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1 Introduction

Polities are repeatedly confronted with the need to take decisions that are fundamental.

Decisions such as exiting nuclear power, reversing the course in public indebtedness,

enacting comprehensive labor market reforms or joining the European Union have a

large and long-lasting impact on the direction a society takes. When an electorate takes

such decisions in a democracy, some subgroups strongly favor or oppose a fundamental

new direction, while others may care much less.

Typically, democratic societies use simple majority voting to take such fundamental

decisions. It is well-known that this rule does not allow agents to express the intensity

of their preferences. This may be particularly problematic for fundamental decisions. A

majority overrules a minority, even if the minority is much more concerned about the

fundamental direction than the majority, for instance. Allowing the minority to veto

the resulting decision might resolve the problem, but may also be detrimental. The

protection of the minority would then turn into an unwelcome tyranny.

In this paper, we introduce a new scheme, which we call ‘Balanced Voting’, particularly

suited for taking fundamental decisions. It aims at striking a balance between taking

into account the intensity of preferences and protecting minorities. We shall compare

Balanced Voting with several existing voting schemes in a collective-decision problem

involving two related decisions, and identify circumstances under which Balanced Voting

is superior to the other voting schemes.

The idea underlying Balanced Voting is conveniently explained in a two-stage set up.

Suppose a society or a committee of individuals votes on two related binary decisions.

The first decision determines the fundamental direction, which is assumed to be irre-

versible (e.g. using nuclear power in energy production or discontinuing its use). The

second decision establishes the variation or the way in which the choice of the fundamen-

tal direction may be realized. For example, either investing in new nuclear power plants

or improving the safety and efficiency of existing ones are possible nuclear variations.

Typical non-nuclear variations are the investment in more solar power or hydro power.

Under Balanced Voting, agents have the option of either voting for a fundamental direc-

tion or of abstaining in the first stage. Those who abstain “save” their voting rights for

the second stage. The agents who are ‘losers’ of the first stage obtain, moreover, voting

1



rights in the second stage, while the ‘winners’ in the first stage are not allowed to vote

in the second stage.

Balanced Voting thereby allows individuals who do not feel strongly about the funda-

mental decision to trade off their voting rights in the first stage for a guaranteed vote in

the second stage. Thus, individuals who are only weakly-inclined towards a particular

fundamental direction have the opportunity to exert more influence on this second-stage

decision. This allows, for instance, strong advocates or opponents of nuclear power to

exercise more influence on the first-stage decision, i.e. whether it should be used or not.

Those agents that voted for a fundamental direction but belonged to the ‘losers’ are

compensated by receiving the right to vote in the second stage. Hence, if nuclear power

is chosen in the first stage, strong opponents of nuclear power will be in a better position

to limit the number of nuclear power plants to be built in the future. Similarly, if the

decision to discontinue nuclear power is taken in the first stage, strong proponents of

nuclear power will have a better chance of selecting an alternative they prefer.

As already mentioned, Balanced Voting can be applied to any fundamental decision.1 It

may be particularly suitable for collective decisions on whether to increase public debt.

Suppose that, in the first stage the decision is whether public debt should be increased or

not when current tax laws and government expenditure involve a budget deficit. If the

Parliament decides to increase public debt, the second decision could involve determining

the projects in which this additional funding is invested. If the Parliament decides not

to increase the debt level, the second decision involves the choice about the mix of tax

increases or cutting expenditure to meet the debt ceiling.

We characterize the equilibria under Balanced Voting. We show that in equilibrium,

individuals with strong preferences participate in the first voting stage, while those who

are weakly-inclined abstain, provided that the stakes of strongly-inclined individuals are

sufficiently high and those of weakly-inclined individuals are sufficiently low. In addition,

if the society is sufficiently large, Balanced Voting is preferable to several existing voting

schemes, with regard to utilitarian welfare.

Several other innovative voting schemes that lead to higher social welfare have been

developed in recent years. In the Storable Votes scheme developed by Casella (2005),

1One might also apply Balanced Voting in court decisions taken by a group of judges, with the first
vote indicating the basic ruling and the second vote the specific application.
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agents have the option of using their vote in the current decision or storing it for future

use. This enables them to concentrate their votes on decisions dealing with issues over

which they have intense preferences. Hortala-Vallve (2012) introduced Qualitative Vot-

ing, in which each individual is granted a stock of votes that can be freely distributed

over a series of binary choices, whereby all votes are cast simultaneously. The Minority

Voting scheme introduced by Fahrenberger and Gersbach (2010) and further analyzed

in Fahrenberger and Gersbach (2012) focuses on protecting individuals from the accu-

mulation of utility losses over time when they repeatedly wind up in the minority. In a

two-stage voting procedure, Minority Voting gives the losers in the first stage exclusive

voting rights in the second stage. All these voting schemes link separate voting decisions.

Jackson and Sonnenschein (2007) show that in general, linking repeated voting decisions

leads to welfare gains, and that it is possible to achieve full efficiency as the number of

decisions grows large.

Other mechanisms that attempt to capture agents’ intensity of preferences are Cumu-

lative Voting and vote-trading. In Cumulative Voting, individuals are endowed with a

stock of votes that they can freely distribute over the candidates standing in an election,

whereby allocating more than one to a candidate is allowed (see Sawyer and MacRae

(1962), Gerber, Morton, and Rietz (1998) and Cox (1990)). Under vote-trading, an

agent is permitted to exchange his vote with another in return for monetary compensa-

tion (see, for example, Coleman (1966) and Philipson and Snyder (1996)).

What we call Balanced Voting uses the ideas from Storable Votes and Minority Voting,

is tailored to fundamental societal decisions and examined for incomplete information.

Consequently, Balanced Voting not only allows agents to use their vote on issues about

which they feel strongly, but it also provides better protection to minorities with strong

preferences, in keeping with the argument of Guinier (1994) and Casella, Palfrey, and

Riezman (2008) that such minorities deserve some special protection.

Our paper is related to the proportionality principle which requires that the power in

collective decision-making processes should be proportional to individual stakes (Brig-

house and Fleurbaey (2010)). Under Balanced Voting, people having high stakes on one

issue are selected endogenously into the group of people that takes the decision, which

fosters proportionality.

The rest of the paper is organized as follows. Section 2 describes the model. Section
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3 characterizes the equilibria under Balanced Voting, simple majority voting, Storable

Votes and Minority Voting. Section 4 provides an illustrative example of a society

consisting of three agents. In Section 5, we compare social welfare under Balanced

Voting with that under simple majority voting, Storable Votes and Minority Voting.

We present our main result, which states the conditions under which Balanced Voting

is superior to the said alternatives. Section 6 discusses how to apply Balanced Voting

and some possible extensions of the scheme itself. Section 7 provides a concluding

discussion. In Appendix A, we provide the proofs. Appendix B contains detailed welfare

comparisons. In Appendix C, we summarize the properties of the expressions used in

the paper. Appendix D outlines detailed calculations of key expressions.

2 The Model

We consider a society of N (N ≥ 3) individuals who are indexed by i or i′ (i, i′ ∈
{1, ..., N}). They first take a fundamental decision and then decide on variations of the

outcome of the first decision.

2.1 The Setting

There are two fundamental directions, denoted by A and B. An alternative in the first

stage is denoted by Ω ∈ {A,B}. Let each Ω have two variations which we denote by xj
Ω

(j = 1, 2).

2.2 Utilities

Each individual derives non-negative utility from the final decision xj
Ω (Ω ∈ {A,B},

j = 1, 2). We denote by Ui(x
j
Ω|Ω) the utility individual i obtains if Ω is selected in

the first stage and xj
Ω in the second stage. For notational convenience, we write Ui(x

j
Ω)

instead of Ui(x
j
Ω|Ω) if Ω has been selected in the first stage.
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2.3 Preference Groups

Every agent has an inclination towards one of the fundamental directions, which may

be strong or weak. Furthermore, no agent is indifferent between the variations of a

fundamental direction. We denote the group of strongly-inclined individuals by SI and

the set of weakly-inclined agents by WI. Ns and Nw represent the number of individuals

belonging to groups SI and WI respectively. Thus, Ns +Nw = N . The utility of agent

i is as follows:

i ∈ SI iff





Ui(x
j
Ω) = 1 +H for some Ω ∈ {A,B} and some j ∈ {1, 2}

Ui(x
k
Ω) = 0 +H for k ∈ {1, 2}, j 6= k

Ui(x
j′

Ω′) = 1 for some j′ ∈ {1, 2},Ω′ ∈ {A,B},Ω′ 6= Ω
Ui(x

k′
Ω′) = 0 for k′ ∈ {1, 2}, k′ 6= j′

i ∈ WI iff





Ui(x
j
Ω) = 1 + ǫ for some Ω ∈ {A,B} and some j ∈ {1, 2}

Ui(x
k
Ω) = 0 + ǫ for k ∈ {1, 2}, j 6= k

Ui(x
j′

Ω′) = 1 for some j′ ∈ {1, 2},Ω′ ∈ {A,B},Ω′ 6= Ω
Ui(x

k′
Ω′) = 0 for k′ ∈ {1, 2}, k′ 6= j′

H and ǫ are positive constants representing the agents’ intensity of preferences or stakes.

Our main assumption is

Assumption 1

H >> 1 > ǫ > 0.

While SI individuals derive higher utility from all variations of their preferred fun-

damental direction, the utility of WI agents is not guaranteed to be higher if their

preferred proposal is chosen in the first stage. Depending on which variation is elected

in the second stage, there may be instances where WI individuals are better off if their

less-favored alternative was selected in the first stage.

Suppose, for example, that individual i is strongly-inclined towards A while individual

i′ is weakly-inclined towards B. Then for individual i, variations have second-order

importance, while for individual i′, the chosen variation is of first-order importance.

Table 1 provides an example of a possible realization of their utilities.
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j = 1 j = 2

Ui(x
j
A) 1 +H 0 +H

Ui(x
j
B) 0 1

Ui′(x
j
A) 1 0

Ui′(x
j
B) 1 + ǫ 0 + ǫ

Table 1: An Example of Realization of Utilities

At this stage we can provide an initial intuition for the plausible behavior of agents under

Balanced Voting. An SI agent highly benefits if his fundamental direction is chosen,

and therefore, has an incentive to participate in determining the fundamental direction.

For a WI individual, if ǫ is very small, the additional utility of 1 he derives from his

preferred variation may seem more important compared to ǫ. Therefore, WI agents may

have an incentive to exert more influence on the decision of the second stage.

2.4 Informational Assumptions

We assume that each individual faces a probability p (0 < p < 1) of exhibiting a strong

inclination towards one direction, while he has a weak inclination with probability 1−p.

There is a probability of 1
2
for this inclination to be towards A. Similarly, 1

2
is the

probability that an individual has an additional utility of 1 for one of the variations of

a fundamental direction over the other. We assume that these events are stochastically

independent. Furthermore, we assume that the realization of the individual utility is

stochastically independent across individuals and is privately observed prior to the start

of voting. The probability p and values of H and ǫ are common knowledge.

2.5 Voting Rules

We consider secret voting under the following voting regimes:

1. Simple Majority Voting (SM)
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2. Balanced Voting (BV)

3. Storable Votes (ST)

4. Minority Voting (MV)

The specific rules under each voting scheme are as follows:

Under SM, individuals decide whether to vote and how to vote on the fundamental

proposals A and B in the first stage, and the proposal receiving the higher number

of votes is selected. If both proposals receive the same number of votes, the winner is

determined by flipping a fair coin, giving each alternative a probability of 1
2
to be selected.

In the second stage, individuals once again can participate in a simple majority vote on

variations of the selected fundamental proposal. The winner is chosen using the same

rules as in the first stage.

Under BV, each individual must first decide whether he participates in or abstains from

voting in the first stage. The losers and the absentees2 of the first stage have the right to

vote in the second stage. The decision is taken by the simple majority rule in both stages

with a similar tie-breaking procedure as in SM. If every member decides to abstain from

voting in the first stage, or if there are neither losers nor absentees from the first stage,

all individuals are eligible to vote in both stages.

Under ST, agents receive one vote each, which they can either use in the first stage or

store for use in the second stage.3 Following Casella (2005), the proposal receiving a

simple majority of votes is selected in both stages, with a tie-breaking procedure similar

to the one in SM. If, however, all agents use their votes on the first decision or store

them for the second decision, every individual will be allowed to vote in both stages.

Under MV, all citizens can vote in the first stage while only the minority of the first

stage has a voting right in the second stage. An individual may abstain from voting in

the first stage, in which case he will not be allowed to vote in the second stage. If there

are no losers from the first stage, all agents retain their right to vote in the second stage.

2We use the term “absentees” in the spirit of Fahrenberger and Gersbach (2010) to denote the indi-
viduals who abstain from voting in the first stage.

3The interpretation of ST we use is slightly different from the scheme introduced in Casella (2005),
where every agent obtains a vote in each stage. The reason is to allow direct comparison with BV.
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The decision is taken by the simple majority rule in both stages, with a tie-breaking

procedure similar to the one in SM.

3 Equilibria

3.1 Equilibrium Concept and Probability of Winning

In the following, we look for perfect Bayesian equilibria in pure strategies under each

voting rule. We adopt the standard refinement for voting games to exclude implausible

voting behavior. In particular, we assume that all agents participating in the second

stage eliminate weakly-dominated strategies at this stage. If this procedure yields unique

strategies for the second stage, we assume that agents also eliminate weakly-dominated

strategies in the first stage, if there are any.

Finally, we look for symmetric equilibria where voters with the same intensity of prefer-

ence, i.e. SI and WI individuals, behave similarly with respect to the sincerity of their

vote and their possible abstention from the first stage. A perfect Bayesian equilibrium

with these properties will simply be called an ‘equilibrium’ in the remainder of the

paper.

A justification of the refinement of symmetric equilibria is in order here. In our model,

we assume that an individual is inclined towards A or B with equal probability, and

that his utility does not change with the direction he prefers. The same applies for his

preference of x1
A over x2

A and x1
B over x2

B . The only event that may occur with unequal

probability and that simultaneously affect his utility is the event that he is inclined either

strongly or weakly. Thus, it appears justifiable that we consider symmetric equilibria

where agents with the same intensity of preference behave the same way, so that the

direction of his preference does not impact his voting behavior.

