to 2e we analyze the sign of

dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦j and j = 1, 2, . . . , 5. Recall that I1, I2, . . . , I5 are defined in (34)-(38) and, for each

j ∈ {1, 2, . . . , 5}, let I◦j denote the interior of Ij. In Step 2f, we combine Steps 2a to 2e in order

to solve argmaxik1∈[0,1]EUδ(ik1|p∗(δ)).

Step 2a: dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦1
If ik1 ∈ I◦1 , then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = µL −

c

2
> ik1.

Thus, by (55),

dEUδ(ik1|p∗(δ))
dik1

=p∗(δ) · [−2(ik1 − µR) + c] + (1− p∗(δ)) · [−2(ik1 − µR) + c]

=− 2(ik1 − µR) + c (56)

>0,

for all ik1 < µR + c
2
. From this property, it immediately follows that

dEUδ(ik1|p∗(δ))
dik1

> 0 for all ik1 ∈ I◦1 . (57)
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Step 2b: dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦2
If ik1 ∈ I◦2 , then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = ik1.

Hence, by (55),

dEUδ(ik1|p∗(δ))
dik1

=p∗(δ) · [−2(ik1 − µR) + c]

+ (1− p∗(δ)) · [−2(ik1 − µR)− 2(ik1 − µR)]

=− 2(ik1 − µR)(2− p∗(δ)) + c · p∗(δ) (58)

>0,

for all ik1 < µR + c
2
· p∗(δ)
2−p∗(δ) . Therefore,

dEUδ(ik1|p∗(δ))
dik1

> 0 for all ik1 ∈ I◦2 . (59)

Step 2c: dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦3
If ik1 ∈ I◦3 , then, by (5),

i∗R2(ik1) = µR −
c

2
> ik1 and i∗L2(ik1) = µL +

c

2
< ik1,

and, by (55),

dEUδ(ik1|p∗(δ))
dik1

=p∗(δ) · [−2(ik1 − µR) + c] + (1− p∗(δ)) · [−2(ik1 − µR)− c]

=− 2(ik1 − µR) + c(2p∗(δ)− 1) (60)

>0,

for all ik1 < µR + c(2p∗(δ)−1)
2

. Since µR + c(2p∗(δ)−1)
2

≥ µR − c
2
, it follows that

dEUδ(ik1|p∗(δ))
dik1

> 0 for all ik1 ∈ I◦3 . (61)

Step 2d: dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦4
If ik1 ∈ I◦4 , then, by (5),

i∗R2(ik1) = ik1 and i∗L2(ik1) = µL +
c

2
< ik1,
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and thus, by (55),

dEUδ(ik1|p∗(δ))
dik1

=p∗(δ) · [−2(ik1 − µR)− 2(ik1 − µR)]

+ (1− p∗(δ)) · [−2(ik1 − µR)− c]
=− 2(ik1 − µR)(1 + p∗(δ))− c · (1− p∗(δ)), (62)

which is strictly positive if and only if ik1 < µR − c
2
· 1−p∗(δ)
1+p∗(δ) . Since, for p∗(δ) ∈ (0, 1),

µR −
c

2
· 1− p∗(δ)

1 + p∗(δ)
∈
(
µR −

c

2
, µR

)
⊂ I◦4 ,

it follows that, for ik1 ∈ I◦4 ,

dEUδ(ik1|p∗(δ))
dik1





> 0 if ik1 < µR − c
2
· 1−p∗(δ)
1+p∗(δ) ,

= 0 if ik1 = µR − c
2
· 1−p∗(δ)
1+p∗(δ) ,

< 0 if ik1 > µR − c
2
· 1−p∗(δ)
1+p∗(δ) .

(63)

Step 2e: dEUδ(ik1|p∗(δ))
dik1

for ik1 ∈ I◦5
If ik1 ∈ I◦5 , then

i∗R2(ik1) = µR +
c

2
< ik1 and i∗L2(ik1) = µL +

c

2
< ik1,

by (5). Thus, by (55),

dEUδ(ik1|p∗(δ))
dik1

=p∗(δ) · [−2(ik1 − µR)− c] + (1− p∗(δ)) · [−2(ik1 − µR)− c]

=− 2(ik1 − µR)− c (64)

<0,

for all ik1 > µR − c
2
. Therefore,

dEUδ(ik1|p∗(δ))
dik1

< 0 for all ik1 ∈ I◦5 . (65)

Step 2f: Solution to argmaxik1∈[0,1]EUδ(ik1|p∗(δ))

Combining (57), (59), (61), (63), and (65) yields

dEUδ(ik1|p∗(δ))
dik1

> 0 for all ik1 < µR −
c

2
· (1− p∗(δ))

(1 + p∗(δ))

and
dEUδ(ik1|p∗(δ))

dik1
< 0 for all ik1 > µR −

c

2
· (1− p∗(δ))

(1 + p∗(δ))
,
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whenever dEUδ(ik1|p∗(δ))
dik1

exists. Due to the continuity of EUδ(ik1|p∗(δ)) in ik1 ∈ [0, 1], this yields

argmax
ik1∈[0,1]

EUδ(ik1|p∗(δ)) =

{
µR −

c

2
· (1− p∗(δ))

(1 + p∗(δ))

}
(66)

and

EUδ(i|p∗(δ)) > EUδ(j|p∗(δ)), for all i ∈
[
0, µR −

c

2
· (1− p∗(δ))

(1 + p∗(δ))

]
and j < i. (67)

Step 3: Solution to argmaxik1∈I∗(δ)EUδ(ik1|p∗(δ))

From Step 1f we know that the value of p∗(δ) depends on whether δ ≤ c
2

or δ > c
2
. Let us

therefore distinguish two cases.

