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Abstract

Project-based emissions trading schemes, like the Clean Development Mechanism, are
particularly prone to problems of asymmetric information between project parties and
the regulator. In this paper, we extend the general framework on incomplete enforcement
of policy instruments to reflect the particularities of credit-based mechanisms. The main
focus of the analysis is to determine the regulator’s optimal spot-check frequency given
plausible assumptions of incomplete enforcement under asymmetric information on re-
duction costs and heterogeneous verifiability of projects. We find that, depending on the
actual abatement cost and penalty schemes, optimal monitoring for credit-based systems
is often discontinuous and significantly differs from the one to be applied for cap-and-
trade schemes or environmental taxes. We conclude that, in a real-world context, project
admission should ultimately be based on the criterion of verifiability.
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1 Introduction

Project-based emissions trading schemes have recently increased in importance due to the
successful implementation of the Kyoto markets. These schemes allow project developers, out-
side the regulation of cap-and-trade schemes, to sell their certified emission reductions on the
cap-and-trade market. Indeed, credit-based mechanisms represent the only—although second-
best—option to extend emissions trading to countries unwilling to take on emission targets.
This is particularly important as within the current Kyoto architecture, these countries have
the largest share of low-cost emission reductions. Yet project-based schemes, like the Clean
Development Mechanism (CDM), are particularly vulnerable to problems of incomplete en-
forcement. Information asymmetries between the regulator and project developers create an
incentive to overstate emission offsets, sold on the market for emission rights. This problem
is often more severe under credit-based systems than standard market-based environmental
policy instruments, where cheating is reduced to a misrepresentation of actual emissions. It
is, therefore, natural to ask how the regulator determines optimal monitoring policy under a
project-based system and how this policy compares to standard market-based regulation.

To answer these questions, we develop an analytical model of a credit-based system that
takes potential overreporting of emission reductions into account. We focus on the optimal de-
cisions of the regulator, given the impossibility to fully enforce compliance, under asymmetric
information on reduction costs and heterogeneous verifiability of projects. We show, given a
limited monitoring budget, a rational regulator will completely refrain from monitoring those
projects that are most difficult to verify. For larger monitoring budgets, the optimal moni-
toring strategy can be discontinuous, featuring a jump within the set of projects with lower
verifiability. Furthermore, for those projects in full compliance, the monitoring pressure reduces
with increasing verifiability of the projects. For cases with intermediate verifiability, optimal
monitoring pressure is ambiguous. For these levels of verifiability, we identify conditions for
which monitoring pressure is either at its maximum or for which there exists a ‘U-shaped’-style
monitoring policy.

Given the importance of enforcing environmental policies, considerations of incomplete en-
forcement of instruments has become an important research field. Early research mainly fo-
cused on the comparison of emission taxes and pollution standards. The first formal model
on this issue was developed in Harford (1978), which was extended in Harford (1987) to in-
clude self-reporting by firms. Within more recent research the analyses were extended to the
comparative performance of different environmental policy instruments under incomplete en-
forcement. Schmutzler and Goulder (1997) focus on the difference between emission taxes and
output taxes. Macho-Stadler and Perez-Castrillo (2006) analyze the optimal enforcement pol-
icy in the context of per-unit emission taxes. Further analysis has also been conducted on
cap-and-trade programs (Keeler 1991, Macho-Stadler 2006, Malik 1990, Stranlund and Chavez
2000, Stranlund et al. 2005, Stranlund 2007).!

Yet, the literature on credit-based systems is sparse.? To our knowledge, there exists no
formal model deriving optimal monitoring. This is particularly unfortunate in light of the
elevated potential for fraudulent misreporting within such schemes. Recently, Macho-Stadler
and Perez-Castrillo (2006) analyzed optimal monitoring policy under an emissions tax, assuming
the regulator’s objective is to minimize the spread between actual emissions and their optimal
level. They show that monitoring should be used for the easiest-to-monitor firms as well as

1For literature surveys on environmental regulation, see Cohen (1999) and Heyes (2000).
2A notable exception is Sigman and Chang (2011), identifying the basic trade-offs in incomplete enforcement
when integrating a credit-based regime into a cap-and-trade market.



firms that value pollution less. Yet when considering credit-based mechanisms, the regulator’s
objective is different. Not only does the regulator want to minimize actual emissions but
also the overstatement within projects’ reported emissions. Further, it is plausible that the
regulator only has a rough notion of the true cost of specific types of reduction projects. Our
paper, therefore, extends the analysis of regulating emitters with heterogeneous verifiability by
Macho-Stadler and Perez-Castrillo (2006) to include the monitoring of credit-based mechanisms
with asymmetric information over project cost.

The paper is structured as follows. In the following subsection the general problem of
opportunistic false reporting in credit-based systems is explained further. The presentation
of the formal model starts with section 2, where the abatement and reporting decisions of a
rational project developer are derived. Section 2.2 presents the optimal monitoring policy of
a regulator disposing of an unlimited budget. In section 3, optimal monitoring is analyzed
under the more realistic assumption of a limited budget and compares this to the case of tax
regulation, while section 4 extends the model to discuss project admission. Section 5 has some
concluding remarks.

1.1 Background

The basic idea of credit-based emissions trading is to incentivize emission reductions on a
project-by-project basis. A prominent example is the Clean Development Mechanism (CDM):
a policy tool under the Kyoto Protocol that reduces greenhouse gases in developing countries.
Emission reductions generated through projects are scrutinized by the regulator then sold on
the carbon market in the form of Certified Emission Reductions (CERs). The importance
of the CDM has increased over the last 10 years with aggregated CDM reductions expected
to exceed 2.7 billion tonnes of C'O; equivalents (UNEP/Risoe (2010)). The CDM has allowed
access to low-cost reduction potentials within developing countries. Yet, generally, the necessity
to regulate a project-by-project approach has resulted in high transaction costs. Typically,
project certificates are generated by comparing a hypothetical baseline emission scenario with
the realized project emission reductions. The difference is then transformed into tradable
emission credits. CDM projects, therefore, are required to go through a meticulous process
of scrutinization for the project itself, as well as its baseline, before being allowed to generate
credits (UNFCCC 2002). For this reason, schemes can only be recommended for situations
where a cap-and-trade scheme cannot be implemented. This was the case at the conception of
the CDM, as developing countries—just as at present—were unwilling to take binding emission
reduction targets.