In Section 6.3, we will show that equilibria under BV remain unaffected even if we

impose less demanding symmetry requirements.

To derive the equilibria, it is useful to express an individual’s probability of winning in

an isolated vote on two alternatives. Consider the following isolated voting problem:

• n (n ≤ N) agents voting,
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• two alternatives,

• ex-ante probability of 1
2
that an individual favors one alternative,

• private information of utilities.

Then, if n individuals cast their votes, the probability of winning for one individual if

all other individuals vote sincerely is given by4

P (n) =
1

2n

(
n− 1⌊
n−1
2

⌋
)
+

1

2
. (1)

The above expression states that an individual faces a probability greater than 1
2
of hav-

ing his preferred option elected by participating in the vote. This probability increases if

the number of voting agents decreases. Furthermore, P (n−1) = P (n) when n is an odd

number. Moreover, lim
n→∞

P (n) = 1
2
, as the weight of individual vote becomes negligible.

The plot of P (n) is given in Figure 1.

Figure 1: The probability of winning P (n) vs. the number of voting agents n.

Before characterizing the properties of each voting scheme, we introduce some useful

notation. We have already shown that if n agents participate in the first stage, each

4See e.g. Fahrenberger and Gersbach (2010). Note that ⌊a⌋ = max { b ∈ N : b ≤ a }.
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participating agent wins with probability P (n) and loses with probability (1 − P (n)).

The number of agents allowed to vote in the second stage, however, varies with the

voting scheme. Hence, from an ex-ante point of view, i.e. before voting begins, but after

agents have privately observed their preferences, an agent faces different probabilities of

winning in the second stage under each voting scheme. It is, thus, important that these

probabilities be formally introduced.

Under SM, all agents are allowed to vote in the second stage. In Section 3.2, we show

that no agent will abstain from voting in either stage under SM. Hence, regardless of

whether he wins or loses in the first stage, every individual expects to win in the second

stage with probability P (N) if all members of the committee vote in the second stage.

Under BV, the winners will not be allowed to vote in the second stage. Hence, their

preferred variation in the second stage will be selected with probability 1
2
. The losers

will participate in the second stage, along with the absentees. Suppose n ∈ (0, N) agents

participated in the first stage and NL ∈ [0,
⌊
n
2

⌋
] agents lost the vote. Then, N − n+NL

individuals will vote in the second stage. Ex-ante, a voter in the second stage wins with

a probability that depends on whether he was allowed to vote as an absentee or loser

from the first stage. Using Bayes’ Theorem, we obtain these probabilities as follows:

Φ(N, n) := Ex-ante probability of winning in second stage under BV, for losers of

first stage

=





∑⌊n
2 ⌋

NL=1 (
n

NL
)P (N−n+NL)

∑⌊n
2 ⌋

z=1 (
n
z)

for n odd, n > 1,

∑n
2 −1

NL=1 (
n

NL
) 1

2(n−1)
P (N−n+NL)+(n

n
2
) 1
2n

P (N−n
2
)

∑n
2 −1

z=1 (nz)
1

2(n−1)
+(n

n
2
) 1
2n

for n even.

(2)
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For n = 1 we define Φ(N, 1) = 0.

Λ(N, n) := Ex-ante probability of winning in second stage under BV, for absentees

of first stage

=





∑⌊n
2 ⌋

NL=0

(
n
NL

)
1

2(n−1)P (N − n+NL) for n odd,

∑n
2
−1

NL=0

(
n
NL

)
1

2(n−1)P (N − n+NL)

+
(
n
n
2

)
1
2n
P (N − n

2
) for n even.

(3)

Detailed derivations of Φ(N, n) and Λ(N, n) are given in Appendix D.5

Under ST, losers from the first stage are not allowed to vote in the second stage. There-

fore, all participants in the first stage have their preferred variation in the second stage

selected with probability 1
2
. All N − n absentees vote in the second stage and win with

probability P (N − n).

In Section 3.5, we show that no agent with voting rights will abstain from voting in either

stage under MV. As in BV, all winners of the first stage win their preferred option in

the second stage with probability 1
2
. The losers vote in the second stage and win with

the following probability which is derived in detail in Appendix D:6

Θ(N) := Ex-ante probability of winning in second stage under MV, for losers of

first stage

=





∑⌊N
2 ⌋

NL=1 (
N
NL
)P (NL)

∑⌊N
2 ⌋

z=1 (Nz )
for N odd,

∑N
2 −1

NL=1 (
N
NL
) 1

2(N−1)
P (NL)+(N

N
2
) 1

2N
P (N

2
)

∑N
2 −1

z=1 (Nz )
1

2(N−1)
+(N

N
2
) 1

2N

for N even.

(4)

We further recall the following three special cases and the corresponding voting rules.

5The calculation of Φ(N,n) requires the Formula (4), which is derived below. Further properties of
Φ(N,n) and Λ(N,n) are given in Table C.1.

6Further properties of Θ(N) are given in Table C.1.
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1. If all agents abstain (n = 0) under BV or ST, then all individuals can vote in both

stages.

2. If all agents participate in the first stage (n = N) under ST, then all agents can

vote in both stages.

3. Suppose all agents participate in the first stage (n = N) under BV and MV. If

individuals are unanimously inclined towards A or B, then all agents can vote in

both stages. If there are losers in the first stage, they receive exclusive voting

rights in the second stage.

We note that in these three special cases, whenever all agents can vote in both stages, no

individual has an incentive to abstain from voting, as participation strictly increases his

probability of winning. Using the properties of the binomial coefficient and the number

of agents expected to vote in each case, we derive the following fact, which holds for all

N ∈ [3,∞):

Fact 1

• Θ(N) > Λ(N, n) ≥ P (N) when 0 < n < N , where Λ(N, n) = P (N) if and only if

n = 1 and N is odd.

• Θ(N) > Λ(N, n) ≥ Φ(N, n) ≥ P (N) when 1 < n < N , where Φ(N, n) = P (N) if

and only if n = 2 and N is odd.

The conditions in Fact 1 are intuitive and are proven in Appendix A. When the number

of agents participating in a vote is less than N , the participating individuals win with

a probability greater than or equal to P (N). Thus, min {Θ(N), Λ(N, n), Φ(N, n)}
≥ P (N). When only losers from the first stage vote in the second, the voting body in

the second stage is always smaller than or equal to
⌊
N
2

⌋
. However, when absentees from

the first stage are guaranteed voting rights in the second, the voting body of the second

stage can be greater than
⌊
N
2

⌋
with positive probability. Thus, Θ(N) > max {Λ(N, n),

Φ(N, n)}. Interestingly, although under BV, both losers and absentees of the first stage

vote in the second stage, we note that their ex-ante probabilities of winning can differ.

That is, Λ(N, n) ≥ Φ(N, n), which can be explained as follows: NL could be zero and

the voting body could merely consist of absentees in the second stage. This occurs with

positive probability. A loser from the first stage faces a voting body strictly larger than

the number of absentees, which makes his probability of winning in the second stage

12



weakly lower than that of the absentees. To illustrate this property with an example,

we plot the probabilities for N = 20 in Figure 2.

Figure 2: Θ(N),Λ(N, n),Φ(N, n), P (N) vs. n for N = 20.

Now, we are ready to examine the equilibria under each voting scheme.

3.2 Equilibria under SM

We start by analyzing the voting behavior in the second stage under SM. We first observe

that voting weakly-dominates abstention, as there is a chance that the agent is pivotal.

Moreover, voting sincerely weakly-dominates voting strategically, i.e. voting for the

option that gives one lower utility, as no member can realize any utility gain by voting

against his true preference in a binary collective decision when the game ends in the

second stage.

Next, we focus on the first stage. Regardless of the variation selected in the second

stage, an SI agent is strictly better off if his preferred proposal is selected in the first

stage. Hence, he has an incentive to vote sincerely and increase the selection chances of

his preferred fundamental direction.

Since preference realizations are private information, a WI individual i’s behavior de-

pends on his expectation of which variation will be chosen in the second stage. Given

that all agents will vote sincerely in the second stage, i’s preferred variation has an

13



equal probability of being selected, for any fundamental direction chosen in the first

stage. Hence, i’s expected utility weakly increases if he votes for his preferred funda-

mental direction in the first stage.

Thus, after sequentially eliminating weakly-dominated strategies, all individuals partic-

ipate and vote sincerely in both stages under SM. Hence, there exists a unique Bayesian

Equilibrium in pure strategies, where all agents vote sincerely in both stages.

3.3 Equilibria under BV

Under BV, winners of the first stage are not allowed to vote in the second stage, while

losers are compensated for their loss a vote in the second stage. However, with privately-

observed preferences, it is ex-ante unclear whether an agent would belong to the losers or

not. Thus, individuals face a trade-off in the first stage: abstention lowers the probability

of winning in the first stage, while it secures voting rights in the second stage. We

characterize the agents’ voting behavior in the following proposition:

Proposition 1

I) Suppose that H > 1 and ǫ ≤ ǫcrit(N) for some critical value ǫcrit(N) > 0. Then,

there exists a unique equilibrium under BV characterized by

(i) every individual i ∈ SI participates in the first stage. All individuals i ∈ WI

abstain;

(ii) all votes in both stages are cast sincerely.

II) The critical value on ǫ is given by

ǫcrit(N) := min

[
P (N)− 1

2

1− P (N)
, 4Λ(N, 1)− Φ(N, 2)− 3

2

]
.

The proof of Proposition 1 is given in Appendix A. Proposition 1 establishes a threshold

on the intensity of preferences of WI individuals regarding the fundamental direction

the society should take. If ǫ is below ǫcrit(N), an individual i ∈ WI would always be

inclined to abstain from voting in the first stage. As shown in the proof, with our main

assumption H >> 1, SI individuals are always better off voting in the first stage. This
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is in line with the main motivation behind BV, which is to allow individuals that care

more about an issue to exert more influence on a decision, while those who care less

choose to abstain to secure the possibility to influence future decisions.

A plot of ǫcrit(N) is given in Figure 3.7 We note that ǫcrit(N) is monotonically decreasing

in N . As the committee grows larger, the voting body of the second stage also increases

in size with positive probability. Therefore, it becomes less attractive to abstain from

the first stage for a better chance of winning in the second. The value of ǫ should, thus,

be smaller for WI individuals to still prefer abstention, which is confirmed by Figure 3.

For the remainder of the paper, we assume that ǫ is such that Proposition 1 holds.

Figure 3: ǫcrit(N) vs. the number of agents N .

3.4 Equilibria under ST

Suppose the society adopts ST as the voting scheme, where each agent will receive one

vote, which he can either use in the first stage or store for use in the second stage. We

characterize the voting behavior of agents under ST in the following lemma:

7Further properties of ǫcrit(N) are given in Table C.1.
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Lemma 1

There exists a unique equilibrium under ST, in which all individuals i ∈ SI cast their

vote sincerely in the first stage, while all i ∈ WI store it and vote sincerely in the second

stage, for H and ǫ satisfying the following conditions:

• H ≥ Hcrit
st (N) := 1−P (N)

P (N)− 1
2

,

• ǫ ≤ ǫcritst (N) :=
P (N)− 1

2

1−P (N)
≥ ǫcrit(N).

The proof of Lemma 1 follows the proof of Proposition 1 and is given in Appendix A.

We plot Hcrit
st (N) and ǫcritst (N) in Figure 4.8

Figure 4: Hcrit
st (N) and ǫcritst (N) vs. N .

We note that the thresholds on ǫ for the existence of a unique equilibrium under BV

and ST are almost the same. Moreover, if ǫ ≤ ǫcrit(N), ǫ ≤ ǫcritst (N) also holds.

Under ST, Hcrit
st (N) imposes a lower bound on H that was not required under BV to

ensure that all SI individuals are voting in the first stage. Under ST, only absentees

of the first stage vote in the second. Under BV, however, losers from the first stage

also vote in the second, making the voting body in the second stage larger with positive

probability. Thus, abstention under ST is more attractive and H should be high enough

for participation in the first stage to be more desirable than abstention.

8Further properties of Hcrit
st (N) and ǫcritst (N) are given in Table C.1.
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Moreover, we observe that Hcrit
st (N) is increasing in N . If most of the agents choose to

vote in the first stage, the voting body of the first stage grows larger with increasing N ,

while the voting body of the second becomes comparatively smaller. An individual voting

in the first stage should, therefore, be willing to renounce the much higher probability

of winning in the second stage, which is possible only if the strength of his preference is

sufficiently high.

The additional constraint on H that is required under ST indicates that compared to

ST, BV is better-suited for fundamental decision-making, as SI individuals are more

inclined to vote on the first-stage decision, where their stakes are high.

3.5 Equilibria under MV

Now suppose that MV is the voting scheme used to reach the collective decision. Under

MV, all agents will vote in the first stage and the resulting losers will receive exclusive

voting rights in the second stage. In contrast with the setting with complete information

analyzed by Fahrenberger and Gersbach (2010), we focus on a society with incomplete

information. Incomplete information makes it impossible to gain by voting strategically.

The resulting voting behavior of agents is summarized in the following lemma:

Lemma 2

There exists a unique equilibrium under MV where all individuals vote sincerely in both

stages.

The proof of Lemma 2 is given in Appendix A. We note that since abstention from

voting in the first stage under MV means being excluded from voting in both stages, no

agent has an incentive to abstain and therefore, there are no restrictions on H and ǫ for

the existence of the equilibrium under MV.

4 An Example

We illustrate BV by the example of a society with three agents (N = 3). They vote in

a setting of incomplete information, where each agent observes his own utility but not

the utility of the other two. We consider the following cases:
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Case 1: Ns = 3 and Nw = 0

First, consider the scenario where all three individuals are SI. Then, as shown in Section

3, all individuals will choose to vote in the first stage.

If option Ω (Ω ∈ {A,B}) achieves a majority of two votes, it will be selected as the

fundamental direction. The agent who preferred Ω′ (Ω′ ∈ {A,B},Ω 6= Ω′) will obtain

the sole voting right in the second stage, and the variation x1
Ω or x2

Ω that gives him the

highest utility will be selected.

