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Abstract

Several contributions have recently reconsidered the role of the time to build assumption
in explaining some relevant stylized facts. In this paper, the similarities and differences
which may emerge when the time to build structure of capital is introduced in a continuous
or discrete time framework are studied and enlightened. The most striking difference lies
in the dimensionality of the two frameworks, which is always finite in discrete but infinite
in continuous time. Then, the deterministic version of the traditional time to build model
developed by Kydland and Prescott is presented, and it is shown how the typical time to
build model setup in continuous time can be obtained. Moreover, the richest dynamics in
continuous time is investigated and, more importantly, it is shown that the predictions in
terms of capital, output, and consumption behavior are not significantly different from its
discrete version once the economy is calibrated properly.
Keywords: Discrete and continuous time; time-to-build, mixed functional differential equa-
tions.
JEL Classification: E00, E30, O40.

1 Introduction

Several contributions have recently reconsidered the role of the time to build assumption in
explaining some relevant stylized facts. In a real business cycle framework, for example, Casares
[12] shows how the introduction of multiple types of capital, each of them with different time to
build structure, can reproduce the responses of the main variables of the economy to a monetary
policy shock. Gomme et al. [17] are able to solve two typical puzzles rising in household
production models through the introduction of a time to build structure of capital. Again, time
to build is critical in Edge [14] to generate empirically plausible liquidity effect in a sticky price
monetary business cycle model.

Also in the economic growth literature, the time to build hypothesis has relevant implications
as shown by Bambi [4], and earlier by Asea and Zak [2]. It has been shown indeed that the
presence of gestation lag may induce (deterministic) cycles through a Hopf bifurcation both
in exogenous and endogenous growth models. Moreover, some empirical evidences, like the
negative correlation between mean output growth and output growth volatility, are explained
quite well even through a very simple AK model.
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However, the time to build structure of capital is introduced in the real business cycle and
in the economic growth literature in different ways. This is probably due to the different choices
of time characterizing them. Gestation lag in investment is the key that Kalecki [20] uses to
open the door of continuous time models to time to build. On the other hand, Kydland and
Prescott [23] suggest multi-period investment projects as the main way to introduce time to
build in a discrete time framework. Time to build is also introduced for different purposes:
it is a nonstandard source of aggregate fluctuation in growth theory, while a way to enhance
the persistence of the cycle (in a similar way as adjustment cost) in the Kydland and Prescott
contribution. Observe that the word “time to build” is used to describe two concepts so different
that Kydland and Prescott never refer or quote the Kalecki’s contribution in their paper.

This difference is even more magnified when we look at the mathematics behind the two
frameworks. In continuous time, the capital accumulation equation is a delay differential equa-
tion while the intertemporal consumers choices are described by a Euler - type equation which
is an advanced differential equation. Then, the dimensionality of the problem is always infinite,
independently by the specification of the time to build parameter. On the other hand, the
dimensionality of the model in discrete time is exactly equal to twice the value of the time to
build parameter, which is in any case finite. As a consequence, the optimal equilibrium path of
the aggregate variables in the two frameworks have different functional forms.

This paper proposes a unified approach to models with time to build in production. Several
striking connections emerge by a parallel comparison of these two worlds. In particular, the pure
investment lag in production model developed by Kydland and Prescott [23] has a continuous
time representation, which is exactly the baseline model studied in Asea and Zak [2], and in
Bambi [4]. Then, a clear relation between gestation lag and multi-period investment projects is
detected.

Once proved this connection, the deterministic versions of both models are studied and
the implications of the time to build assumption on the short run and long run equilibrium
properties of the economy are fully developed. It emerges that the most relevant difference is in
the transitional dynamics since a Hopf bifurcation may rise in the continuous time framework
while it has a zero probability measure to appear in a discrete time world. Keeping in mind this
difference, it is shown that capital, output and consumption don’t display neither qualitative nor
relevant quantitative differences in the two contexts, once the economy is properly calibrated.
Then this paper suggests that in absence of any kind of market distortions and independently
by the different dimensionality of the two problems, it exists a clear connection between time to
build model in discrete time and continuous time very similar to that one identified by Turnovsky
[31] in models without time to build.

The paper is organized as follows. Section 2 describes the time-to-build economy as suggested
by Kydland and Prescott [23]. In section 3 we prove the connection between the pure investment
lag economy in discrete time and the time to build and gestation lag in production in continuous
time. Section 4 propose a steady state analysis, Section 5 compares the two framework in term
of their transitional dynamics while in Section 6 the economy dynamics is presented once the
parameters are calibrated. Section 7 concludes.
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2 Baseline model

The model presented here is the purely deterministic version of the Kydland and Prescott [23]
model. The time to build hypothesis is introduced by considering various investment technolo-
gies, which differ in the amount of time they take to build the capital good.