Within credit-based mechanisms, it is plausible that some level of information asymmetry
persists between project parties and the regulator. The baseline, for example, should ideally
represent the scenario without project implementation. Clearly, any alternative plans for the
project site are, by definition, private information, which is a prior: unobservable to the regula-
tor. Hence, there exists an incentive to submit a baseline scenario to the regulator, which leads
to an overstatement of emission reductions, and hence more credits. A prominent case where
such a practice has been identified ex post, is associated with a reduction of hydrofluorocarbons
(HFC)—a potent greenhouse gas—in China (Wara 2007, 2008). Due to incorrect estimates of
cost structures and market forecasts, baseline emissions were too generous. As a consequence,
the CDM Executive Board halted issuance for such projects and the European Commission
decided to ban CERs from HFC projects within the EU ETS from 2013 onwards.?> Note that

3See, for example, WorldBank (2011).



this baseline information asymmetry is hence fundamental to the issue of additionality within
the CDM: the risk that certificates might not represent actual emission reductions.

It is also reasonable to assume that some project types are easier to identify as being
additional than others. Solar projects, for example, are—due to their relatively high per unit
cost—more likely to be additional than the reduction of industrial gases, which can often be
easily substituted by other substances.* Furthermore, due to differences in data quality, future
developments in product markets are easier to assess in some host countries than in others. A
regulator’s monitoring strategy, then, has to take these differences in project verifiability into
account.

The risk of fraudulent non-compliance is not limited to credit-based mechanisms, but repre-
sents, in fact, a problem for any type of environmental regulation. For example, in a cap-and-
trade emissions trading system, potential net buyers might be tempted to report compliance
with their emissions target to avoid purchasing emission credits.” Obviously, as emission per-
mits have a positive market value, such overreporting also benefits net sellers, which can increase
their revenues from emission rights. As a consequence, due to the risk of opportunistic misre-
porting, an environmental policy needs to include an enforcement mechanism to be effective.
An environmental regulator is hence mandated to ensure environmental effectiveness and carry
out costly monitoring activities in order to reduce the amount of misreporting. However, in a
resource-constrained world, monitoring and enforcement is likely to be incomplete. For these
cases, Macho-Stadler and Perez-Castrillo (2006) show that a regulator, which discriminates
between the verifiability of emission reports, should accept an arbitrarily large amount of over-
reporting and opt instead for a monitoring strategy that induces the largest portion of emitters
to reduce emissions to their optimal level.®

For credit-based emissions trading, however, the use of such a strategy will not minimize
emissions in the overall emissions market. To see this, note that the demand for offset credits is
typically stemming from an associated cap-and-trade regime. The CDM is, for instance, linked
into both the Kyoto inter-country cap-and-trade market and the European Union Emissions
Trading System (EU ETS). Due to the fungibility between emission permits (e.g. EIT AAUs
from EU ETS) and emission credits (e.g. CDM CER), the latter has a positive value driven
by the permit market price. Fungibility, however, also means that an offset credit that is not
backed by an actual emission reduction, but created by fraudulent overreporting at zero cost,
will crowd out more expensive reductions within the system.” Note further that this crowding
out is unlikely to have a large effect on prices, as cap-and-trade markets tend to be significantly
larger than the credit-based mechanisms. For example, the market volume of the EU ETS in
2010 was reported to be about 119 billion USD, while the size of the primary CDM market
amounted only to 1.5 billion USD (WorldBank 2011). In the political discussion, the problem
of erroneous or non-additional credits represents the main argument against the continuation
of such schemes. However, as long as the gains from the realized emission reductions are

4See, for example, (Wara 2007, 2008).

5A similar rationale applies in the case of a per-unit tax on emissions, as the reported emissions represent
the basis from which the overall tax burden for the regulated entity is derived.

5Obviously, such a strategy is only necessary if the optimal amount of emissions diverges from the 'maximum
believable’ amount, which will be reported by most emitters in such a situation.

"The situation resembles a ‘market for lemons’, while differing by the fact that a credit only loses its value
if it is identified as erroneous by the regulator.



larger than the cost of implementation, the credit-based mechanisms will continue to play an
important role when cap-and-trade schemes are infeasible.®

The existence of the above-described crowding out of legitimate permits by erroneous credits
requires a regulator to minimize emissions within the combined market, which requires a dif-
ferent monitoring strategy than the one depicted in Macho-Stadler and Perez-Castrillo (2006).
For credit-based schemes, the regulator cannot confine himself to guarantee efficient levels of
emission reductions, but also needs to reduce overreporting to minimize the amount of erro-
neous credits in the whole system. In the following, we present a model, to derive the optimal
monitoring within a credit-based emissions trading regime.

2 The model

Consider a regulated credit-based emissions trading scheme, populated by a set of project
developers ® = {1,2,...,n} with cost type j = {g, b}, which choose levels of emission reductions
e at a cost ¢j(e) with ci(e) > 0, c(e) > 0, V e. For any level of emission reductions e, projects
of type g and b differ in abatement costs by c4(e) < ¢y(e) and ¢ (e) < cj(e). That is, for a given
level of emissions reductions, (marginal) abatement costs are larger for a ‘bad’ b-type than a
‘good’ g-type.” The cost functions are common knowledge whereas the cost type is private
information to the project developer. The regulator is assumed to know the relative frequency
of a g-type given by 7, while a b-type occurs with converse probability (1 — 7).

Where actual project reductions are fully observable and enforceable, each project partici-
pant selects emission reductions so that c,(e;) = ¢;(e;) = p and hence ej < e;, where p is the
equilibrium permit price and €] is the resulting first-best optimal level of emission reductions
for type 7. This represents the well-known result that under perfect competition with complete
information, marginal abatement costs are equated to the equilibrium certificate price.

