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Abstract

We study a two-phase endogenous growth model in which the adoption of a backstop
technology (e.g. solar) yields a sustained supply of essential energy inputs previously
obtained from exhaustible resources (e.g. oil). Growth is knowledge-driven and the
optimal timing of technology switching is determined by welfare maximization. The
optimal path exhibits discrete jumps in endogenous variables: technology switching
implies sudden reductions in consumption and output, an increase in the growth rate,
and instantaneous adjustments in saving rates. Due to the positive growth e¤ect, it is
optimal to implement the new technology when its current consumption bene�ts are
substantially lower than those generated by old technologies.
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1 Introduction

One of the major challenges facing modern economies is the sustainability problem induced
by resource dependence. Despite the rapid development guaranteed by technical progress, the
production process of post-industrial economies still relies on a �nite supply of minerals and
fossil fuels, and the question of how to preserve individual welfare in the future is a worldwide
political concern. In the last decade, a substantial body of economic literature tackled
the issue of sustainability from the perspective of modern growth theory. Several authors
analyzed the conditions under which technological progress is able to guarantee a sustained
�ow of output when exhaustible resources - e.g. oil - are essential inputs in production.
Following the main insights of Stiglitz (1974), these contributions reformulated the problem
in the context of endogenous growth models, where the conditions for achieving positive
growth rates in the long run are intimately linked to the development of innovations and
the pro�tability of R&D investment (Barbier, 1999; Sholz and Ziemes, 1999; Bretschger and
Smulders, 2003). In this framework, the allocation mechanism is derived from intertemporal
utility maximization à la Ramsey, and a crucial sustainability condition is that the rate of
resource-augmenting technical progress be su¢ ciently high relative to the utility discount
rate (Di Maria and Valente, 2008).1

This strand of literature addresses the issue of resource substitution only to some extent.
Endogenous growth models exhibit long-run equilibria where production possibilities are
sustained by the accumulation of knowledge-type capital. This form of technical progress
progressively substitutes the resource in the sense that the increased e¢ ciency of knowledge
capital compensates, in terms of productivity, the restrictions imposed by resource scarcity
on production possibilities. Since this mechanism does not make the resource �super�uous�
in �nite time, the transitional dynamics of consumption and output are smooth. It may be
argued that the substitution process is quite di¤erent when perfect substitutes of the resource
exist: if the availability of new inputs makes the resource-based technology obsolete, the
traditional method of production is abandoned in �nite time, and the transition to resource-
free techniques may involve non-smooth transitional dynamics. However, this issue has not
been addressed in endogenous growth models, and this is a main motivation for this paper.
At the theoretical level, the analysis of technology adoption in models with exhaustible

resources was pioneered by Hoel (1978), Dasgupta and Stiglitz (1981), and Dasgupta et al.
(1982). In this framework, resource scarcity sets limits to economic activity in the long run,
and the production process can be perpetuated only by implementing a backstop technology
- i.e. a new method of production whereby exhaustible natural inputs are replaced by al-
ternative, non-scarce factors (Nordhaus et al. 1973). The early literature treats the �ow of
extracted resources as a normal consumption good entering the intertemporal utility func-
tion. In this case, the resource demand schedule is determined by the marginal willingness to
pay, and is stable over time. This implies that the criterion for backstop technology adoption
is essentially price-based. Agents compare the time pro�les of the costs of alternative sources
of bene�ts - say, oil versus solar energy - and decide how much and for how long the ex-
haustible resource should be consumed. Implementing this reasoning in a model of optimal
extraction, Hoel (1978) showed that energy prices are increasing in the short run, and then
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stabilized by backstop technologies in the long run. The reason is that, in the short run, the
economy is resource-based and energy prices follow the behavior of net resource rents, that
grow over time at a rate equal to the interest rate by Hotelling�s rule. When resource-based
energy becomes as expensive as solar-based energy, the latter method is adopted, and the
non-scarce nature of solar inputs stabilizes energy prices from that point onward. The sub-
sequent literature extended this model to include di¤erent market structures (Dasgupta et
al. 1982), uncertainty (Dasgupta and Stiglitz, 1981; Hung and Quyen, 1993), and pollution
(Tahvonen, 1997). While these additional features a¤ect the optimal timing of technology
adoption, the underlying criterion is substantially unaltered: when resource rents achieve a
critical threshold set by the marginal reward of solar energy, the transition to solar-based
energy is complete.
The above discussion clari�es that, although backstop technology adoption is a crucial

issue for analyzing the sustainability problem, resource-based growth and substitute tech-
nologies are usually studied within di¤erent frameworks. Merging the two approaches is
likely to generate substantial di¤erences in the results for two independent reasons. First,
endogenous growth models treat natural resources as an input that is combined with other
man-made production factors. Since economic development is driven by investment rates,
the resource demand schedule is not stable over time, and the time pro�le of resource use
is crucially a¤ected by the accumulation of the productive stocks representing the engine of
growth. In this context, the adoption of a backstop technology would generate a combina-
tion of growth e¤ects and level e¤ects: as the economy switches to the new technology, the
growth rate is modi�ed because saving behavior changes depending on whether exhaustible
resources are used in production or not. These growth e¤ects matter for the optimal tim-
ing of technology adoption, but are generally neglected in the early literature. A second
source of di¤erences is that the optimality criterion employed in growth models is that of
consumption-utility maximization with intertemporal discounting. If the timing of back-
stop technology adoption is chosen according to this criterion of present-value optimality,
technology switching is determined by a welfare-based approach. Building on these points,
this paper studies how endogenous growth models currently used in the sustainability litera-
ture can provide a more complete criterion for optimizing the timing of backstop technology
adoption.
We assume that aggregate production requires energy, initially produced by means of

exhaustible resources like oil. The backstop technology is represented by solar-based energy,
and a benevolent social planner decides whether and when to abandon traditional oil-based
energy in favor of the new technology. The optimal switching time is derived by applying
optimal control theory, and the main results are as follows. The optimal path is characterized
by a trade-o¤ between the positive level e¤ects produced by the resource-based technology
during the �rst phase, and the growth-enhancing e¤ects generated by the solar-based tech-
nology in the second phase. There always exists an interior solution to the optimal timing
problem, characterized by discrete jumps in consumption and output. The adoption of the
backstop technology implies a sudden reduction in consumption and output levels, a sudden
increase in the growth rate, as well as instantaneous adjustments in consumption/saving
propensities. The marginal productivities of the competing energy sources evaluated at the
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instant of technology switching may di¤er substantially. Due to the contrasting e¤ects of
technology switching on levels and growth rates, the adoption of new solar-based techniques
is optimal even though the associated current bene�ts in terms of consumption (evaluated at
the optimal switching instant) are substantially lower than those generated by the traditional
resource-based technology.
The plan of the paper is as follows. Section 2 describes the main assumptions of the model

and speci�es the social problem in terms of a a two-phase optimal control problem. Section
3 analyzes the optimality conditions, characterizes the behavior of the economy in the two
phases, and derives an explicit expression for the optimal switching time under isoelastic
preferences. Section 4 completes the characterization of the optimal path, and derives the
main results regarding the economic consequences of backstop technology adoption. Section
5 brie�y discusses the connections with previous literature, and section 6 concludes.