Thus, the representative agent seeks to maximize his lifetime utility:

U =
∞∑

t=0

βtu(Ct, Lt) (1)

subject to the technology constraint and the information structure

Yt = AF (Kt, Nt) (2)

Yt = Ct + It (3)

Sj,t+1 = Sj+1,t (4)

It =
J∑

j=1

bjSj,t (5)

Kt+1 = (1− δK)Kt + S1,t (6)

u(.) and F (.) are concave, increasing, and twice continuously differentiable functions of con-
sumption, Ct and leisure Lt, and capital Kt and labor input Nt, respectively. β ∈ (0, 1) is the
utility discount factor, while δ ∈ (0, 1) the depreciation rate of capital. Moreover,

∑J
j=1 bj = 1,

and the initial conditions are K0 and Sj,0 with j = 1, ..., J − 1. After observing that

It =
J∑

j=1

bjSj,t =
J∑

j=1

bjS1,t+j−1 =
J∑

j=1

bj [Kt+j − (1− δK)Kt+j−1] (7)

it is possible to sum up all the constraints in one, and rewriting the optimization problem

max
∞∑

t=0

βtu(Ct, Lt) (8)

subject to

J∑

j=1

bj [Kt+j − (1− δK)Kt+j−1] = AF (Kt, Lt)− Ct (9)

K0, ..., KJ−1 ≥ 0 given (10)

After doing that, we can construct the Lagrangian

L =
∞∑

t=0

βt


u(Ct, Lt) + µt


AF (Kt, Lt)−

J∑

j=1

bj [Kt+j − (1− δK)Kt+j−1]− Ct





 (11)

with λt = βtµt, Lagrangian multipliers. Taking the first order conditions respect to Ct, Lt, and
Kt+J , and after some algebra (look at the Appendix for derivations), we get an intra-temporal
substitution condition between consumption and labor

uL(Ct, Lt)
uC(Ct, Lt)

= AFL(Kt, Lt) (12)
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and a forward looking Euler-type equation

uC(Ct, Lt)

uC(Ct+J , Lt+J)
=

βJ

bJ

[
AFK(Kt+J , Lt+J) + b1(1− δK)−

J−1∑
j=1

[bj − bj+1(1− δK)]
uC(Ct+J−j , Lt+J−j)

βjuC(Ct+J , Lt+J)

]
(13)

Investment projects are usually designed in two alternative ways: a pure investment lag
in production or a design proposed by Kydland and Prescott, according to which the fraction
of resources, bj , allocated to the investment project are the same at each stage. These two
experiments are summed up in the following conditions:

Condition 1 Pure investment lag in the investment process implies that bj = 0 for any j 6= J

and, without loss of generality, bJ = 1.

Then following Condition 1, equations (9) and (13) become:

Kt+J = AF (Kt, Lt) + (1− δK)Kt+J−1 − Ct (14)
uC(Ct, Lt)

uC(Ct+J , Lt+J)
= βJ

[
AFK(Kt+J , Lt+J) + (1− δK)

uC(Ct+1, Lt+1)
βJ−1uC(Ct+J , Lt+J)

]
(15)

On the other hand Condition 2 states that

Condition 2 Kydland and Prescott investment project implies that bj = 1
J for any j 6= J .

In this case we can rewrite equations (9) and (13) as:

Kt+J = AJF (Kt, Lt) + Kt −
J−1∑

j=0

δKKt+j − JCt (16)

uC(Ct, Lt)
uC(Ct+J , Lt+J)

= βJ


AJFK(Kt+J , Lt+J) + 1− δ

J−1∑

j=0

uC(Ct+J−j , Lt+J−j)
βjuC(Ct+J , Lt+J)


 (17)

In the following section we will focus on the relation between the discrete and continuous time
specification for the case of pure investment lag in production.

3 Pure investment lag in production

We focus our analysis on the case of pure investment lag in production. Before proceeding with
the analysis of the steady state and of the dynamics we present in the following proposition the
continuous time version of the model.