2.1 Project decision under incomplete enforcement

A more realistic setup is to assume that neither the project’s cost type 7 nor the chosen level
of emission reduction e; are directly observable by the regulator. Instead, to receive reduction
credits, the project developer submits a report over emissions reductions z;, which does not
necessarily correspond to the emission level actually chosen. Note that, with rational actors,
reported emission reductions z; will never be less than the actual reductions e;. However, as
certificates command value, the developer might be tempted to overreport emission reductions,
such that z; > e; is possible. However, given that the regulator knows (or has an adequate
notion of) the cost functions and the market price, he will never accept a report larger than
e, the level of ‘good’-type reductions under full observability. While ‘bad’-type projects can
mimic a ‘good’ type in reporting, ‘good’ types are limited to simple overreporting, which would
be the case if e, < e; but z, = € is reported.

8In the current international climate policy negotiations, creditable NAMAs (Nationally Appropriate Mit-
igation Actions) are discussed in order to incentivize emission reductions in developing countries. (See, for
example, Okubo et al. (2011).

9This differentiation in cost types might well occur within one specific class of projects, implementing the
same type of technology. For example, two windpower generation projects designed to replace coal-based power
generation might install exactly the same type of equipment and capacity, but differences in average wind speed
at the chosen projects sites could still lead to a difference in abatement costs.



In order to induce truthful reporting, the regulator has the possibility to monitor projects.*’
We assume that even if monitored with probability 1, verifiability of the report differs over
different classes of projects. For example, the baseline of a solar project is easier to verify than
for projects reducing industrial greenhouse gases.!* To reflect this, we assume that each class of
projects is associated with a commonly observable class-specific parameter 5 € [0, 1], reflecting
its verifiability. If # is 1 and the project is monitored, the regulator is capable to determine,
without further problems, whether the project developer has overreported or not. As ( tends
to 0, the more improbable is the success of such an assessment. For the sake of simplicity,
we assume class designator § to be uniformly distributed with density function probability
function F(8) = 8 and density f(8) = 1. This distribution is common knowledge.'? Given
that the class of a project is observable, the regulator can discriminate among classes in his
monitoring decision. For each project class the regulator chooses a monitoring probability «(5),
with a € [0,1]. It is assumed that this probability is known to the project participants. For
example, in reality, a would be determined by the expected frequency of ‘spot-checks’ on each
project class by the regulator.

In case overreporting is discovered, project developers are required to pay back the revenue
from overreported reductions and, in addition, pay a fine. The regulator is assumed to make the
fine contingent on the overreported amount x;, defined as x; = z; —e;. If a project is monitored
its expected penalty is hence dependent on its verifiability class 5 and the overreported amount
z;. We define this expected penalty as - 6(z;), with 6(0) = 0, ¢'(-) > 0, #”(-) > 0, and
0'(0) > p. The last assumption ensures that a non-compliant developer that is caught will pay
back revenue related to overreported reductions as well as paying a fine. Assuming the expected
penalty to be convex in the magnitude of the offense is quite realistic, as it seems to be in line
with legal practice under many different circumstances.!®> Furthermore, it is relatively simple
to show the probability of discovery for any project of class 8 can be increasing and convex in
x.

For the choice of class-specific monitoring pressure a(/3), we assume the regulator anticipates
the project participant’s optimization given the respective level of monitoring. In order to
present this choice, we first describe the project developers’ optimization over e; and z; for
an unspecified level of «a(f) and then discuss the characteristics of «(f3) for a regulator taking
these optimal choices into account.

Note that for reasons explained above, a project developer cannot report a reduction level
larger than e;. Given that the regulator knows the technologies that are in the market, there
exist only two plausible levels of emission reductions that can be reported without raising the

10Tn the context of the Clean Development Mechanism, the role of the regulator is taken up by the CDM
Executive Board and its supporting panels. As a consequence, the decisions of the external verifiers—the
Designated Operational Entities—are not explicitly modeled here. This simplification is justifiable on the
grounds that the CDM verification mechanism is not capable to fully deter opportunistic overreporting (Wara
(2007, 2008)). This incomplete deterrence can also be attributed to the fact that the DOEs are remunerated
by the project participants, potential collusion in reporting of emission reductions cannot be excluded.

"Heyes (1994) provides further reasoning for divergence in verifiability levels. In particular, Heyes (1994)
considers the case where firms can endogenously determine their ‘inspectability’ by investing in appropriate
technologies.

12 Alternatively, the regulator can be assumed to have no information about the underlying distribution, and
assumes for lack of that knowledge, that 3 is uniformly distributed.

3The assumption of convex punishment is widely used in a large part of the literature on incomplete en-
forcement (Harford 1978, 1987, Sandmo 2002, Cremer and Gahvari 2002, Macho-Stadler and Perez-Castrillo
2006)



regulator’s suspicion, e; and e;.'* With these restrictions, the developer’s optimization problem
for a project of verifiability class # and cost type j are

max Uj(ej, z;) = {pz; — cj(ej) —a(B) - B 0(z; —e5) } (1)

{ej,25}

subject to
2, 29 € {ez;e;},

where p is the exogenous permit price, and e; and € are the first-best efficient levels of emission
reductions for ‘good’ and ‘bad’ types, respectively.

It is hence taken into account within the cost function that in case overreporting is discov-
ered, project developers will have to return excess certificates and pay a fine according to the
expected progressive penalty schedule #(x). The first-order conditions for (1) with respect to
e; are

?9_16]: = —cy(es) +a(B) B (2 —e;) =0, (2)
g_[ejf = —c(eg) + a(B) - B0/ (z — eg) = 0. (3)

By use of (1) to (3), we can characterize the optimal solution for different levels of «(f3).
From (1), if a(8) - 8 = 0 the developer’s payoff is maximized at z; = e and e; = 0, that is, at
the maximum possible amount of overreporting. From (1), when values of o are close enough
to 0, it is efficient for both types to increase emission reductions while continuing to report the
highest plausible reduction, i.e. z; = ej. This is the case as long as

Uj(ej, e5) > Uj(ej, ). (4)

It is hence to be shown at what level of a(f3) both types prefer to report ej rather than e;.
Starting with ‘bad’ types, assume, for a moment, that (4) holds at the level of a(3) at which
b-types are induced to choose their first-best level of emissions (e, = e;). Then, from (2) and
noticing ¢, (e;) = p, we can derive a threshold level &(3) at which z, = e; and e, = ey, which is
defined as

A p
ap) = 7o
B-0(e;—ep)
Interestingly, at auditing pressure &(f) condition (4) is indeed fulfilled for b-types, as the
latter requires

p-(eg—ep)
po(e; —e)

It is easy to see that this condition always holds at &(/3), as penalty £6(-) is assumed to
be convex. Hence ‘bad’-type projects will continue to pretend to be of ‘good’ type by choosing
z, = €;. Given c;(eZ) < c,(e}) = p, condition (4) will also always hold for ‘good’ type projects,
such that ‘good’ types will always report their first-best levels, i.e. z, = e].

a(f) < (5)

4Note that the results are qualitatively similar when n > 2 costs types are used. In this case, there would
be n discontinuities.



