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Abstract

We consider a class of perfect information bargaining games with unanimity acceptance

rule. The proposer and the order of responding players are determined by the state that

evolves stochastically over time. The probability distribution of the state in the next period

is determined jointly by the current state and the identity of the player who rejected the

current proposal. This protocol encompasses a vast number of special cases studied in

the literature. We show that subgame perfect equilibria in pure stationary strategies need

not exist. When such equilibria do exist, they may exhibit delay. Limit equilibria (as the

players become infinitely patient) need not be unique.

Keywords: Strategic Bargaining, Subgame Perfect Equilibrium, Stationary Strategies,

Nash Bargaining Solution
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1 Introduction

In his seminal paper, Rubinstein (1982) studies the division of a surplus among two im-

patient players through a non-cooperative bargaining game. Following this contribution,

a rich literature has emerged which extends and generalizes Rubinstein’s approach. In

this paper, we point out a number of general results which have persistently and recur-

rently emerged from this literature, and we explore the boundaries of their scope. More

in particular, we give some examples where a further generalization of the model leads

to a break-down of these results. While the analysis of unanimity bargaining games has

typically focussed on subgame perfect equilibria in stationary strategies, we show that in

a more general bargaining game such equilibria need not exist.

For the purpose of this paper, we will mean by a unanimity bargaining game a non-

cooperative game with the following characteristics. There is a finite number of players who

need to make a unanimous choice for one particular payoff vector within a full-dimensional

set of feasible payoffs. The game is set in discrete time. In each round of the game, one

player is the proposer. His role is to suggest one particular feasible payoff vector. The other

players then sequentially accept or reject this proposal in some fixed order. If all players

agree to the proposal, the game ends and the agreed payoffs are realized. As soon as one

of the players rejects the current proposal, the game proceeds to the next round. The time

horizon is infinite, so players may disagree forever, which yields a payoff of zero to every

player. The payoffs are subject to time-discounting. When an agreement is reached, the

payoff of each player is multiplied by an exogenously given discount factor for each round

which has previously passed without agreement1.

In order to complete the description of a unanimity bargaining game, one has to specify

a rule which determines which player is the proposer in which round. We will refer to this

rule as the protocol in the sequel. Rubinstein (1982) studies a game with only two players

who simply take turns in making proposals (the alternating offer protocol). Rubinstein

finds a unique subgame perfect equilibrium. The equilibrium strategies happen to be sta-

tionary. It is well-known that the uniqueness of subgame perfect equilibrium breaks down

in unanimity bargaining games with more than two players. With regard to those games,

the literature focusses on subgame perfect equilibria in stationary strategies, which allow

1Instead of time-discounting, some authors assume an exogenous breakdown of the negotiation to

occur after each disagreement with probability 1−δ. Time-discounting and the possibility of an exogenous

breakdown are largely interchangeable interpretations of δ. The term “bargaining friction” can be used to

capture both of them. The importance of the bargaining friction lies in the fact that it creates an incentive

to come to an agreement sooner rather than later.
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sharp predictions of the equilibrium payoffs at least when the discount factor is sufficiently

close to one. Arguably the most obvious generalization of Rubinstein’s alternating offer

protocol to the case with more than two players is the rotating protocol, under which players

become proposers in ascending order, and player one proposes again after player n. One

alternative proper generalization of the alternating offers protocol is the rejector-proposes

protocol. Under that rule, the first player to reject the current proposal becomes the next

proposer. The rejector-proposes protocol is an example of an endogenous protocol in which

the actions taken by the players throughout the game have an influence on the proposer

selection. One important example of a protocol which is not a proper generalization of

Rubinstein’s alternating offers is the time-invariant probability protocol which consists of

an exogenously given probability distribution from which the proposer is drawn in each

round.

The literature on unanimity bargaining games has established some results that are

generally valid no matter which of these protocols is assumed.

1. Subgame perfect equilibria in pure stationary strategies exist and they are efficient.

2. Subgame perfect equilibria in pure stationary strategies predict immediate agreement

in every subgame.

3. Each equilibrium proposal is such that all players except the proposer are indifferent

between accepting and rejecting the proposal.

4. In the limit as δ approaches one, all the proposals of all the stationary subgame

perfect equilibria converge to a unique limit proposal.

Which payoff vector is the limit proposal depends on the distribution of bargaining

power inherent in the protocol. Kultti and Vartiainen (2010) show that the limit proposal

is the Nash Bargaining Solution under the rotating protocol. Miyakawa (2008) and Laru-

elle and Valenciano (2008) study the time-invariant probability protocol. In this case, the

limit proposal corresponds to the asymmetric Nash Bargaining Solution, where the vector

of bargaining weights is given by the time-invariant probability distribution. Britz, Her-

ings, and Predtetchinski (2010) study a protocol where the proposer is chosen by a Markov

process. That is, there are n probability distributions on the n players. The identity of

the proposer in the current round determines which of the n probability distributions is

used to draw the proposer in the following round. The Markov process is assumed to

have a stationary distribution. Then, the limit proposal corresponds to an asymmetric
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Nash Bargaining Solution, where the vector of bargaining weights is given by the station-

ary distribution of the Markov process. This Markovian protocol is a generalization of

the time-invariant probabilities and the rotating protocols – in fact, it seems to be the

most general among the exogenous protocols. Britz, Herings, and Predtetchinski (2014)

complement that analysis with a study of endogenous protocols. More in particular, they

consider a protocol which consists of n probability distributions on the n players and the

identity of the player who rejects the current proposal determines which of those probabil-

ity distributions will be used to draw the following proposer. It turns out that the limit

proposal depends only on the probabilities with which each player becomes the proposer

after his own rejection. More in particular, the limit proposal is again an asymmetric Nash

Bargaining Solution where the vector of bargaining weights is proportional to the vector of

probabilities with which the players propose after their own rejections2. One implication

of this result is that the limit proposal corresponds to the Nash Bargaining Solution under

the rejector-proposes protocol.

The plan of the paper is as follows. In Section 2, we will formally describe a unanimity

bargaining game with a very general protocol. In particular, this protocol is designed such

that it includes all the aforementioned protocols as special cases. Within the framework of

that model, we will give some examples to demonstrate that the results enumerated above

do not generalize to our setup. We construct an example where stationary subgame perfect

equilibrium predicts delay. We also show that a subgame perfect equilibrium in stationary

strategies may not even exist.