Proposition 1 The continuous time problem which corresponds to the discrete time Kydland
and Prescott model with pure investment lag in production is

max
∫ ∞

0
U(C(t), L(t))e−ρtdt (18)

subject to
K̇(t + J) = AF (K(t), L(t))− δK(t + J)− C(t) (19)

given the initial condition K (t) = K0 (t) for t ∈ [0, J ].
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Proof. Consider Kydland and Prescott version of the model when the period length is h.

max
∞∑
s=t

(
1

1 + ρh

) s−t
h

U(Cs, Ls)

subject to
Kt+J −Kt+J−h = AhF (Kt, Lt)− δhKt+J−h − hCt

where changes in productivity, production and depreciation are proportionated to period length,
as suggested in Obstfeld and Rogoff [26], while the investment project is now described by the
relations Sj,t+h = Sj+h,t, and It = SJ,t. Moreover if h = 1, and β = 1

1+ρ we come back to the
original setting of Kydland and Prescott.

Observe now that dividing both sides of the resources constraint by h and taking the limit
for h → 0, we obtain exactly the continuous time resource constraint described in equation (19).
It is worth noting that the time to build structure is preserved by this operation only when
the length of period h is reduced but let the frequency of time (quarters, years, etc.) invariant.
More precisely suppose a quarterly frequency of time, then h has to be chosen as a smaller and
smaller fraction of a quarter.1

The Euler equation of the discrete problem with period length, h, is

uC(Ct, Lt) =

(
1

1 + ρh

)
(1 + δh)uC(Ct+h, Lt+h) +

(
1

1 + ρh

) J
h

uC(Ct+J , Lt+J)AF (Kt+J , Lt+J) (20)

which again remains coherent with Kydland and Prescott specification for h = 1. On the other
hand, if we rearrange the terms and take the limit of h → 0 we have that:

lim
h→0

uC(Ct+h, Lt+h)− uC(Ct, Lt)

h
= lim

h→0
uC(Ct+h, Lt+h)


 ρ

1 + ρh
+

δ

1 + ρh
−

(
1

1 + ρh

) J
h uC(Ct+J , Lt+J )

uC(Ct+h, Lt+h)
AF (Kt+J , Lt+J )


 (21)

Now using the chain rule on the left hand side of the equation, taking into account the limit

properties, and remembering that
[
limh→0(1 + ρh)

1
h

]−J
= e−Jρ, we obtain the continuous time

version of the Euler equation

Ċ(t)

C(t)
= − UC(C(t), L(t))

UCC(C(t), L(t))C(t)

[
UC(C(t + J), L(t + J))

UC(C(t), L(t))
AFK(K(t + J), L(t + J))e−ρJ − δ − ρ

]
(22)

This is exactly the Euler equation of the continuous time problem (18), (19). In fact, as shown
by Kolmanovskii and Myshkis [21], the Hamiltonian associated to (18), (19) is

H(t) = U(C(t), L(t))e−ρt + λ(t) [AF (K(t− J), L(t− J))− δK(t)− C(t− J)] ,

with first order conditions:

UC(C(t), L(t))e−ρt = λ(t + J) (23)

λ(t + J)AFK(K(t), L(t)) = −λ̇(t) + δλ(t) (24)

from which the Euler equation (22) can be easily derived taking into account that λ̇(t+J)
λ(t+J) =

UCC(C(t),L(t))Ċ(t)
UC(C(t),L(t)) − ρ, and λ(t+J)

λ(t) = UC(C(t),L(t))
UC(C(t−J),L(t−J))e

−ρJ .

1Suppose that the reduction of the time length is not frequency invariant and we have multiple types of capital

with different time to build parameters as in Casares [12]. In this case when h goes to zero all the delays go to

infinity and the difference among capitals disappears.
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It is also worth noting that the Kydland and Prescott model with period length h, contains
all the developed specifications of time to build. In fact when h shrinks to zero, the stock of
capital becomes

K(t) =
∫ t+J

−∞
I(s)eδ(s−t−J)ds

which is exactly the same relation used in Asea and Zak [2], and Bambi [4]. On the other hand,
gestation lags as defined by Kalecki [20], can be easily exploited by calling I(t) = K̇(t + J) −
δK(t + J). 2

4 Steady state analysis

In this section we deal with the properties of the long run equilibrium both in the continuous
and in the discrete time setup.

Proposition 2 The time to build structure affects the steady state level of consumption and
capital in the same way, independently by the choice of time.

Proof. We start with the discrete time case. In equilibrium we have that equations (14), and
(15) becomes

K∗ = AF (K∗, L∗) + (1− δ)K∗ − C∗ (25)

1 = βJAFK(K∗, L∗) + β(1− δ) (26)

and by applying implicit function theorem on (26) we observe that

∂K∗

∂J
= − log(β)FK(K∗, L∗)

FKK(K∗, L∗)
< 0 (27)

where the inequality follows by the usual assumption on positive but diminishing marginal
product of each factor. Moreover by observing that ∂C∗

∂J = ∂C∗
∂K∗ · ∂K∗

∂J it follows that there
exists a negative relation between the time to build parameter and the steady state level of
consumption and capital.