If Ω receives all three votes in the first stage, under the rules of BV, all agents will be

eligible to vote in the second stage, which makes BV equivalent to SM.

Case 2: Ns = 2 and Nw = 1

In this case, two of the three individuals are SI, while the remaining agent is WI. Thus,

the SI individuals will choose to vote in the first stage, while the WI individual will

abstain.

If the SI agents agree on a fundamental decision Ω, it will be selected unanimously in

the first stage. The WI individual will be the sole decision-maker in the second stage,

and will select x1
Ω or x2

Ω, according to his preference.

If the SI agents cannot agree on a fundamental decision, A or B will be chosen with a

probability of 1
2
by flipping a fair coin. Suppose option Ω (Ω ∈ {A,B}) was selected

this way. Then, the SI agent who preferred Ω′, together with the WI individual, will

be eligible to vote in the second stage. Variation x1
Ω or x2

Ω will be then selected, either

unanimously or by flipping a fair coin.

Case 3: Ns = 1 and Nw = 2

Now suppose there is only one SI individual, while the other two are WI. The SI indi-

vidual will be the only voter of the first stage, as the WI agents will choose to abstain

in the first stage. Hence, the desired fundamental direction of the SI agent, Ω, will be

the outcome of the first stage. The WI individuals will then select one of the variations

x1
Ω or x2

Ω, either unanimously or by flipping a fair coin.
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Case 4: Ns = 0 and Nw = 3

Finally, consider the case where all three individuals are WI. Then, all individuals will

choose to abstain in the first stage. Under the rules of BV, all individuals will then be

allowed to vote in both stages, making BV equivalent to SM in this particular case.

5 Welfare Comparison

We compute social welfare from an ex-ante perspective when the citizens’ utilities have

not yet been realized, under the four voting schemes considered, i.e. SM, BV, ST and

MV. We then compare the welfare under SM, ST and MV to welfare under BV to derive

the conditions for which BV is superior to each of the other voting schemes. For this,

we denote the aggregate expected utility by

W V := E

[
N∑

i=1

Ui(·)
]
, (5)

where E denotes the expectation operator before the utilities are realized in the first

stage and V ∈ {BV, SM, ST,MV }. The welfare comparison is based on the utilitarian

criterion, which means that V is strictly superior to V ′ (V ′ ∈ {BV, SM, ST,MV },
V 6= V ′) if and only if W V > W V ′

. In addition to the welfare comparison, the utility

differences for the groups of agents identified below are also computed:

(i) WI agents when Ns = 0,

(ii) WI agents when 0 < Ns < N ,

(iii) SI agents when Ns = N ,

(iv) SI agents when 0 < Ns < N .

5.1 Results of Welfare Comparisons

In this section, we provide the results of detailed welfare comparisons between BV and

SM, BV and ST and BV and MV, and establish conditions under which BV dominates
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other voting schemes in terms of welfare. Moreover, we establish that BV Pareto-

dominates SM and MV. As those comparisons are lengthy and involved, they are as-

sembled in Appendix B. In the next section, all these results are brought together to

establish our main theorem.

5.1.1 Welfare Comparison: BV and SM

We summarize the results of welfare comparison between BV and SM as follows:

Proposition 2

The comparison of ex-ante expected utility under SM and BV in equilibrium yields the

following insights:

• The welfare under BV is higher than the welfare under SM if

H ≥ M(N, p) ǫ+ C(N, p),

where M(N, p) and C(N, p) are given by Equations (23) and (24), respectively.

• WI individuals are indifferent between BV and SM if Ns = 0.

• When 0 < Ns < N , WI agents prefer BV to SM, provided that

ǫ ≤ min{ǫcrit(N), ǫSM(N,Ns)}.

• When Ns = N , SI individuals strictly prefer SM to BV.

• When 0 < Ns < N , SI agents prefer BV to SM if

H ≥ HSM(N,Ns).

• When Ns = N − 1 and N is odd, SI agents strictly prefer SM to BV.
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We also summarize the conditions under which BV Pareto-dominates SM.

Proposition 3

The equilibrium outcome under BV Pareto-dominates the outcome under SM if and only

if the following conditions are satisfied:

(i) 0 < Ns < N when N is even and 0 < Ns < N − 1 when N is odd,

(ii) ǫ ≤ min{ǫcrit(N), ǫSM(N,Ns)}, and

(iii) H ≥ HSM(N,Ns).

5.1.2 Welfare Comparison: BV and ST

We summarize the results of welfare comparison of BV and ST in the following propo-

sition:

Proposition 4

The comparison of expected utility under ST and BV in equilibrium yields the following

insights:

• The welfare under BV is higher than the welfare under ST for sufficiently large N ,

i.e. if

N ≥ Nst(p),

where Nst(p) is defined in (27).

• WI individuals are indifferent between BV and ST if Ns = 0.

• When 0 < Ns < N , WI individuals strictly prefer ST to BV.

• When Ns = N , SI agents strictly prefer ST to BV.

• When 0 < Ns < N , SI individuals strictly prefer BV to ST.
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5.1.3 Welfare Comparison: BV and MV

We summarize the outcomes of the welfare comparison between BV and MV in the

following proposition:

Proposition 5

Suppose that H >> 1 and ǫ ≤ ǫcrit(N). Then the comparison of ex-ante expected utility

under MV and BV in equilibrium yields the following results.

• The welfare under BV is strictly higher than the welfare under MV for all N /∈
{3, 5, 7}.

• For N ∈ {3, 5, 7}, welfare under BV is superior to welfare under MV if

H ≥ M(N, p) ǫ+D(N, p),

where M(N, p) and D(N, p) are given by Equations (23) and (35), respectively.

• WI individuals strictly prefer BV to MV if Ns = 0.

• When 0 < Ns < N , WI agents strictly prefer BV to MV, provided that

ǫ ≤ min{ǫcrit(N), ǫMV (N,Ns)}.

• When Ns = N , SI individuals are indifferent between BV and MV.

• When 0 < Ns < N , SI agents strictly prefer BV to MV.

• When Ns = N − 1 and N is odd, SI agents strictly prefer MV to BV.

We also summarize the conditions under which BV Pareto-dominates MV.

Proposition 6

The equilibrium outcome under BV Pareto-dominates the outcome under MV if and

only if the following conditions are satisfied:

(i) Ns < N when N is even and Ns < N − 1 when N is odd, and

(ii) ǫ ≤ min{ǫcrit(N), ǫMV (N,Ns)}.
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5.2 Main Result

Now we summarize the findings of Section 5.1 to present our main result:

Theorem 1

For the ranges N ∈ [3, 1000] and p ∈ [0, 1], BV is superior to SM, ST and MV with

respect to utilitarian welfare if the following conditions are satisfied:

• ǫ ≤ ǫcrit(N),

• H ≥ max{Hcrit
st (N),M(N, p) ǫ+ C(N, p)}, and

• N ≥ Nst(p),

where M(N, p), C(N, p), and Nst(p) are given in Equations (23), (24), and (27) in

Appendix B, respectively, and Hcrit
st (N) and ǫcrit(N) are defined in Lemma 1 and Propo-

sition 1, respectively.

Theorem 1 shows that when the stakes, expressed by the value of H , are sufficiently high

in comparison with ǫ, BV is superior to other common voting rules which could be used

in such circumstances. Essentially, BV splits the society into those agents who have

large stakes and those agents with small stakes. Individuals with high stakes decide on

the fundamental societal issue. Still, to allow as many citizens as possible to participate

in the decision on variations of the chosen fundamental direction, and thus to increase

the aggregate welfare that can be achieved in the second stage, BV requires losers from

the first stage to have voting rights in the second stage.

A note on the robustness of the model is in order here. We have assumed a two-stage

voting procedure and assumed a simple structure with individual preferences privately-

observed. We will discuss in the next section (subsection 6.3) how these assumptions

can be relaxed to reveal interesting extensions to our framework.

6 Discussion and Extensions

The main focus of the paper was to introduce BV, to establish its properties, and to

examine its potential to improve welfare when stakes are high. A variety of issues emerge
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where BV is considered. Besides various extensions, applications of BV require further

procedural rules. These points will be detailed in this section.

6.1 Procedural Rules

To apply BV, several additional procedural rules must be established.

First, a pre-decision is necessary to assess whether an issue is decisive for a fundamental

direction. In many cases, this appears to be intuitive. Examples are exiting nuclear

power, legalizing abortion, joining a currency union or reducing public debt significantly.

Still, there is a need for a procedure that defines an issue as fundamental. There are

several possibilities to clarify this matter. It could be a question a small and selected

committee decides upon, e.g. a special committee in Parliament. This question could

also be linked to its constitutional rank.

Second, one might be concerned that the group of citizens allowed to vote on the variants

of a fundamental decision may be too small, which would reduce the efficiency of such

votes. Such cases can be avoided by requiring a minimal size for the electorate of the

second stage. This can be achieved by randomly-selecting additional voters from the

group of individuals who belonged to the majority in the first stage.

Third, there are consequences if the composition of the society changes from one stage

to another. In situations where the final decision depends on the votes of two separate

voting bodies (the United States Congress for example), BV would have to be modified

and applied to each body separately. In other situations, one committee may be a subset

of the other. In the democracies that comply with the Westminster System, the Cabinet

of Ministers is appointed out of the current Members of Parliament, and the Ministers

decide on the implementation details of the legislature that is passed by the Parliament.

In this scenario, it is possible to apply BV to those agents who are allowed to vote in

both stages. It is important however, that procedural rules are put into place to avoid

very small decision-making bodies, as discussed above.

Fourth, BV excludes some individuals from the vote in the first stage or the second. Los-

ing their right to vote may seem inequitable for some individuals. Thus, it is important

that the adoption of BV be supported by a large consensus preceding its implementa-

tion. Requiring a unanimous vote in favor of BV would give individuals the freedom to
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veto the adoption of a voting scheme in which they might lose their voting right in one

of the stages.

6.2 Practical Implementation

Once the necessary procedural rules are established, the practical implementation of BV

requires close examination.

First, the voting process associated with BV can be organized in two different ways.

BV may be implemented practically in two voting rounds or in a single voting round

without changing the results we have established. In two-round voting, on the one

hand, the votes of the two stages should be cast sequentially, i.e., individuals vote on

the fundamental direction first and once a fundamental direction is selected, they vote

on its variations. In one-round voting, on the other hand, individuals could cast all their

choices simultaneously, where their vote on the variations would be valid conditional on

the outcome of the first stage and the voters having a right to vote in the second stage

or not. As an example, an individual may cast his vote as “First Stage: vote for A.

Second Stage: x1
A if A is selected, x2

B if B is selected (and I have a right to vote for the

second decision)”.

Second, we have assumed that voting is secret. Despite secret ballots, one might wonder

whether anonymity can be preserved, as some agents lose their voting rights after the

first stage. One could infer that such agents were in the majority in the first stage. With

paper ballots or electronic ballots, anonymity can be preserved, as other citizens cannot

observe whether a particular citizen votes in the first stage or obtains a ballot in the

second stage. Thus preferences remain private information.

Third, BV can also be applied to open ballots. As long as voting takes place simultane-

ously in both stages, our results apply. Individual voting strategies will remain the same

in the second stage regardless of the secrecy of the vote. Deviating from sincere voting

will not reap any benefits for any individual as the game ends with the second stage.

Equilibrium voting strategies will remain best responses if voting occurs simultaneously

and openly in the first stage. But our results may need to be modified if the votes are

publicly observable and are not strictly simultaneous. For example, an SI individual
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would have an incentive to abstain from the first stage if he observes that his preferred

fundamental direction has received sufficient votes to be selected.

6.3 Extensions

We have limited our analysis to a very simple framework. A variety of interesting

extensions emerges as soon as we deviate from our basic framework.

Publicly-observable agent preferences

An interesting extension is the case where the preferences of agents are common knowl-

edge. If individuals can observe each other’s preferences, voters may coordinate to reach

a minimal majority in the first stage. This would lead to a large group of individuals

(close to 50% of voters in the first stage) being eligible to vote in the second stage. This

would further enhance the welfare properties under BV.

Deliberation before voting

An intriguing new dimension to our framework would be to introduce pre-vote deliber-

ation, i.e. agents engaging in communication before voting. Since fundamental societal

decisions have significant long-term impact on the members of society, an opportunity

to share information and views and engage in a relevant public debate may be desir-

able. How deliberation – including the possibility to misinterpret one’s preferences or

the presence of persuasive agents – affects the performance of BV is an important avenue

of further research.

Alternative models

It is possible to consider alternative models with different informational assumptions.

One could examine the equilibria (if any) when ǫ and H violate their critical thresholds,

for example. The intuition would be that this would yield mixed strategy equilibria,

as discussed in more detail in Section 6.4. Moreover, there could be a fraction of the

society that has a fixed type while the remaining agents’ preferences would be random.

One could also analyze situations where a society has a higher tendency to lean towards

one of the fundamental directions, by considering unequal probabilities for an individual

to prefer A over B and vice versa. The same can be extended to an agent’s preference

over variations of the fundamental directions. While these constellations require new
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and elaborate analyses, it is likely that BV continues to be performing well as long as

the stakes in the first decision are high.

Extension to several stages

BV can also be applied to sequential voting processes involving several stages. For

example, suppose that the society decides on a fundamental direction in the first stage

and determines its implementation through a sequence of smaller decisions to follow.

BV can be applied to this scenario in two ways. First, if the number of stages is even,

BV can be applied on segments of two consecutive stages, as described in this paper.

Second, agents who abstain from voting in the first stage and the losers of the first stage,

can be guaranteed participation in all stages to follow.

Other equilibrium refinements

We have restricted our analysis to symmetric equilibria where individuals with the same

preference intensity display the same voting behavior. This excludes the possible sym-

metric equilibria that may arise if we allow agents who prefer the same fundamental

direction or the same variation of a fundamental direction to behave in different ways.