2 Endogenous Growth with Backstop Technology

2.1 Assumptions

The general scheme is as follows. Time is continuous and indexed by t 2 [0;1). Before
instant t = 0, the economy is resource-based: aggregate production is obtained by means of
labor and energy inputs that consist of non-renewable resources - e.g. oil - extracted from a
�nite stock. At time t = 0 a new technology is available: energy can be obtained by means of
a di¤erent method of production whereby exhaustible resources are replaced by a non-scarce
input - e.g. solar energy. A benevolent social planner, endowed with perfect foresight and
full control over allocations, decides whether and when to adopt the solar-based technology.
The transition from resource-based to solar-based technologies is irreversible, and may take
place at any instant from time zero onwards. We denote by T 2 [0;1) the instant in
which this structural change takes place. The possibility of delaying the adoption of the
backstop technology after time t = 0 implies that the economy will generally experience two
di¤erent phases over the interval t 2 [0;1). During �phase 1�, delimited by t 2 [0; T ), the
economy is still resource-dependent. During �phase 2�, delimited by t 2 (T;1), the economy
is solar-based.
The reference framework for modelling economic dynamics is provided by endogenous

growth theories. In order to keep the analysis tractable, we will use a fairly simple model
of balanced growth. Aggregate output is represented by Yi = AFi (Ei; N), where A is the
state of technology determined by the current stock of knowledge, E is energy, N is labor,
and i = 1; 2 is the phase index. Output can be either consumed or invested in knowledge-
improving activities - e.g. R&D activity - that enhance future production possibilities. The
investment rate determines the growth rate of knowledge, _A=A, which is essentially the Hicks-
neutral rate of technological progress in the economy. Assuming decreasing marginal returns
to energy and labor, this general scheme can be rationalized in terms of several models
where the role of the knowledge stock is played by di¤erent engines of growth - e.g. human
capital accumulation (Lucas, 1988), learning-by-doing (Romer, 1989), or expanding varieties
of intermediate inputs (Barro and Sala-i-Martin, 2004). In the present context, we assume
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that the same kind of knowledge A (t) is exploited in both phases though it may display
di¤erent productivity levels. The underlying reasoning is that knowledge productivity varies
depending on whether it is applied to a solar-based or a resource-based production process.
Denoting aggregate output in the two phases by Y1 and Y2, respectively, the technologies
read

Y1 (t) = A (t) � F (nR (t) ; N) = A (t) � (nR (t))�N1��; (1)

Y2 (t) = �A (t) � F (mG;N) = �A (t) � (mG) N1�; (2)

where labor N is �xed and inelastically supplied, R (t) is the amount of resources extracted
at time t from a �nite resource stock, G is the constant �ow of solar energy units available
in each instant, and n and m are constant coe¢ cients yielding energy-equivalent measures
for the �ows of resource and solar units, respectively. Parameter � > 0 determines whether
knowledge A is more productive (� > 1) or less productive (� < 1) in the second phase
with respect to the �rst phase. The productivity parameters � and  lie between zero and
unity, and are generally di¤erent as the production elasticity of exhaustible resources is not
necessarily equal to the production elasticity of solar-based energy.
Technology (1) is exploited in the interval t 2 [0; T ), whereas technology (2) is used

from time T to in�nity. In both phases, the aggregate constraint of the economy reads
Yi (t) = Ci (t)+Di (t), where Ci is consumption andDi is investment in knowledge-improving
activities in phase i = 1; 2. The aggregate constraint can be imposed by means of the relation

ci (t) = 1� di (t) ; i = 1; 2; (3)

where the propensity to consume ci � Ci=Yi equals one minus the investment rate di � Di=Yi.
The engine of growth in each phase is knowledge accumulation. In general, production
possibilities are enhanced by virtue of accumulation laws of the type

_A (t) = '
�
A (t)+ ; di (t)

+� ; i = 1; 2;

where @'=@A > 0 represents a knowledge-stock e¤ect that is conceptually equivalent to
assuming e.g. increasing returns to human capital accumulation (Lucas, 1988), spillovers
from past R&D activity (Aghion and Howitt, 1998) or, more generally, knowledge spillovers
(Acemoglu, 2002). Assumption @'=@di > 0 implies that the accumulation of knowledge
increases with the economy�s rate of investment, consistently with standard models of bal-
anced growth with endogenous R&D expenditures (Grossman and Helpman, 1991; Aghion
and Howitt, 1998). In the present context, we will implement the linear speci�cation

_A (t) =  A (t) di (t) ; (4)

where  > 0 is a constant proportionality factor. The linear form (4) can be justi�ed in
several ways,2 and is particularly useful in the present context as it allows us to obtain optimal
balanced-growth paths involving no transitional dynamics - as e.g. in Rebelo (1991), Rivera-
Batiz and Romer (1991), Barro and Sala-i-Martin (2004: Ch.6). Expression (4) allows for
di¤erences in the growth rates of knowledge between the two phases, as the use of di¤erent
technologies generally implies di¤erent saving propensities, d1 6= d2.
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In the �rst phase, the resource-based technology (1) operates under the constraint im-
posed by the scarcity of the exhaustible resource. Denoting by S the resource stock, the
instantaneous reduction in the �natural capital�of the economy equals the rate of resource
use:

� _S (t) = R (t) : (5)

Given the above assumptions, the social problem can be speci�ed according to the standard
welfare criterion of present-value maximization. In order to obtain explicit solutions, we
assume that instantaneous utility takes the isoelastic form

U (C (t)) =
C (t)1�� � 1
1� �

; (6)

where � > 0 is the inverse of the elasticity of intertemporal substitution in consumption.
Letting � ! 1, we obtain logarithmic preferences.

2.2 The social problem

The analysis focuses on optimal paths determined by the solution of a centralized social prob-
lem. The objective is to maximize the present discounted value of the stream of consumption
bene�ts

V =

Z 1

0

U (C (t)) e��tdt; (7)

where � > 0 is the social discount rate. The possibility of switching between technology
(1) and technology (2) requires re-formulating the optimization as a two-stage problem. In
fact, our model falls in the class of optimal control problems with endogenous switching time
studied e.g. in Tomiyama (1985) and Makris (2001). In this framework, the solution is found
by implementing the following procedure. Splitting the objective function (7), present-value
welfare equals the sum of the sub-streams of utilities obtained in the two phases, V = V1+V2,
where

V1 =

Z T

0

U (C1 (t)) e
��tdt; (8)

V2 =

Z 1

T

U (C2 (t)) e
��tdt: (9)

The �rst step consists of optimizing phase 2 by �nding the paths of consumption and knowl-
edge fC2 (t) ; A (t)g1T that maximize V2 taking the switching time T as given. In the second
step, we derive the set of conditions that are necessary for optimality during phase 1, for
a given terminal time T . In the third step, we complete the set of optimality conditions
by including the determination of the instant T = T � in which it is optimal to switch from
the resource-based to the solar-based technology. This allows us to obtain the paths of
consumption, knowledge and resource use fC1 (t) ; A (t) ; R (t)gT

�

0 and fC2 (t) ; A (t)g1T � that
maximize social welfare (7). For the sake of exposition, the discussion in the next section
will be mainly technical. A more intuitive discussion about the economic consequences of
backstop technology adoption will be provided in section 4.
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3 The Optimal Control Problem

3.1 The solar-based economy

We begin by solving the social sub-problem of phase 2, i.e. after the backstop technology has
been adopted. This problem consists of maximizing V2 subject to the aggregate constraint
(3), the solar-based technology (2), and the knowledge accumulation rule (4) in each t 2
(T;1), taking the available knowledge stock A (T ) as given, and holding T �xed. Obviously,
this part of the solution is relevant only if the solar-based technology is actually adopted
- that is, only if T is �nite. Given this pre-condition, we have a standard in�nite-horizon
problem associated with the present-value Hamiltonian

H2 (t) = U (C2 (t)) e
��t + �2 (t) A (t) d2 (t) ; (10)

where �2 is dynamic multiplier associated with the accumulation law (4). As shown in the
Appendix, the necessary conditions for optimality are

�2 = U 0 (C2) � e��t (Y2=A) ; (11)

� _�2 = (1� d2) � U 0 (C2) � e��t (Y2=A) + �2 d2; (12)

0 = lim
t!1

A (t)�2 (t) e
��t; (13)

and the following results hold:

Lemma 1 (Solar-based economy, T given) In phase 2, the optimal propensity to consume
equals

c�2 = 1� ( � �) = ( �) (14)

in each t 2 (T;1). Output, consumption and knowledge grow at the constant rate

_Y2 (t) =Y2 (t) = _C2 (t) =C2 (t) = _A (t) =A (t) =
1

�
( � �) (15)

from t = T onwards. The optimal path is well-de�ned if and only if parameters satisfy