Our results complement some of the examples of equilibrium delay and non–existence

found in the literature. An example of a stationary subgame perfect equilibrium exhibiting

delay has been given in Chatterjee et al (1993) in the context of coalitional bargaining.

Unlike unanimity bargaining games considered here, in coalitional bargaining games a

proposing player may choose to make an offer to a subset of the players. The approval

of the proposal by all players in the chosen coalition is then sufficient for the proposal to

pass. Also in a coalitional bargaining context Bloch (1996) shows that subgame perfect

equilibria in pure stationary strategies need not exist. Merlo and Wilson (1995) show

that delay in a stationary subgame perfect equilibrium is possible if the size of the cake

changes stochastically over time. Jéhiel and Moldovanu (1995) show that delay can arise

due to externalities. In addition to these examples where delay arises in a complete and

perfect information framework, there is literature on bargaining delays when the parties

2This result requires, however, that these probabilities to propose after one’s own rejection are strictly

positive for all players.
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are asymmetrically informed (see e.g. a review in Ausubel et al (2002)).

2 Model

We consider a non–cooperative bargaining game G(N, V, S, ι, p0, p, δ), where N =

{1, . . . , n} is the set of players and V ⊂ Rn
+ is the set of feasible payoff allocations. Bar-

gaining takes place in discrete time t = 0, 1, . . . In each round one player is selected as a

proposer, and proposes an element v of V. Next the players sequentially respond to the

proposal and in case of unanimous acceptance, the proposal is implemented and the game

ends with payoffs v to the players. As soon as one player rejects, the game breaks down

with probability 1 − δ, and continues to the next round with probability δ. In case of

breakdown, as well as in case of perpetual disagreement, payoffs to all players are equal to

zero.

Our emphasis will be on the role of the bargaining procedure in determining the bar-

gaining outcome. The set of feasible payoffs V is therefore kept fixed in each round, but

our bargaining procedure is allowed to be quite general. To achieve this, we make use of a

finite state space S. The function ι : S → N × Π, where Π is the set of permutations on

N, assigns to each state a proposer and an order of responders. That is, if ι(s) = (i, π),

then player i is the proposer in state s and all players sequentially respond to the proposal

in the order π(1), . . . , π(n) given by the permutation π. In round t = 0, the initial state is

determined by the probability distribution p0 ∈ ∆(S), where ∆(S) is the set of probability

distributions on S. In any round t > 0, the state of the game is determined by transition

functions pj : S → ∆(S), one for each player j ∈ N . If player j ∈ N rejects the proposal

at time t when the game is in state s, then pj(s) returns the probability distribution from

which the state at time t+ 1 is drawn conditional on the continuation of the negotiations.

Many protocols that have been studied in the bargaining literature are special cases of

the class of protocols described above, up to relatively unimportant modeling details. Such

modeling details concern whether there is some probability of breakdown of negotiations, or

whether players have time preferences. In case time preferences take the discounted utility

form, although conceptually different from the risk preferences that are needed to study

models with breakdown, both approaches lead to the same results as argued in Binmore,

Rubinstein, and Wolinsky (1986). Another issue is whether players vote simultaneously

or sequentially. Under simultaneous voting, the solution concept of subgame perfection

has less bite, and on top of subgame perfection it is typically required that players use

stage-undominated voting strategies to avoid coordination problems. We study sequential
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voting in this paper.

The protocol studied in the seminal contribution of Rubinstein (1982) corresponds to

the case where S = N = {1, 2}, player s is the proposer in state s, and state transitions are

such that the state alternates between periods. Player 1 is the initial proposer. Formally,

in Rubinstein (1982), player s does not vote on his own proposal in state s, but allowing

for this option would not change the analysis. Kultti and Vartiainen (2010) consider a

multilateral extension of alternating offer bargaining, where proposer rotate in making

offers. Their model corresponds to the case where S = N, player s is the proposer in state

s, and the state transition is to state s+ 1 modulo n with probability 1 if the current state

is s. Banks and Duggan (2000) study legislative bargaining models and consider time–

invariant recognition probabilities in a framework that also allows for approval rules more

general than unanimity rule. Time–invariant recognition probabilities result when S = N

and there is a fixed probability distribution p0 on S such that the proposer is selected

in accordance with p0 in every time period. Kalandrakis (2004) and Britz, Herings, and

Predtetchinski (2010) consider the case where S = N and require that for all j, k ∈ N,

pj = pk. For s ∈ S, it holds that ι(s) = (s, π0), where π0 is the identity. The state denotes

the current proposer and player i responds before player j if and only if i < j. State

transitions are not influenced by the identity of the rejecting player. Merlo and Wilson

(1995) also assume that for all j, k ∈ N, pj = pk, and even allow for an infinite state

space S. They also allow the set of feasible payoffs to depend on the state s, but since

our attention here is on the influence of the protocol on the allocation of the payoffs, we

consider a fixed set V instead.

All the bargaining protocols described in the previous paragraph have in common that

the actions taken by the players are without consequence for the way the bargaining pro-

tocol proceeds in case of a rejection, i.e. for all j, k ∈ N it holds that pj = pk. We refer to

these protocols as exogenous.

The rejector-becomes-proposer protocol is introduced in Selten (1981) in a coalitional

bargaining set-up and specifies that the player who rejects the current proposal is automat-

ically called upon to make the next proposal. Kawamori (2008) generalizes this protocol

to allow for a general probabilistic selection of a new proposer, conditional on who rejects

the current proposal. When we apply his coalitional bargaining model to our unanimity

bargaining set-up, we obtain the case where S = N, for s ∈ S it holds that ι(s) = (s, π0),

where π0 is some fixed permutation of the players, and for all s, s′ ∈ S, pj(s) = pj(s′).

Whenever for some j, k ∈ N, pj 6= pk, the actions of the players influence the way the

bargaining protocol proceeds, and we refer to such protocols as endogenous protocols. The

rejector-becomes-proposer protocol is a key example of an endogenous protocol.
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3 Results in the Existing Literature

Multilateral bargaining games are known to admit a wide multiplicity of subgame perfect

equilibria, see Herrero (1985) and Haller (1986). It is therefore common in the literature to

restrict attention to subgame perfect equilibria in stationary strategies. Although ideally

the notion of stationarity should follow endogenously from the specification of the game,

as in Maskin and Tirole (2001), the literature typically takes the more ad hoc approach

described below, which in general is weaker than the stationarity notion of Maskin and

Tirole (2001).