Whether such equilibria exist under ST and MV is an open question. It is clear that no

other equilibria would arise under SM if we impose less restrictive symmetry assump-

tions. Under BV, no further equilibria arise if we impose less demanding symmetry

requirements.9

Balanced Elections

One could also apply the idea of BV to elections. Suppose that in a majoritarian

political system with two parties, an election for a public office takes place. Then, in a

first election, citizens could decide which party will be able to propose a candidate. In a

second vote, an office-holder from a set of candidates10 from the party chosen in the first

stage will be selected. In such circumstances, under BV, citizens would need to choose

whether to vote or abstain in the first election.

9Details are available upon request.

10The set of candidates has to be determined in advance, e.g. all candidates who collect a number
of signatures from party members above some threshold could be declared eligible, or parties may
organize primary elections to select the set of candidates.
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6.4 Non-fundamental Decisions

We have introduced BV as a voting mechanism particularly suitable for making fun-

damental decisions. These decisions typically divide a society into two broad groups:

individuals who feel very strongly about the decision and individuals who care much

less. The inherent assumption is that there are large utility differences in the electorate

regarding fundamental decisions.

It is useful to examine the suitability of BV for making decisions that may not be

fundamental in nature. In our model, this relates to situations where H < 1 or ǫ >

ǫcrit(N) or both. We observe that in this case, the constructed equilibrium under BV

given in Proposition 1 may not be unique. Furthermore, there is a possibility for the

occurrence of mixed-strategy equilibria.11

7 Conclusion

We have introduced BV as a new voting scheme that aims at striking a balance between

expressing the intensity of preferences and protecting minorities. It is particularly suit-

able for fundamental societal decisions, which inherently means intense preferences or

high stakes for some groups of citizens. We have shown that capturing this preference

intensity and providing additional protection to a minority with high stakes through BV

lead to welfare gains. We have outlined several avenues to be explored and aspects to

be considered when applying BV in practice.

11Details are available upon request.
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Appendix A: Proofs

Proof of Fact 1:

Step 1: Φ(N, n) ≥ P (N) when 1 < n < N and Λ(N, n) ≥ P (N) when 0 < n < N

Φ(N, n) is a weighted average of the terms P (N −n+NL) for NL ∈
[
1,
⌊
n
2

⌋ ]
. Similarly,

P (N) can be written using the same weights as a weighted average of P (N). For each

NL, P (N − n + NL) ≥ P (N), where the equality occurs if and only if n = 2 and N is

odd. Therefore, Φ(N, n) ≥ P (N).

Following the same logic, we obtain, Λ(N, n) ≥ P (N) when 0 < n < N , where the

equality occurs if and only if n = 1 and N is odd.

Step 2: Λ(N, n) ≥ Φ(N, n) when 1 < n < N

Φ(N, n) is a weighted average of the terms P (N − n + NL) for NL ∈
[
1,
⌊
n
2

⌋ ]
, while

Λ(N, n) is a weighted average of the terms P (N − n + NL) for NL ∈
[
0,
⌊
n
2

⌋ ]
. In the

expression of Φ(N, n), each P (N − n + NL) for NL ∈
[
1,
⌊
n
2

⌋ ]
is assigned a weight of

( n
NL
)

2n−1−1
, while under Λ(N, n), it is assigned a weight of

( n
NL
)

2n−1 <
( n
NL
)

2n−1−1
. The differences in

the weights are multiplied by P (N−n) under Λ(N, n), where P (N−n) > P (N−n+NL)

for all NL ∈
[
1,
⌊
n
2

⌋ ]
. Therefore, Λ(N, n) ≥ Φ(N, n), where the equality holds for large

n where the difference in weights become negligible, i.e. 1
2n−1 ≈ 1

2n−1−1
.

Step 3: Θ(N) > Λ(N, n) when 0 < n < N

Θ(N) is a weighted average of the terms P (NL) for NL ∈
[
1,
⌊
N
2

⌋ ]
, while Λ(N, n) is a

weighted average of the terms P (N − n + NL) for NL ∈
[
0,
⌊
n
2

⌋ ]
. For n <

⌊
N
2

⌋
, it is

obvious that Θ(N) > Λ(N, n) holds, as all P (NL) terms in Θ(N) are greater than all

P (N − n+NL) in Λ(N, n).
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It is, however, not straightforward whether this relationship holds for larger n. We

observe that for some n, the terms P (N − n + NL) for NL ∈
[
0,
⌊
n
2

⌋ ]
in Λ(N, n) are

equal to or greater than those terms in Λ(N, n) for smaller n. We thus verify whether

Θ(N) > Λ(N, n) when n is as large as possible. If Θ(N) > Λ(N, n) holds for n as large

as possible, we can conclude that it holds for all n ∈ (0, N). There are four cases to

consider.

1) N and n = N − 2 are odd

In this case, Θ(N) is a weighted average of the terms P (1), P (2),...P (
⌊
N
2

⌋
) and

Λ(N, n) is a weighted average of P (2), P (3),...P (
⌊
N
2

⌋
+ 1). The weightings given

to the common terms are lower under Λ(N, n). Furthermore, the weighted prob-

abilities under Θ(N) consists of the highest-possible value P (1) = 1, which is

not a component of Λ(N, n). The difference in weightings under Λ(N, n) is mul-

tiplied by P (
⌊
N
2

⌋
+ 1), which is less than all P (NL) terms in Θ(N). Therefore,

Θ(N) > Λ(N, n).

Illustration: Assume N = 7 and n = 5. Then,

Θ(7) =
7

63
· P (1) +

21

63
· P (2) +

35

63
· P (3) = 0.7778

Λ(7, 5) =
1

16
· P (2) +

5

16
· P (3) +

10

16
· P (4) = 0.7113.

2) N is odd and n = N − 1 is even

In this case, Θ(N) is a weighted average of the terms P (1), P (2),...P (
⌊
N
2

⌋
) and

Λ(N, n) is a weighted average of P (1), P (3),...P (
⌊
N
2

⌋
+ 1). As in the previous

case, the weightings given to the common terms are lower under Λ(N, n). The

differences in the weights are multiplied by P (
⌊
N
2

⌋
+ 1) under Λ(N, n), which is

less than all probabilities making up Θ(N). Therefore, Θ(N) > Λ(N, n).

Illustration: Assume N = 7 and n = 6. Then,

Θ(7) =
7

63
· P (1) +

21

63
· P (2) +

35

63
· P (3) = 0.7778

Λ(7, 6) =
1

32
· P (1) +

6

32
· P (2) +

15

32
· P (3) +

10

32
· P (4) = 0.7384.
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3) N is even and n = N − 1 is odd

In this case, both Θ(N) and Λ(N, n) are a weighted average of the terms P (1),

P (2),...P (N
2
). The weightings given to the terms P (1), P (2),...P (N

2
− 1) are lower

under Λ(N, n). The difference in weightings is given to P (N
2
) under Λ(N, n). But

P (N
2
) is the smallest of all the probabilities that make up the two expressions.

Therefore, Θ(N) > Λ(N, n).

Illustration: Assume N = 6 and n = 5. Then,

Θ(6) =
6

31
· P (1) +

15

31
· P (2) +

10

31
· P (3) = 0.7984

Λ(6, 5) =
1

16
· P (1) +

5

16
· P (2) +

10

16
· P (3) = 0.7656.

4) N and = N − 2 are even

In this case, Θ(N) is a weighted average of the terms P (1), P (2),...P (N
2
) and

Λ(N, n) is a weighted average of P (2), P (3),...P (N
2
+ 1). The weightings given to

the terms P (2), P (3),...P (N
2
−1) under Λ(N, n) are lower than those under Θ(N),

and the weighting for P (N
2
) is higher. P (N

2
), however, is the smallest probability

in Θ(N). Moreover, the weighted probabilities under Θ(N) consists of the highest

possible value P (1) = 1, which is not a component under Λ(N, n). Furthermore,

a large weight is given to P (
⌊
N
2

⌋
+ 1) under Λ(N, n), which is lower than all the

probabilities in Θ(N). Therefore, Θ(N) > Λ(N, n).

Illustration: Assume N = 6 and n = 4. Then,

Θ(6) =
6

31
· P (1) +

15

31
· P (2) +

10

31
· P (3) = 0.7984

Λ(6, 4) =
1

8
· P (2) +

4

8
· P (3) +

3

8
· P (4) = 0.7268.

In all four cases, the effects that yield Θ(N) > Λ(N, n) are amplified for smaller n values.

Therefore, for all n and N we have Θ(N) > Λ(N, n). This concludes the proof.
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Proof of Proposition 1:

A) Existence

We start with the proof of (ii) and show that all agents vote sincerely in both

stages if they have – and use – the right to vote. We then analyze an individual’s

decision to abstain from the first stage, given this voting behavior.

Step A1: Sincere voting in the second stage

As voting in the second stage is governed by the simple majority rule, every mem-

ber with the right to vote supports his preferred variation upon elimination of

weakly-dominated strategies. Voting insincerely would lower the probability that

his preferred variation is selected.

Step A2: Sincere voting in the first stage

We assume that individual i votes in the first stage. We compare i’s expected

utility when voting sincerely and insincerely, and show that voting sincerely is his

best response.

Regardless of how i votes, his utility depends on the voting behavior of other

agents. We assume that all individuals voting in the first stage, except i, vote

sincerely. It is, however, unclear how many agents might choose to abstain. Let

xi denote the number of agents, excluding i, who are voting in the first stage, that

is, 0 ≤ xi ≤ N − 1. Since the probability distribution of xi is unknown at this

stage, as no equilibrium has been identified yet, it is not possible to compute i’s

expected utility explicitly. Therefore, we derive i’s expected utility conditional on

xi, and for all possible values of xi.

We start by formulating the probability of winning or losing in each stage, ex-

pressed as functions of xi. Let the indices WW , WL, LW and LL represent the

following outcomes for individual i, respectively: winning in both stages, winning

in the first stage but losing in the second, losing in the first stage but winning in

the second, and losing in both stages. Then, i’s expected probabilities of winning

are as follows:
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ΓV o
WW (N, xi) =

{
P (xi + 1)1

2
if 0 ≤ xi < N − 1

P (N)
(

P (N)
2N−1 +

(
1− 1

2N−1

)
1
2

)
if xi = N − 1

ΓV o
WL(N, xi) =

{
P (xi + 1)1

2
if 0 ≤ xi < N − 1

P (N)
(

1−P (N)
2N−1 +

(
1− 1

2N−1

)
1
2

)
if xi = N − 1

ΓV o
LW (N, xi) =

{
(1− P (xi + 1))Φ(N, xi + 1) if 0 < xi < N − 1
(1− P (N))Θ(N) if xi = N − 1

ΓV o
LL(N, xi) =

{
(1− P (xi + 1))(1− Φ(N, xi + 1)) if 0 < xi < N − 1
(1− P (N))(1−Θ(N)) if xi = N − 1,

where the expressions of Θ(N) and Φ(N, xi + 1) are given by (4) and (2), respec-

tively, and where the index V o stands for voting in the first stage. We note that

ΓV o
LW (N, xi) and ΓV o

LL(N, xi) are not defined for xi = 0, since losing in the first stage

entails more than one agent participating in the vote.

Now we examine i’s decision to vote either sincerely or insincerely in the first stage.

By voting sincerely, i derives an expected utility of

ΓV o
WW (N, xi)(1 +M) + ΓV o

WL(N, xi)(0 +M) + ΓV o
LW (N, xi), (6)

where 0 ≤ xi ≤ N − 1 and M represents an agent’s strength of preference, with

M = H for SI individuals and M = ǫ for WI agents.

When voting insincerely, the expected utility of i amounts to

ΓV o
WW (N, xi) + ΓV o

LW (N, xi)(1 +M) + ΓV o
LL(N, xi)(0 +M). (7)

Voting sincerely is a best response if for all 0 ≤ xi ≤ N − 1,

M
(
ΓV o
WW (N, xi) + ΓV o

WL(N, xi)− ΓV o
LW (N, xi)− ΓV o

LL(N, xi)
)
> 0. (8)

Since P (xi+1) > 1
2
> 1−P (xi+1), for all xi ∈ [0, N−1], every individual is better

off voting sincerely in the first stage, irrespective of whether they are strongly – or

weakly – inclined, given that other agents will also vote sincerely.

In summary, voting sincerely is a best response in the first stage.
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Step A3: Decision to abstain from first stage

Next, we evaluate i’s decision to abstain in the first stage. We assume again that

all agents participating in the first stage, except i, vote sincerely. In Step A2, we

have shown that should i decide to participate in the first stage, he will also vote

sincerely. Now we calculate i’s expected utility by abstaining from voting in the

first stage.

Suppose i has decided to abstain from voting in the first stage. Then, his expected

probabilities of winning are as follows, where xi and the indices WW , WL, LW

and LL represent the same as in Step A2, the index Ab stands for abstention from

voting in the first stage, and Λ(N, xi) is given in (3):

ΓAb
WW (N, xi) =

{
P (N)P (N) if xi = 0
1
2
Λ(N, xi) if 0 < xi ≤ N − 1

ΓAb
WL(N, xi) =

{
P (N)

(
1− P (N)

)
if xi = 0

1
2

(
1− Λ(N, xi)

)
if 0 < xi ≤ N − 1

ΓAb
LW (N, xi) =

{ (
1− P (N)

)
P (N) if xi = 0

1
2
Λ(N, xi) if 0 < xi ≤ N − 1

ΓAb
LL(N, xi) =

{ (
1− P (N)

)(
1− P (N)

)
if xi = 0

1
2

(
1− Λ(N, xi)

)
if 0 < xi ≤ N − 1.

For any xi ∈ [0, N − 1], the expected utility of i by abstaining from the first stage

and voting sincerely in the second stage is

ΓAb
WW (N, xi)(1 +M) + ΓAb

WL(N, xi)(0 +M) + ΓAb
LW (N, xi). (9)

If i derives a higher expected utility from abstaining, as compared to voting sin-

cerely in the first stage, he will be inclined to abstain.