 (1� �) < � <  : (16)

Lemma 1 shows that the solar-based economy exhibits a constant growth rate. It can
be shown that the absence of transitional dynamics is due the linear accumulation function
(4) previously assumed - see Rivera-Batiz and Romer (1991), Acemoglu (2002: sect.4). Ex-
pression (15) shows that consumption and output evolve according to the standard Keynes-
Ramsey rule, where  (the rate of return from knowledge-improving investment) is the
implicit interest rate of the economy. Restriction (16) is necessary and su¢ cient to have
c�2 2 (0; 1), and also guarantees a strictly positive growth rate ( > �). Notice that the
absence of transitional dynamics allows us to obtain closed-form solutions for all the en-
dogenous variables during the second phase. In particular, consumption levels are given
by3

C2 (t) = c�2�A (T ) (mG)
 N1�e(1=�)( ��)(t�T ); (17)
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Equation (17) shows that consumption levels in the solar-based economy depend on the
knowledge stock available at the beginning of the second phase. The optimal level of A (T )
is determined by the optimality conditions that characterize the behavior of the resource-
based economy, as shown below.

3.2 The resource-based economy

The optimization problem in phase 1 consists of maximizing (8) subject to the aggregate
constraint (3), the accumulation rule (4), and the natural resource constraint (5). Since
resource extraction must be optimized, the path of the rate of resource use R (t) represents
an additional control variable for the social planner. The initial stocks, A (0) = A0 and
S (0) = S0, are exogenously given, and the present-value Hamiltonian associated with this
problem is

H1 (t) = U (C1 (t)) e
��t + �1 (t) A (t) d1 (t)� � (t)R (t) ; (18)

where �1 and � are the dynamic multipliers associated with the accumulation law (4) and
the resource constraint (5), respectively. It should be noticed that, in the present problem,
the terminal state to be imposed on the knowledge stock di¤ers from the usual transversality
condition �1 (T )A (T ) = 0. The reason is that knowledge can be transferred to the solar-
based economy, being further exploited during phase 2. If the solar-based technology is
adopted in �nite time, there is an implicit �bequest�between the two phases, and the amount
of knowledge left by the resource-based economy at the terminal date T is optimally chosen
only if the e¤ects of A (T ) on second-phase welfare are taken into account. In other words,
the optimal path of knowledge accumulation incorporates the fact that, after time T , the
same knowledge stock will be used for a di¤erent purpose - i.e. to complement solar-based
energy in production. This reasoning has precise formalizations in optimal control theory
(Tomyiama, 1985; Makris, 2001):

Lemma 2 In the sub-problem of phase 1, the terminal conditions

lim
t!1

�1 (t)A (t) = 0 if T =1; (19)

lim
t!T�

�1 (t) = lim
t!T+

�2 (t) if T <1; (20)

are necessary for optimality.

Lemma 2 can be interpreted as follows. When there is no technology switching, T =1,
the sub-problem collapses to a standard in�nite horizon problem where the optimal path
of knowledge accumulation is characterized by the transversality condition (19). When the
solar-based technology is adopted, the amount of knowledge that the resource-based economy
leaves for future use is optimally chosen only when (20) is satis�ed. The intuition is that
the dynamic multipliers �1 and �2 represent, in each phase, the marginal social value of an
extra-unit of knowledge: condition (20) states that the optimal level of knowledge at the
switching instant, A (T ), must be such that the marginal cost of accumulation in phase 1
equals the marginal bene�t from knowledge exploitation in phase 2.
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Before applying Lemma 2, it is possible to characterize the solution to the �rst-phase
optimization problem as follows. Assuming that the optimal path of the propensity to
consume is interior, c1 (t) 2 (0; 1) in each t 2 [0; T ), the optimal path is characterized by the
following

Lemma 3 (Phase 1, optimality conditions for given T ) In the resource-based economy, the
conditions

�1 (t) A (t) = U 0 (C1 (t)) � e��tY1 (t) ; (21)

� (t)R (t) = U 0 (C1 (t)) � (1� d1 (t)) �Y1 (t) e
��t; (22)

_�1 (t) = � �1 (t) ; (23)
_� (t) = 0; (24)

S0 =

Z T

0

R (t) dt; (25)

are necessary for optimality, where (21)-(24) are valid in each t 2 [0; T ).

Equations (21)-(24) result from the usual optimality conditions, and do not require com-
ment. Equation (25) follows from the transversality condition on the resource stock, and
establishes that the initial stock must equal the sum of resource-use �ows extracted during
the �rst phase. In other words, the whole resource stock must be exhausted by the end of
phase 1, since leaving unexploited resources in the ground would be sub-optimal.
The general implication of Lemma 3 is that consumption and resource use exhibit con-

stant growth rates during phase 1. As shown in the Appendix, the resource-based economy
displays

_C1 (t)

C1 (t)
=

 � � (1 + �)

� (1 + �)� �
; (26)

_R (t)

R (t)
= ��� (1� �) 

� (1 + �)� �
= ��; (27)

in each t 2 [0; T ), where we have de�ned the constant

� � �� (1� �) 

� (1 + �)� �
> 0 (28)

in order to represent the speed of resource depletion � _R=R in a more compact way.4 Results
(26)-(27) are independent of the choice of the optimal switching time. With respect to con-
sumption dynamics, it may be noticed that expression (26) di¤ers from the Keynes-Ramsey
rule (15) holding in phase 2: the two expressions coincide only if � = 0. The intuition
is that, during phase 1, the economy is constrained by the non-renewable resource stock.
As the exhaustible resource is exploited, increased scarcity is compensated by accumulating
knowledge. This implies that resource productivity matters for consumption-saving deci-
sions, and the elasticity parameter � a¤ects the growth rate of consumption during phase 1.
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With respect to resource use dynamics, it is possible to derive a closed-form solution for the
optimal extraction plan: integrating (27) over the interval t 2 [0; T ), and substituting (25),
we have

R (0) =
S0�

1� e��T
and R (t) = R (0) e��t: (29)

The �rst expression in (29) shows that the initial rate of resource use R (0) increases with
the size of the initial stock S0, and decreases with the length of the �rst phase T .
While (26)-(27) provide the basis for analyzing the dynamics of the resource-based econ-

omy, the optimal paths of consumption and knowledge during phase 1 are not determined
until we impose the terminal conditions stated in Lemma 2. In this regard, we have to
distinguish between the limiting case T =1, and the �nite switching-time case 0 < T <1.

Case T = 1. If the solar-based technology is never adopted, we have T = 1, and the
accumulation of knowledge is subject to the transversality condition (19). In this case, the
economy is permanently resource-based, and is characterized by the following dynamics:

Lemma 4 (Phase 1, optimal path without switching) If T = 1, the optimal propensity to
consume equals

c�1 (t) =
1

 
� ��  (1� �)

� (1 + �)� �
(30)

in each t 2 [0;1). From (27), we have _R (t) =R (t) = � c�1 < 0. Output, consumption and
knowledge grow at the constant rates

_Y1 (t) =Y1 (t) = _C1 (t) =C1 (t) =
 � � (1 + �)

� (1 + �)� �
; (31)

_A (t) =A (t) =  (1� c�1) ; (32)

in each t 2 [0;1). This path is well-de�ned if and only if parameters satisfy

� (1 + �) > � and (33)

 (1� �) < � <  [1� � (1� �)] (34)

Lemma 4 shows that, if the solar-based technology is never implemented, the resource-
based economy exhibits a constant growth rate in each instant. In particular, the consump-
tion propensity is constant over time, and is a¤ected by the degree of resource dependence.