Now let’s consider the capital accumulation equation and the Euler equation in the contin-
uous time setup. The following relations hold in equilibrium:

AF (K∗, L∗)− δK∗ − C∗ = 0 (28)

− UC(C∗, L∗)
UCC(C∗, L∗)C∗

[
AFK(K∗, L∗)e−ρJ − δ − ρ

]
= 0 (29)

and by applying implicit function theorem we get

∂K∗

∂J
= −−ρFK(K∗, L∗)

FKK(K∗, L∗)
< 0 (30)

For the same considerations used in the discrete case, consumption in steady state reacts nega-
tively to positive variation of the delay parameter.

Then this proposition shows that an increase in the time to build parameter, J , influences
the long run equilibrium of the economy negatively, by increasing the time needed to produce
output. Moreover this negative influence is independent by the choice of time.

2More precisely, Kalecki’s “gestation period” of any investment starts with the investment orders, I(t − J)

and finishes with the deliveries of finished industrial equipments, L(t). Finally in Kalecki’s terminology K′(t) =

L(t)− U where U indicates the demand for restoration of equipments used up per unit of time.
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5 Transitional Dynamics

In this section we deal with the transitional dynamics of the economy in the two frameworks: the
continuous and the discrete one. In particular we focus first on a particular form of the model,
namely the Hansen model [19], with indivisible labor supply, then we come back to the original
Kydland and Prescott model. One of the reasons of this choice is the easier analytical tractability
in the continuous time case of the Hansen model, since the system of equations describing the
economy is now recursively solvable. A second, that this model is very well known and it is
considered by many the model to beat for its simplicity and its power in explaining relevant
stylized facts of the business cycle. In both models we assume a Cobb-Douglas production
function and separable utility in consumption and leisure, U(C(t), N(t)) = log C(t)+B 1−N(t)1−χ

1−χ .
Hansen’s specification requires χ = 0.

5.1 Dynamics in continuous time

The system of equations describing the local dynamics of the economy around the steady state
can be derived by linearizing the first order conditions near the steady state and solving the
associated linearized system. Following this procedure we arrive to a system of linear mixed
functional differential equations in log K(t) = k(t), and log C(t) = c(t):

k̇(t) =
(χ− 1)(δ + ρ)

b + χ− 1
eρJk(t− J)− δk(t)−

[
δ + ρ

a
eρJ

(
χ− 1

b + χ− 1

)
− δ

]
c(t− J) (31)

ċ(t) = (δ + ρ)c(t)− (δ + ρ)(χ− 1)
b + χ− 1

c(t + J)− (ρ + δ)bχ
b + χ− 1

k(t + J) (32)

where we have used small letters to indicate variables in log term.

Proposition 3 The continuous time version of the Hansen model with time to build has a
local dynamics characterized by unique oscillatory convergence of capital and unique monotonic
convergence of consumption when J ∈

(
0, 3aπ

2(δ+ρ)e
−ρJ

)
.

Proof. The spectrum of roots of the system is given by the union of the spectrum of roots of
(31), and (32) which are described respectively by their characteristic equations:

hk(λ) = λ− δ + ρ

a
eρJe−λJ + δ = 0 (33)

hc(z) = z +
δ + ρ

a
ezJ − δ − ρ = 0 (34)

From the D-Subdivision method (see Appendix), the sufficient condition for hc(z) to have one
negative real root and all the other complex conjugates and with positive real part is J ∈(
0, 3πa

2(δ+ρ)

)
.

Using the finite Laplace transform method developed in Belmann and Cooke ([6], pp 197-
205), it is possible to write any solution of (32) as

c(t) = lim
`→∞

∑

zm∈C`

amezmt (35)

where the contour C`, with ` = 1, 2, . . ., cuts the negative and positive imaginary axis to the point
−y`, and y`, respectively. Moreover am is the residue of the root zm and depends on the boundary
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(initial) condition of consumption. Then the general convergent solution of consumption can be
obtained by ruling out all the roots with positive real part, imposing azm = 0 ∀m 6= m̃, and
then rewriting (35) as

c(t) = am̃ez̃t (36)

with z̃ the negative real root of hc(z).
On the other hand, the spectrum of hk(λ) is characterized by one positive real root and all

the other complex conjugates and with negative real part when J ∈
(
0, 3πa

2(δ+ρ)e
−ρJ

)
.