Case 1: δ ∈
[
0, c

2

]

In this case, (48), (49), and (50) yield

p∗(δ) =
1 + ρ

2
.

Hence, by (66),

argmax
ik1∈[0,1]

EUδ(ik1|p∗(δ)) =

{
µR −

c

2
· 1− ρ

3 + ρ

}
. (68)

From (48) and (49), we obtain that, for ρ ∈ (0, 1),

µR −
c

2
· 1− ρ

3 + ρ
∈
(
µR −

c

6
, µR

)
⊂
[

1

2
, 1

]
⊂ I∗(0).

Moreover, since
2δ(2µR − 1− c) + c

2c
≤ µR −

c

2
< µR −

c

2
· 1− ρ

3 + ρ
,

for all δ ≤ c
2
, and

µR −
c

2
· 1− ρ

3 + ρ
≤ µR +

c

2
− 2δ ⇔ δ ≤ c

3 + ρ
,

it follows from (50) that

µR −
c

2
· 1− ρ

3 + ρ
∈ I∗(δ) for δ ∈

[
0,

c

3 + ρ

]
. (69)

Combining (68) and (69) yields

argmax
ik1∈I∗(δ)

EUδ(ik1|p∗(δ)) =

{
µR −

c

2
· 1− ρ

3 + ρ

}
for δ ∈

[
0,

c

3 + ρ

]
. (70)

For δ ∈
(

c
3+ρ

, c
2

]
,

argmax
ik1∈[0,1]

EUδ(ik1|p∗(δ)) ∩ I∗(δ) = ∅,
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or, more precisely, the unique element in argmaxik1∈[0,1]EUδ(ik1|p∗(δ)) is larger than every

element in I∗(δ). Hence, by (67), the office-holder will choose his policy by moving to the right

as long as he stays in I∗(δ), the area that guarantees high re-election probability. That is,

argmax
ik1∈I∗(δ)

EUδ(ik1|p∗(δ)) =
{
µR +

c

2
− 2δ

}
for δ ∈

(
c

3 + ρ
,
c

2

]
. (71)

Case 2: δ ∈
(
c
2
, 1
2

]

In this case,

p∗(δ) =
1− ρ

2
,

by (51), and (66) implies that

argmax
ik1∈[0,1]

EUδ(ik1|p∗(δ)) =

{
µR −

c

2
· 1 + ρ

3− ρ

}
.

Since I∗(δ) = [0, 1], by (51), this immediately implies that

argmax
ik1∈I∗(δ)

EUδ(ik1|p∗(δ)) =

{
µR −

c

2
· 1 + ρ

3− ρ

}
for δ ∈

(
c

2
,
1

2

]
. (72)

Combining (70), (71), and (72) yields (9). This completes the proof of Proposition 3.

2

Proof of Theorem 1

We will show that

(a) EAP (δ) ≤ EAP (0), for all δ ∈
(
0, 1

2

]
,

(b) W (δ) ≥ W (0), for all δ ∈
(
0, 1

2

]
,

(c) argminδ∈[0, 12 ]EAP (δ) =
{
c
2

}
,

(d) argmaxδ∈[0, 12 ]W (δ) =
{
c
2

}
,

from which Theorem 1 follows, with δ∗ = c
2
. In Part 1, we analyze ex-ante policy polarization

and prove (a) and (c). Part 2 is devoted to welfare and the proofs of (b) and (d).

Part 1: Analysis of EAP (δ)

From (11), we know that

i∗R1(δ) = i∗R2(δ) >
1

2
, and

i∗L2(δ) = µL +
c

2
= 1− µR +

c

2
<

1

2
.
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Inserting these equalities into (14) yields

EAP (δ) =
1 + p∗(δ)

2

(
i∗R1(δ)−

1

2

)
+

1− p∗(δ)
2

(
µR −

c

2
− 1

2

)
. (73)

Thus, by (9) and (10), EAP (δ) is constant for δ ≤ c
3+ρ

and δ > c
2

and decreasing in δ for

δ ∈
(

c
3+ρ

, c
2

]
. Moreover, EAP (δ) has a single discontinuity at δ = c

2
. It therefore suffices to

compare EAP
(
1
2

)
to both EAP (0) and EAP

(
c
2

)
to show that (a) and (c) hold. First, inserting

(9) and (10) into (73) implies that

EAP

(
1

2

)
− EAP (0) =

3− ρ
4
·
(
µR −

c

2
· 1 + ρ

3− ρ −
1

2

)
+

1 + ρ

4
·
(
µR −

c

2
− 1

2

)

− 3 + ρ

4
·
(
µR −

c

2
· 1− ρ

3 + ρ
− 1

2

)
− 1− ρ

4
·
(
µR −

c

2
− 1

2

)

=− ρ

2

(
µR −

1

2

)
− ρ

2
· c

2
+
ρ

2

(
µR −

c

2
− 1

2

)

=− ρc

2
< 0, (74)

which establishes statement (a). Second, again by inserting (9) and (10) into (73), we obtain

EAP

(
1

2

)
− EAP

( c
2

)
=

3− ρ
4
·
(
µR −

c

2
· 1 + ρ

3− ρ −
1

2

)
+

1 + ρ

4
·
(
µR −

c

2
− 1

2

)

− 3 + ρ

4
·
(
µR −

c

2
− 1

2

)
− 1− ρ

4
·
(
µR −

c

2
− 1

2

)

=− ρ

2

(
µR −

1

2

)
+
c

4
+
ρ

2

(
µR −

c

2
− 1

2

)

=
(1− ρ)c

4
> 0. (75)

This proves statement (c). In this proof, we did not need an explicit expression for EAP (δ).