Case 0 < T < 1. If the solar-based technology is adopted in �nite time, instead, we
have 0 < T < 1, and the optimal path of knowledge is subject to the terminal condition
(20). In this case, the economy must satisfy (see Appendix)

U 0 (C1 (T ))Y1 (T ) = U 0 (C2 (T ))Y2 (T ) (35)

and the optimal paths of output and knowledge in phase 1 have to be determined simulta-
neously with the optimal switching time T = T �, given that T � is �nite. It will be shown
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later that the characteristics of phase 1 with a �nite switching time T are identical to those
stated in Lemma 4, provided that T is optimally chosen:5 imposing (35) together with the
condition for optimal switching time, we re-obtain (30)-(34) over the �nite interval t 2 [0; T )
- see Lemma 6 below. Given this claim of observational equivalence between the cases T =1
and 0 < T <1, it is possible to make two general remarks regarding phase 1.

The �rst remark is that, in the resource-based economy, sustained development is not a
priori guaranteed. From (31), consumption and output grow at a positive rate if and only if

 

1 + �
> �: (36)

For a given discount rate �, sustained growth in the �rst phase requires a moderate degree
of resource dependence (low �) and a su¢ ciently high productivity of investment (high  ).
If (36) is violated, the negative e¤ect of resource depletion ( _R < 0) is stronger than the
positive e¤ect of knowledge accumulation ( _A > 0), and this implies declining time paths for
output and consumption. Inequality (36) may indeed be considered an endogenous-growth
variant of the sustainability condition derived in Stiglitz (1974).6

The second remark is that the economy exhibits di¤erent growth rates in the two phases.
More precisely, the solar-based economy grows faster than the resource-based economy: from
(15) and (31), the growth di¤erential equals7

_Y2
Y2
�
_Y1
Y1
=
�

�
� ��  (1� �)

� (1 + �)� �
> 0; (37)

As may be construed, result (37) is determined by the constraint represented by resource
scarcity. While the solar-based economy fully exploits the accumulation of knowledge, the
resource-based economy exhibits a lower growth rate because the rate of resource extraction
R (t) declines over time. If resources were not essential in the �rst phase (� = 0), the two
economies would grow at the same, balanced rate ��1 ( � �) determined by knowledge
accumulation.

3.3 Optimal switching time

The third step of the solution to the social problem is the determination of the optimal timing
of backstop technology adoption, T �. In what follows, we will use a standard terminology.
The optimal-timing problem exhibits an interior solution if 0 < T � <1, i.e. the solar-based
technology is adopted in �nite time but not immediately (T � > 0). The alternatives are
represented by the corner solutions T � = 0 and T � =1. In the �rst case, the optimal policy
is that of immediate adoption, whereas T � = 1 represents no adoption - or equivalently, a
permanent delay in the implementation of the solar-based technology.
The nature of the solution T � can be clari�ed as follows. Given the two sub-problems of

phase 1 and phase 2, denote by ~C1 (t;T ) and ~C2 (t;T ) the time paths of consumption that
would be optimal in the two phases for a given switching time T . Using T as an unknown

11



parameter, de�nitions (8)-(9) imply that the welfare levels associated with the two phases
can be expressed as indirect welfare functions that depend on switching time:

V1 (T ) =

Z T

0

U
�
~C1 (t;T )

�
e��tdt and V2 (T ) =

Z 1

T

U
�
~C2 (t;T )

�
e��tdt: (38)

From (38), total present-value welfare can be written as V (T ) = V1 (T ) + V2 (T ). Hence,
the optimal timing of technology switching T � is the instant in which the adoption of the
solar-based yields the maximum present-value welfare over the entire time-horizon,

T � = arg max
T2[0;1)

fV (T ) = V1 (T ) + V2 (T )g : (39)

Under fairly general conditions, V (T ) is de�ned and �nite in T , and di¤erentiable at the
switching instant (Seierstad and Sydsaeter, 1987). If the indirect function V (T ) is well-
behaved - i.e. hump-shaped at least locally - problem (39) exhibits an interior maximum
0 < T � <1, and the solution is characterized by the �rst order condition dV (T ) =dT = 0,
i.e.

dV1 (T )

dT
= �dV2 (T )

dT
: (40)

On the one hand, condition (40) represents an intuitive criterion: given a two-phase control
problem, the optimal switching time is the instant in which the marginal welfare bene�t
from increasing the length of one phase equals the marginal welfare cost of reducing the
length of the other phase. On the other hand, condition (40) is necessary and su¢ cient for
an optimum only if V (T ) is well behaved: since the shape of V (T ) is not known a priori, the
corner solutions of immediate adoption and permanent delay must be ruled out by showing
that (40) is actually associated with a global maximum. In this regard, we will implement
the following strategy. First, we show that there always exists a unique �nite switching
instant T = T 0 > 0 that satis�es condition (40). Second, we show that V (T ) is strictly
concave, implying that T � = T 0 is indeed the solution to problem (39).
The behavior of V (T ) can be analyzed by applying optimal control theory. A well-

known result establishes that, given a control problem with �nite initial and terminal dates,
the present-value Hamiltonian evaluated in the optimum equals (minus) the derivative of the
value function with respect to the (initial) terminal date - see e.g. Seierstad and Sydsaeter
(1987: Theorem 3.9). In the present context, this result is exploited as follows. Denote
by �H1 (T ) the Hamiltonian function (18) evaluated at the switching time T along a path
satisfying the optimality conditions (19)-(25). Symmetrically, denote by �H2 (T ) the Hamil-
tonian function (10) evaluated at the switching time T along a path satisfying the optimality
conditions (11)-(13). Then, the derivatives of the indirect functions V1 (T ) and V2 (T ) are
given by dV1 (T ) =dT = �H1 (T ) and dV2 (T ) =dT = � �H2 (T ), respectively. As a consequence,
the derivative dV (T ) =dT = (dV1 (T ) =dT )+ (dV2 (T ) =dT ) equals the di¤erence between the
two Hamiltonians evaluated at the switching time. We can thus de�ne the gap function


 (T ) � �H1 (T )� �H2 (T ) = dV (T ) =dT; (41)

and characterize the interior solutions to problem (39) by imposing the condition 
 (T ) = 0.
The validity of this approach is con�rmed by the results of Tomyiama (1985) and Makris
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(2001), who show that, given a two-stage control problem, an interior solution for the optimal
switching time 0 < T � < 1 must satisfy the condition �H1 (T

�) = �H2 (T
�).8 Implementing

this procedure yields the following

Lemma 5 There exists a unique �nite switching instant T = T 0 > 0 associated with 
 (T 0) =
0. The function 
 (T ) is strictly concave, and the solution to problem (39) is T � = T 0. The
optimal switching instant is given by

T � =
1

�
ln
n
1 + [1� (�=�) (1� �)]

�
�(1��) �1=�

o
> 0; (42)

where � � (nS0�)�N����1 (mG)�. If preferences are logarithmic, � = 1, the same results

hold with an optimal switching time T � = (1=�) ln
h
1 + (�=e)1=�

i
.

Lemma 5 is a crucial result of this paper. It shows that, given the assumptions made
so far, the optimal timing of backstop technology adoption is unique, and can be expressed
as a function of the model parameters. A numerical example that con�rms Lemma 5 is
described in Figure 1, where the indirect welfare function V (T ) and the gap function 
 (T )
are obtained for a given set of parameter values9. The indirect welfare function achieves
a maximum in T � = 16:3, associated with the horizontal intercept of the gap function,

 (T �) = 0.
We now have all the elements to characterize the optimal path of the economy in both

phases. The following section describes the main results of the analysis, and discusses the
economic consequences of backstop technology adoption.

4 Consequences of Technology Switching

On the basis of our previous results, the optimal path of the economy over the whole time
horizon t 2 [0;1) can be described as follows. In the second phase, delimited by the interval
t 2 (T �;1), the optimal path is characterized by the conditions already stated in Lemma
1. In the �rst phase, delimited by the interval t 2 [0; T �), the economy exploits exhaustible
resources according to technology (1). The following Lemma establishes that, during phase
1, the economy exhibits balanced growth in each instant, and displays the same properties, in
terms of growth rates and consumption/saving propensities, of the in�nite-horizon resource-
based economy described in Lemma 4:

Lemma 6 Given an optimal switching time T = T �, the resource-based economy follows an
optimal path in which the optimal propensity to consume equals (30), output and consumption
grow at the constant rate (31), and knowledge grows at the constant rate (32) in each t 2
[0; T �). The optimal path is well-de�ned if and only if parameters satisfy (33)-(34).