A stationary strategy for player i in the game G(δ) consists, for each state s ∈ S such

that ι(s) = (i, π) for some π ∈ Π, of a proposal θs ∈ V and for each state s ∈ S of an

acceptance set Ai,s ⊂ V. A stationary strategy of a player specifies a unique action for

each of his decision nodes. This action depends only on the state and not on any other

aspect of the history if the player is a proposer and on the state as well as the proposal

made if the player is a responder. A stationary strategy profile (θ, A) leads to a unique

probability distribution over payoffs in V, so determines the utility ui(θ, A) of player i ∈ N.
Conditional utilities are denoted by ui(θ, A | s). The social acceptance set in state s ∈ S
is defined as As = ∩i∈NAi,s. The social acceptance set consists of all alternatives that are

unanimously accepted when proposed in state s.

Definition 3.1 A subgame perfect equilibrium in stationary strategies (SSPE) is a profile

of stationary strategies which is a subgame perfect equilibrium of the game.

We make the following standard assumptions on V, where we use the notation V+ =

V ∩ Rn
+ and ∂V+ is the set of weakly Pareto efficient points in V+. Moreover, a vector η

with ‖η‖ = 1 is said to be normal to the set V at a point v̄ ∈ V if (v − v̄)>η ≤ 0 for every

v ∈ V. The set of all vectors η normal to V at v̄ is called the normal to V at v̄.

Assumption A The set V is closed, convex, and comprehensive from below. The origin

lies in the interior of V. The set V+ is bounded and all points in ∂V+ are strongly

Pareto efficient. There is a unique vector in the normal to V at every v ∈ ∂V+.

A stationary strategy profile (θ, A) is said to have no delay if for every s ∈ S it holds

that θs ∈ As. A stationary strategy profile (θ, A) is said to be efficient if for every s ∈ S it

holds that θs ∈ ∂V+.
Apart from the analysis of G(δ), the literature also typically studies the behavior of

equilibria when the continuation probability δ tends to 1.
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Definition 3.2 The profile of proposals θ̄ = (θ̄s)s∈S is a limit equilibrium if there is a

sequence {δm}m∈N of continuation probabilities in [0, 1) converging to 1 and a sequence of

profiles {θ(δm)}m∈N = {(θs(δm)s∈S)}m∈N, where θ(δm) is an SSPE profile of proposals of

the game G(δm), such that limm→∞ θ(δm) = θ̄.

A limit equilibrium is a profile of proposals that can be approximated arbitrarily close

by an SSPE profile of proposals when the probability of breakdown is arbitrarily small.

Of particular interest is the relationship between limit equilibria and the asymmetric Nash

bargaining solution with positive weights µ ∈ Rn
+ \ {0}, denoted µ-ANBS and defined as

follows.

Definition 3.3 The asymmetric Nash product with weights µ ∈ Rn
+ \ {0} is the function

f : V+ → R defined by

f(v) =
∏

i∈N
(vi)

µi .

The µ-ANBS is the unique maximizer of the function f on the set V+.

Britz, Herings, and Predtetchinski (2010) study the class of exogenous protocols char-

acterized by the following assumption.

Assumption B It holds that S = N, for every s ∈ S, ι(s) = (s, π0) with π0 the identity,

for all j, k ∈ N, pj = pk, and the matrix M = [pj(1), . . . , pj(n)] is irreducible.

An irreducible matrix M has a unique stationary distribution µ. Recall that a stationary

distribution µ is a probability distribution on the set of states satisfying Mµ = µ. The

class of protocols satisfying Assumption B is sufficiently rich to encompass alternating and

rotating offers and time–invariant recognition probabilities.

Britz, Herings, and Predtetchinski (2014) study the class of endogenous protocols char-

acterized by the following assumption.

Assumption C It holds that S = N × Π, for every s ∈ S, ι(s) = s, for every j ∈ N, for

all s, s′ ∈ S, pj(s) = pj(s′). There exists (i, π), (j, π′) ∈ S such that pj(i, π) assigns

positive probability to (j, π′).

We associate to each protocol satisfying Assumption C the weights µ > 0 given by

µj =
∑

(j,π)∈S p
j
(j,π)(s), i ∈ N, where the choice of s is irrelevant by Assumption C, so

µj is the probability that player j becomes the next proposer conditional on a rejection.

The class of protocols satisfying Assumption C is sufficiently rich to include the rejector-

becomes-proposer protocol as well as the generalization by Kawamori (2008).

The following result follows from Britz, Herings, and Predtetchinski (2010, 2014).
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Theorem 3.4 If Assumptions A and B, or Assumptions A and C are satisfied, then

1. An SSPE exists.

2. Every SSPE has no delay.

3. Every SSPE is efficient.

4. There is a unique limit equilibrium.

5. All limit equilibrium proposals are equal to the µ-ANBS.

The five claims in Theorem 3.4 can be thought of as increasingly demanding. The

characterization of limit equilibrium proposals as a weighted Nash bargaining solution has

been shown in Binmore, Rubinstein, and Wolinsky (1986) for bilateral bargaining. For

multilateral bargaining this result is obtained in Hart and Mas-Colell (1996) for uniform

time–invariant recognition probabilities, in Miyakawa (2008) and Laruelle and Valenciano

(2008) for general time–invariant recognition probabilities, and in Kultti and Vartiainen

(2010) for rotating offers. Theorem 3.4 includes these results as special cases. The five

claims of Theorem 3.4 and in particular the limit equilibrium payoffs are independent of

the order in which the responding players accept or rejects the proposal. This is noteworthy

in the case of an endogenous protocol as in Britz, Herings, and Predtetchinski (2014) – for

instance, one might have conjectured that the rejector–proposes protocol favors the player

who comes is first in the responder order.

4 Failure of the No Delay Property

Ideally one would like to prove Theorem 3.4 for the entire class of bargaining protocols as

laid down in Section 2, up to standard regularity assumptions. In this section we present

an example where properties (2)–(5) of Theorem 3.4 are violated. Moreover, the example

is minimal in the sense that it has S = N = {1, 2, 3}, and for two states out of three we

have pj(s) = pk(s), for all j, k ∈ N. The protocol is therefore exogenous and Assumption

B is satisfied, with the exception of one state.