Interestingly, at &(f) inequality (5) is strict. With further increases in (/) there exists
a range within which ‘bad’ type project developers will choose to further increase emission
reductions beyond the first-best levels e} instead of choosing to report truthfully: there exists
a range of ‘over-reduction’, up to a level &, > ey, at which Uy(&,, ;) = Uj(e;, €;). From this we
can derive another threshold &(f) defined as follows

y p-(e; —€)
¥ = 5ote, =
Threshold ¢(/3) represents the minimum audit probability that induces a report z, = ej, i.e.

truthful reporting of a b-type. Note, this probability level is only feasible if & < 1. We denote
the lowest feasible level of verifiability with 3, where &(f) = 1, which is defined by

v_p-(e;—e;)

Finally, as ‘good’ types will always report z, = ey, full compliance of g-type projects are
obtained for levels of a high enough to implement e, = e;. Again, the threshold &(3) that
implements truthful reporting of a g-type can be derived from (3) and by taking into account

clg(eZ) = p, &(B) is defined as

~ _ D
M= a0
Again, this probability level is only feasible if @ < 1, ie. 8 > 3, where 3 is defined by
&(B) = 1. Threshold S is hence

p
0'(0)

Note that under the above-made assumptions, for any given 3, &(8) < a(8) < a(pB).
Hence, there exists full compliance for all projects for which a(8) € [&,1]. Summarizing the
above-made considerations, Figure 1 depicts the compliance behavior of ‘good’- and ‘bad’-type
projects in dependence of monitoring probability «.

j=

2.2 Regulator’s optimal monitoring policy with an unlimited budget

Given the optimizing behavior of project participants, a regulator needs to identify an optimal
monitoring strategy.!® In order to model the monitoring decision with an existing project pool,
the regulator is assumed to face a population of already registered projects. For simplicity,
the cost of monitoring one project is normalized to one. Aggregated monitoring cost cannot
transgress the regulator’s monitoring budget, denoted with B.

Without discovery of non-compliance, a project is issued emission reduction certificates
corresponding to its reported amount z;. As explained in section 1.1, credits not backed by
actual emission reductions are non-additional and hence reduce the environmental integrity of
the overall carbon market. The regulator minimizing emissions in the integrated system can
hence not confine himself to maximize aggregated emission reductions, but also has to take the
problem of overreporting into account. Hence, the objective of the enforcement agency within

5For a discussion on how regulatory attitudes alter monitoring policy and environmental innovation, see the
recent work of Heyes and Kapur (2011)
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Figure 1: Reported projects and actual emission reductions

the setup presented here is to minimize aggregated overreporting, while maximizing emission
reductions.

As depicted in Figure 1, for small o and any given [ a change in monitoring pressure
only influences emission reductions e;, while z; remains—for both cost types—at its corner
solution ej. For b-type projects, a further increase in o will only lead to an adjustment of
zp to its truthful level e; after the emission reductions have reached their optimal level. As
for g-types, the corner solution for z, is equal to ey, where overreporting is only reduced to
zero if the emission reductions reach exactly this level. This behavior of the project developers
simplifies the formulation of the regulator’s objective function. If the regulator minimizes
weighted aggregations of overreporting z; = z; — e; over all classes of 3, he will also achieve a
maximization of emission reductions. Hence, the enforcement agency chooses the monitoring
schedule (a(/3))geo,1) that solves the following program.

min [ (r(e; = e,(a) + (1 = m)(z1(08) = ex(aB)) d (6)
such that
[ ainas<s )
and



eq(B) € argmax {U,(e,)}, (8)
er(B), zo(B) € argmax {Up(ep, 25)} - (9)

To choose an optimal monitoring scheme, the agency needs to take into account its budget
constraint (7), and the profit maximization of the project participants (8) and (9). Within this
subsection we only consider the second constraint to be binding.

We denote the minimum budget incentivizing maximum emission reductions by B, which

is defined by:

B=§n +/B a(B) n dp. (10)

Proposition 1 immediately follows:

Proposition 1. When B > B the cost-minimizing agency sets an audit policy that satisfies

a(B) =1, for B €[0,8) and a(B) € [&(8),1] for 5 € [5,1].

Proposition 1 confirms similar findings to the case with emissions taxes. When a scheme
includes projects with large information asymmetries between project participants and the
regulator, an increase in budget does not necessarily lead to a reduction in overreporting. As
soon as the budget level B is reached, the marginal rate of deterrence equals zero. Hence, even
if a maximization of reductions is the only objective of the agency, efficiency requires that the
auditing budget of the regulator should be capped at B.

3 Monitoring with a limited budget

In practice, it is likely that the number of audits performed by the regulator is constrained
by his budget. It is hence realistic to assume that the budget constraint (7) of the regulator’s
optimization problem is binding. Thus, in the following it is assumed that B < B.

Within a budget-constrained optimization, the regulator needs to decide which S classes
should experience an increase in spot-check frequency to obtain the largest decrease in overall
emissions. As the regulator cannot observe a project’s cost type, the expected amount of
overreporting by a project of class /5 for a given level of «, denoted by ez(a), is

es(a) = (m(eg — eg(af)) + (1 — 7m)(z(af) — es(@P))) - (11)

For any two projects with class 8; and [, a shift in monitoring effort of A« from project
class 1 to project class 2 is (weakly) efficient if

€3, (a2 + Aar) — €g,(2)] — [e5, (1) — €5, (01 — Aa))] (=) > 0, (12)
with
e, for a(B) =0,
e5(a) = m(ey —eg(af)) + (1 —7)(e; — en(af)), for 0 < a(B) < a(B), (13)
m(ey —eg(af)), for &(8) < a(B) < a(B),
0, for a(8) < a(B) <1,

10



where the case separation in (13) is determined through the optimal reaction of the project
developer. An auditing schedule (a(f3))sepo,q is efficient if (12) holds for any arbitrary pairwise
comparison of two different project types.