The general solution of capital (Belmann and Cooke [6], and Bambi [4]) is

k(t) =
∑

v

nve
λvt −

∫ t

0
c(s)

∑
v

eλv(t−s)

h′λv

ds (37)

=
∑

v

nve
λvt −

∫ t

0
am̃ez̃s

∑
v

eλv(t−s)

h′λv

ds (38)

=
∑

v
(nv + Pm̃,v)eλvt −

∑
v
Pm̃,ve

z̃t (39)

where Pm̃,v = am̃
(z̃−λv)h′(λv) . Moreover capital convergence requires that am̃ = â with

â = (z̃ − λṽ)h′(λṽ)nṽ (40)

which is the only condition to rule out the divergent root coming from hk(z) and to make the
transversality condition hold. Then, the real unique oscillatory equilibrium path of capital is
(see Appendix):

k(t) =


nṽ − 2

∑

v 6=ṽ

âΦ1,v


 ezṽt + 2

∑

v 6=ṽ

[(ςv + âΦ1,v) cos yvt− (ωv + âΦ2,v) sin yvt] exvt (41)

where λv = xv + iyv, nv = ςv + iωv, and Φ1,v and Φ2,v are constants.
Moreover, it is also worth noting that a Hopf bifurcation emerges when J = J∗ = 3πa

2(δ+ρ)e
−ρJ∗

since two conjugate complex roots of the characteristic equation hk(λ) cross the imaginary axis.
The local determinacy of the equilibrium is still preserved by the unique specification of the
residue â.

Finally the continuous time specification even with the discrete component represented by the
delay, leaves the results of the Proposition above, invariable to different frequency of calibration.
Following Aaland and Huang (JEDC 2004), we have indeed verified how changing the frequency
of calibration doesn’t affect significantly the ratio J

J∗ .
The Gary Hansen model is completely studied under the time to build assumption. We

introduce now the following proposition which described the transitional dynamics when the
indivisible labor supply assumption is relaxed.

Proposition 4 The continuous time version of the Kydland and Prescott model has a local
dynamics characterized by unique oscillatory convergence of capital and consumption when J ∈
(0, J∗)

Proof. The local stability properties of the economy remain the same for continuous variation
of the parameters in the Jacobian matrix as underlined by Rustichini [29]. This implies that
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by increasing continuously the inverse of the elasticity of labor supply, χ, the uniqueness of the
optimal equilibrium path of consumption and capital is guaranteed. However, χ 6= 0 implies
that the Jacobian matrix is no more lower triangular and as shown in the Appendix, the optimal
solution path now writes

k(t) =
∑

zr∈C−`

bzre
zrt (42)

c(t) =
1

η12

∑

zr∈C−`

bzr

[
zr − η11e

−zrJ
]
ezrt (43)

with η11 =
[
aA 1−χ

a−χ − δ
]
e−zrJ and η12 = A 1−χ

χ−a + δ, while all the other zr ∈ C+
` are ruled out

by the transversality condition. This implies an oscillatory convergence for both capital and
consumption as appears clear from the trigonometric form of (42), and (43):

k(t) = ςr̃e
xr̃t + 2

∑

r 6=r̃

(ςr cos yrt− ωr sin yrt)exrt (44)

c(t) =
1

η12
ςr̃

(
xr̃ − η11e

−xr̃J
)
exr̃t +

2
η12

∑

r 6=r̃

(Φ1 cos yrt− Φ2 sin yrt)exrt (45)

where Φ1 = ςrxr−ωryr−η11(ςr cos yrJ+ωr sin yrJ)e−xrJ and Φ2 = (ςryr+ωrxr)+η11(ςr sin yrJ−
ωr cos yrJ)e−xrJ .

5.2 Dynamics in discrete time

Now we focus on the discrete time version of the model. Here it is more difficult to give a general
statement on the behavior of the dynamics of the economy since the choice of J determines the
dimensionality of the problem itself.3 The local dynamics can be deduced by a non naive
linear quadratic approximation as originally developed by Fleming [15], and recently revised by
Benigno and Woodford [7], or by linearizing the first order conditions near the steady state and
solving the associated linearized system. In both cases the economy is described by the following
system of linear difference equations:

ct+J =
β(1− δ)(b + χ− 1)
[1− β(1− δ)](1− χ)

ct+1 − b + χ− 1
[1− β(1− δ)](1− χ)

ct +
bχ

1− χ
kt+J (46)

kt+J = (1− δ)kt+J−1 − [1− β(1− δ)](1− χ)
(b + χ− 1)βJ

kt +
(

[1− β(1− δ)](1− χ)
a(b + χ− 1)βJ

+ δ

)
ct (47)

We proceed now to study the stability properties of the economy. Since the Grandmont &
al., [18], geometrical method for investigating the stability of a dynamical system cannot be
applied when the dimension is higher than two, we introduce the following condition.