Example 4.1 There are three players and three states, S = N = {1, 2, 3}. Each player is

the proposer in one state and players respond in ascending order, so we have

ι(1) = (1, π0),

ι(2) = (2, π0),

ι(3) = (3, π0),
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where π0 is the identity. Players have to divide a surplus of one unit, V = {v ∈ R3|v1 +

v2 +v3 ≤ 1}. This set clearly satisfies Assumption A. In state s = 1, the transitions depend

on the identity of the player who rejects a proposal,

p1(1) = (1
3
, 1
3
, 1
3
),

p2(1) = (0, 1, 0),

p3(1) = (0, 0, 1).

In states s = 2, 3, the transitions are independent of the identity of the rejecting player,

pi(2) = (0, 1, 0), i ∈ N,
pi(3) = (0, 0, 1), i ∈ N.

�

The next result claims not only that equilibria may exhibit delay, but even makes the

stronger statement that all SSPEs feature delay.

Proposition 4.2 For δ > 1/2, every SSPE in Example 4.1 has delay.

Proof. Suppose (θ, A) is an SSPE which has no delay. Consider a subgame starting

with a proposal by player 2 in state 2. In this subgame, player 2 remains the proposer

forever, and it is straightforward to verify that the subgame has a unique SSPE where

player 2 captures the entire surplus. It holds that u(θ, A | 2) = (0, 1, 0). By a completely

symmetric argument, we find that u(θ, A | 3) = (0, 0, 1). Now consider a subgame starting

with a proposal by player 1 in state 1. Since (θ, A) has no delay, Player 2 accepts θ1 and

it holds that θ12 ≥ δ, since a rejection by Player 2 leads to a breakdown with probability δ

and a transition to state 2 and a payoff of 1 for Player 2 with probability 1− δ. Similarly,

it holds that θ13 ≥ δ, since a rejection by Player 3 leads to a breakdown with probability δ

and a transition to state 3 and a payoff of 1 for Player 3 with probability 1− δ. It follows

that

θ11 ≤ 1− θ12 − θ13 ≤ 1− 2δ < 0.

Since Player 1 can ensure a non-negative payoff by a strategy that rejects all proposals, we

have obtained a contradiction to (θ, A) being an SSPE which has no delay. �

The intuition behind the example is the following. If player 2 rejects the proposal of player

1, then the game goes to an absorbing state where player 2 remains the proposer forever.

9



It is well-known that in any SSPE of such a subgame player 2 would capture the entire

surplus. Thus, when the game is in state 1 player 2 can guarantee himself a payoff of δ by

rejecting player 1’s proposal. In any SSPE with no delay, player 1 would need to offer at

least the amount δ to player 2. The same argument applies to player 3: If player 3 rejects

a proposal of player 1, the game goes to an absorbing state where player 3 remains the

proposer forever and can capture the entire surplus. Thus, when player 3 reacts to the

proposal of player 1, he will not accept any less than δ. Indeed, the sum of the responding

players’ reservation payoffs is equal to 2δ. We can see that if δ > 1
2
, then the available

surplus is not sufficient for player 1 to pay the other two players their reservation payoffs.

Consequently, if δ > 1
2
, no agreement can be reached in state 1.

In the example, states 2 and 3 are absorbing. However, small changes in all transition

probabilities do not affect the main argument, and would still lead to the conclusion that

for a sufficiently high value of the continuation probability δ, all SSPEs have delay.

The next issue is whether there is an SSPE with delay in Example 4.1. Consider

a strategy profile (θ̄, Ā) with proposals θ̄1 ∈ V , θ̄2 = (0, 1, 0), and θ̄3 = (0, 0, 1), and

acceptance sets

Ā1,s = {v ∈ V | v1 ≥ 0}, s = 1, 2, 3,

Ā2,1 = {v ∈ V | v2 ≥ δ, v3 ≥ δ},
Ā2,2 = {v ∈ V | v2 ≥ δ},
Ā2,3 = {v ∈ V | v2 ≥ 0},
Ā3,s = {v ∈ V | v3 ≥ δ}, s = 1, 3,

Ā3,2 = {v ∈ V | v3 ≥ 0}.

When players play according to (θ̄, Ā), Player 1 makes a particular proposal belonging

to V in state 1, which will be rejected by some player when δ > 1/2. More precisely, the

proposal θ̄1 in state 1 is rejected by Player 1 when θ̄11 < 0 and is rejected by Player 2

otherwise. Notice that in state 1, Player 2 would even reject the counterfactual proposal

(0, 1, 0), since acceptance of such a proposal would lead to a rejection by Player 3, followed

by breakdown of the negotiations or a transition to state 3.

If θ̄11 < 0, after the rejection by Player 1 negotiations break down with probability

1−δ and continue with probability δ. If negotiations continue, transitions occur with equal

probability to each of the three states, a rejection of proposal θ̄1 by Player 1 in state 1, an

acceptance of payoff vector (0, 1, 0) in state 2, and an acceptance of payoff vector (0, 0, 1)

in state 3.

If θ̄11 ≥ 0, after the rejection by Player 2 negotiations break down with probability 1− δ
and continue in state 2 with probability δ. In the latter case, the payoff vector (0, 1, 0) is
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proposed and accepted.

Proposition 4.3 For δ > 1/2, the strategy profile (θ̄, Ā) is an SSPE in Example 4.1.

Proof. To show that (θ̄, Ā) is an SSPE, it suffices to verify the one-shot deviation

property, see for instance Fudenberg and Tirole (1991). We consider three cases, depending

on the state to which a decision node belongs.

Case 1. Decision nodes in state 1.

After a history in state 1 where Player 1 has to propose, the proposal θ̄1 is rejected, either

by Player 1 in case θ̄11 < 0 or by Player 2 in case θ̄11 ≥ 0, and leads ultimately to breakdown,

or the acceptance of proposal θ̄2, or the acceptance of proposal θ̄3. In all cases, Player 1

receives a payoff of zero. A one-shot deviation to any other proposal is rejected as well,

either by Player 1 or by Player 2, and also leads ultimately to a payoff of zero for sure.

Such a deviation is therefore not profitable.