Hence, determining the optimal auditing policy involves a trade-off in monitoring pressure
in the range 0 < o < @& Note that eg(«) is discontinuous at &(/), i.e. the threshold at
which b-types start to truthful report z, = e;. Above and below this threshold level, es(«) is
differentiable with respect to a. The derivative of € can be derived from (2), (11), and (13) by
applying the Implicit Function Theorem. The corresponding derivative is:

w0 () —eq(af)) (1=m)0' (e} —ep(aB)) .
B (c;;(eg(aﬁ))+cguﬁe"<e;—eg<aﬂ>> + cg<eb<aﬁ>>+aage~(e;—eb(aﬁ») , fora<a(p),

deg 0’ (X —eg(af))
A . g - ~
dal T s (@B B0 (e —ey @B for &(8) < a < &(P),

0, for a > a(p),

(14)
which is used to derive the following proposition.

Proposition 2. Under a limited budget B < B, optimal monitoring policy implies that there
exists a threshold 5(B) > 0, such that the regulator chooses a = 0 for § < [5,(B). Projects
with 8 > Bi(B) will always be monitored with o > 0.

Proof. See appendix. n

Proposition 2 states that there exists a threshold level §;(B) where lower verifiable projects
will not be monitored, whereas all other projects will receive a positive probability of monitoring.
This threshold tends to decrease with larger levels of budget B, but will always exist for B < B.
This is in line with the optimal monitoring under an emissions tax, presented in Macho-Stadler
and Perez-Castrillo (2006).

Due to the discontinuity at &(f) = % in (14), optimal monitoring cannot be simply
g

assessed via an equalization of the derivatives g—; for different levels of 3, as we must take into

consideration the change in expected overreporting e that occur exactly at this discontinuity.

In particular, for any g, the gain from monitoring a b-type when increasing «(f3) from 0 to

a(B), is ey, which consists of emissions reduction e; as well as the reduction in over-reporting

e, — €;. For g-type projects, the same increase in monitoring pressure yields an increase in

emission reductions of e,(&(5) - 8) = e,4(1 - 3). Thus, the expected gains per unit of o from

spending exactly &(5) for any level of § > f3, designated with D(f3) are:

TP O-m G oG -w)
a(B) p-leg—e) 7

Obviously, from (12), it is safe to state that the regulator will choose at least &(3) for
a specific project type (5, if D(f) is larger than any j—; at all other combinations of «(f)
and 5. Note from (14) that the largest marginal benefit in reduction of overreporting is at
o = 0,6 = 1. On the other hand, the minimum (feasible) level of &(f) lies at 8 = (. This
allows us to establish a sufficient condition for which it is always efficient to incentivize truthful

reporting of ‘bad’ types for projects with § € {B, 1}:

— (e — ey(B))). (15)

D(B) > dedl—(i()) — Weg(B) +(1-— 7T)€; > 6’(6;) (c”7(T0) + igz(;;) ) (16)

g
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In order to assess the conditions under which (16) holds we introduce a measure ~, repre-
senting the relative frequency of a b-type in relation to g-type projects:

1l—m

7= (17)

Obviously, the larger ~, the more imminent is the problem of asymmetric information over
reduction costs. This allows us to reformulate (16) as follows:

,(0) cl(0) e(B) — 0'(0)
c(0)  0'(0) — ¢ (0)ex -

g g

(18)

For a large enough share of b-type projects in the market, the regulator will always use his
budget to induce truthful reporting within b-type projects in the verifiability classes, where this
is possible, i.e. for S > /3. As it is sensible to consider situations with an imminent problem of
asymmetric information over types, we assume (18) to hold throughout the rest of this paper.
Based on this assumption, the following proposition can be established immediately by noting
(7), and the equivalence of (16) and (18):

Proposition 3. If (18) holds, then

i) If B> &(1) n, there ezists a B, > By, such that z, = e} for all B > By,. The value of 5y,
18 non-decreasing in B.

ii) For B = fﬁlo a&(B) n dB with B < By < 1, the requlator will incentivize truthful reporting
for bad type projects, by choosing an audit pressure of & for all projects with B > [y.
Projects with B < By will not be monitored. Hence, 3,, = 5 = Po.

iii) For B > fﬁl &(B) n df the regulator will always incentivize truthful reporting for bad type

projects over the range of projects where this is possible, i.e. B € [, 1].

Proposition 3 further specifies the characteristics of an optimal monitoring schedule for
credit-based systems. Proposition 3 (i), establishes the existence of a threshold level /3, where
full compliance of ‘bad’ types is induced for larger 5. When the monitoring budget becomes
larger than that required to ensure full compliance in the class easiest to verify (i.e. 8 = 1),
the regulator will induce z, = e}, starting with highest levels of 8 and continuing to do so for
decreasing (3, as long as this is feasible within the given budget. It is hence optimal to refrain
from monitoring projects of lower levels of 5. This is shown within Proposition 3 (ii), where
for the sake of simplicity, no residual budget exists.!® Finally, proposition 3 (iii) explains that
if the budget is sufficiently large to enable the regulator to induce z, = e} for all classes where
this is feasible, it is indeed optimal to do so.

Given these insights, the question arises of how larger budgets should be allocated, which go
beyond the level necessary to induce truthful compliance of ‘bad’ types for 5 € [B , 1}. In these
cases, the regulator has to compare the marginal gains associated with increased audit pressure
on project classes where 8 < 3 and 8 > (. That is, is it more efficient to add additional
monitoring pressure to projects with lower or higher verifiability? Lower levels of § will be
certainly monitored if

de(0) . da(a®))

19
da da (19)

16For the sake of brevity we refrain from an extensive exposition on the use of the residual budget. Note,
however, that this optimal use can be easily inferred from propositions 4 to 8 below.
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By use of condition (19), definition (17), and noting that (1) = £, we can derive the
following proposition:

Proposition 4. If B> [; a(8) n dB and

v > Cg(O) 5 % 5 - (0) (20)

then 5, < f.