However, for the sake of completeness, we can obtain an explicit expression for ex-ante policy

polarization by inserting (9) and (10) into (73) and using simple algebraic manipulations:

EAP (δ) =





µR − 1
2
− c(1−ρ)

4
if δ ∈

[
0, c

3+ρ

]
,

µR − 1
2

+ c(1+ρ)
4
− (3+ρ)δ

2
if δ ∈

(
c

3+ρ
, c
2

]
,

µR − 1
2
− c(1+ρ)

4
if δ ∈

(
c
2
, 1
2

]
.

Part 2: Analysis of W (δ)

Now we investigate how welfare behaves as a function of δ. First, we compute EUP (δ). For

this purpose, suppose that k ∈ R is the office-holder in t = 1 and that k′ ∈ L is his challenger

in the second election. Because E[ak′ ] = 0, and from (53) and (54),

E [ak|k re-elected and pδ(ik1) = p∗(δ)] =
A(1− ρ)

2p∗(δ)
and

E [ak|k not re-elected and pδ(ik1) = p∗(δ)] = − A(1− ρ)

2(1− p∗(δ)) ,
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it follows by (16) that the expected lifetime utility from the public projects is constant:

EUP (δ) =
A(1− ρ)

2
.

Second, inserting (11) into (17) and (18) yields

EU I
1
2
(δ) = −(1 + p∗(δ))

(
i∗R1(δ)−

1

2

)2

− (1− p∗(δ))
(
µL +

c

2
− 1

2

)2

and

EU c(δ) = −(1− p∗(δ)) · c
(
i∗R1(δ)−

(
µL +

c

2

))
,

respectively. Therefore, according to (15),

W (δ) =
A(1− ρ)

2
− (1 + p∗(δ))

(
i∗R1(δ)−

1

2

)2

− (1− p∗(δ))
{(

µL +
c

2
− 1

2

)2

+ c
[
i∗R1(δ)−

(
µL +

c

2

)]}
.

(76)

By (9) and (10), it follows that W (δ) is constant for both ranges δ ≤ c
3+ρ

and δ > c
2

and that

W (δ) has a single discontinuity at δ = c
2
. Moreover, W (δ) is increasing in δ for δ ∈

(
c

3+ρ
, c
2

]
,

since
dW (δ)

dδ
=

[
−2(1 + p∗(δ)) ·

(
i∗R1(δ)−

1

2

)
− c(1− p∗(δ))

]

︸ ︷︷ ︸
<0

· di
∗
R1(δ)

dδ︸ ︷︷ ︸
<0

> 0,

which follows from (76), and (9) and (10) for δ ∈
(

c
3+ρ

, c
2

]
. It is therefore sufficient to compare

W
(
1
2

)
to both W (0) and W

(
c
2

)
in order to prove statements (b) and (d). First, inserting (9)

and (10) into (76), yields

W

(
1

2

)
−W (0) =− 3− ρ

2

(
µR −

c(1 + ρ)

2(3− ρ)
− 1

2

)2

− 1 + ρ

2

{(
µL +

c

2
− 1

2

)2

+ c

[
µR −

c(1 + ρ)

2(3− ρ)
−
(
µL +

c

2

)]}

+
3 + ρ

2

(
µR −

c(1− ρ)

2(3 + ρ)
− 1

2

)2

+
1− ρ

2

{(
µL +

c

2
− 1

2

)2

+ c

[
µR −

c(1− ρ)

2(3 + ρ)
−
(
µL +

c

2

)]}
.
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Thus,

W

(
1

2

)
−W (0)

=− 3− ρ
2

(
µR −

1

2
− c(1 + ρ)

2(3− ρ)

)2

− 1 + ρ

2

{(
µR −

1

2
− c

2

)2

+ c

[
2

(
µR −

1

2

)
− 2c

3− ρ

]}

+
3 + ρ

2

(
µR −

1

2
− c(1− ρ)

2(3 + ρ)

)2

+
1− ρ

2

{(
µR −

1

2
− c

2

)2

+ c

[
2

(
µR −

1

2

)
− 2c

3 + ρ

]}

=

(
µR −

1

2

)2

·
(
−3− ρ

2
− 1 + ρ

2
+

3 + ρ

2
+

1− ρ
2

)

+
( c

2

)2
·
[
− (1 + ρ)2

2(3− ρ)
− 1 + ρ

2
+

4(1 + ρ)

3− ρ +
(1− ρ)2

2(3 + ρ)
+

1− ρ
2
− 4(1− ρ)

3 + ρ

]