Lemmas 6 and equation (37) imply that, along the optimal path, the resource-based
economy grows at slower rate with respect to the solar-based economy. As noted before,
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the reason is that the growth process in phase 1 is constrained by resource scarcity. The
most interesting aspect is related to the immediate consequences of adopting the backstop
technology:

Proposition 7 The adoption of the solar-based technology implies discrete jumps in con-
sumption, output and growth. The transition to the solar-based economy is characterized by
sudden reductions in consumption and output levels,

C1 (T
�) =C2 (T

�) =
�
� [� � � (1� �)]�1

	 1
1�� > 1;

Y1 (T
�) =Y2 (T

�) =
�
� [� � � (1� �)]�1

	 �
1�� > 1;

and, from (37), an immediate increase in the growth rate. If preferences are not logarithmic,
� 6= 1, technology adoption also implies a discrete jump in consumption/saving propensities,

c1 (T
�) =c2 (T

�) = � [� � � (1� �)]�1 :

Proposition 7 is the main result of this paper. At the technical level, the presence of
discrete jumps may seem surprising. In optimal control problems, an interior optimal path
is characterized by the continuity of the Hamiltonian function over the whole time horizon,
t 2 [0;1). In standard growth models, this is often taken to imply smooth dynamics in the
control variables - e.g. consumption. Proposition 7 clari�es that similar continuity arguments
are not robust, at least with respect to the present model: the �general�Hamiltonian function
of the social problem, H (t) = H1 (t) + H2 (t), is indeed continuous in t = T �, but this
does not imply the smoothness of the optimal paths of consumption and output.10 Apart
from technical issues, however, the scope of Proposition 7 is determined by the underlying
economic intuition, which can be summarized as follows.
The optimal switching time is characterized by a precise trade-o¤ between level e¤ects

and growth e¤ects. On the one hand, the solar-based economy grows faster than the resource-
based economy. On the other hand, the adoption of the backstop technology induces a sudden
reduction in consumption and output. The implicit reasoning is that, given the possibility of
extracting exhaustible resources in the present, the traditional technology can be exploited
in order to obtain higher output levels in the short run. Although the economy would grow
faster under solar-based technologies, it is optimal to exploit the available resource for a
while before switching to solar energy: higher consumption levels in the short run guarantee
higher welfare with respect to the alternative policy of immediate adoption of the solar-based
technology (T = 0). When the resource stock is optimally exhausted, the adoption of the
backstop technology yields lower consumption, but this level e¤ect is compensated (in terms
of present-value welfare) by the higher growth rate that the economy enjoys from t = T �

onwards.
Proposition 7 also suggests a remark on the role of preferences. While the direction of level

and growth e¤ects is unambiguous, the way in which consumption and saving propensities
adjust to the new technology depends on the elasticity of intertemporal substitution. If
� < 1 we have c�1 > c�2, i.e. the propensity to consume is suddenly reduced by the adoption
of the backstop technology. The opposite phenomenon arises when � > 1, which implies an

14



upward jump in the consumption propensity, c�1 < c�2. When preferences are logarithmic,
� = 1, the adoption of the backstop technology has no e¤ects on consumption and saving
propensities. Nonetheless, there are discrete jumps in consumption, output and growth rates:
when � = 1, the size of the reduction in consumption levels is C1 (T �) =C2 (T �) = e�, so that
the magnitude of the level e¤ects of technology adoption increases exponentially with the
degree of resource dependence.11

Another remark is related to the behavior of marginal productivities along the optimal
path. In the present model, the (social) pro�tability rates associated with the primary energy
sources are represented by @Y1=@R and @Y2=@G. As shown in the Appendix, the optimal
switching time is characterized by

@Y1 (T
�) =@R (T �)

@Y2 (T �) =@G
=

�
n�N��

�m

�1=�
�G1�


�



�
� � � (1� �)

�

��(1��)
�(1��)

: (43)

Expression (43) shows that the marginal productivities of primary energy sources are gen-
erally di¤erent at time T �. Even assuming a convenient set of parameters - e.g. identical
production shares  = � and unit productivity indices � = m = n = 1 - the right hand side
of (43) di¤ers from unity. This is due to the term in curly brackets, which indeed determines
the size of consumption and output jumps (cf. Proposition 7). As emphasized in the next
section, the fact that marginal productivities of resource-based and solar-based energy do
not generally coincide in the switching instant is an important di¤erence with respect to the
early literature on backstop technology adoption.
All the above conclusions can be veri�ed by numerical simulation. Two examples are

reported in Table 1, and graphically described in Figure 2. Except for �, the parameter
values are the same used in Figure 1 - see footnote 9.

� = 0:8 � = 1:2
Output: Y1 (T

�) ; Y2 (T
�) 37:4 ; 28:9 34:5 ; 27:0

Cons. Propensity: c�1 ; c
�
2 0:62 ; 0:58 0:69 ; 0:72

Consumption: C1 (T
�) ; C2 (T

�) 23:2 ; 16:8 23:9 ; 19:5

Growth Rates: _Y1=Y1 ; _Y2=Y2 1:3% ; 2:5% 0:8% ; 1:6%
Switching Time T � = 16:2 T � = 16:4

Table 1. Optimal jumps: simulation results (see also Figure 2).

With � = 0:8 < 1, we obtain an optimal switching time T � = 16:2, and a downward jump
in the consumption propensity associated with the adoption of the solar-based technology.
With � = 1:2 < 1, technology adoption is slightly delayed, and implies a sudden increase
in the propensity to consume. In both scenarios, the values of the marginal productivities
of primary energy sources are substantially di¤erent. For example, with � = 0:8 we obtain
@Y1=@R = 0:21 and @Y2=@G = 8:66 at time t = T �.

5 Connections with previous literature

As explained in the Introduction, the main references for the present analysis are represented
by the early studies of backstop technology adoption - pioneered by Hoel (1978), Dasgupta
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and Stiglitz (1981), and Dasgupta et al. (1982) - and the more recent endogenous growth
models where natural resources are essential inputs in production (Barbier, 1999; Sholz and
Ziemes, 1999; Aznar-Marquez and Ruiz-Tamarit, 2005).
The early literature tackles the issue of technology switching by implementing a price-

based criterion: the backstop technology is adopted when the resource-intensive method
becomes as expensive as solar-based techniques (Hoel, 1978). Variants of the basic model in-
clude di¤erent market structures (Dasgupta et al. 1982), uncertainty (Dasgupta and Stiglitz,
1981; Hung and Quyen, 1993), and pollution (Tahvonen, 1997), and other features that
modify the timing of technology switching, but the underlying criterion remains price-based.
With respect to these contributions, our analysis shows that results are substantially modi�ed
when (i) the optimal timing of backstop technology adoption obeys a welfare-based criterion,
and (ii) the pro�tability of competing technologies is determined by the development paths
generated by endogenous growth mechanisms. In our framework, the cost-bene�t analysis
pursued by the planner takes into account all the general-equilibrium e¤ects that character-
ize the two phases of economic development: when production possibilities are constrained
by resource scarcity (phase 1) the economy develops at slower rates, whereas solar-based
technologies guarantee sustained and faster growth (phase 2). Under these circumstances, a
forward-looking planner will exploit the resource-based technology for obtaining high levels
of output in the short run, and then switch to solar-based techniques to generate faster
growth in the medium-long run. The optimal switching time is not characterized by the
equality between the marginal productivities of the two energy sources.
With respect to the endogenous-growth literature, the vast majority of sustainability