After a history in state 1 where Player 1 has to respond, any proposal v with v1 < 0

is rejected by Player 1, and ultimately leads to a payoff of zero for sure. A one-shot

deviation to acceptance leads to the acceptance of v and a negative payoff for Player 1,

or the rejection of v by Player 2 or Player 3 and a payoff of zero for Player 1. Such a

deviation is therefore not profitable. Any proposal v with v1 ≥ 0 is accepted by Player 1,

next rejected by Player 2, and followed by breakdown of the negotiations or acceptance of

(0, 1, 0) in the next period. The payoff for Player 1 is therefore zero. A one-shot deviation

to rejection leads ultimately to a payoff of zero for Player 1 as well and is therefore not

profitable.

After a history in state 1 where Player 2 has to respond, any proposal v with v2 < δ

or v3 < δ is rejected by Player 2, which results in a payoff of δ for Player 2. A one-shot

deviation to acceptance is followed by an acceptance by Player 3 if v3 ≥ δ and leads to

payoff v2 < δ for Player 2, so is not profitable, and is followed by a rejection by Player 3

if v3 < δ, leading to payoff 0 for Player 2, so is not profitable either. Any proposal v with

v2 ≥ δ and v3 ≥ δ is accepted by Player 2, followed by an acceptance by Player 3, and

a payoff of v2 for Player 2. A one-shot deviation to rejection leads to a payoff of δ for

Player 2 and is therefore not profitable.

After a history in state 1 where Player 3 has to respond, any proposal v with v3 < δ is

rejected by Player 3, resulting in a payoff of δ for Player 3. A one-shot deviation to accep-

tance is clearly not profitable. Any proposal v with v3 ≥ δ is accepted by Player 3, leading

to a payoff of v3 for Player 3. A one-shot deviation to rejection is clearly not profitable.
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Case 2. Decision nodes in state 2.

After a history in state 2 where Player 2 has to propose, the proposal θ̄2 = (0, 1, 0) by

Player 2 is accepted by all players, and leads to utility 1 for Player 2. Since Players 1

and 3 reject proposals which give them a negative payoff, there are no profitable one-shot

deviations for Player 2. Since a one-shot rejection by any player leads to payoffs (0, δ, 0),

the one-shot deviation property holds for responders.

Case 3. Decision nodes in state 3.

This case is similar to Case 2. �

Proposition 5.2 describes a continuum of SSPEs, parametrized by the proposal θ̄1 by

Player 1. For equilibria with θ̄11 < 0, the equilibrium payoffs when starting in state 1

are equal to u(θ̄, Ā | 1) = (0, δ/(3− δ), δ/(3− δ)). For equilibria with θ̄11 ≥ 0, it holds that

u(θ̄, Ā | 1) = (0, δ, 0). None of the properties, apart from SSPE existence, mentioned in

Theorem 3.4 are satisfied. All SSPEs have delay. There is a continuum of SSPEs where

Player 1 makes an inefficient proposal, and even if Player 1 makes an efficient proposal, it

is still rejected by Player 1 or Player 2. Any element of V × {(0, 1, 0)} × {(0, 0, 1)} can be

a limit equilibrium, so there is no unique limit equilibrium. When starting in state 1, limit

equilibrium utilities are either equal to (0, 1/2, 1/2) or (0, 0, 1). Finally, limit equilibrium

proposals are not equal to each other.

5 Robustness of Delay

In this section, we will examine the robustness of Example 4.1 to perturbations of the

transition probabilities. In particular, we will see that the presence of absorbing states is

not vital for equilibrium delay.

Indeed, one may object to Example 4.1 that states 2 and 3 are absorbing, no matter

what actions the players take, and therefore an analogue of the irreducibility requirement

of Assumption B as made for exogenous protocols is not satisfied. The requirement for

endogenous protocols of Assumption C, there is a state such that a rejection by a player

gives him positive probability to be the next proposer, is satisfied. Moreover, the proof of

Properties 2 and 3 of Theorem 3.4 does not make use of the irreducibility assumption or

the positive probability to make a counterproposal. Such regularity assumptions are only

needed for the proof of Properties 4 and 5 of Theorem 3.4.

Still, we would like to argue that Example 4.1 is robust to perturbations in the transition
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probabilities and that the violations of Properties 2-5 of Theorem 3.4 are not due to the

presence of absorbing states. Consider the case where all the transition probabilities are

perturbed by some ε ∈ (0, 1/3). We obtain the following example.

Example 5.1 There are three players and three states, S = N = {1, 2, 3}. Each player is

the proposer in one state and players respond in ascending order, so we have

ι(1) = (1, π0),

ι(2) = (2, π0),

ι(3) = (3, π0),

where π0 is the identity. Players have to divide a surplus of one unit, V = {v ∈ R3|v1 +

v2 + v3 ≤ 1}. We perturb the transitions of Example 4.1 by ε ∈ (0, 1/3). In state s = 1,

the transitions depend on the identity of the player who rejects a proposal,

p1(1) = (1
3
, 1
3
, 1
3
),

p2(1) = (ε, 1− 2ε, ε),

p3(1) = (ε, ε, 1− 2ε).

In states s = 2, 3, the transitions are independent of the identity of the rejecting player,

pi(2) = (ε, 1− 2ε, ε), i ∈ N,
pi(3) = (ε, ε, 1− 2ε), i ∈ N.

�

Consider a strategy profile (θ̂, Â) with proposals θ̂1 ∈ {v ∈ V | v1 < 0},

θ̂2 = (0, 1− y, y),

θ̂3 = (0, y, 1− y),

where

y =
3δε

(3− δ)(1− δ + 3δε)
,

and acceptance sets

Â1,s = {v ∈ V | v1 ≥ 0}, s = 1, 2, 3,

Â2,1 = {v ∈ V | v2 ≥ z, v3 ≥ z},
Â2,2 = {v ∈ V | v2 ≥ z},
Â2,3 = {v ∈ V | v2 ≥ y},
Â3,s = {v ∈ V | v3 ≥ z}, s = 1, 3,

Â3,2 = {v ∈ V | v3 ≥ y},
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where

z =
δ(1− δ)(3− δ − 9δε2) + δε(2− δ)(6δ − 3)

(3− δ)(1− δ + 3δε)
.