+ c

(
µR −

1

2

)
·
[

1 + ρ

2
+

1 + ρ

2
− (1 + ρ)− 1− ρ

2
− 1− ρ

2
+ (1− ρ)

]

=
( c

2

)2
· (1 + ρ)(3 + ρ)(−1− ρ− 3 + ρ+ 8) + (1− ρ)(3− ρ)(1− ρ+ 3 + ρ− 8)

2(3− ρ)(3 + ρ)

=
( c

2

)2
· 2(1 + ρ)(3 + ρ)− 2(1− ρ)(3− ρ)

(3− ρ)(3 + ρ)

=
4ρc2

(3− ρ)(3 + ρ)
, (77)

which is strictly positive for ρ ∈ (0, 1). This proves statement (b). Second, again by making

use of (9) and (10) in (76), we obtain

W

(
1

2

)
−W

( c
2

)
=− 3− ρ

2

(
µR −

c(1 + ρ)

2(3− ρ)
− 1

2

)2

− 1 + ρ

2

{(
µL +

c

2
− 1

2

)2

+ c

[
µR −

c(1 + ρ)

2(3− ρ)
−
(
µL +

c

2

)]}

+
3 + ρ

2

(
µR −

c

2
− 1

2

)2

+
1− ρ

2

{(
µL +

c

2
− 1

2

)2

+ c
[
µR −

c

2
−
(
µL +

c

2

)]}
.
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So,

W

(
1

2

)
−W

( c
2

)

=− 3− ρ
2

(
µR −

1

2
− c(1 + ρ)

2(3− ρ)

)2

− 1 + ρ

2

{(
µR −

1

2
− c

2

)2

+ c

[
2

(
µR −

1

2

)
− 2c

(3− ρ)

]}

+
3 + ρ

2

(
µR −

1

2
− c

2

)2

+
1− ρ

2

{(
µR −

1

2
− c

2

)2

+ c

[
2

(
µR −

1

2

)
− c
]}

=

(
µR −

1

2

)2

·
(
−3− ρ

2
− 1 + ρ

2
+

3 + ρ

2
+

1− ρ
2

)

+
( c

2

)2
·
[
− (1 + ρ)2

2(3− ρ)
− 1 + ρ

2
+

4(1 + ρ)

3− ρ +
3 + ρ

2
+

1− ρ
2
− 2(1− ρ)

]

+ c

(
µR −

1

2

)
·
[

1 + ρ

2
+

1 + ρ

2
− (1 + ρ)− 3 + ρ

2
− 1− ρ

2
+ (1− ρ)

]

=
c2 (−ρ2 + 4ρ+ 1)

2(3− ρ)
− c

(
µR −

1

2

)
(1 + ρ)

=
c2 (−ρ2 + 4ρ+ 1)− c(2µR − 1) (−ρ2 + 2ρ+ 3)

2(3− ρ)
< −c

2 (1− ρ)

3− ρ < 0, (78)

where the first inequality in the last line holds since −ρ2 + 2ρ + 3 > 0 for all ρ ∈ (0, 1) and

c < (2µR − 1). This establishes statement (d). For the sake of completeness, we derive the

following explicit expression for welfare by inserting (9) and (10) into (76):

W (δ) =





A(1−ρ)
2
− (2µR−1)2

2
+ c2(1−ρ)

2(3+ρ)
if δ ∈

[
0, c

3+ρ

]
,

A(1−ρ)−(1−2µR−c)2
2

− 2(3 + ρ)δ2 + [4c+ (3 + ρ)(2µR − 1)] δ if δ ∈
(

c
3+ρ

, c
2

]
,

A(1−ρ)
2
− (2µR−1)2

2
+ c2(1+ρ)

2(3−ρ) if δ ∈
(
c
2
, 1
2

]
.

2

Proof of Theorem 2

From the expressions of EAP (δ) and W (δ) given in the proofs of Theorem 1 and Theorem 8, we

immediately obtain expressions for EAP (c|δ = 0) and W (c|δ = 0), for all c > 0. The analysis

of these expressions allows to show statements (i) and (ii). Note that

A-18



{c∗} = argmin
c≥0

EAP (c|δ = 0) ∩ argmax
c≥0

W (c|δ = 0)

= [2Π, (3 + ρ)Π] ∩ {(3 + ρ)Π}
= {(3 + ρ)Π}.

2

Proof of Theorem 3

For i ∈ [0, 1] let EUk
i (δk) (resp. EUk′

i (δk′)) denote the expected utility of voter i, immediately

after candidate k (resp. k′) has been elected for the first term in period t = 1, and k (resp. k′)

has offered the extra-hurdle δk (resp. δk′). Voter i will strictly prefer k to win the first election

if and only if EUk
i (δk)−EUk′

i (δk′) > 0. The proof of the theorem is now divided into two steps.

In Step 1, we show that i = 1
2

is the critical voter in the first election. That is, the candidate

whom voter i = 1
2

supports in the first election will be in office in t = 1.63 In Step 2, we use

this result to show which extra-hurdles are chosen in equilibrium and what the outcome of the

first election will be.

Step 1: Critical voter in the first election

Analogously to (76), we can represent EUk
i (δk) by

EUk
i (δk) =

A(1− ρ)

2
− (1 + p∗(δk)) (i∗R1(δk)− i)2

− (1− p∗(δk))
{(

µL +
c

2
− i
)2

+ c
[
i∗R1(δk)−

(
µL +

c

2

)]}
.