models postulate a continuous process of resource-augmenting technical progress whereby
resource inputs are progressively substituted by knowledge-type capital (Barbier, 1999) or
expanding varieties of intermediate products (Sholz and Ziemes, 1999). This process is
smooth, and the underlying reasoning is that knowledge progressively substitutes exhaustible
resources in production. This paper extended this class of models to include a backstop tech-
nology, and showed that the transitional dynamics are anything but smooth: the optimal
path exhibits discrete jumps in endogenous variables. Due to the contrasting e¤ects of
technology adoption on levels and growth rates, the implementation of new technologies is
optimal even though the associated current bene�ts in terms of consumption (evaluated at
the optimal switching instant) are substantially lower than those generated by traditional
technologies. This result appears consistent with concrete reality, since non-traditional en-
ergy sources like wind and solar power are regarded as less pro�table nowadays, but are more
likely to guarantee sustainable growth in the future.
Our analysis suggests a number of extensions that can be implemented in an endogenous

growth setting. A natural question relates to the e¤ects of market failures on the optimal tim-
ing of structural change. Endogenous growth models typically assume that non-decreasing
returns hinge on the presence of externalities - e.g. Aznar-Marquez and Ruiz-Tamarit (2005).
In this framework, decentralized competitive equilibria are characterized by intertemporal
allocations that di¤er from the social optimum studied here. This suggests studying the role
of externalities and optimal policies in order to optimize the timing of backstop technology
adoption.
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6 Conclusion

This paper studied the optimal timing of backstop technology adoption in a two-phase en-
dogenous growth model. Aggregate production requires energy, initially produced by means
of exhaustible resources. A backstop technology represented by solar-based energy is avail-
able, and a benevolent social planner decides whether and when to abandon traditional
oil-based energy in favor of the new technology. It has been shown that the optimal path is
characterized by a trade-o¤between the level e¤ects produced by the resource-based technol-
ogy and the growth-enhancing e¤ects induced by the solar-based technology. The economy
exploits the resource stock to obtain high consumption levels in the short run, and then
switches to solar-based techniques in order to achieve faster growth in the medium-long run.
There always exists an interior solution to the optimal timing problem, characterized by
discrete jumps in consumption and output: the adoption of the backstop technology implies
a sudden reduction in consumption and output levels, an increase in the growth rate, as well
as instantaneous adjustments in consumption/saving propensities. The marginal productiv-
ities of the competing energy sources evaluated at the instant of technology switching are
generally di¤erent.
The implementation of backstop technologies is optimal even though their current ben-

e�ts in terms of consumption are substantially lower than those generated by traditional
technologies. This result appears consistent with concrete reality, since non-traditional en-
ergy sources like wind and solar power are regarded as less pro�table nowadays, but are
more likely to guarantee sustainability in the future. More generally, the analysis shows that
welfare-based criteria, in conjunction with endogenous-growth mechanisms, yield substan-
tial di¤erences with respect to the results of the early literature on backstop technologies:
the optimal switching time is determined by a more complete forward-looking criterion that
takes into account the future growth e¤ects of backstop technology adoption. Extending this
framework to analyze decentralized economies in which the timing of technology switching
is a¤ected by the presence of market failures is the main suggestion for future research.

Appendix

Derivation of (11)-(13). From the aggregate constraint of the economy and technology
(2), consumption equals C2 = (1� d2)Y2 = (1� d2)�A (mG)

 N1�. The second-phase
problem can be thus speci�ed as

max
fd2g1t=T

V2 =

Z 1

T

U
�
(1� d2)�A (mG)

 N1�� e��tdt
subject to _A =  Ad2, with A (T ) given, and the saving propensity d2 acting as control
variable. The present-value Hamiltonian (10) can be written as

H2 = U
�
(1� d2)�A (mG)

 N1�� e��t + �2 Ad2: (A1)

Equation (11) is given by @H2=@d2 = 0, (12) is the co-state equation @H2=@A = � _�2, and
(13) is the standard transversality condition. �
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Proof of Lemma 1. Denoting by x̂ � _x=x the instantaneous growth rate of the generic
variable x (t), time-di¤erentiation of (11) yields

�̂ = Ŷ2 � Â+ Û 0 � � = Û 0 � �; (A2)

where the last term comes from the fact that Ŷ2 = Â. Plugging (11) in (12), we obtain

�̂2 = � : (A3)

Combining (A3) with (A2) and Û 0 = ��Ĉ2, we obtain

Ĉ2 = ��1 ( � �) : (A4)

Substituting Ĉ2 = ĉ2 + Ŷ2 and Ŷ2 = Â =  d2 in (A4), and using c2 = 1 � d2, the optimal
propensity to consume must satisfy

ĉ2 =  c2 + ��1 ( � �)�  ; (A5)

Relation (A5) is globally unstable with a unique �xed point

�c2 = 1�
 � �

 �
: (A6)

By standard arguments, explosive dynamics of c2 can be ruled out as they would lead to
either negative consumption or negative output in �nite time. The optimal propensity c�2 is
thus equal to �c2 in each t 2 [T;1), which proves equation (14). A constant propensity to
consume implies _Y2=Y2 = _C2=C2 = _A=A. Imposing 0 < c�2 < 1, we obtain restriction (16),
which completes the proof. �
Proof of Lemma 2. If the solar-based technology is never adopted, the �rst-phase

problem reduces to a standard in�nite-horizon optimal control. The transversality condition
on the knowledge stock is (19), and does not require further comments. If the solar-based
technology is adopted at some �nite T , instead, the social problem belongs to the class of
two-stage problems analyzed in Tomiyama (1985) and Makris (2001). Using the current
notation, expression (20) corresponds to the optimality condition derived e.g. in Tomiyama
(1985: Theorem 1, equation [15]). �
Proof of Lemma 3. From (1), consumption in phase 1 equals C1 = (1� d1)Y2 =

(1� d1)A (nR)
�N1��. The �rst-phase problem can be thus speci�ed as

max
fd1;RgTt=0

V1 =

Z T

0

U
h
(1� d1)A (nR)

�N1��
i
e��tdt

subject to _A =  Ad1, with A (0) = A0 given, and to _S = �R, with S (0) = S0 given. The
saving propensity d1 and the rate of resource useR act as control variables. The present-value
Hamiltonian (18) can be written as

H1 = U
h
(1� d1)A (nR)

�N1��
i
e��t + �1 Ad1 � �R: (A7)
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Equations (21)-(22) are given by the �rst-order conditions @H1=@d1 = 0 and @H1=@R = 0,
respectively. The co-state condition @H1=@A = � _�1 yields

� _�1 = (1� d1) � U 0 (C1) � e��t (Y1=A) + �1 d1; (A8)

where we can substitute (21) to obtain (23). Equation (24) is given by the co-state condition
@H1=@S = � _�. The transversality condition on the resource stock reads

� (T )S (T ) = 0: (A9)

Since � (t) is constant by (24), condition (A9) requires exhausting the whole resource stock
at the end of the �rst phase, S (T ) = 0. Integration of the dynamic law (5) between t = 0
and t = T � yields

S (T ) = S0 �
Z T

0

R (t) dt:

Substituting S (T ) = 0 in the above expression yields equation (25). �
Derivation of (26)-(27). Since � (t) is constant by (24), time-di¤erentiation of (22)

yields
R̂ = Û 0 + ĉ1 + Ŷ1 � � = Û 0 + Ĉ1 � �; (A10)

Time-di¤erentiating (21), and eliminating �̂1 by means of (23), we have

Û 0 = ��  � Ŷ1 + Â: (A11)

Time-di¤erentiating (1), we have Ŷ1 = Â+�R̂. Plugging this result in (A11), and substituting
(A10), we obtain

Û 0 (1 + �) = ��  � �Ĉ1 + ��: (A12)

Substituting Û 0 = ��Ĉ1 in (A12) gives (26). Plugging (26) and Û 0 = ��Ĉ1 in (A10), we
obtain (27). Since (21)-(24) are valid in each t 2 [0; T ) independently of whether T is �nite
or not, results (26)-(27) hold independently of whether the optimal switching time is �nite
or not. For future reference, notice that (26)-(27) imply a dynamic relation that must be
satis�ed by the optimal propensity to consume12:

ĉ1 (t) =  c1 (t)�
��  (1� �)

� (1 + �)� �
: (A13)

Proof of Lemma 4. Suppose that T =1. The dynamic relation (A13) is globally
unstable with a unique �xed point

�c1 =
1

 
� ��  (1� �)

� (1 + �)� �
: (A14)

By standard arguments, explosive dynamics of c1 (t) can be ruled out as they would lead to
either negative consumption or negative output in �nite time. The optimal propensity c�1 (t)
is thus equal to �c1 in each t 2 [T;1), which proves result (30). From (27) and (30), the
depletion rate � coincides with  c�1, so that R̂ = � c�1 < 0. Given a constant propensity c�1,
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output grows at the same rate as consumption, and (26) implies (31). Equation (32) follows
directly from (4). Restriction (33) and the �rst inequality in (34) guarantees c�1 > 0 in (30),
whereas c�1 < 1 requires the respect of the second inequality in (34). �
Derivation of (35). With slight abuse of notation, condition (20) can be re-written

as
�1 (T ) = �2 (T ) : (A15)

Substituting (21) and (23) in (A15), we obtain (35).
Proof of Lemma 5. The �rst step of the proof is to derive an expression for

the gap function (41). From the optimality conditions (21) and (11), we have �i Adi =
U 0 (Ci) � e��tYidi in each phase i = 1; 2. Substituting these conditions in (18) and (10), the
Hamiltonians of the two sub-problems evaluated at the switching instant T read

H1 (T ) = e��T [U (C1 (T )) + U
0 (C1 (T ))Y1 (T ) d1 (T )]� � (T )R (T ) ;

H2 (T ) = e��T [U (C2 (T )) + U
0 (C2 (T ))Y2 (T ) d2 (T )] ;

Substituting � (T )R (T ) = �U 0 (C1 (T ))C1 (T ) e
��T from (22), and using ci = 1 � di to

substitute U 0 (Ci)Yidi = �U 0 (Ci)Ci+U 0 (Ci)Yi in each phase i = 1; 2 , the above expressions
yield

H1 (T ) = e��T [U (C1)� U 0 (C1)C1 + U 0 (C1)Y1 � �U 0 (C1)C1] ; (A16)

H2 (T ) = e��T [U (C2)� U 0 (C2)C2 + U 0 (C2)Y2] ; (A17)

where all variables are evaluated at T . As shown in (35), the terminal condition for optimal
knowledge accumulation (20) requires satisfying U 0 (C1 (T ))Y1 (T ) = U 0 (C2 (T ))Y2 (T ) at
the switching instant T . Taking the di¤erence between (A16) and (A17), and substituting
(35) in the resulting expression we obtain

H1 (T )�H2 (T ) = e��T [U (C1)� U 0 (C1)C1 (1 + �)� U (C2) + U 0 (C2)C2] ; (A18)

where consumption levels are evaluated at T . Notice that expression (A18) is also valid in
the limiting case � = 1, in which preferences become logarithmic. Now assume that � di¤ers
from unity. Plugging U (Ci) =

�
C1��i � 1

�
(1� �)�1 and U 0 (Ci)Ci = C1��i in (A18), we can

re-write the gap function 
 (T ) � �H1 (T )� �H2 (T ) de�ned in (41) as


 (T ) = e��T
�

1� �

�
C1 (T )

1�� � C2 (T )
1�� � (�=�) (1� �)C1 (T )

1��� : (A19)

Expression (A19) can be written in more convenient terms as follows. Rewrite the terminal
condition (35) as

C1 (T )

C2 (T )
=

�
Y1 (T )

Y2 (T )

� 1
�

=

"
(nR (T ))�

� (mG)
N��

# 1
�

; (A20)

where the last term is obtained by substituting technologies (1)-(2). From (29) we also
know that R (T ) = S0�

�
e�T � 1

��1
. Substituting this equation in (A20), and collecting the

constant terms in � � (nS0�)�N����1 (mG)�, we obtain

C1 (T ) =C2 (T ) = �1=�
�
e�T � 1

���=�
: (A21)
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Plugging (A21) in (A19) to eliminate C1 (T ), the gap function reads


 (T ) =
�C2 (T )

1�� e��T

1� �

�
[1� (�=�) (1� �)] �(

1��
� )
�
e�T � 1

�� �(1��)
� � 1

�
: (A22)

Clearly, 
 (T ) = 0 requires that the term in curly brackets equals zero. Imposing this
condition, we have

e�T = 1 + [1� (�=�) (1� �)]
�

�(1��) �1=�: (A23)

The left hand side of (A23) is a strictly increasing function of T , whereas the right hand
side is a positive constant independent of T . As a consequence, there exists a unique value
T = T 0 satisfying the above equation. Taking the logarithms of both sides, and solving for
the switching time, we obtain

T 0 � 1

�
ln
n
1 + [1� (�=�) (1� �)]

�
�(1��) �1=�

o
; (A24)

where T 0 is �nite and strictly positive because restrictions (33)-(34) imply � > 0 and
[1� (�=�) (1� �)] > 0.13 Expression (A24) thus gives the unique switching instant T = T 0

associated with the critical condition 
 (T 0) = �H1 (T
0) � �H2 (T

0) = 0. We now prove that
T = T 0 is the maximum of V (T ) by showing that V (T ) is strictly increasing in any T < T 0

and strictly decreasing in any T > T 0. Rewrite (A22) as


 (T ) = �C2 (T )
1�� e��T �

�
f (T )� 1
1� �

�
; (A25)

where f (T ) � [1� (�=�) (1� �)] �(
1��
� )
�
e�T � 1

�� �(1��)
� . The sign of 
 (T ) is determined

by the term in square brackets in (A25). First suppose that � < 1. In this case, f (T ) is
strictly decreasing in T . Since f (T 0) = 1 by (A23), we have f (T 00) > 1 for any T 00 < T 0,
and f (T 000) < 1 for any T 000 > T 0. Given � < 1, this implies 
 (T 00) > 0 for any T 00 < T 0, and

 (T 000) < 0 for any T 000 > T 0. Now suppose that � > 1 instead. In this case, f (T ) is strictly
increasing in T , so that f (T 00) < 1 for any T 00 < T 0, and f (T 000) > 1 for any T 000 > T 0. Given
� > 1, this implies again 
 (T 00) > 0 for any T 00 < T 0, and 
 (T 000) < 0 for any T 000 > T 0.
These results imply that V (T ) is strictly concave, and that T = T 0 is the maximum of V (T ).
We can thus set T � = T 0 in (A25) to obtain (42). The proof of Lemma 5 is completed by
considering logarithmic preferences, � = 1. Going back to equation (A18), we can substitute
U (Ci) = lnCi and U 0 (Ci) = C�1i in both phases i = 1; 2 to obtain

H1 (T )�H2 (T ) = e��T
�
ln

�
C1 (T )

C2 (T )

�
� �

�
; � = 1: (A26)

The terminal condition (A21) reduces to

C1 (T ) =C2 (T ) = �
�
e�T � 1

���
; � = 1: (A27)

Plugging (A27) in (A26), and imposing H1 (T
�)�H2 (T

�) = 0, we obtain e�T
�
= 1+(�=e)1=�,

from which T � = (1=�) ln
h
1 + (�=e)1=�

i
. �
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Proof of Lemma 6. From the proof of Lemma 5, the optimal switching time T � is
characterized by 
 (T �) = 0. From (A19), setting 
 (T �) = 0 implies

C1 (T
�) =C2 (T

�) =
�
� [� � � (1� �)]�1

	 1
1�� : (A28)

Combining (A28) with the condition for optimal knowledge accumulation (A20), we have

Y1 (T
�) =Y2 (T

�) =
�
� [� � � (1� �)]�1

	 �
1�� : (A29)

Taking the ratio between (A28) and (A29), the optimal ratio between consumption propen-
sities is

c1 (T
�) =c2 (T

�) = � [� � � (1� �)]�1 : (A30)

From Lemma 1, we can use (14) to substitute c2 (T �) = c�2 in (A30), obtaining

c1 (T
�) =

1

 
� ��  (1� �)

� (1 + �)� �
: (A31)

Recalling the derivation of equations (26)-(27), the optimal path of the consumption propen-
sity in the resource-based economy must satisfy the dynamic relation (A13). Expression
(A31) implies that the optimal consumption propensity at the switching instant, c1 (T �),
must be equal to the steady-state point �c1 of (A13) - see equation (A14) above. Since
(A13) is globally unstable, the only way to satisfy (A31) is to set c1 (t) = �c1 in each instant
t 2 [0; T �). As a consequence, the optimal path is characterized by a constant propensity to
consume c�1 given by (30).