Proposition 4 establishes a sufficient condition for which, with the existence of a larger
budget, it is optimal to use at least some of the resources to apply monitoring pressure to those
projects with 3 < 3. As stated in condition (20), this is the case if the probability of a b-type
occurring is sufficiently large.

We now investigate a case where it might be efficient to, instead, increase auditing pressure
for those projects where 8 > 3. This is surely the case if inducing full compliance for all 3 > 3
yields a higher marginal gain than starting to induce positive pressure, at levels § < /3. Hence,
a sufficient condition for increased monitoring at levels higher than 3 is

de(0) _ d65~(1).

21
do do (21)
From (7) and (21), we can derive the following proposition:
Proposition 5. If [} a(8) n df < B< [{ a(8) n df + [} a(8)n B and
Z ]'
7 < (0) (22)

p —
Bel(en(ex) + BBE (e)07(0)  c;(0)
then Bl = Bm = B

Proposition 5 establishes sufficient conditions for which the regulator will refrain from mon-
itoring projects with verifiability lower than 3. This is obviously the case if the share of g-type
projects is not too low. This is intuitive, as ‘bad’ types with § > § are already in compli-
ance. A low share of ‘good’ types would hence imply that the additional gains from increasing
monitoring pressure on projects with high verifiability will be low.

Note, however, that for the budget range given in Proposition 5 it is not guaranteed that
there exists a verifiability class for which g-type projects are in full compliance. Sufficient
conditions for this being the case are established in the following proposition:

Proposition 6. For a large enough budget B, there exists a 8y, > By, where zy = e} and z, = €

for all B > By.

i) For B, < B, threshold By, exists if B, = f(5) < 1 with
)

g (€5)0'(0)+p 6”(0)

F(6) = (ref(0) + (1 = m)eq(0)) "GO ZO) 5

ii) For By = B, a sufficient condition for the existence of By, is
Bo 1
Bz [ a@nds+ [ a@)nas
B o
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0(0)(cy (eq(B)+B0" (e —e4(B)))

for any By for which B < By < ¥ (e —co(B) (3 + 50" (0))

Proof. See appendix. O

If the budget is large enough, the regulator is able to incentivize full compliance for all types
with £ larger or equal to the threshold level 8,. The budget level required for the existence of
B is dependent on whether the regulator chooses to also put a positive monitoring pressure on
classes of projects lower than 3. If this is the case, it is possible via the comparison of slopes to
express the level of 3, as a function of the threshold f;, which is expressed in Proposition 6 (i).
If 5, = 3, a lower amount of budget is required for the existence of 3. Sufficient conditions for
the budget level required for the existence are given in Proposition 6 (ii).

Given that threshold classes B 3, and 3 can be derived from the individual optimization of
project developers, a budget close enough to B, automatically ensures the existence of all three
thresholds—0;, B,,, and [,—within the optimal monitoring schedule. It remains to discuss the
general features of the optimal monitoring schedule («(/3))gseo,1] between those thresholds. For
Bi # Pm, a(B) is increasing between both thresholds, as «(f;) = 0, while monitoring pressure
for 8 close enough to f3,, is strictly positive. Furthermore, for levels larger than fSj, optimal
monitoring «(f) is strictly decreasing, as &(/3) is decreasing in (3, and no additional reduction
in overreporting can be achieved by choosing o > &(f).

The characteristics of optimal monitoring between (3, and (3, are less clear. On the one hand,
we assume that—provided a large enough budget—all projects with § > 5 will be monitored
with at least probability (/). Given that &(5) is decreasing in (3, there exists a tendency for
decreasing auditing pressure within [,Bm, Bh] Yet there might exist also a tendency to increase

6 86
case if 5—; is strictly decreasing in 5. An 1nterest1ng case arises then 1f the budget is large enough

for 8, = B3, as a(p) = d(ﬁ) = 1. Hence, in this case if faeﬁ < 0 all project classes in [3; B] will

also be monitored with probability 1. We summarize this insight in the following proposition.

Proposition 7. For a budget large enough to implement 8, = 5 and if g;g% < 0 in [Bm, Bl
the regqulator chooses a(3) =1 for B € [Bm, Bn] -

The explicit form of cross-derivative % in the range [8,,, O] is obtained by taking the

derivative of the middle term of (14) with respect to 3, which yields

92¢ 0 (z)- cZ(e(aﬁ))Q —af (aﬂgu(g;)2 +0'(z) ( ///( (@f)) — 0459”/(:(:)))
9007 ((e(aB)) + apt"(x))’

where z = e} —ey(a3). Note that the cross-derivative might indeed be larger or smaller than
zero, and could even switch signs over the range [3,,, 55]. From (23), the sign depends on the
structure of both ¢(+) and 6(-). In particular, for relatively large §”(x) and §”'(x), the compliance
incentive is larger than the deviation incentive and the cross derivative is negative. That is, for
a relatively ‘stringent’ (‘lax’) penalty policy, -2 553 d,B <0 (Z< e 8,8 > 0). Hence, Proposition 7 only
applies if the penalty schedule is ‘stringent’, compared to abatement costs. Note, however, that
the opposite case, relatively ‘lax’ penalties, is just as conceivable. For this case an interesting
feature of optimal auditing in [3,,, fn] can be derived, which is summarized in Proposition 8.

,  (23)

> 0 in [3, By], there exists a

0'(0) (chles(B) + 59" (c; = eal(D))
0' (e = e4(8)) (<4lez) + B0"(0))

Proposition 8. For an existing (3, and aaaﬁ
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for which the optimal monitoring pressure o(f3) is decreasing in the interval 13, Bmin] and in-
creasing in the interval [Bmn, B] if the budget is too small to allow for a(B) = 1 within this
range.