(79)

By (2), and because ak and ak′ are drawn from the same distribution, the latter expression also

holds for candidate k′:

EUk′
i (δk′) =

A(1− ρ)

2
− (1 + p∗(δk′)) (1− i∗R1(δk′)− i)2

− (1− p∗(δk′))
{(

1−
(
µL +

c

2

)
− i
)2

+ c
[
i∗R1(δk′)−

(
µL +

c

2

)]}
.

(80)

Voter i will strictly prefer k to win the first election if and only if EUk
i (δk) − EUk′

i (δk′) > 0.

Deducting (80) from (79) yields

EUk
i (δk)− EUk′

i (δk′) =

− (1 + p∗(δk)) (i∗R1(δk)− i)2 + (1 + p∗(δk′)) (1− i∗R1(δk′)− i)2

− (1− p∗(δk))
{(

µL +
c

2
− i
)2

+ c
[
i∗R1(δk)−

(
µL +

c

2

)]}

+ (1− p∗(δk′))
{(

1−
(
µL +

c

2

)
− i
)2

+ c
[
i∗R1(δk′)−

(
µL +

c

2

)]}
.

(81)

63If the critical voter is indifferent between both candidates, the first election is tied.
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From (9) and (10) we know that (81) yields different expressions, depending on whether δk ∈[
0, c

3+ρ

]
, δk ∈

(
c

3+ρ
, c
2

]
, or δk ∈

(
c
2
, 1
2

]
, and similarly for δk′ . Analyzing the nine resulting

expressions of (81) separately shows that EUk
i (δk)− EUk′

i (δk′) is strictly increasing in i for all

(δk, δk′) ∈
[
0, 1

2

]
×
[
0, 1

2

]
. For instance, if δk ∈

[
0, c

3+ρ

]
and δk′ ∈

[
0, c

3+ρ

]
, then, by (9),

i∗R1(δk) = i∗R1(δk′) = µR −
c

2
· 1− ρ

3 + ρ
, (82)

and, by (10),

p∗(δk) = p∗(δk′) =
1 + ρ

2
. (83)

Inserting (82) and (83) into (81), and after some simple algebraic manipulations, we find that

d
[
EUk

i (δk)− EUk′
i (δk′)

]

di
= 2(2µR − 1)(1 + ρ),

which is strictly positive, since 2µR − 1 > 0 and ρ > 0. The proofs of the other eight cases are

analogous. Hence, we conclude that the critical voter in the first election is i = 1
2
.

Step 2: Choice of extra-hurdle in equilibrium and outcome of first election

By the definition of welfare, as given in (15), we know that

EUk
1
2
(δ) = EUk′

1
2

(δ) = W (δ).

Therefore, by Step 1:

• k wins the first election with probability 1, if W (δk)−W (δk′) > 0.

• k′ wins the first election with probability 1, if W (δk)−W (δk′) < 0.

• k and k′ each win the first election with probability equal to 1
2
, if W (δk)−W (δk′) = 0.

Because b is assumed to be large (see Section 3.4), candidate k (resp. k′) offers δk (resp. δk′) such

that, given the extra-hurdle of the other candidate, his probability of winning the first election is

maximized. Therefore, in equilibrium, candidate k suggests some δk ∈ argmaxδ∈[0, 12 ]W (δ), and

candidate k′ suggests some δk′ ∈ argmaxδ∈[0, 12 ]W (δ), because otherwise one candidate could

increase his re-election chances by offering a different extra-hurdle. Hence, by Section 5.2, both

candidates commit to δ∗ = c
2

and win the election with a probability equal to 1
2
. This completes

the proof of Theorem 3.

2
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Proof of Theorem 4

Let

Fα(x) :=

∫ x

0

fα(t)dt

denote the cumulative distribution function of fα(·), and let k ∈ R be in office in t = 1. Then,

by the same reasoning as in the proof of Proposition 2, it can be shown that the critical voter

in the second election is i∗ = F−1α

(
1
2
− δ
)
. By simple algebraic manipulations, it follows that,

for any δ ∈
[
0, 1

2

]
,

i∗ =
1

2
− hα(δ),

where we define

hα(δ) :=

{
δ if α = 0,√

(1−α)2+8αδ+α−1
4α

if α ∈ (0, 1].

Again, by the same arguments as in the proof of Proposition 2, it can be verified that k ∈ R
will be re-elected in the second election if and only if ak ≥ aδ,α(ik1), where

aδ,α(ik1) =

(
i∗R2(ik1)−

(
1

2
− hα(δ)

))2

+ c |i∗R2(ik1)− ik1|

−
(
i∗L2(ik1)−

(
1

2
− hα(δ)

))2

− c |i∗L2(ik1)− ik1| . (84)

Moreover, for any α ∈ [0, 1], hα(·) is a bijection from
[
0, 1

2

]
to
[
0, 1

2

]
and hence invertible.