Step A4: Critical Conditions

To determine which, of participation or abstention in the first stage, gives i a

higher expected utility, we need to compare his expected utility from each decision,

weighted over the possible values of xi. We obtain this by weighing the expected

utility calculated in (6) and (9) with the probability distribution of xi, and taking
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the sum over all possible values of xi. That is, i will participate in voting in the

first stage if and only if

N−1∑

xi=0

Pr(xi)

[
ΓV o
WW (N, xi)(1 +M) + ΓV o

WL(N, xi)M + ΓV o
LW (N, xi)

]

≥
N−1∑

xi=0

Pr(xi)

[
ΓAb
WW (N, xi)(1 +M) + ΓAb

WL(N, xi)M + ΓAb
LW (N, xi)

]
, (10)

where Pr(xi) denotes the probability that the number of agents voting in the first

stage, except i, is xi. For a given N , this condition imposes an lower bound on M ,

such that i is better off participating in the first stage if and only if

M ≥
N−1∑
xi=0

Pr(xi)
[
ΓAb
LW (N,xi)−ΓV o

LW (N,xi)+ΓAb
WW (N,xi)−ΓV o

WW (N,xi)
]

N−1∑
xi=0

Pr(xi)
[
ΓV o
WW (N,xi)−ΓAb

WW (N,xi)+ΓV o
WL(N,xi)−ΓAb

WL(N,xi)
] . (11)

Therefore, SI individuals with sufficiently large H prefer to participate in the first

stage and WI individuals with sufficiently small ǫ refrain from voting in the first

stage.

Step A5: Sufficient Conditions

Since we do not know the probability distribution of xi at this stage, it is not yet

possible to explicitly calculate the critical value of M such that participation is

more attractive than abstention. Therefore, we derive a sufficient condition on M

such that if satisfied, it ensures that the critical condition is also satisfied.

We obtain the sufficient condition by calculating the value of M such that Expres-

sion (10) is satisfied for each term in the summation from xi = 0 to N − 1. That

is, for each xi ∈ [0, N − 1], we have

0 ≤
(
ΓV o
WW (N, xi)− ΓAb

WW (N, xi)

)
(1 +M) + ΓV o

LW (N, xi)

− ΓAb
LW (N, xi) +

(
ΓV o
WL(N, xi)− ΓAb

WL(N, xi)

)
M

⇒ M ≥ ΓAb
LW (N, xi)− ΓV o

LW (N, xi) + ΓAb
WW (N, xi)− ΓV o

WW (N, xi)

ΓV o
WW (N, xi)− ΓAb

WW (N, xi) + ΓV o
WL(N, xi)− ΓAb

WL(N, xi)
. (12)
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This condition simplifies to the following inequalities:

M ≥





M0(N) :=
P (N)− 1

2

1−P (N)
for xi = 0,

M1(N, xi) :=
Λ(N,xi)−P (xi+1)

2
−(1−P (xi+1))Φ(N,xi+1)

P (xi+1)− 1
2

for 0 < xi < N − 1,

M2(N) :=
Λ(N,N−1)−P (N)[ P (N)

2N−1 +(1− 1

2N−1 )
1
2 ]−(1−P (N))Θ(N)

P (N)− 1
2

for xi = N − 1.

(13)

We observe that for any given value of N , M1(N, xi) is monotonically increasing

in xi.
12 As an illustration, in Figure A.1 we plot M1(N, xi) against xi for N = 200.

Figure A.1: M1(N, xi) vs. xi for N = 200.

As M1(N, xi) is monotonically increasing in xi, it reaches its maximum for xi =

N − 2 and minimum for xi = 1. In Figure A.2, we plot M0(N), M1(N,N − 2),

M1(N, 1) and M2(N).

12It was verified numerically for N ∈ [3, 1000] and 0 < xi < N − 1.
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Figure A.2: M0(N), M1(N,N − 2), M1(N, 1) and M2(N) vs. N

We note that if xi is very low (e.g. xi = 0 or 1), the threshold on M monotonically

decreases with N . This result is intuitive because for low values of xi, an increase

in N is directly proportional to the increase in the number or agents voting in the

second stage. Therefore, as N grows large, it becomes less attractive to abstain

from the first stage, and participation becomes attractive even for low M .

If xi is very large (e.g. xi = N − 2 or N − 1), the threshold on M fluctuates for

small N , but decreases asymptotically to 0.7 as N → ∞.13 It is, however, strictly

higher than if xi is very small for the same N . This is because when xi is very

large, the voting body will always be smaller in the second stage than when xi is

very small – even very small voting bodies being possible with positive probability

in the second stage. Therefore, there is a higher incentive to abstain in the first

stage and to vote in the second stage, and M has to be sufficiently high for agents

to still prefer participation over abstention.

The downward trend of the curve when xi is high can be explained as follows. As

the size of the committee becomes substantially large, the voting body in the second

stage also grows larger with positive probability. The desirability of abstaining

from the first stage, therefore, shrinks with N , and agents find participation more

attractive, even for low M . Note, however, that the threshold on M is still higher

13Numerically verified for the range N ∈ [3, 1000].
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than when xi is very low for the same N . A low value of xi represents a large

voting body in the second stage with certainty, whereas a high xi indicates that a

large voting body in the second stage can occur with high probability.

We set

H ≥ Hcrit(N) := max

[
M0(N),M1(N,N − 2),M2(N)

]
(14)

ǫ ≤ ǫcrit(N) := min

[
M0(N),M1(N, 1),M2(N)

]

= min

[
M0(N),M1(N, 1)

]

= min

[
P (N)− 1

2

1− P (N)
, 4Λ(N, 1)− Φ(N, 2)− 3

2

]
, (15)

so that all SI agents participate in voting in the first stage, while all WI agents

abstain. In Figure A.3, we plot Hcrit(N) and ǫcrit(N).

Figure A.3: Hcrit(N) and ǫcrit(N) vs. the number of agents N .

We observe that Hcrit(N) ≤ 1 for all N 6= 6,14 and Hcrit(6) ≈ 1. Under our main

assumption that H >> 1, all SI individuals will participate in voting in the first

14It was verified numerically for N ∈ [3, 1000].
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stage. Therefore, (15) and H > 1 are sufficient conditions for all SI agents to

participate in voting in the first stage, and for all WI agents to abstain.

B) Uniqueness

We analyze the uniqueness of the constructed equilibrium by first considering

sincere voting in the second stage, then sincere voting in the first stage, and finally,

the decision to abstain from the first stage.

Step B1: Sincere voting in second stage

After eliminating weakly-dominated strategies, it is clear that agents voting in the

second stage have no incentive to deviate from sincere voting in any conceivable

equilibrium.

Step B2: Sincere voting in first stage and the role of P (n)

Now let us consider the first stage. We start by analyzing individual i’s decision

to vote sincerely or insincerely, given that he has chosen to participate in voting in

the first stage. Recall that P (n) is the probability of winning in the first stage for

i, if n− 1 agents, excluding i, vote in the first stage and if they all vote sincerely.

That is, P (n) is based on the critical assumption that all n− 1 agents vote for a

fundamental direction with an ex-ante probability of 1
2
.

Further recall from Step A2 that given P (n), voting sincerely is the best response

of i regardless of the number of agents voting in the first stage (xi). Therefore,

i’s decision to vote sincerely or insincerely in the first stage is not affected by the

other agents’ decision to abstain from the first stage or not. Rather, it depends only

on P (n), which, in turn, depends on whether other voters vote sincerely or not.

Therefore, we will recalculate P (n) in Steps B3 and B4 without the assumption

that other voters will vote sincerely, and then analyze if voting sincerely is still a

dominant strategy for i.

Step B3: Possible symmetric equilibria

We next consider all conceivable symmetric equilibria where the voters with the

same preference intensity behave the same way. From Step B2, we know that the

decision of individuals to abstain from the first stage or not can be disregarded for
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the question whether or not an individual votes sincerely in the first stage. Thus,

any equilibrium under BV must belong to one of the following categories:

1. SI agents vote sincerely and WI agents vote insincerely,

2. SI agents vote insincerely and WI agents vote sincerely,

3. All agents vote sincerely,

4. All agents vote insincerely.

Suppose individual j, j 6= i, has also chosen to vote in the first stage. We introduce

the following notation where Ω, Ω′ ∈ {A,B}, Ω 6= Ω′, V S (V I) denotes voting

sincerely (insincerely) and k ∈ {1, 2, 3, 4} denotes the equilibrium category above:

• jΩ := the event that j will vote for Ω,

• jPΩ := the event that j prefers the direction Ω,

• jkV S := the event that j will vote sincerely in equilibrium k,

• jkV I := the event that j will vote insincerely in equilibrium k,

• Pr[x] := the probability of event x.

For each equilibrium category k ∈ {1, 2, 3, 4}, we have Pr[jkV I ] = 1− Pr[jkV S] and

Pr[j1V S] = p,

Pr[j2V S] = 1− p,

Pr[j3V S] = 1,

P r[j4V S] = 0.

Step B4: Probability of voting for a fundamental direction

For each equilibrium category k ∈ {1, 2, 3, 4}, we now have

Pr[jΩ] = Pr[jΩ|jPΩ]Pr[jPΩ] + Pr[jΩ|jPΩ′]Pr[jPΩ′]

= Pr[jkV S|jPΩ]Pr[jPΩ] + Pr[jkV I |jPΩ′]Pr[jPΩ′].
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Due to our definition of symmetric equilibria, the event that j votes sincerely is

related to whether he is strongly – or weakly – inclined, and therefore, stochasti-

cally independent from the event that his preference is towards Ω or Ω′. Hence,

we now have

Pr[jΩ] = Pr[jkV S]Pr[jPΩ] + Pr[jkV I ]Pr[jPΩ′]

= Pr[jkV S]
1

2
+ (1− Pr[jkV S])

1

2

=
1

2
.

Thus, in all possible symmetric equilibria under consideration from the perspective

of individual i, individual j will vote for a fundamental direction with probability
1
2
. Therefore, even without the assumption of sincere voting by other agents, the

construction of P (n) remains unchanged. Hence, the analysis in Step A2 is still

valid, and allows to conclude that in all possible equilibria, voting sincerely is a

dominant strategy for individual i if he participates in voting in the first stage, no

matter how other agents vote.

Step B5: Decision to abstain

Given that all agents vote sincerely in both stages, and by construction of H and

ǫ, it is clear that the only constellation in which no agent has an incentive to

deviate with respect to his choice whether or not to participate in the first stage

is the behavior described in Proposition 1. Therefore, the constructed equilibrium

is unique.

Proof of Lemma 1:

The proof of Lemma 1 follows the exact steps of the proof of Proposition 1. The only

difference is in the utility calculations which are presented below.

Step 1: Sincere voting in both stages

It is clear that agents who save their vote for the second stage vote sincerely. Suppose
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agent i decides to use his vote in the first stage and all other agents voting in the first

stage vote sincerely. Then, i’s expected probabilities of winning, derived in the proof of

Proposition 1, are modified as follows:

ΓV o
WW (N, xi) =

{
P (xi + 1)1

2
if 0 ≤ xi < N − 1

P (N)P (N) if xi = N − 1

ΓV o
WL(N, xi) =

{
P (xi + 1)1

2
if 0 ≤ xi < N − 1

P (N)
(
1− P (N)

)
if xi = N − 1

ΓV o
LW (N, xi) =

{ (
1− P (xi + 1)

)
1
2

if 0 < xi < N − 1(
1− P (N)

)
P (N) if xi = N − 1

ΓV o
LL(N, xi) =

{ (
1− P (xi + 1)

)
1
2

if 0 < xi < N − 1(
1− P (N)

)(
1− P (N)

)
if xi = N − 1.

As in the proof of Proposition 1, voting sincerely is a best response if and only if Condi-

tion (8) is satisfied. After applying the modified probabilities of winning, it is clear that

Condition (8) is satisfied as P (xi + 1) > 1− P (xi + 1) for all xi ∈ [0, N − 1]. Therefore,

if an individual decides to use his vote in the first stage, voting sincerely is a dominant

strategy, no matter whether he is strongly or weakly-inclined.

Step 2: Decision to store the vote

Now suppose that i has decided to store his vote for the second stage. Then, his proba-

bilities of winning are modified as follows:

ΓAb
WW (N, xi) =

{
P (N)P (N) if xi = 0
1
2
P (N − xi) if 0 < xi ≤ N − 1

ΓAb
WL(N, xi) =

{
P (N)

(
1− P (N)

)
if xi = 0

1
2

(
1− P (N − xi)

)
if 0 < xi ≤ N − 1

ΓAb
LW (N, xi) =

{ (
1− P (N)

)
P (N) if xi = 0

1
2
P (N − xi) if 0 < xi ≤ N − 1

ΓAb
LL(N, xi) =

{ (
1− P (N)

)(
1− P (N)

)
if xi = 0

1
2

(
1− P (N − xi)

)
if 0 < xi ≤ N − 1.

As in the proof of Proposition 1, voting in the first stage is a best response if and

only if critical Condition (11) is satisfied. Since the probability distribution of xi is

unknown at this stage, we once again derive a sufficient condition on M , as in the proof
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of Proposition 1. Applying the modified probabilities of winning to Expression (10), we

obtain that an individual i will vote in the first stage if

M ≥





M0(N) :=
P (N)− 1

2

1−P (N)
for xi = 0,

M3(N, xi) :=
P (N−xi)− 1

2

P (xi+1)− 1
2

for 0 < xi < N − 1,

M4(N) := 1−P (N)

P (N)− 1
2

for xi = N − 1.

(16)

Therefore, SI individuals with sufficiently large H use their vote in the first stage, while

WI individuals with sufficiently small ǫ store their vote for the second stage.

Step 3: Existence of equilibrium

We note that M3(N, xi) is monotonically increasing in xi. Therefore, it reaches its

maximum value for xi = N −2 and minimum for xi = 1. In Figure A.4, we plot M0(N),

M3(N,N − 2), M3(N, 1) and M4(N) against N .15

Figure A.4: M0(N), M3(N,N − 2), M3(N, 1) and M4(N) vs. N .

We note that if xi is very low (e.g. xi = 0 or 1), the threshold on M monotonically

decreases with N for the same reason as with BV. The curve for xi = 0 is, in fact,

identical to the one under BV.