Proof. See appendix. O

Somewhat counter-intuitively, it is feasible that for levels of 3 between [f, B], optimal mon-
itoring pressure is not always decreasing in . In particular, it is possible that a ‘U-shaped’
monitoring pressure exists within the range [B , B] The details of this behavior are shown for-
mally in the mathematical appendix. As condition (18) is assumed to hold, the regulator will
for all 3 > f at least implement auditing pressure &(3) which is decreasing in 3. Hence, for
lower (3 in [B, Br], optimal monitoring is decreasing. Yet, if % > 0, i.e. if penalties are ‘lax’,
further increases in auditing pressure for larger 8 also yield larger gains from auditing. In fact,
for higher levels of [ the relative influence of monitoring v on the expected penalty is larger
under a ‘lax’ penalty schedule than under a ‘stringent’ one. Hence, in the former case, it is
optimal to further increase monitoring pressure as soon as 3 is large enough (i.e. larger than

Note, for the often-assumed quadratic forms of abatement cost and penalty functions, with

constant second derivatives ¢ and 0", cross-derivative 62866 is positive (negative) iff

/!

af < ()5 (25)

Hence, with quadratic functions, the general shape of optimal monitoring only depends on
the relative convexities of abatement costs and the penalty schedule.

The findings established in Propositions 2 to 8 are represented in Figure 2, which shows
possible optimal monitoring strategies of a regulator with a limited budget.

A V'
o o

1 2 1 !
i
AN :
PN

.-o \\ 6 a,(B)
i \ o
\
i \
a(B) \
\
N\
N
N\
N
N
N
+ : * 1 P BTe=e
e=0; z=eg"] z=eg Z,=e =t e=0; z=eg"l z=eg, i %= &q" Z,=ep=6p%
e=eap) izg=egt eg=eg(ap) } B e=efap) i 97 eg(af) zy=e =e.%
Pi(B) Pm(B) 1 Bi(B) Pm(B) Pn(B) 1
a) b)

Figure 2: Optimal monitoring with lower (case a) and larger (case b) monitoring budgets

Begin by looking at Figure 2 (a), depicting a case with a relatively narrow budget constraint.
From Proposition 2, zero monitoring pressure will be applied for those projects with g < ;.
Furthermore, as the regulator applies auditing pressure &(f) for all projects where this is
possible (Proposition 3) and &'(8) < 0, there exists a (3, with a(f) decreasing in the range
[Bm;1]. Depending on the relative frequency of good- and bad-type projects, the left hand
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branch of the optimal monitoring schedule (i.e. for 5 < (,,) might either exist (Proposition 4)
or not (Proposition 5).

Figure 2 (b) represents cases for budgets large enough for ), to exist (Proposition 6). In
this case the left hand branch i.e. «(p) for 8 < ,,, is more likely to exist. Furthermore, for all
depicted cases monitoring pressure decreases from [, onwards, as with increasing verifiability 3,
lower levels of monitoring are required to induce full compliance of both types (i.e. & (8) < 0).
The qualitative difference in monitoring in the depicted cases a4 (), and ay(/3) are hence with
respect to the optimal schedule in the range [3,,; Br]. As laid out above, these cases are easiest
to interpret if we assume penalty and cost functions to be quadratic.

Monitoring schedule «;(3) represents the case of a larger budget with relatively strict mon-
itoring (Proposition 7). Hence, in this case, projects with intermediate levels of verifiability are
monitored with probability 1. With a comparatively ‘lax’ penalty scheme and an intermediate
budget, optimal monitoring is ‘U-shaped’ between (3, and S, as established in Proposition 8.
Given an intermediate budget, and the marginal gains of emissions reductions for a change in «
are increasing in verifiability, an incentive exists to increase monitoring pressure in verifiability
level from (,,;, to B5. This case is represented by monitoring schedule ay(/3).

4 Regulation with project admission

The existence of the different thresholds identified above suggests an interesting extension of
the regulator’s set of instruments to reduce overreporting within credit-based mechanisms. In
addition to monitoring, the regulator could exclude project types with low levels of verifiability
from the mechanism. Within the CDM for example, the regulator can refuse the admission of
a project if the Project Design Document or the proposed Baseline Method do not correspond
to the specified standards.!” It is hence quite plausible that project admission standards could
also include a minimum level of verifiability.

The above-presented model results can be used to gain valuable insights for determining
sensible cut-off levels for project admission. In the context of this model, the regulator would
have to decide on a maximum tolerable level of opportunistic misreporting given a specified
budget. In most theoretical contributions on incomplete enforcement of environmental policy
instruments, the regulator is assumed to minimize emissions in the regulated system. As far as
climate change is concerned, this definition of the regulator’s objective seems sensible. In light
of the fact that there exists no consensus on the allocatively optimal level of emission reduc-
tions, determining a specific cut-off level based on welfare considerations would be particularly
problematic. As long as the exact level of the social cost of carbon is still disputed, the optimal
regulation under incomplete enforcement remains just as undetermined as the optimal level of
abatement.

Yet, the CDM remains a matter of political dispute. Even in the potential buyer countries,
the use of Certified Emission Reductions for meeting the Kyoto targets is not undisputed, as
some observers still challenge the morality of reducing emissions in third-world countries. As a
consequence, the sudden discovery of large scale fraud within a CDM project would significantly
undermine the credibility of the whole Kyoto emissions trading regime as an instrument to
achieve emission reductions. Hence, it is plausible that the architects of the mechanism might
want to minimize the risk of discovery of fraud by reducing the range of eligible projects.
The objective of minimizing emissions within the combined markets would then imply a ‘no-
tolerance’ constraint, excluding any amount of overreporting within the credit-based system.

1"The probability of rejection for a submitted CDM project is about 5 percent (UNEP /Risoe (2010)).
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In the framework presented above, such a policy would exclude all projects with a verifiability
lower than the minimum implementable 8,(B). In this case all projects would be in perfect
compliance.