Indeed, hα(0) = 0, hα
(
1
2

)
= 1

2
, and hα(δ) is strictly increasing in δ. Using (84) and the

invertibility of hα(·) in the proof of Proposition 3, yields

i∗R1,α(δ) :=





µR − c
2
· 1−ρ
3+ρ

if δ ∈
[
0, h−1α

(
c

3+ρ

)]
,

µR + c
2
− 2hα(δ) if δ ∈

(
h−1α

(
c

3+ρ

)
, h−1α

(
c
2

)]
,

µR − c
2
· 1+ρ
3−ρ if δ ∈

(
h−1α

(
c
2

)
, 1
2

]
(85)

and

p∗α(δ) :=

{
1+ρ
2

if δ ∈
[
0, h−1α

(
c
2

)]
,

1−ρ
2

if δ ∈
(
h−1α

(
c
2

)
, 1
2

]
,

(86)

where i∗R1,α(δ) and p∗α(δ) denote the equilibrium values of k’s first-period policy choice and his

re-election probability in the second election, respectively. Analogously to (73) and (76), we

obtain

EAPα(δ) =
1 + p∗α(δ)

2

(
i∗R1,α(δ)− 1

2

)
+

1− p∗α(δ)

2

(
µR −

c

2
− 1

2

)
(87)

and

Wα(δ) =
A(1− ρ)

2
− (1 + p∗α(δ))

(
i∗R1,α(δ)− 1

2

)2

− (1− p∗α(δ))

{(
µL +

c

2
− 1

2

)2

+ c
[
i∗R1,α(δ)−

(
µL +

c

2

)]}
.

(88)
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We observe that EAP0(δ) = EAP (δ) and W0(δ) = W (δ), where EAP (δ) and W (δ) correspond

to the baseline model and are given in (73) and (76). From (85) and (86), it is obvious that

EAPα(δ) and Wα(δ) are constant for

δ ∈
[
0, h−1α

(
c

3 + ρ

)]
and δ ∈

(
h−1α

( c
2

)
,
1

2

]

and have a single discontinuity at δ = h−1α
(
c
2

)
. Moreover, since hα(δ) is strictly increasing in δ,

EAPα(δ) is strictly decreasing in δ and Wα(δ) is strictly increasing in δ, for

δ ∈
(
h−1α

(
c

3 + ρ

)
, h−1α

( c
2

)]
.

We can now prove statements (i)-(iv). First, statement (i) follows from

EAPα

(
1

2

)
− EAPα (0) = EAP0

(
1

2

)
− EAP0 (0) < 0 (89)

and

Wα

(
1

2

)
−Wα (0) = W0

(
1

2

)
−W0 (0) > 0. (90)

The equalities in (89) and (90) hold because, by (85) and (86), i∗R1,α(0), i∗R1,α

(
1
2

)
, p∗α(0) and

p∗α
(
1
2

)
are independent of the value of α. The inequalities hold by (74) and (77). Second,

statement (ii), with δ∗α = h−1α
(
c
2

)
, follows from

EAPα

(
1

2

)
− EAPα

(
h−1α

( c
2

))
= EAP0

(
1

2

)
− EAP0

( c
2

)
> 0

and

Wα

(
1

2

)
−Wα

(
h−1α

( c
2

))
= W0

(
1

2

)
−W0

( c
2

)
< 0,

where the inequalities hold by (75) and (78). Third, since δ∗α = h−1α
(
c
2

)
, where

h−1α (x) =

{
x if α = 0,
(4αx−α+1)2−(1−α)2

8α
if α ∈ (0, 1],

(91)

δ∗α is continuous and decreasing in α ∈ [0, 1]. Indeed,

lim
α→0

(4αx− α + 1)2 − (1− α)2

8α
= x,

by l’Hôpital’s rule, and
dh−1α (x)

dα
= x(2x− 1) < 0, (92)

for all α ∈ (0, 1) and for all x ∈
(
0, 1

2

)
. This completes the proof of (iii). Fourth, re-

call that EAPα(δ) and Wα(δ) are constant in δ for δ ∈
[
0, h−1α

(
c

3+ρ

)]
. Moreover, for δ ∈
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(
h−1α
(

c
3+ρ

)
, h−1α

(
c
2

)]
, EAPα(δ) is strictly decreasing and Wα(δ) strictly increasing in δ. Since,

by (92), h−1α
(

c
3+ρ

)
and h−1α

(
c
2

)
are decreasing in α, statement (iv) therefore holds if

dEAPα(δ)

dα
< 0 (93)

and
dWα(δ)

dα
> 0 (94)

hold for all α ∈ (0, 1) and all δ ∈
(
h−1α
(

c
3+ρ

)
, h−1α

(
c
2

)]
. Since for δ ∈

(
h−1α
(

c
3+ρ

)
, h−1α

(
c
2

)]
, (85),

(86), (87), and (88) yield

dEAPα(δ)

dα
=

1 + p∗α(δ)

2
· di

∗
R1,α(δ)

dα
= −(1 + p∗α(δ)) · dhα(δ)

dα

and

dWα(δ)

dα
= −2 · (1 + p∗α(δ)) ·

(
i∗R1,α(δ)− 1

2

)
· di

∗
R1,α(δ)

dα
− (1− p∗α(δ)) · c · di

∗
R1,α(δ)

dα

= 2 ·
[
2 · (1 + p∗α(δ)) ·

(
i∗R1,α(δ)− 1

2

)
+ (1− p∗α(δ)) · c

]