15Further properties of these expressions are given in Table C.2.
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For xi very large, however, the threshold on M is higher than under BV. A very large

xi under ST means a very small voting body in the second stage, as only those who

abstain will vote in the second stage. Therefore, it is more attractive for individuals to

abstain under ST, and M has to be higher than under BV for participation to be more

attractive than abstention.

Moreover, for very large xi (e.g. xi = N − 1 or N − 2), the threshold on M is increasing

withN . Under ST, asN increases, the number of agents voting in the first stage increases

proportionately. The probability of winning in the first stage thus grows smaller, making

the very high probability of winning in the second stage more attractive. Therefore, M

has to increase analogously to keep participation more attractive than abstention.

We set

H ≥ Hcrit
st (N) := max

[
M0(N),M3(N,N − 2),M4(N)

]
=

1− P (N)

P (N)− 1
2

ǫ ≤ ǫcritst (N) := min

[
M0(N),M3(N, 1),M4(N)

]
=

P (N)− 1
2

1− P (N)
≥ ǫcrit(N),

so that all SI agents will participate in voting in the first stage. We refer to Figure 4

for the plot of Hcrit
st (N) and ǫcritst (N) against N .

Step 4: Uniqueness

Following the same logic as in the proof of Proposition 1, the constructed equilibrium is

unique.

Proof of Lemma 2:

We proceed in two steps.

Step 1: Sincere voting in second stage

As in the other voting schemes, there are no gains from voting strategically in the second

stage. Hence, all individuals with voting rights cast their votes sincerely in the second

stage, as they have a positive probability to be pivotal.
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Step 2: Sincere voting in first stage

We note that no agent has an incentive to abstain from voting under MV. Abstention

under MV means being excluded from voting in both stages, while participation in a

vote strictly increases an individual’s chances of winning. Furthermore, following the

logic outlined in Proposition 1, in equilibrium, an agent i assumes that other individuals

vote sincerely in the first stage because in all symmetric equilibria under consideration,

an agent will vote for a fundamental direction with probability 1
2
. As a consequence,

given that all N agents will vote in the first stage, i estimates that by voting sincerely,

he will derive an ex-ante expected utility of

P (N)

[
1

2
(1 +M) +

1

2
(0 +M)

]
+
(
1− P (N)

)
Θ(N)

= P (N)

[
1

2
+M

]
+
(
1− P (N)

)
Θ(N),

where M ∈ {H, ǫ} and Θ(N) is the ex-ante probability of winning in the second stage

for losers of the first stage under MV, given by (4).

If i votes strategically, his expected utility is

P (N)
1

2
+
(
1− P (N)

)
[Θ(N)(1 +M) + (1−Θ(N)) (0 +M)]

=
1

2
P (N) +

(
1− P (N)

)
[Θ(N) +M ] .

Since P (N) > 1
2
> 1 − P (N), voting sincerely is a dominant strategy for both SI and

WI individuals.
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Appendix B: Welfare Comparisons

B.1 Welfare under BV

We begin our welfare comparisons by calculating the expected aggregate utility under

BV in equilibrium. Recall that all Ns SI individuals will vote sincerely in the first stage,

while all N −Ns WI individuals will abstain. Also recall that the number of losers from

the first stage has been denoted by NL. Hence, a total of N − Ns + NL agents will

participate in the second stage.

For ease of reference, we summarize the ex-ante probabilities of winning for each group

of agents in Table B.1, first in both stages, and the in the second stage only. We note

that the probability of winning in the first stage only and the probability of losing in

both stages can be easily derived from these expressions.

BV SM

For WI Win in both stages P (N)P (N) P (N)P (N)
when Ns = 0 Win only in 2nd stage (1− P (N))P (N) (1− P (N))P (N)

For WI Win in both stages 1
2
Λ(N,Ns) P (N)P (N)

when 0 < Ns < N Win only in 2nd stage 1
2
Λ(N,Ns) (1− P (N))P (N)

For SI Win in both stages P (N)
((
1− 1

2N−1

)
1
2

P (N)P (N)

+
(

1
2N−1

)
P (N)

)

when Ns = N Win only in 2nd stage (1− P (N))Θ(N) (1− P (N))P (N)

For SI Win in both stages P (Ns)
1
2

P (N)P (N)
when 0 < Ns < N Win only in 2nd stage (1− P (Ns))Φ(N,Ns) (1− P (N))P (N)

Table B.1: Ex-ante Probabilities of Winning: BV vs. SM.

Therefore, WBV is given by
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WBV =
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (Ns)

(
1

2
+H

)
+
(
1− P (Ns)

)
Φ(N,Ns)

}

+ (N −Ns)
{
Λ(N,Ns) +

ǫ

2

}]

+pNN

[
P (N)

{(
1− 1

2N−1

)(
1

2
+H

)
+

(
1

2N−1

)
(P (N) +H)

}

+
(
1− P (N)

)
Θ(N)

]

+(1− p)NNP (N)(ǫ+ 1).

The first two lines of the expression on the right-hand side express the welfare when

0 < Ns < N . The next two lines denote the welfare when Ns = N . The remainder of

the expression captures the case Ns = 0.

B.2 Welfare Comparison of BV and SM

B.2.1 Welfare Expressions

Suppose SM is used as the voting scheme. The social welfare is now as follows:

W SM =
N∑

Ns=0

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (N)

(
P (N) +H

)
+ [1− P (N)]P (N)

}

+(N −Ns)
{
P (N)

(
P (N)(1 + ǫ) + [1− P (N)]ǫ

)
+ [1− P (N)]P (N)

}]

=

N∑

Ns=0

(
N

Ns

)
pNs(1− p)(N−Ns) [NsP (N)(H + 1) + (N −Ns)P (N)(ǫ+ 1)] .
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BV yields a higher welfare than SM if and only if

WBV ≥ W SM ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)Ns

[
P (Ns)

(
1

2
+H

)
+
(
1− P (Ns)

)
Φ(N,Ns)

− P (N)(H + 1)

]

+
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)(N −Ns)

[
Λ(N,Ns) +

ǫ

2
− P (N)(ǫ+ 1)

]

+pNN

[
P (N)

{
2N−1 − 1

2N
+

P (N)

2N−1
− 1

}
+
(
1− P (N)

)
Θ(N)

]
≥ 0. (17)

The first expression in square brackets is the expected utility difference for an SI indi-

vidual when 0 < Ns < N , while the second set of square brackets captures the same for a

WI agent. The third expression in square brackets shows the expected utility difference

for an SI agent when Ns = N . We note that there is no welfare difference between the

two voting schemes when Ns = 0, as SM and BV coincide in that case.

B.2.2 Utility Comparison for Agents

We first compare the expected utility under BV with the one under SM for different

groups of agents, before proceeding with the comparison of overall welfare. Recall that

the probabilities of winning under BV and SM in both stages, as well as the winning

probabilities for the second stage only are summarized in Table B.1.

For WI agents if Ns = 0

The expected utility is the same under BV and SM in this case. Thus, WI agents are

indifferent between the two voting schemes if Ns = 0.

For WI agents if 0 < Ns < N

In this scenario, WI individuals prefer BV to SM if and only if

P (N)(ǫ+ 1) ≤ Λ(N,Ns) +
ǫ

2

ǫ ≤ ǫSM(N,Ns) :=
Λ(N,Ns)− P (N)

P (N)− 1
2

. (18)

48



In Figure B.1, we plot ǫSM(N,Ns) against Ns for N = 20 and N = 200.16 We also plot

the corresponding ǫcrit(N) value for comparison.

Figure B.1: ǫSM(N,Ns) and ǫcrit(N) vs. the number of SI agents Ns.

We note that WI agents face a trade-off with BV when 0 < Ns < N , compared to SM.

They have a better probability of winning in the second stage, although their probability

of winning in the first stage is lower. Their inclination for a fundamental direction ǫ must

therefore be adequately low for them to prefer abstention in the first stage in exchange

for a guaranteed vote in the second, thereby preferring BV over SM.

As Ns becomes larger for a given value of N under BV, the body of voters in the second

stage becomes smaller with positive probability. The benefits of using BV thus become

more substantial and ǫ ≤ ǫcrit(N) is a sufficient condition for WI agents to prefer BV

over SM. For very small Ns, however, ǫ
SM(N,Ns) is more restrictive than ǫcrit(N). When

most of the society consists of WI agents, these agents’ probability of winning in the

second stage becomes very similar under BV and SM, thus weakening the advantage

16Further properties of ǫSM (N,Ns) are given in Table C.1.
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presented by BV over SM. Hence, for WI agents to prefer BV over SM, the inclination

towards A or B must be correspondingly small.

We observe that for Ns = 1 and N odd, Λ(N, 1) = P (N) from Fact 1 and therefore,

ǫSM(N,Ns) = 0. WI agents face the same probability of winning in the second stage

as with SM, but have a lower probability of winning in the first stage compared to SM.

Thus, in this case WI agents strictly prefer SM to BV.

For SI agents if Ns = N

In this case, SI agents prefer BV to SM if and only if

0 ≤ Q(N) := P (N)

{
2N−1 − 1

2N
+

P (N)

2N−1
− 1

}
+
(
1− P (N)

)
Θ(N). (19)

To examine whether (19) holds, we plot Q(N) in Figure B.2. We note that Q(N) is

negative for all N .17 Therefore, when the whole society is comprised of SI agents, these

agents strictly prefer SM to BV. We note that the probability of winning in the first

stage is the same under SM and BV. In the second stage, losers of the first stage have

a higher probability of winning under BV, while this probability is lower for winners.

The welfare gains from protecting the minority, however, do not offset the welfare losses

resulting from the loss of voting rights for the majority.

17This follows from the observation that P (N) is a monotonically-decreasing sequence bounded by 1
2 .

We further note that Q(N) converges to 0. This follows from the fact that P (N) and Θ(N) converge
to 1

2 for N → ∞ while preserving Θ(N) > P (N) for all N .
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Figure B.2: Q(N) vs. the number of agents N .

For SI agents if 0 < Ns < N

SI individuals prefer BV to SM if and only if

P (N)(H + 1) ≤ P (Ns)

(
1

2
+H

)
+ (1− P (Ns))Φ(N,Ns),

which is equivalent to

(P (Ns)− P (N))H ≥ P (N)− P (Ns)

2
− (1− P (Ns))Φ(N,Ns). (20)

When P (Ns) 6= P (N), this yields

H ≥ HSM(N,Ns) :=
P (N)−P (Ns)

2
−(1−P (Ns))Φ(N,Ns)

P (Ns)−P (N)
. (21)

The plots of HSM(N,Ns) for N = 20 and N = 200 are given in Figure B.3.18

18Further properties of HSM (N,Ns) are given in Table C.1.
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Figure B.3: HSM(N,Ns) vs. the number of SI agents Ns for N = 20 and N = 200.

We observe that for small Ns, SI individuals prefer BV over SM, since H > 1. BV

restricts the number of voters in the first stage toNs, thus yielding a higher probability of

winning for SI agents, which is particularly significant for small groups of SI individuals.

The majority of these agents, however, face a lower probability of winning in the second

stage. This probability becomes more undesirable as Ns increases and the probability

of winning in the first stage approaches the one under SM. Therefore, SI agents must

have a stronger inclination towards a fundamental direction to find BV more favorable

despite the risk of losing their voting right for the second stage.

We note that HSM(N,Ns) is undefined for P (Ns) = P (N) as the denominator becomes

zero. This occurs when Ns = N − 1 and N is odd. In this case, Inequality (20) does

not hold, as the right-hand side is positive for all N .19 Hence, if Ns = N − 1 and N

is odd, SI agents strictly prefer SM over BV. The result is intuitive, because in such

circumstances, BV does not offer any additional benefits for SI individuals in the first

stage, as they face the same probability of winning as under SM. A large fraction of the

society, however, loses its voting rights for the second stage, and this utility loss is not

compensated by the increase in the probability of winning for the minority.

19This conclusion follows from the observation that Q(N) +P (N)− P (Ns)
2 − (1−P (Ns))Φ(N,Ns) > 0

while Q(N) < 0 for all N .
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B.2.3 Aggregate Utility Comparison

We now compare the aggregate expected utility under BV to the one under SM. Rear-

ranging the Expression (17) yields

WBV ≥ W SM ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns {P (Ns)− P (N)}H − (N −Ns)

(
P (N)− 1

2

)
ǫ

]

≥
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
(N −Ns) {P (N)− Λ(N,Ns)}

+Ns

{
P (N)− P (Ns)

2
− (1− P (Ns))Φ(N,Ns)

}]

+pNN

[
P (N)

{
1− 2N−1 − 1

2N
− P (N)

2N−1

}
−
(
1− P (N)

)
Θ(N)

]

⇐⇒ H ≥ M(N, p) ǫ+ C(N, p), (22)

where M(N, p) and C(N, p) are given by

M(N, p) :=

∑N−1
Ns=1

(
N
Ns

)
pNs(1− p)(N−Ns)(N −Ns)

(
P (N)− 1

2

)
∑N−1

Ns=1

(
N
Ns

)
pNs(1− p)(N−Ns)Ns(P (Ns)− P (N))

(23)

and

C(N, p) :=
C(N, p)∑N−1

Ns=1

(
N
Ns

)
pNs(1− p)(N−Ns)Ns (P (Ns)− P (N))

, (24)

where

C(N, p) :=

N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
(N −Ns) {P (N)− Λ(N,Ns)}

+Ns

{
P (N)− P (Ns)

2
− (1− P (Ns))Φ(N,Ns)

}]

+pNN

[
P (N)

{
1− 2N−1 − 1

2N
− P (N)

2N−1

}
−
(
1− P (N)

)
Θ(N)

]
.

We have verified numerically that M(N, p) and C(N, p) are finite and positive.20 To

20It was verified for the ranges N ∈ [3, 1000] and p ∈ [0.01, 0.99] in steps of 0.01.
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illustrate this with an example, we plot the equality of (22) in Figure B.4 for N = 20

and for different values of p. We also denote the corresponding ǫcrit(N) and H = 1

values, and shade the area in which Proposition 1 is satisfied.