When players play according to (θ̂, Â), Player 1 makes a proposal θ̂1 in V with θ̂11 < 0 in

state 1, which is rejected by Player 1 himself, and a transition to each of the three states

follows with equal probability. In state 2, Player 2 makes a proposal that gives a payoff of

0 to Player 1, gives the reservation payoff y to Player 3, and keeps the remainder of the

surplus himself. State 3 is symmetric to state 2, with the roles of players 2 and 3 reversed.

The proposals θ̂2 and θ̂3 in states 2 and 3 are accepted since 1− y > z, which follows from

the fact that

(3− δ)(1− δ) + 3δε(2− δ) > δ(1− δ)(3− δ − 9δε) + δε(2− δ)(6δ − 3).

Proposition 5.2 For every ε ∈ (0, 1/6), there exists δ̄ < 1 such that for every δ ≥ δ̄ the

strategy profile (θ̂, Â) is an SSPE in Example 5.1.

Proof. For s = 1, 2, 3, we define the equilibrium utilities conditional on state s, xs =

u(θ̂, Â | s). The symmetry of the game and the strategies implies that x12 = x13, x
2
1 = x31,

x22 = x33, and x23 = x32. It holds that x1 = (0, δ/(3 − δ), δ/(3 − δ)), x2 = θ̂2, and x3 = θ̂3,

where the expression for x1 uses the observation that x12 = (δ/3) + (δ/3)x12.

To show that (θ̂, Â) is an SSPE, we verify the one-shot deviation property. We consider

three cases, depending on the state to which a decision node belongs.

Case 1. Decision nodes in state 1.

Consider a history in state 1 after which Player 3 has to respond. A rejection followed by

play according to (θ̂, Â) leads to a payoff for Player 3 equal to δεx13 + δεx23 + δ(1− 2ε)x33.

A straightforward, but tedious, calculation reveals that this payoff is equal to z. Since

Player 3 accepts proposals in state 1 if and only if v3 ≥ z, this shows that the one-shot

deviation property is satisfied.

Consider a history in state 1 after which Player 2 has to respond to a proposal v.

Suppose first that v3 ≥ z. A calculation similar to that in the previous paragraph shows

that rejection of v by Player 2 yields a payoff of z. Acceptance of v by player 2 leads to

the payoff v2 since v is also accepted by Player 3. We conclude that accepting the proposal

v if and only if v2 ≥ z does not violate the one-shot deviation principle.

Suppose now that v3 < z. As before, rejecting v yields Player 2 a payoff of z. If

Player 2 accepts v, it is rejected by Player 3, yielding a continuation utility equal to
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δεx12 + δεx22 + δ(1− 2ε)x32. A straightforward, though tedious, calculation reveals the latter

expression to be equal to y, and it holds that y < z since

z − y =
(1− δ)(1− 3ε)(3− δ + 3δε)

(3− δ)(1− δ + 3δε)
> 0.

Hence v should be rejected by Player 2.

The verification of the one-shot deviation property for Player 1 is trivial for histories

where he responds. Consider a history where Player 1 proposes. Player 1 has a profitable

one-shot deviation if and only if he can make a proposal that gives more than z to Players 2

and 3 and a positive payoff to himself. We show that 2z ≥ 1, which implies the absence of

such deviations. A straightforward calculation shows that 2z ≥ 1 if and only if

(1− δ)(−3 + 7δ − 2δ2 − 21δε+ 12δ2ε− 18δ2ε2) ≥ 0. (1)

The second term in the product on the left-hand side of (1), evaluated at δ = 1, is equal

to 2 − 9ε − 18ε2, which is positive for ε ∈ (0, 1/6). It follows that for every ε ∈ (0, 1/6),

there exists δ̄ < 1 such that for every δ ≥ δ̄, 2z ≥ 1.

Case 2. Decision nodes in state 2.

Player 3 accepts a proposal v if and only if v3 ≥ y, where y equals the continuation payoff

of Player 3 following his rejection. This shows that the one-shot deviation property is

satisfied.

Player 2 accepts a proposal v if and only if v2 ≥ z, where z equals the continuation

payoff of Player 2 following his rejection. We observe that acceptance of v yields Player 2

payoff v2 if Player 3 accepts as well, and z if Player 3 rejects v. This shows that the one-shot

deviation property is satisfied.

The verification of the one-shot deviation property for Player 1 is trivial.

Consider a history in state 2 after which Player 2 proposes. Since the proposal θ̂2

of Player 2 gives Players 1 and 3 the least amount they are willing to accept, there is

no profitable one-shot deviation for Player 2 which will be accepted by Players 1 and 3.

Consider a one-shot deviation by Player 2 which is rejected by some player. Ultimately,

such a proposal leads to breakdown and payoff 0 for Player 2, or an acceptance of θ̂2 and

payoff 1− y for Player 2 or an acceptance of θ̂3 and Payoff y for Player 2. Since y < 1− y,
the expected payoff for Player 2 is less than x22 = 1− y, so the deviation is not profitable.

Case 3. Decision nodes in state 3.

By symmetry, the line of argument is the same as in Case 2. �
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Proposition 5.2 presents an equilibrium which violates Properties 2 and 3 of Theorem 3.4. It

also has the remarkable feature that Player 1’s equilibrium payoff is equal to zero in every

state. This is surprising, since in the framework of Britz, Herings, and Predtetchinski

(2014), the bargaining power of a player is proportional to the probability to propose

conditional on his own rejection. In the protocol of Example 5.1, this probability is at

least ε for Player 1.

Consider a strategy profile (θ̃, Ã) with proposals θ̃1 ∈ {v ∈ V | v1 ≥ 0},

θ̃2 = (0, 1− y3, y3),
θ̂3 = (0, y2, 1− y2),

where

y2 =
δε+ δ2ε− 3δ2ε2

1− δ + 2δε+ δ2ε− 3δ2ε2
,

y3 =
δε

1− δ + 2δε+ δ2ε− 3δ2ε2
,

and acceptance sets

Ã1,s = {v ∈ V | v1 ≥ 0}, s = 1, 2, 3,

Ã2,1 = {v ∈ V | v2 ≥ z2, v3 ≥ z3},
Ã2,2 = {v ∈ V | v2 ≥ z2},
Ã2,3 = {v ∈ V | v2 ≥ y2},
Ã3,s = {v ∈ V | v3 ≥ z3}, s = 1, 3,

Ã3,2 = {v ∈ V | v3 ≥ y3},

where

z2 =
δ − δ2 − 2δε+ 4δ2ε− 3δ2ε2

1− δ + 2δε+ δ2ε− 3δ2ε2
,

z3 =
δ − δ2 − 2δε+ 3δ2ε

1− δ + 2δε+ δ2ε− 3δ2ε2
.