Condition 3 The Blanchard-Kahn condition [9] is always respected when J ∈ [1, J∗]. Moreover
the characteristic equation of consumption has only one root inside the unit circle when the
system is recursively solvable and J is in the previously specified interval.

3More precisely a time to build J implies a linearized capital accumulation equation and a linearized Euler

equation described by two linear difference equations of order J .
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This condition guarantees the uniqueness of the optimal equilibrium path, since the number
of roots outside the unit circle is equal to the number of predetermined variables. As we will
see in the numerical simulation part, this condition is always met for any plausible value of the
parameters.

Proposition 5 Given Condition 3, the discrete time version of the Gary Hansen model with
time to build has a local dynamics characterized by unique oscillatory convergence of capital and
unique not oscillatory convergence of consumption when J ∈ [3, J∗], while unique not oscillatory
convergence in consumption and capital when J ∈ [1, 2].

Proof. When labor supply is assumed indivisible, the system can be solved recursively as in
the continuous time case. Then we can consider the characteristic equations of (46), and (47)
which write respectively

hc(z) ≡ zJ +
aβ(1− δ)

1− β(1− δ)
z − a

1− β(1− δ)
= 0 (48)

hk(λ) ≡ λJ − (1− δ)λJ−1 − 1− β(1− δ)
aβJ

= 0 (49)

with the properties that hc(0) < 0 and hk(0) < 0 since β < 1
1−δ given that β < 1 and δ ∈ (0, 1);

limz→±∞ hc(z) = +∞ and limλ→±∞ hk(λ) = +∞ when J is even, while limz→±∞ hc(z) = ±∞
and limλ→±∞ hk(λ) = ±∞ when J is odd.

When J = 2 the first two properties are sufficient to guarantee the presence of four real roots,
precisely one negative and one positive raising from each characteristic equation, and then the
optimal equilibrium path is not oscillatory and, for condition 3, also unique.

When J > 2, other two properties have to be considered. First, hc(z) has no critical point
if J is odd, but a negative one, z∗, if J is even and in this case z∗ is a local minimum. Second,
hk(λ) has two critical points λ∗1 = 0 and λ∗2 > 0, which are respectively a flex and a local
minimum, when J is even; and a local maximum and a local minimum,when J is odd.

Taking into account all these properties, it follows immediately that for J even hc(z) has one
real root inside the unit circle and all the others (one real and J − 2 complex and conjugate)
outside it. On the other hand for J odd, hc(z) has one real root inside the unit circle and all
the others J − 1 complex and conjugate outside it.

The general solution of consumption can be derived by the linearized Euler equation:

ct =
J∑

j=1

ajz
t
j with t > J (50)

where the aj are constants whose values depends on the initial condition of consumption {ct}J
t=0

which can be arbitrarily chosen. Taking into account Condition 3, consumption convergence
over time is possible if and only if {aj}J

j=2 = 0. But then from the method of the undetermined
coefficients, it follows immediately that the solution of consumption becomes

ct = c0z
t
1 with t > J (51)

and then no oscillatory behavior in consumption may rise. Moreover taking into account the
solution of consumption we may rewrite the linearized capital accumulation equation as a non-
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homogeneous J order difference equation in capital:

kt+J = (1− δ)kt+J−1 +
1− β(1− δ)

aβJ
kt −

(
1− β(1− δ)

a2βJ
− δ

)
c0z

t
1 (52)

It follows that the general solution of (52) is kt = khom. + kp, namely

kt =
J∑

j=1

bjλ
t
j + c0Ψzt

1 with t > J (53)

with Ψ =
1−β(1−δ)

a2βJ −δ

zJ
1−(1−δ)zJ−1

1 − 1−β(1−δ)

aβJ

. Suppose now that J is odd, which implies only one real root of

hk(z), which for Condition 3 has to be outside the unit circle. Applying De Moivre’s theorem
on the complex roots, we can write

kt = b1λ
t
1 +

J−1
2∑

j=1

rt
2j [(b2j + b2j+1) cos tw2j + i(b2j − b2j+1) sin tw2j ] + c0Ψzt

1 with t > J (54)