The reason why H has to increase when ǫ increases for BV to be welfare-superior to SM

is as follows: An increase in ǫ means that WI agents may prefer SM over BV when Ns is

small. To maintain that welfare under BV is superior to that under SM, H must increase

analogously to ensure that more SI agents prefer BV over SM when Ns is large.

Moreover, we observe that for small values of p (e.g. p = 0.3), welfare is superior

under BV to welfare under SM. As p increases, H must increase as well to ensure the

superiority of BV over SM. An increase in p indicates an expected increase in the number

of SI agents in the society. As explained in the preceding analysis of Section B.2.2, as

Ns increases, H has to simultaneously increase for SI agents to maintain these agents’

preference for BV over SM.

Figure B.4: H vs. ǫ for WBV = W SM to hold when N = 20, according to (22).
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B.3 Welfare Comparison of BV and ST

B.3.1 Welfare Expressions

Suppose the society adopts ST as the voting scheme. For ease of reference, we summarize

the probabilities of winning for each group of agents in Table B.2, first in both stages

and then in the second stage only.

BV ST

For WI Win in both stages P (N)P (N) P (N)P (N)
when Ns = 0 Win only in 2nd stage (1− P (N))P (N) (1− P (N))P (N)

For WI Win in both stages 1
2
Λ(N,Ns)

1
2
P (N −Ns)

when 0 < Ns < N Win only in 2nd stage 1
2
Λ(N,Ns)

1
2
P (N −Ns)

For SI Win in both stages P (N)
((
1− 1

2N−1

)
1
2

P (N)P (N)

+
(

1
2N−1

)
P (N)

)

when Ns = N Win only in 2nd stage (1− P (N))Θ(N) (1− P (N))P (N)

For SI Win in both stages P (Ns)
1
2

P (Ns)
1
2

when 0 < Ns < N Win only in 2nd stage (1− P (Ns))Φ(N,Ns) (1− P (Ns))
1
2

Table B.2: Ex-ante Probability of Winning: BV vs. ST.

Welfare under ST is given by

W ST =
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (Ns)H +

1

2

}
+ (N −Ns)

{
P (N −Ns) +

ǫ

2

}]

+pNN [P (N) (H + 1)] + (1− p)NN [P (N) (ǫ+ 1)] .

The first expression in square brackets denotes the expected utility of agents when

0 < Ns < N . The second and third square brackets describe the cases Ns = N and

Ns = 0, respectively.
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BV yields a higher welfare than ST if and only if

WBV ≥ W ST ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)Ns

[
P (Ns)

(
1

2
+H

)
−

(
P (Ns)H +

1

2

)

+
(
1− P (Ns)

)
Φ(N,Ns)

]

+
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)(N −Ns)

[
Λ(N,Ns) +

ǫ

2
−
(
P (N −Ns) +

ǫ

2

)]

+(1− p)NN [P (N)(ǫ+ 1)− P (N)(ǫ+ 1)]

+pNN

[
P (N)

{
2N−1 − 1

2N
+

P (N)

2N−1
− 1

}
+
(
1− P (N)

)
Θ(N)

]
≥ 0. (25)

The first expression in square brackets captures the welfare difference for SI individuals

if 0 < Ns < N , while the second set of square brackets indicates the welfare difference

for WI agents for the same situation. The third expression in square brackets is the

welfare difference for WI individuals if Ns = 0, which is zero. The remaining expression

displays the welfare difference for SI agents if Ns = N .

B.3.2 Utility Comparison for Agents

We first compare the expected utility under BV to the one under ST for different groups

of agents.

For WI agents if Ns = 0

WI individuals are indifferent between ST and BV in this case.

For WI agents if 0 < Ns < N

We note that Λ(N,Ns) < P (N − Ns), as Λ(N,Ns) gives the ex-ante probability of

winning when the committee comprises the WI agents and the losers from the first

stage, while P (N −Ns) is the probability of winning when the committee consists only

of WI agents. Therefore, WI individuals strictly prefer ST to BV if 0 < Ns < N . Their

probability of winning is higher under ST, as there are no losers from the first stage who

take part in voting in the second stage.
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For SI agents if Ns = N

In this case, SI agents prefer BV to ST if and only if

0 ≤ P (N)

{
2N−1 − 1

2N
+

P (N)

2N−1
− 1

}
+
(
1− P (N)

)
Θ(N) = Q(N).

From Figure B.2, we observe that Q(N) is negative for all N . Thus, when Ns = N , SI

agents strictly prefer ST to BV. ST is identical to SM when Ns = N , and, as explained

in Section B.2, BV is inferior to SM when Ns = N . As N becomes larger, P (N) tends

to 1
2
, and the gap between losses and gains is reduced, driving Q(N) closer to zero.

For SI agents if 0 < Ns < N

The SI agents are strictly better off with BV – as opposed to ST – if 0 < Ns < N .

The reason is that BV provides them with the same benefits as ST, with the additional

feature of better protection, should they belong to the minority of the first stage.

B.3.3 Aggregate Utility Comparison

Next we compare the aggregate expected utility under BV to the one under ST. We

rearrange (25) to yield

WBV ≥ W ST ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{(
1− P (Ns)

)
Φ(N,Ns) +

P (Ns)

2
− 1

2

}

− (N −Ns) {P (N −Ns)− Λ(N,Ns)}
]

+pNN

[
P (N)

{
2N−1 − 1

2N
+

P (N)

2N−1
− 1

}
+
(
1− P (N)

)
Θ(N)

]
≥ 0. (26)

We denote the entire expression on the left-hand side of Inequality (26) by K(N, p),

i.e.

WBV ≥ W ST ⇐⇒ K(N, p) ≥ 0.

In Figure B.5, we plot K(N, p) against p for different values of N .
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1

Figure B.5: K(N, p) vs. p.

We observe that (26) holds for sufficiently large N or sufficiently small p. We have

verified numerically that for each N > 3, there is some p which yields K(N, p) = 0.21

For N = 3, welfare properties of ST are superior to BV for all values of p. From Figure

B.2, we note that if Ns = N , the social losses under BV are rather large if N = 3,

contributing to the poor welfare performance. We also note that the welfare losses for

Ns = N rapidly become smaller as N increases. Hence, for N > 3, BV is superior to

ST as long as p ≤ 0.6. As p increases, however, N must increase analogously to keep

welfare under BV more desirable than under ST. For p = 0.9 and p = 0.99, for example,

N > 8 and N > 51 must be satisfied, respectively, for BV to be superior to ST. An

increase in p means there is a larger probability that the committee will be comprised

of SI agents. Hence, the case Ns = N has a higher impact on the overall welfare. Thus,

as p increases, N must also increase to ensure WBV ≥ W ST .

We define the threshold on N that yields K(N, p) ≥ 0 for a given value of p as Nst(p),

i.e.

K(N, p) R 0 if N R Nst(p). (27)

For p ∈ [0.6, 0.99] in steps of 0.01, we calculate Nst(p), which determines the threshold

on N that yields K(N, p) ≥ 0. In Figure B.6, we plot Nst(p) against p.

21The analysis was conducted for N ∈ [4, 1000] and p ∈ [0.01, 0.99] in steps of 0.001.
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Figure B.6: Nst(p) vs. p.

Thus, the welfare under BV is higher than the welfare under ST forN ≥ Nst(p). We note

that the welfare comparison between BV and ST imposes a restriction on the number

of agents that depends on p for BV to be superior to ST. The intuition is as follows: A

large p indicates a high probability that the entire society consists of SI agents. Consider

the case where the entire society does consist of SI agents indeed. Then, ST allows all

individuals to vote in both stages, while under BV, the majority is not allowed to vote in

the second stage. When N is low, this effectively means that the majority loses voting

rights on a decision for which it would have had a high chance of being pivotal. This

leads to large welfare losses under BV. As N increases, however, the chances of being

pivotal in the second stage decrease, and the utility losses under BV diminish. Thus,

for sufficiently large N , BV is superior to ST from a utilitarian welfare perspective.

B.4 Welfare Comparison of BV and MV

B.4.1 Welfare Expressions

Now assume that MV is the voting scheme used for a collective decision. For ease of

reference, we summarize the probabilities of winning for each group of agents in Table
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B.3, first in both stages and then in the second stage only.

BV MV

For WI Win in both stages P (N)P (N) P (N)
((
1− 1

2N−1

)
1
2

+
(

1
2N−1

)
P (N)

)

when Ns = 0 Win only in 2nd stage (1− P (N))P (N) (1− P (N))Θ(N)

For WI Win in both stages 1
2
Λ(N,Ns) P (N)

((
1− 1

2N−1

)
1
2

+
(

1
2N−1

)
P (N)

)

when 0 < Ns < N Win only in 2nd stage 1
2
Λ(N,Ns) (1− P (N))Θ(N)

For SI Win in both stages P (N)
((
1− 1

2N−1

)
1
2

P (N)
((
1− 1

2N−1

)
1
2

+
(

1
2N−1

)
P (N)

)
+

(
1

2N−1

)
P (N)

)

when Ns = N Win only in 2nd stage (1− P (N))Θ(N) (1− P (N))Θ(N)

For SI Win in both stages P (Ns)
1
2

P (N)
((
1− 1

2N−1

)
1
2

+
(

1
2N−1

)
P (N)

)

when 0 < Ns < N Win only in 2nd stage (1− P (Ns))Φ(N,Ns) (1− P (N))Θ(N)

Table B.3: Ex-ante Probability of Winning: BV vs. MV.

Welfare under MV is given by

WMV =
N∑

Ns=0

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (N)

[(
1− 1

2N−1

)(
1

2
+H

)

+

(
1

2N−1

)
(P (N) +H)

]
+ [1− P (N)]Θ(N)

}

+ (N −Ns)

{
P (N)

[(
1− 1

2N−1

)(
1

2
+ ǫ

)
+

(
1

2N−1

)
(P (N) + ǫ)

]

+ [1− P (N)]Θ(N)

}]

=
N∑

Ns=0

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+H

)

+ (1− P (N)) Θ(N)

}

+(N −Ns)

{
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+ ǫ

)
+ (1− P (N))Θ(N)

}]
.
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Welfare under BV is higher than welfare under MV if and only if

WBV ≥ WMV ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)Ns

[
P (Ns)

(
1

2
+H

)
+ (1− P (Ns))Φ(N,Ns)

− P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+H

)
− (1− P (N))Θ(N)

]

+

N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)(N −Ns)

[
Λ(N,Ns) +

ǫ

2
− (1− P (N))Θ(N)

− P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+ ǫ

)]

−(1− p)NN

[
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
− 1

)
+ (1− P (N))Θ(N)

]
≥ 0. (28)

The first expression in square brackets captures the welfare difference for SI individuals

if 0 < Ns < N , while the second pair of square brackets comprises the welfare difference

for WI agents in the same case. The third expression in square brackets shows the

welfare difference for WI individuals if Ns = 0.

B.4.2 Utility Comparison for Agents

We first compare the expected utility under BV with the one under MV for different

groups of agents.

For WI agents if Ns = 0

WI individuals prefer BV to MV in this case if and only if

P (N) ≥ P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
+ (1− P (N))Θ(N),

or equivalently,

0 ≥ P (N)

(
P (N)

2N−1
− 1

2
− 1

2N

)
+ (1− P (N))Θ(N) = Q(N). (29)

Recall that Figure B.2 gives the plot of Q(N). Hence, Inequality (29) holds for all N .

When the entire society consists of WI agents, everyone votes in both stages under BV,
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while under MV, only losers of the first stage can vote in the second stage. For the

majority, the loss of voting rights on the decision they would have preferred to exert

more influence on results in a welfare loss under MV, thus making BV strictly more

desirable.

For WI agents if 0 < Ns < N

In this case, BV is preferred to MV by WI individuals if and only if

Λ(N,Ns) +
ǫ

2
− P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+ ǫ

)
− (1− P (N))Θ(N) ≥ 0 (30)

ǫ ≤ 1

P (N)− 1
2

[
Λ(N,Ns)− P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
− (1− P (N))Θ(N)

]

︸ ︷︷ ︸
.

=: ǫMV (N,Ns) (31)

We note that for a given N , Λ(N,Ns) is monotonically increasing in Ns. Therefore, so is

the right-hand side of Inequality (31). Since we have assumed ǫ ≤ ǫcrit(N) throughout

the paper, we examine if Inequality (31) holds for the least possible value of Ns, which is

Ns = 1, when ǫ = ǫcrit(N). In Figure B.7, we plot ǫMV (N, 1)− ǫcrit(N) for N ∈ [3, 200]

and observe that it is positive if N is not too small, i.e. if N > 7.22

22The generalization of the result to all N follows from the observation that for all Ns, the left-hand
side of Inequality (30) is positive and tends to zero as N → ∞.
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Figure B.7: ǫMV (N, 1)− ǫcrit(N) vs. N .

Thus, our assumption ǫ ≤ ǫcrit(N) is sufficient forWI agents to prefer BV over MV when

N > 7. Under MV, WI individuals vote with the rest of the society in the first stage,

but face the possibility of losing their right to vote in the second stage when the voting

body is much smaller. This leads to a welfare loss that is not offset by the comparatively

higher probability of winning in the first stage, which is small if the society is large.

When N ≤ 7, the probability of winning in the first stage, P (N), is much larger than 1
2
,

which renders participation in the first stage more attractive. Therefore, ǫ must satisfy

the more stringent criteria ǫ ≤ ǫMV (N, 1) < ǫcrit(N) for WI individuals to find BV more

attractive than MV.

For SI agents if Ns = N

SI individuals are indifferent between BV and MV if Ns = N , as BV and MV coincide

in this case.
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For SI agents if 0 < Ns < N

BV is preferred to MV by SI individuals in this case if and only if

P (Ns)

(
1

2
+H

)
+ (1− P (Ns))Φ(N,Ns)− P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1
+H

)

− (1− P (N))Θ(N) ≥ 0

⇒ H
(
P (Ns)− P (N)

)
≥ P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
+ (1− P (N))Θ(N)

− (1− P (Ns))Φ(N,Ns)−
P (Ns)

2
. (32)

When P (Ns) 6= P (N) this means,

H ≥ 1

P (Ns)− P (N)

[
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
+ (1− P (N))Θ(N)

− (1− P (Ns))Φ(N,Ns)−
P (Ns)

2

]
=: HMV (N,Ns). (33)

Since the relationship between HMV (N,Ns) and Ns is not straightforward, we numeri-

cally calculate the maximum value of HMV (N,Ns) for each N ∈ [3, 200] and plot it in

Figure B.8.
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Figure B.8: maxNs H
MV (N,Ns) vs. the number of agents N .