When players play according to (θ̃, Ã), Player 1 makes a proposal θ̃1 in V with θ̃11 ≥ 0 in

state 1. A straightforward calculation show that z2 + z3 > 1 if and only if

(1− δ)(2δ − 6δε− 1) > 0.

Therefore it holds that if ε < 1/6 and δ > 1/(2 − 6ε), then Player 2 rejects θ̃1, and a

transition to state 2 follows with high probability. In state 2, Player 2 makes a proposal

that gives a payoff of 0 to Player 1, gives the reservation payoff y2 to Player 3, and keeps
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the remainder of the surplus himself. State 3 is similar, with the roles of players 2 and 3

reversed. The proposals θ̂2 and θ̂3 in states 2 and 3 are accepted since 1 − y3 ≥ z2 and

1− y2 ≥ z3 which follows respectively from

1− δ + δε+ δ2ε− 3δ2ε2 > δ(1− δ) + 2δ2ε− 3δ2ε2 > δ − δ2 − 2δε+ 4δ2ε− 3δ2ε2,

1− δ + δε > δ − δ2 − 2δε+ 3δ2ε.

Proposition 5.3 For every ε ∈ (0, 1/6), there exists δ̄ < 1 such that for every δ ≥ δ̄ the

strategy profile (θ̃, Ã) is an SSPE in Example 5.1.

Proof. For s = 1, 2, 3, we define the equilibrium utilities conditional on state s, xs =

u(θ̃, Ã | s). We have that x2 = θ̃2, x3 = θ̃3, x11 = 0, x12 = δεx12 + δ(1− 2ε)x22 + δεx32, so

x12 =
δ − δ2 − 2δε+ 4δ2ε− 3δ2ε2

1− δ + 2δε+ δ2ε− 3δ2ε2
,

and x13 = x23, since a rejection by Player 2 in state 1 leads to the same transitions as a

rejection by Player 3 in state 2.

To show that (θ̃, Ã) is an SSPE, we verify the one-shot deviation property. We consider

three cases, depending on the state to which a decision node belongs.

Case 1. Decision nodes in state 1.

Consider a history in state 1 after which Player 3 has to respond. A rejection followed by

play according to (θ̃, Ã) leads to a payoff for Player 3 equal to δεx13+δεx23+δ(1−2ε)x33 = z3.

Since Player 3 accepts proposals in state 1 if and only if v3 ≥ z3, this shows that the one-

shot deviation property is satisfied.

Consider a history in state 1 after which Player 2 has to respond to a proposal v.

Suppose first that v3 ≥ z3. A calculation similar to that in the previous paragraph shows

that rejection of v by Player 2 yields Player 2 a payoff of z2. Acceptance yields v2 because

v is accepted by Player 3. Hence accepting v if and only if v2 ≥ z2 does not violate the

one–shot deviation principle.

Suppose now that v3 < z3. As before, rejecting v by Player 2 gives payoff z2. If Player

2 accepts v, then it is rejected by Player 3 and yields the continuation payoff of y2. It holds

that y2 < z2 since

z2 − y2 =
δ(1− δ)(1− 3ε)

1− δ + 2δε+ δ2ε− 3δ2ε2
> 0.

Thus rejecting v does not violate the one–shot deviation principle.
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The verification of the one-shot deviation property for Player 1 is trivial for histories

where he responds. We have already argued that z2 + z3 > 1 if δ > 1/(2 − 6ε). For such

values of δ, Player 1 cannot make a profitable one-shot deviation as a proposer.

Case 2. Decision nodes in state 2.

Player 3 accepts a proposal v if and only if v3 ≥ y3, where y3 equals the continuation

payoff of Player 3 following his rejection. This shows that the one-shot deviation property

is satisfied.

Player 2 accepts a proposal v if and only if v2 ≥ z2, where z2 equals the continuation

payoff of Player 2 following his rejection. We observe that acceptance of v yields Player 2

payoff v2 if Player 3 accepts as well, and z2 if Player 3 rejects v. This shows that the

one-shot deviation property is satisfied.

The verification of the one-shot deviation property for Player 1 is trivial.

Consider a history in state 2 after which Player 2 proposes. Since the proposal θ̃2

of Player 2 gives Players 1 and 3 the least amount they are willing to accept, there is

no profitable one-shot deviation for Player 2 which will be accepted by Players 1 and 3.

Consider a one-shot deviation by Player 2 which is rejected by some player. Ultimately,

such a proposal leads to breakdown and payoff 0 for Player 2, or an acceptance of θ̃2 and

payoff 1 − y3 for Player 2 or an acceptance of θ̃3 and Payoff y2 for Player 2. Since it is

easily verified that y2 < 1 − y3, the expected payoff for Player 2 is less than x22 = 1 − y3,
so the deviation is not profitable.

Case 3. Decision nodes in state 3.

Player 3 accepts a proposal v if and only if v3 ≥ z3, where z3 equals the continuation

payoff of Player 3 following his rejection. This shows that the one-shot deviation property

is satisfied.

Player 2 accepts a proposal v if and only if v2 ≥ y2, where y2 equals the continuation

payoff of Player 2 following his rejection. We observe that acceptance of v yields Player 2

payoff v2 if Player 3 accepts as well, and y2 if Player 3 rejects v. This shows that the

one-shot deviation property is satisfied.

The verification of the one-shot deviation property for Player 1 is trivial.

Consider a history in state 3 after which Player 3 proposes. Since the proposal θ̃3 of

Player 3 gives Players 1 and 2 the least amount they are willing to accept, there is no

profitable one-shot deviation for Player 3 which will be accepted by Players 1 and 2. Con-

sider a one-shot deviation by Player 3 which is rejected by some player. Ultimately, such

a proposal leads to breakdown and payoff 0 for Player 3, or an acceptance of θ̃2 and payoff
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y3 for Player 3 or an acceptance of θ̃3 and Payoff 1 − y2 for Player 3. Since y3 < 1 − y2,
the expected payoff for Player 3 is less than x33 = 1−y2, so the deviation is not profitable. �

Propositions 5.2 and 5.3 give us a plethora of limit equilibria. From Proposition 5.2

we can see that any point (θ1, θ2, θ3) where θ11 < 0 and θ2 = θ3 = (0, 1
2
, 1
2
) is a limit

equilibrium: indeed, both θ̂2 and θ̂3 converge to the vector (0, 1
2
, 1
2
). Similarly Proposition

5.3 yields limit equilibria of the form (θ1, θ2, θ3) with θ11 > 0 and

θ2 = θ3 =

(
0,

2− 3ε

3− 3ε
,

1

3− 3ε

)
.