In order to guarantee a real path of capital, the coefficients have to be complex and conjugate,
namely b2j = x2j +iy2j , and b2j+1 = b̄2j for every j. Then the general solution of capital rewrites

kt = b1λ
t
1 + 2

J−1
2∑

j=1

rt
2j [x2j cos tw2j − y2j sin tw2j ] + c0Ψzt

1 with t > J (55)

Finally, the optimal general solution of capital can be obtained by ruling out the explosive root
λ1 by imposing b1 = 0, and then using the method of the undetermined coefficients together
with the initial condition of capital k0 = k1 = . . . = kJ = k̄ in order to find the J coefficients

({x2j , y2j}
J−1

2
j=1 , c0). Then the unique competitive equilibrium of the economy when t > J and J

is odd, writes

ct = c̃0z
t
1 (56)

kt = 2

J−1
2∑

j=1

rt
2j [x̃2j cos tw2j − ỹ2j sin tw2j ] + c̃0Ψzt

1 (57)

where the terms in tilde are found through the method of the undetermined coefficients. More-
over in the case of J even the optimal general solution of capital becomes

kt = b̃Jλt
J + 2

J
2
−1∑

j=1

rt
2j [x̃2j cos tw2j − ỹ2j sin tw2j ] + c̃0Ψzt

1 (58)

Hence, it is clear that consumption converges to its steady state always monotonically while
oscillation in the capital equilibrium path rises for J > 2.

Once we move to the divisible labor supply case, and assuming Condition 3 still satisfied,
the optimal equilibrium path of both capital and consumption is oscillatory as extensively doc-
umented by Rouwenhorst [28].
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6 Quantitative Comparison after Calibration

The parameters in these simulations are chosen in line with Kydland and Prescott quarterly
calibration. In particular the capital’s share in production, a, is set to 0.36, the depreciation
rate of capital to 10 per cent per year while an inverse labor elasticity close to zero (Hansen
model). Finally β is chosen to yield a return on capital of 6.5 percent per year. This means
a rate of intertemporal preference ρ ≈ 0.01 when J = 4. This calibration of the time to build
parameter is in line with Kydland and Prescott [23], but also with Rouwenhorst [28], and more
recently with Casares [12]. The empirical contributions of Montgomery [25], and Brooks [11],
estimates a time to build between 4-6 and 8 quarters, respectively.
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Figure 1: Optimal Equilibrium Path of Capital and Consumption.

Once calibrated the economy, the eigenvalues of the two characteristic equations, hc(z), and
hk(λ) have been computed through a polynomial roots finder algorithm in the discrete time case,
and their moduli reported in the Appendix, table 1. It is worth noting that the requirements
in Condition 3 are always met when the delay parameter is less than two years. On the other
hand, it has also been observed that by increasing it further, local instability may rise even in
the discrete time framework. In particular for J = 36 the characteristic equation of capital have
three roots outside the unit circle. A similar change in stability happens in the continuous time
case, for J = 35.36, which is the critical value of the delay parameter for an Hopf bifurcation.

Computation of the roots in the case of continuous time has been done using Lambert
function since a polynomial roots finder cannot be used here, given the transcendental nature
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of the characteristic equations.4

Once the spectrum of roots has been estimated, we have studied the optimal equilibrium path
of capital and consumption in both the frameworks taking into account the results in Proposition
3 and 4. In Figure 1 the results are reported for the choice of J = 4. As it appears clear the
dynamics behavior of these variables doesn’t display significantly relevant differences. In both
cases, the dominant real root hides the oscillatory components. Volatility around the dominant
root has been also studied by measuring the capital standard deviation in the first 3J periods,
both in the continuous and the discrete case. It has been found that σcont.

k > σdiscr.
k , and that

the detrended capital dynamics oscillate around its steady state value with variation between
1.27% and −2.55% in the continuous case while between 0.5% and −0.2% in the discrete time
case. Very similar results have been found for the other values of the delay parameter suggested
by Montgomery [25], and Brooks [11].

7 Conclusion

Time to build is a concept which has attracted a renewed interest among economists in these
years. Models in continuous and discrete time have been built up and have succeeded in ex-
plaining several interesting stylized facts. However no clear connection among these two types of
models has been detected before. This paper has filled this gap by enlightening the similarities
among these two apparently different worlds. More precisely, it has been proved the passage
from a traditional Kydland and Prescott model to its continuous time version, whose baseline
structure is exactly the same used by Kalecki [20] and more recently by Asea and Zak [2], and
Bambi [4]. Finally a qualitative and quantitative analysis has shown that the choice of time
and then the difference in the dimensionality induced by this choice, doesn’t induce any relevant
distinction in term of long run and short run dynamics in time to build models when no market
imperfection is considered. Relaxing this last assumption is left as future research.