︸ ︷︷ ︸
>0

·dhα(δ)

dα
,

and since dhα(δ)
dα

> 0 for all α ∈ (0, 1) and all δ ∈
(
0, 1

2

)
, (93) and (94) hold for all α ∈ (0, 1) and

all δ ∈
(
h−1α
(

c
3+ρ

)
, h−1α

(
c
2

)]
. It remains to show that dhα(δ)

dα
> 0 does indeed hold. For α ∈ (0, 1),

dhα(δ)

dα
=

4α ·
[

α−1+4δ√
(1−α)2+8αδ

+ 1

]
− 4 ·

[√
(1− α)2 + 8αδ + α− 1

]

16α2

=
α · [α− 1 + 4δ]−

[
(1− α)2 + 8αδ −

√
(1− α)2 + 8αδ

]

4α2
√

(1− α)2 + 8αδ

=
α(1− 4δ)− 1 +

√
(1− α)2 + 8αδ

4α2
√

(1− α)2 + 8αδ
,

which is strictly positive if and only if

(1− α)2 + 8αδ − [(1− α) + 4αδ]2 > 0

⇔8αδ − 16α2δ2 − 2(1− α)4αδ > 0

⇔8α2δ(1− 2δ) > 0.

The last inequality is satisfied for all α ∈ (0, 1) and all δ ∈
(
0, 1

2

)
.

2
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Appendix B

In this appendix, we analyze the case where

c ≥ 2Π,

in contrast to assumption (6) in the main body of the paper. For Proposition 2 to hold for

c ≥ 2Π, we assume here that, in the second election, every voter who is indifferent between the

incumbent and the challenger will vote for the incumbent. This assumption is necessary for the

following reason: If ik1 ∈ [µR − c
2
, µL + c

2
], then (†) from the proof of Proposition 2 equals zero

for all i ∈ [0, 1]. This means that, for ak = 0 and ik1 ∈ [µR− c
2
, µL+ c

2
], all voters are indifferent

between k and his competitor. Therefore, if, for instance, indifferent voters randomize between

both candidates with probability 1
2
, Proposition 2 only holds for δ = 0, since, by Section 3.3,

the incumbent will win the election if he receives a vote-share of 1
2

+ δ or larger. With the

above assumption regarding indifferent voters in place, we obtain

Proposition 4

Let δ ∈
[
0, 1

2

]
. Then, the following holds:

(i) If 2Π ≤ c < (3 + ρ)Π, then in t = 1, the incumbent k ∈ R will choose

i∗R1(δ) =





µR − c
2
· 1−ρ
3+ρ

if δ ∈
[
0, c

3+ρ

]
,

µR + c
2
− 2δ if δ ∈

(
c

3+ρ
,Π
]
,

µL + c
2

if δ ∈
(
Π, 1

2

]

in equilibrium of the game GR.

(ii) If (3 + ρ)Π ≤ c < 4Π, then in t = 1, the incumbent k ∈ R will choose

i∗R1(δ) = µL +
c

2

in equilibrium of the game GR.

(iii) If c ≥ 4Π, then in t = 1, the incumbent k ∈ R will choose

i∗R1(δ) = µR

in equilibrium of the game GR.

The proof of Proposition 4 is very similar to the proof of Proposition 3.64 From Proposition 4

we see that, for c ≥ 2Π, i∗R1(δ) is weakly decreasing in δ. However, there is no unique value of

64The detailed calculations are available upon request.
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δ that minimizes i∗R1(δ). For instance, if c ≥ (3 + ρ)Π, then i∗R1(δ) is constant in δ. Due to the

assumption that every voter who is indifferent between incumbent and challenger will vote for

the incumbent, k’s re-election probability is equal to 1+ρ
2

if he chooses ik1 ∈ [µR − c
2
, µL + c

2
].

Thus, if c ≥ 2Π (in contrast to the case where c < 2Π), the re-election probability in equilibrium

is

p∗(δ) =
1 + ρ

2
(95)

for all δ ∈
[
0, 1

2

]
.65 This is why i∗R1(δ) is continuous in δ, if c ≥ 2Π. The behavior of i∗R1(δ) and

p∗(δ), for parameter values satisfying 2Π ≤ c < (3 + ρ)Π, is illustrated in Figures 11(a) and

11(b).

0.0 0.1 0.2 0.3 0.4 0.5
0.55

0.60

0.65
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1
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(a) Equilibrium policy choice of right-wing policy-
maker in t = 1.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

∆

p
*
H∆L

(b) Re-election probability in equilibrium.

Figure 11: Illustration of the equilibrium analysis in t = 1, using the parameter values µR = 0.8,
c = 0.75, A = 2, and ρ = 1

3
, satisfying 2Π ≤ c < (3 + ρ)Π.

Finally, from Propositions 4 and 1 it follows that, if 2Π ≤ c < (3 + ρ)Π, then

i∗R2(δ) = i∗R1(δ), and (96)

i∗L2(δ) = µL +
c

2
. (97)

Accordingly, if c ≥ (3 + ρ)Π, then

i∗R2(δ) = i∗L2(δ) = i∗R1(δ). (98)

This completes the description of the equilibrium outcomes of the game GR, for c ≥ 2Π. Analo-

gously to Section 4.3, the equilibrium policy choices of the game GL follow immediately, because

ideal policy positions of candidates are distributed symmetrically around 1
2

and candidates’

ability distribution is independent of their policy orientation.