A ‘no-tolerance’ policy would result if program (6) were optimized simultaneously over
a(f) and project admission cut-off level 55 (B). Obviously, with a large enough budget, i.e.
B>B= ff‘ a(B)dp, the regulator would simply restrict the set of eligible projects to the ones

for which 8 > 3 and monitor these projects with the corresponding pressure of a(f). For those
cases where B < B, the corresponding cut-off value would have to be higher, as the monitoring
budget constraint becomes binding. As a consequence, the amount of eligible projects is further
restricted. Note that for such a regime, the regulator’s monitoring schedule will not be subject
to an actual optimization, as for each class of 5 the optimal monitoring policy is already known
to be a(3). Hence, the regulator’s decision is reduced to determining the cut-off level for project
admission (3, for which

1
B / a(8) n dg. (26)
Bn

Another intuitively sensible cut off-level would be 3,,(B), implying that overreporting is only
deterred for less efficient projects, while some amount of ‘shirking’, in the reduction of more
efficient projects, would still be possible. This less restrictive cut-off level might be acceptable if
the regulator also had to guarantee a large enough market volume for the credit-based regime.

The above-made considerations could also be extended to take into account that incomplete
enforcement can also exist on the associated cap-and-trade market, as in Sigman and Chang
(2011). In this case, the amount of overreporting allowed within the credit-based regime might
be adjusted to the corresponding share of non-compliance within the cap-and-trade market.
This would require a combined model of both markets, which represents an interesting extension
for future research.

5 Conclusion

The model presented within this paper allows some interesting insights into the nature of
optimal monitoring for credit-based systems, like the Clean Development Mechanism. It was
shown that under these circumstances even with an unlimited monitoring budget, overreporting
of reductions can not be completely disincentivized. The more interesting and realistic results
are, however, achieved when the regulator is assumed to be constrained in both its budget and
the information it holds on regulated emitters.

While under an unlimited budget all projects with positive verifiability will be monitored,
the situation significantly changes under the assumption of a budget constraint. For this case,
it is shown that a rational regulator will completely refrain from monitoring those projects
that are most difficult to verify. For the range of verifiability for which all projects are in
full compliance, optimal monitoring decreases in verifiability. Both results are in line with the
findings by Macho-Stadler and Perez-Castrillo (2006) who analyze incomplete enforcement of
emission taxes without asymmetric information on costs. However, unlike emission taxes, the
general principle of credit-based emission trading systems implies that the regulator cannot
refrain to simply maximize the actual emission reductions but needs also to reduce the level of
overstatement within the projects’ reported reductions. This is due to the fact that certificates
issued on the basis of the reports will be used to offset actual emissions elsewhere. Hence,
contrary to the the tax case, the regulator needs to minimize the overall level of overreporting.
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Due to differences in the objective function of the regulator as well as the asymmetric infor-
mation on cost types, the optimal monitoring strategy derived above significantly differs from
those proposed in the context of emission taxes or a cap-and-trade system. First, with a large
enough share of projects with high abatement costs, the regulator has an incentive to induce
full compliance for these cost types over the whole range of verifiability where this is possible.
Second, with decreasing verifiability, the optimal audit pressure features a ‘jump’ downwards
when reaching levels of verifiability, for which the regulator cannot deter overreporting by high-
cost projects. Third, for projects with intermediate verifiability, optimal monitoring pressure
can be either non-increasing or ‘U-shaped’, depending on the relative stringency of the penalty
schedule.

As the importance of credit-based mechanisms grows, attention is turning to the optimal
implementation and regulation of such schemes: something this paper has attempted to ad-
dress. Interesting avenues for further investigation include analyzing the combined asymmetric
information problem within cap-and-trade and credit schemes as well as further optimal project
admission (‘cut-off”) policies.
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Mathematical Appendix

Proof of Proposition 2:

For 8 — 0, C%, given by equation (14), approaches 0 as well, as the bracketed term in the
first line is never infinitely large for e € [0, €;]. Hence, according to condition (12), for 8; < fs,
reducing a4 to 0 is always efficient for ; small enough. Furthermore, it is easy to check that
for = 0 the the bracketed term in the first line of (14) is increasing in 4. Hence, it follows
from condition (12) that all projects with 8 > (;(B) are monitored with positive probability.
O

Proof of Proposition 6:

i) If By < B it follows from (12) that fj, only exists if

Oeg, (a(Br))  Oep(0)
Ox - da (27)

After substitution of (14) into (27) for the respective values and rearranging, (), can be
expressed as 5, = f(;), where f([3;) is defined as in proposition 6 i). Hence, as 8 € [0; 1],
B exists if f(5;) < 1.

ii) If B = By, it follows from (12) that for the existence of the largest possible 3, i.e. 5, =1,
the budget is at least to be large enough to allow for some 3, > § the equalization of
slopes as follows

der(a(1)) _ e, (a(8y))

2
Oa Oa (28)

Noticing that a(1) = § and @(8,) = §, substituting (14) into (28) and solving for 5,
yields

5 = 0'(0) (cyeg(B)) + 56" (e5 — eq(5)))

- . (29)
(e — e(B)) (c4le5) + 50(0))

the upper boundary of fy in proposition 6 ii). Hence, if the budget level is high enough
to apply monitoring pressure &(g) for all 5 > By, 8, will necessarily exist. O

Proof of Proposition 8:

Note that if By exists, 3, = f, as (18) is assumed to hold. For an existing S, condition (12)
requires that any fy > £ will be monitored with &(5) if

Fep, (a(Pn) o Iesn (@)
o - o ’

(30)

For condition (30) holding with equality, By = Bnin, as defined in Proposition 8. Note that
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<

0'(0) 0'(e; — ey (B)) o e (alBn) Dez(a(5))

e+ 0070) " e () + B(e; — e0(B) oa oo Y

which is always the case for m As &(p) is strictly decreasing in § optimal monitoring

a(f) is also decreasing in the range [3; Bpin)-
It remains to show that (/) is increasing in  within the range [Bmin; On]. First, note that
condition (12) requires

Oeg, (@(Bn)) _ Depy((Fo))

(oo N Oo (32)
for any 5o € [Bmin; On]. Note further that
d%e _ 7320 () (—2cg(eg(aﬁ))0”( r) — 2a30"(2)* + 0'(x) ( c’” (eqg(afB)) + aﬁ@”’(z))) (33)

o (c!(eg(aB)) + apo"(x))’

where 2 = €} — e4(a3). Through comparison of enumerators of (23) and (33) it is easy to see

that if 8‘9 55 > 0 then d; < 0. Hence, condition (32) can only hold if «(f) is increasing over

the range [Bmin; Bn]. O
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