14 From (26), this implies that output and consumption grow at
the constant rate (31), and knowledge grows at the constant rate (32) in each t 2 [0; T �). Re-
calling that (27) and (A31) imply _R=R = �� = � c�1 < 0, the optimal path is well-de�ned
if and only if parameters satisfy (33)-(34). �
Proof of Proposition 7. The equations appearing in Proposition 7 are given by

(A28), (A29) and (A30), respectively. �
Derivation of (43). By de�nition, the ratio between the marginal productivities

@Y1=@R and @Y2=@G equals (@Y1=@R) = (@Y2=@G) = (�Y1G) = (Y2R). Plugging this expres-
sion in (A29) we have

@Y1 (T
�) =@R (T �)

@Y2 (T �) =@G
=

�G

R (T �)

�
� [� � � (1� �)]�1

	 �
1�� : (A32)

From (29) and (A23), we can respectively substitute R (T �) = S0�
�
e�T

� � 1
��1

and e�T
� �

1 = [1 + (�=�) (1� �)]
�

�(1��) �1=�, to obtain

@Y1 (T
�) =@R (T �)

@Y2 (T �) =@G
= �1=�

�G

S0�

�
� � � (1� �)

�

��(1��)
�(1��)

:

Substituting the de�nition of � from Lemma 5, we obtain expression (43).
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Notes
1In the context of exhaustible resources, the sustainability condition derived by Stiglitz (1974) establishes

that non-declining consumption in the long run requires the utility discount rate be not less than the rate
of resource-saving technical progress. The same condition can be shown to be valid in endogenous-growth
models where both the speed and the direction of technical progress are driven by human decisions - see
Di Maria and Valente (2008). If the natural resource is renewable, the Stiglitz (1974) condition must be
augmented by the marginal rate of resource regeneration - see Valente (2005) for a generalization of the
neoclassical framework - and can be expressed, in an endogenous-growth setting, in terms of the rate of
resource use, as shown by Aznar-Marquez and Ruiz-Tamarit (2005).

2A possible micro-foundation of (4) is that used in Barro and Sala-i-Martin (2004: Ch.6), where A is the
number of varieties of intermediate goods, and _A = �D in a model where output is linear in the number of
varieties, i.e. Y = �A. In this case, de�ning  = �� yields _A =  dA, and the economy exhibits balanced
growth in each instant. The same reasoning can be applied to model with resource extraction (Valente, 2008:
sec.4.3).

3By integration of the accumulation law (4), we have A (t) = A (T ) e d
�
2(t�T ), where d�2 � 1� c�2 implies

A (t) = A (T ) e(1=�)( ��)(t�T ). Substituting this result in C2 (t) = c�2Y2 (t) = c�2�A (t) (mG)

N1� , we

obtain equation (17) in the text.
4As shown below (cf. Lemmas 4 and 6), optimality requires a declining rate of resource over time, so that

parameters must satisfy the restriction � > 0. This result is in line with conclusions of the early literature
on capital-resource models - e.g. Dasgupta and Heal (1974).

5 The only situation in which c�1 does not have to be determined simultaneously with the optimal switching
time T = T � is the case of logarithmic preferences, � = 1. In fact, when U (Ci) = lnCi, the terminal condition
(35) implies c�1=c

�
2 = 1 independently of the switching time T . In this case, we have c

�
2 = �= from (14), and

therefore equal propensities c�1 = c�2 = �= in both phases independently of the switching time T .
6Assuming capital-resource technology of the type Y = AK1��R� with an exogenous rate of Hicks-

neutral technical progress _A=A = �, Stiglitz (1974) showed that output and consumption are asymptotically
increasing if �=� > �, where � is the resource share in production.

7Both the numerator and the denominator in (37) are strictly positive by (33)-(34).
8The social problem satis�es all the hypothesis of Theorem 1 in Makris (2001) with zero switching costs

(� = 0 in Makris�(2001) notation). The condition �H1 (T
�) = �H2 (T

�) follows directly from equation [15] in
Makris (2001: p.1939). See also Tomiyama (1985: Theorem 1).

9 Parameter values are � = 2, m = n = G = 1,  = 0:3, S0 = 1000, � = 0:25,  = 0:06, � = 0:04, � = 1,
A0 = 10. Notice that, in the logarithmic case � = 1, the indirect welfare function V (T ) can be computed in
an easy manner because, as shown in footnote 5, the optimal consumption propensity in the resource-based
economy equals c�1 = �= in each t 2 [0; T ) independently of the value of T . This implies that we have simple
closed-form solutions for the conditional consumption path ~C1 (t;T ) for any value of T , and this allows us
to obtain explicit expressions for the indirect welfare sub-functions V1 (T ) and V2 (T ).
10In the present model, the continuity of the general Hamiltonian H (t) = H1 (t) + H2 (t) in instant T �

is guaranteed by the ful�llment of the optimality conditions (20) and (40) - that is, �1 (T
�) = �2 (T

�) and
H1 (T

�) = H2 (T
�). See Tomiyama (1985) and Seierstad and Sydsaeter (1987) on this point.

11As shown in the Appendix - see equation (A26) - the optimal switching time is characterized by the
condition ln (C1 (T �) =C2 (T �)) = �.
12Substituting Ĉ1 = ĉ1+ Ŷ1 = ĉ1+Â+�R̂ = ĉ1+ (1� c1)+�R̂ in (26), and plugging (27) in the resulting

expression, we obtain (A13).
13In Lemma 4, the restrictions (33)-(34) are associated with an in�nite switching time T =1. However, as

shown in Lemma 6, if we set the switching instant equal to T = T 0, the resource-based economy exhibits the
same properties listed in Lemma 4: the optimal propensity to consume equals (30), output and consumption
grow at the constant rate (31), knowledge grows at the constant rate (32) in each t 2 [0; T 0), and the optimal
path is well-de�ned if and only if parameters satisfy (33)-(34).
14The result that c1 coincides with optimal propensity c�1 obtained for the case T = 1 in Lemma 4 may

suggest conjecturing that c�1 equals �c1 in each period independently of the value of switching time T . This

23



conjecture is wrong: it can be shown that, when the elasticity of intertemporal substitution di¤ers from
unity, � 6= 1, we have c�1 = �c1 for T =1, c�1 = �c1 for T = T �, but c�1 6= �c1 for other �nite values of T 6= T �.
The only case in which the optimal propensity in phase 1 is independent of the switching time T arises when
preferences are logarithmic: as shown in footnote 5, setting � = 1 implies c�1 = c�2 = �= independently of
the switching time T .
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Figure 1: A numerical example of indirect welfare function and optimal switching time.
The left graph depicts the welfare-timing relationship V (T ) = V1 (T ) + V2 (T ). The optimal
switching time T � corresponds to the horizontal intercept of the gap function 
 (T ), depicted
in the right graph.
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Figure 2: Optimal paths of output, consumption and consumption propensities for the two
cases � = 0:8 and � = 1:2. See Table 1 for details, and footnote 9 for the list of parameter
values.
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