Clearly not all players make the same proposals in the limit. The fact that in both cases

players 2 and 3 do make the same proposals in the limit can be deduced from Theorem 3.4:

indeed, since players 1’s proposal is rejected, one can view the resulting system (involving

players 2 and 3 only) as an exogenous protocol.

6 Non-existence of SSPEs

In the example of the previous section, all properties of Theorem 3.4 are violated, at the

exception of the existence of an SSPE. In this section, we will present an example where

no SSPE exists at all, neither one with immediate agreement, nor one with delay.

Example 6.1 There are three players and three states, S = N = {1, 2, 3}. Each player is

the proposer in one state and players respond in ascending order, so we have

ι(1) = (1, π0),

ι(2) = (2, π0),

ι(3) = (3, π0),

where π0 is the identity. Players have to divide a surplus of one unit, V = {v ∈ R3 |
v1 + v2 + v3 ≤ 1}. In state s = 1, the transitions depend on the identity of the player who

rejects a proposal,

p1(1) =
(
1
3
, 1
3
, 1
3

)
,

p2(1) =
(
1
2
, 1
2
, 0
)
,

p3(1) =
(
1
2
, 0, 1

2

)
.

In states s = 2, 3, the transitions are independent of the identity of the rejecting player,

pi(2) = (0, 1, 0) , i ∈ N,
pi(3) = (0, 0, 1) , i ∈ N.
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The continuation probability δ is equal to 3/4. �

The only modification in Example 6.1 when compared to Example 4.1 is the possibility

to return to state 1 with probability 1/2 after a rejection by either Player 2 or Player 3.

Proposition 6.2 There is no SSPE in Example 6.1.

Proof. Suppose (θ, A) is SSPE. It clearly holds that θ2 = (0, 1, 0), θ3 = (0, 0, 1). Now

let x = u(θ, A | 1) be the vector of expected payoffs in a subgame starting in state 1, and

zi be the vector of continuation payoffs after a proposal in state 1 is rejected by player i.

We have

z1 = δ
3
x+ δ

3
(0, 1, 0) + δ

3
(0, 0, 1) = 1

4
x+ (0, 1

4
, 1
4
),

z2 = δ
2
x+ δ

2
(0, 1, 0) = 3

8
x+ (0, 3

8
, 0).

z3 = δ
2
x+ δ

2
(0, 0, 1) = 3

8
x+ (0, 0, 3

8
).

We distinguish four possible cases.

Case (A) θ1 is accepted by Players 1, 2, and 3.

In this case x = θ1. Since all players accept θ1, we have

x1 ≥ z11 = 1
4
x1,

x2 ≥ z22 = 3
8
x2 + 3

8
,

x3 ≥ z33 = 3
8
x3 + 3

8
.

This gives the inequalities x1 ≥ 0, x2 ≥ 3
5
, and x3 ≥ 3

5
, whereas at the same time x1 +x2 +

x3 = θ1 + θ2 + θ3 ≤ 1, a contradiction.

Case (B) θ1 is accepted by Players 1 and 2, and rejected by Player 3.

Since Player 3 rejects θ1, we have

x = z3 = 3
8
x+ (0, 0, 3

8
),

so x = (0, 0, 3
5
). Since Player 2 accepts θ1, we have

x2 ≥ z22 = 3
8
x2 + 3

8
,

contradicting that x2 = 0.

Case (C) θ1 is accepted by Player 1 and rejected by Player 2.

Since Player 2 rejects θ1, we have

x = z2 = 3
8
x+ (0, 3

8
, 0)
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so x = (0, 3
5
, 0). Therefore,

z3 = 3
8
x+ (0, 0, 3

8
) = (0, 9

40
, 3
8
).

Suppose Player 1 makes the proposal

v = ( 1
120
, 3
5

+ 1
120
, 3
8

+ 1
120

)

Since v3 > z33 the proposal v is accepted by Player 3. Since v2 > z22 it is accepted by Player

2 also. And since v1 > z11 = 0 the proposal v is accepted by Player 1. But then Player

1 has a profitable one–shot deviation at the node where he makes a proposal: namely

propose v.

Case (D) θ1 is rejected by Player 1.

If Player 1 rejects his own proposal, then x = z1, so x = (0, 1
3
, 1
3
). It now follows by exactly

the same argument as in Case (C) that Player 1 has a profitable one-shot deviation. �

Perturbing the transition functions slightly will not affect the conclusion of the propo-

sition: one can show that the set of games (as parameterized by the transition functions)

having an SSPE is closed.

7 Conclusion

We consider bargaining games of perfect information with a unanimous acceptance rule.

The focus of the analysis is on the selection of the proposer. In the model considered the

proposer and the order of responding players is determined by the state. The probability

distribution over states in the following period is determined jointly by the current state

and the identity of the player who rejected the previous proposal.

Britz et al (2010, 2014) study two extreme special cases of this framework: one where

the identity of the future proposer only depends on the identity of the current proposer,

and one where it only depends on the identity of the rejector. In both cases it is shown that

subgame perfect equilibrium in pure stationary strategies exist, are efficient, and have the

immediate acceptance property. Asymptotically (as players become perfectly patient) all

such equilibria converge to the appropriately defined asymmetric Nash bargaining solution.

In this note, however, we show that these conclusions do not carry over to the gen-

eral framework: subgame perfect equilibria in pure stationary strategies need not exist.
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When they do exist, such equilibria may exhibit delay and may be inefficient. The limit

equilibrium is not unique.

One message in Britz et al (2014) is that the bargaining power of a player is deter-

mined by the probability to propose conditional on that player’s rejection. Our example

shows that even though players can propose with positive probability conditional on their

rejection, they might still have no bargaining power at all.
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