We note that (33) holds if H > HMV (N,Ns) ≤ 1.26.23 Since we have assumed H >> 1,

it is therefore possible to conclude that (33) holds for all N . Under MV, the entire society

participates in the first stage, while only SI agents do so under BV. This gives them a

better chance of winning in the decision that matters more to them. MV, however, offers

a higher probability of winning in the second stage. Yet, the benefits of BV still outweigh

those of MV. Therefore, SI agents strictly prefer BV over MV when 0 < Ns < N .

We note that HMV (N,Ns) is undefined for P (Ns) = P (N), that is, when Ns = N − 1

and N is odd. In this case, Inequality (32) does not hold, as the right-hand side is

strictly positive for all N and tends to zero as N → ∞. Hence, if Ns = N − 1 and

N is odd, SI agents strictly prefer MV over BV. Although there is one agent less who

votes in the first stage under BV, SI individuals face the same probability of winning

as the one under MV, since P (N − 1) = P (N). In the second stage, however, the WI

agent participates in the voting under BV, which decreases the SI minority’s chances

of winning.

23The generalization of the result to all N follows from the observation that the right-hand side of
Inequality (33) tends to zero as N → ∞, since Φ(N,Ns) ≈ Θ(N) for large N and Ns. A large value
of Ns is considered, since the trend of HMV (N,Ns) is increasing with Ns.
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B.4.3 Aggregate Utility Comparison

Next, we compare the aggregate expected utility under BV to the one under MV. We

rearrange (28) to obtain

WBV ≥ WMV ⇐⇒
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
NsH

(
P (Ns)− P (N)

)
− (N −Ns)

(
P (N)− 1

2

)
ǫ

]

≥
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)Ns

[
(1− P (N))Θ(N)−

(
1− P (Ns)

)
Φ(N,Ns)

+ P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
− P (Ns)

2

]

+
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)(N −Ns)

[
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)

+ (1− P (N))Θ(N)− Λ(N,Ns)

]

+(1− p)NN

[
(1− P (N))Θ(N)− P (N)

(
1− 2N−1 − 1

2N
− P (N)

2N−1

)]

⇐⇒ H ≥ M(N, p) ǫ+D(N, p), (34)

where M(N, p) is given in (23) and D(N, p) is defined by

D(N, p) := D(N, p)
,

N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)Ns (P (Ns)− P (N)) (35)
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where

D(N, p) :=
N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
(N −Ns)

{
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)

+ (1− P (N))Θ(N)− Λ(N,Ns)

}

+Ns

{
P (N)

(
2N−1 − 1

2N
+

P (N)

2N−1

)
+ (1− P (N))Θ(N)

− P (Ns)

2
− (1− P (Ns))Φ(N,Ns)

}]

+(1− p)NN

[(
1− P (N)

)
Θ(N)− P (N)

(
1− 2N−1 − 1

2N
− P (N)

2N−1

)]
.

We note that D(N, p) < C(N, p)24 and therefore D(N, p) is finite.25 To illustrate, we

plot the Equality (34) in Figure B.9 for N = 20 and for different values of p. We also

plot the values of H = 1 and ǫcrit(20), and mark the area in which H and ǫ must lie to

satisfy Proposition 1. We have verified that for all N /∈ {3, 5, 7}, welfare under BV is

always superior to the welfare under MV.26 In Section B.4.2, we showed that in almost

all situations, individuals either strictly or weakly prefer BV over MV, given H >> 1

and ǫ ≤ ǫcrit(N) are satisfied. This results in the welfare under BV being strictly better

than under MV.

For N ∈ {3, 5, 7}, welfare under BV is superior to welfare under MV only if H and ǫ

satisfy Expression (34). In Section B.4.2, we illustrated that ǫ ≤ ǫcrit(N) is not sufficient

for WI agents to prefer BV over MV for N ≤ 7. Furthermore, we showed that when

N is odd and Ns = N − 1, SI agents strictly prefer MV to BV. The combination of

these two effects yields the result that welfare under BV is not always superior to welfare

under MV for N ∈ {3, 5, 7}. Welfare properties of BV are better only if ǫ is sufficiently

low, or analogously, if H is sufficiently high, such that Expression (34) is satisfied.

24This observation follows from the fact that the denominator is the same for both C(N, p) andD(N, p),
and D(N, p) is finite and is strictly smaller than C(N, p), since Q(N) is negative but finite for all
N .

25This assertion holds for all N ∈ [3, 1000] and p ∈ [0.01, 0.99], since C(N, p) was verified to be finite
in these ranges.

26This was verified numerically for the ranges N ∈ [3, 1000] and p ∈ [0.01, 0.99] in steps of 0.01.
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Figure B.9: H vs. ǫ to satisfy WBV ≥ WMV for N = 20.
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Appendix C: Summary of Properties of Key Expressions

In this appendix, we summarize the properties of the key expressions used in the main

text. Specifically, we analyze each expression at the limit, and state the results ob-

tained. When analytical verification is not possible, we provide the ranges for which an

expression has been numerically verified to fulfill the properties considered in the main

text.
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Expression Formula Analytical Results Numerical Verifications Illustration

P (N) Equation (1) lim
n→∞

P (n) = 1
2 vs N for N ∈ [1, 20]

Figure 1

Θ(N),Λ(N,n),Φ(N,n) Θ(N) = (4) lim
N→∞

Θ(N) = 1
2 vs n for N = 20

Λ(N,n) = (3) ∀n, lim
N→∞

Λ(N,n) = 1
2 Figure 2

Φ(N,n) = (2) ∀n, lim
N→∞

Φ(N,n) = 1
2

ǫcrit(N) Proposition 1 lim
N→∞

ǫcrit(N) = 0 vs N for N ∈ [3, 200]

Figure 3

Hcrit
st (N), ǫcritst (N) Lemma 1 lim

N→∞
ǫcrit(N) = 0 vs N for N ∈ [3, 200]

lim
N→∞

Hcrit(N) = ∞ Figure 4

ǫSM (N,Ns) Equation (18) ∀Ns when N even and vs Ns for N = 20 and N = 200
∀Ns 6= 1 when N odd, Figure B.1
lim

N→∞
ǫSM (N,Ns) = ∞

Q(N) Equation (19) lim
N→∞

Q(N) = 0 vs N for N ∈ [3, 200]

Figure B.2

HSM (N,Ns) Equation (21) ∀Ns when N even and vs Ns for N = 20 and N = 200
∀Ns 6= N − 1 when N odd, Figure B.3

lim
N→∞

HSM (N,Ns) = ∞

H = M(N, p) ǫ+ C(N, p) Equation (22) N ∈ [3, 1000] H vs ǫ for N = 20, p = 1
10 ,

1
3 ,

2
3 ,

9
10

p ∈ [0.01, 0.99], in steps of 0.01 Figure B.4

K(N, p) Equation (26) N ∈ [4, 1000] vs p ∈ [0.01, 0.99] for N = 3, N = 4,
p ∈ [0.01, 0.99], in steps of 0.001 N = 8, N = 16, N = 23, N = 52

Figure B.5

Table C.1: Summary of Properties of Key Expressions.



Expression Formula Analytical Results Numerical Verifications Illustration

Nst(p) Equation (27) p ∈ [0.6, 0.99] in steps of 0.01 vs p ∈ [0.6, 0.99]
Figure B.6

ǫMV (N, 1)− ǫcrit(N) Equation (31) ∀Ns, vs N for N ∈ [3, 200]
lim

N→∞
ǫMV (N,Ns) = ∞ Figure B.7

maxNs H
MV (N,Ns) Equation (33) for large Ns, vs N for N ∈ [3, 200]

lim
N→∞

HMV (N,Ns) = 0 Figure B.8

H = M(N, p) ǫ+D(N, p) Equation (34) N ∈ [3, 1000] H vs ǫ for N = 20,
p ∈ [0.01, 0.99], in steps of 0.01 p = 1

10 ,
1
2 ,

2
3 ,

99
100

Figure B.9

M1(N,xi) Equation (13) N ∈ [3, 1000] vs xi for N = 200
0 < xi < N − 1 Figure A.1

M0(N), M1(N,N − 2), Equation (13) N ∈ [3, 1000] vs N for N ∈ [3, 200]
M1(N, 1), M2(N) Figure A.2

Hcrit(N) and ǫcrit(N) Equation (14) N ∈ [3, 1000] for Hcrit(N) vs N for N ∈ [3, 200]
Equation (15) Figure A.3

M0(N), M3(N,N − 2), Equation (16) lim
N→∞

M0(N),M3(N, 1) = 0 vs N for N ∈ [3, 200]

M3(N, 1), M4(N) lim
N→∞

M3(N,N − 2),M4(N) = ∞ Figure A.4

Table C.2: Summary of Properties of Key Expressions



Appendix D: Detailed Calculations

Derivation of Θ(N)

Θ(N) := Ex-ante probability of winning in the second stage under MV

for losers of the first stage.

We begin by defining the following probabilities.

Prob(NL) := Probability that the first stage results in NL losers,

Prob(Y ) := Probability that the first stage results in at least one loser,

Prob(NL|Y ) := Probability that the first stage results in NL losers, given that NL ≥ 1.

We now obtain

Lemma 3

Θ(N) =

⌊N
2 ⌋∑

NL=1

P (NL) · Prob(NL|Y ).

We analyze two cases:

• Case 1: N is odd

Now, 1 ≤ NL ≤ ⌊N
2
⌋. Losers can either prefer A or B.

Prob(NL) =

(
N

NL

)
2

2N
=

(
N

NL

)
1

2N−1
.

P rob(Y ) =

⌊N
2 ⌋∑

NL=1

(
N

NL

)
1

2N−1
.
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• Case 2: N is even

Now, 1 ≤ NL ≤ N
2
. If NL = N

2
, the winner is chosen by tossing a fair coin.

Prob(NL) =





(
N
NL

)
1

2N−1 for 1 ≤ NL < N
2
,

(
N
NL

)
1
2N

for NL = N
2
.

P rob(Y ) =

N
2
−1∑

NL=1

(
N

NL

)
1

2N−1
+

(
N
N
2

)
1

2N
.

Using Bayes’ Rule, we obtain

Prob(NL|Y ) =
Prob(Y |NL)Prob(NL)

Prob(Y )
.

We note that Prob(Y |NL) = 1, given that NL ≥ 1. Substituting the values for Prob(NL)

and Prob(Y ) obtained above in the expression for Θ(N) in Lemma 3 yields the expression

of Θ(N) in the main text.

Derivation of Φ(N, n)

We next derive the expression for Φ(N, n) for which we need Θ(N) calculated above.

Φ(N, n) := Ex-ante probability of winning in the second stage under BV

for losers of the first stage.

The derivation of Φ(N, n) follows the same steps as the derivation of Θ(N), with the

following changes:

• Substituting n for N (since only n individuals vote in the first stage under BV),

• Substituting P (N − n+NL) for P (NL) (since N − n agents who abstain from the

first stage are also given the right to vote in the second stage under BV).
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Derivation of Λ(N, n)

Next we derive the expression for Λ(N, n).

Λ(N, n) := Ex-ante probability of winning in the second stage under BV

for absentees of the first stage.

Λ(N, n) deals with the case NL = 0. Hence, its derivation is straightforward.

Λ(N, n) =

⌊n
2 ⌋∑

NL=0

P (N − n+NL) ·
(
probability of NL losers in the first stage

)

=

⌊n
2 ⌋∑

NL=0

P (N − n+NL) · Prob(NL).

P rob(NL) is given by

• Case 1: n is odd

Prob(NL) =

(
n

NL

)
2

2n
=

(
n

NL

)
1

2n−1
.

• Case 2: n is even

Prob(NL) =





(
n
NL

)
1

2n−1 for 0 ≤ NL < n
2
,

(
n
NL

)
1
2n

for NL = n
2
.

Substituting these values yields the expression for Λ(N, n) in the main text.
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Derivation of WBV

WBV = Aggregate expected utility for SI individuals when 0 < Ns < N

+ Aggregate expected utility for WI individuals when 0 < Ns < N

+ Aggregate expected utility for SI individuals when Ns = N

+ Aggregate expected utility for WI individuals when Ns = 0

=

N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (Ns)

(
1

2
(1 +H) +

1

2
(0 +H)

)

+
(
1− P (Ns)

)
Φ(N,Ns)

}

+ (N −Ns)

{
1

2

(
Λ(N,Ns)[1 + ǫ] + (1− Λ(N,Ns))[0 + ǫ]

)
+

1

2
Λ(N,Ns)

}]

+pNN

[
P (N)

{(
1− 1

2N−1

)(
1

2
(1 +H) +

1

2
(0 +H)

)

+

(
1

2N−1

)(
P (N)(1 +H) + (1− P (N))H

)}
+
(
1− P (N)

)
Θ(N)

]

+(1− p)NN

[
P (N)

(
P (N)(1 + ǫ) + (1− P (N))(ǫ)

)
+ (1− P (N))P (N)

]
.

Simplifying this expression yields

WBV =

N−1∑

Ns=1

(
N

Ns

)
pNs(1− p)(N−Ns)

[
Ns

{
P (Ns)

(
1

2
+H

)
+
(
1− P (Ns)

)
Φ(N,Ns)

}

+ (N −Ns)
{
Λ(N,Ns) +

ǫ

2

}]

+pNN

[
P (N)

{(
1− 1

2N−1

)(
1

2
+H

)
+

(
1

2N−1

)
(P (N) +H)

}

+
(
1− P (N)

)
Θ(N)

]
+ (1− p)NNP (N)(ǫ+ 1).
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