65Recall that, by (10), p∗(δ) is not constant in δ for c < 2Π.
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In the following, we analyze the dependence of ex-ante policy polarization and welfare on

δ ∈
[
0, 1

2

]
. EAP (δ) and W (δ) are defined by (14) and (15) respectively, with i∗R1(δ) given by

Proposition 4, i∗R2(δ) and i∗L2(δ) given by (96), (97), and (98), and p∗(δ) given by (95). Let us

now state the counterpart of Theorem 1.

Theorem 8

In equilibrium of G, the following holds:

(i) Any extra-hurdle δ ∈
(
0, 1

2

]
is both weakly W-increasing and weakly P-reducing.

(ii) If 2Π ≤ c < (3 + ρ)Π, then

argmin
δ∈[0, 12 ]

EAP (δ) = argmax
δ∈[0, 12 ]

W (δ) =

[
Π,

1

2

]
.

(iii) If c ≥ (3 + ρ)Π, then

argmin
δ∈[0, 12 ]

EAP (δ) = argmax
δ∈[0, 12 ]

W (δ) =

[
0,

1

2

]
.

Proof

The proof is analogous to the proof of Theorem 1.66 It is useful though to mention the following

intermediate results:

First, if 2Π ≤ c < (3 + ρ)Π, then

EAP (δ) =





(2µR−1)(1+ρ)
4

if δ ∈
[
0, c

3+ρ

]
,

(2µR−1)(1+ρ)
4

+ c−(3+ρ)δ
2

if δ ∈
(

c
3+ρ

, µR − 1
2

]
,

1−2µR+c
2

if δ ∈
(
Π, 1

2

]

and

W (δ) =





A(1−ρ)
2
− (2µR−1)2

2
+ c2(1−ρ)

2(3+ρ)
if δ ∈

[
0, c

3+ρ

]
,

A(1−ρ)−(1−2µR−c)2
2

− 2(3 + ρ)δ2 + [4c+ (2µR − 1)(3 + ρ)] δ if δ ∈
(

c
3+ρ

,Π
]
,

A(1−ρ)
2
− (1−2µR+c)2

2
if δ ∈

(
Π, 1

2

]
.

Second, if (3 + ρ)Π ≤ c < 4Π, then

EAP (δ) =
1− 2µR + c

2

and

W (δ) =
A(1− ρ)− (1− 2µR + c)2

2
.

66The detailed calculations are available upon request.
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Third, if c ≥ 4Π, then

EAP (δ) = µR −
1

2

and

W (δ) =
A(1− ρ)

2
− 2

(
µR −

1

2

)2

.

2
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(a) Ex-ante policy polarization.
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(b) Welfare.

Figure 12: Illustration of the equilibrium values of ex-ante policy polarization and welfare,
using the parameter values µR = 0.8, c = 0.75, A = 2, and ρ = 1

3
, satisfying 2Π ≤ c < (3+ρ)Π.

Note that statement (i) of Theorem 8 is the same as (i) in Theorem 1. That is, compared to

the case of δ = 0, the introduction of any non-zero extra-hurdle will still weakly improve welfare

and weakly reduce ex-ante policy polarization. According to (ii) and (iii) of Theorem 8, the

set of W-optimal extra-hurdles is still identical to the set of P-optimal extra-hurdles. However,

in contrast to the main part of the paper, this set is now a continuum, i.e. there is a range

of values of δ that are both W- and P-optimal. Theorem 8 is illustrated in Figures 12(a) and

12(b), which show plots of EAP (δ) and W (δ), for µR = 0.8, c = 0.75, A = 2, and ρ = 1
3
.

These parameter values satisfy 2Π ≤ c < (3 + ρ)Π. The figures show that EAP (δ) is weakly

decreasing and W (δ) weakly increasing in δ. For c ≥ (3 + ρ)Π, ex-ante policy polarization and

welfare are constant, because in this case i∗R1(δ), i
∗
R2(δ), i

∗
L2(δ) and p∗(δ) are constant in δ.

Concerning the extension where extra-hurdles are selected by candidates themselves, note that,

because for c ≥ 2Π there is a continuum of values of δ that are both W- and P-optimal,

Theorem 3 has to be reformulated as follows:
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Theorem 9

In equilibrium of G ′, k ∈ R and k′ ∈ L will commit to extra-hurdles δ̂ and δ̃, respectively, with

δ̂ and δ̃ each being W- and P-optimal, and both candidates will win the first election with a

probability equal to 1
2
.

Proof

Much as in the proof of Theorem 3, in equilibrium candidate k will commit to some W-optimal

δ̂, as the latter maximizes expected lifetime utility of the median voter. Analogously, candidate

k′ will commit to some W-optimal δ̃. Both candidates will win the first election with probability

equal to 1
2
. Since equilibrium policy choices and re-election probabilities are the same for all

δ ∈ argmaxδ∈[0, 12 ]W (δ), none of the two candidates has a preference for one specific W-optimal

extra-hurdle. By Theorem 8, the set of W-optimal extra-hurdles is identical to the set of P-

optimal extra-hurdles. This completes the proof.

2

Theorem 9 shows that, for c ≥ 2Π, there is a continuum of values of δ that can be implemented

in equilibrium. Those values are W- and P-optimal.
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