Appendix

First order conditions

uC(Ct, Lt) = µt (59)

uL(Ct, Lt) = µtAFL(Kt, Lt) (60)

µt+JAFK(Kt+J , Lt+J) =
J∑

j=1

bjβ
−jEJ−jµt [1− (1− δK)Eβ] (61)

where E indicates the shift operator. It is worth noting that these FOC are exactly equals to
the standard one when we assume no time lag in the investment process (J = 1, bJ = 1). In

4More details on Lambert function can be found in Asl and Ulsoy [3]. In this context, we have computed the

first m = 16 branches and from them the corresponding roots. A higher number of computed branches doesn’t

induce relevant differences in the results.
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order to derive a Euler-type equation we rewrite (61), in the following way:

µt+J [AFK(Kt+J , Lt+J) + b1(1− δK)]− µtbJβ−J −
J−1∑

j=1

[bj − bj+1(1− δK)]EJ−jµtβ
−j = 0 (62)

where the sum is well defined for J > 1 but zero otherwise.

Spectrum of Roots - Continuous Time

In this part of the appendix, we give some details on how to locate the roots of the characteristic
equation hc(z), and hk(λ). Let start with

hc(−w) ≡ w − δ + ρ

a
e−wJ + δ + ρ = 0 (63)

By the D-Subdivision method (look at Bambi [4], Figure 1), only one positive real root exists
when − δ+ρ

a < 0;
∣∣∣− δ+ρ

a

∣∣∣ > δ + ρ; − δ+ρ
a ∈ (− 3π

2J , 0
)
.

The first two requirements are met since δ ∈ (0, 1), ρ > 0, and a ∈ (0, 1). The last re-
quirement is satisfied if and only if J < 3πa

2(δ+ρ) . Following the same procedure we can show the
spectrum properties of hk(λ).

How to arrive at the solution of capital (41)

After imposing am̃ = â, the solution of capital writes

k(t) =
∑

v 6=ṽ
(nv + Pv)eλvt −

∑
v
Pve

z̃t (64)

where as shown in Bellman and Cooke [6] the residues are

nv =
k̄ + k̄(λv + δ)

∫ 0
−J e−λvsds

1 + JΛe−λvJ
=

k̄
[
1 + (λv + δ)

(
− 1

λv

)
(1− eλvJ)

]

1 + JΛe−λvJ
(65)

with k(t) = k̄ ∈ R+ in t ∈ [−J, 0], and Λ = δ+ρ
a eρJ .

Now let’s call ςv = Re(nv), ωv = Im(nv), λ = x + iy and λ̄ its conjugate, we rewrite

∑
v

Pv = −nṽ + â
∑

v 6=ṽ

(
1

(z̃ − λv)h′(λv)
+

1
(z̃ − λ̄v)h′(λ̄v)

)
(66)

which, after some algebra and taking into account the relation λ̄e−λ̄J + λe−λJ = 2[x cos yJ +
y sin yJ ]e−xJ , becomes ∑

v

Pv = −nṽ + 2â
∑

v 6=ṽ

Φ1,v (67)

with

Φ1,v =
(z̃ − xv)(1 + JΓe−xvJ cos yvJ)− JΓyve

−xvJ sin yvJ

(z̃2 − 2z̃xv + x2
v + y2

v)(1 + J2Γ2e−2Jxv + 2JΓe−xvJ cos yvJ)
(68)

Now let’s study the second piece of the solution of capital, namely
∑

v 6=ṽ

(nv + Pv)eλvt =
∑

v 6=ṽ

(
nve

λvt + n̄ve
λ̄vt

)
+

∑

v 6=ṽ

(
Pve

λvt + P̄ve
λ̄vt

)
(69)

= 2
∑

v 6=ṽ

[ςv cos yvt + ωv sin yvt] e−xvt +
∑

v 6=ṽ

(
Pve

λvt + P̄ve
λ̄vt

)
(70)
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which after some algebra and taking into account the trigonometric relations cos(a + b) =
cos a cos b− sin a sin b and sin(a + b) = sin a cos b + cos a sin b becomes

∑

v 6=ṽ

(nv + Pv)eλvt = 2
∑

v 6=ṽ

[(ςv + âΦ1,v) cos yvt− (ωv + âΦ2,v) sin yvt] exvt (71)

where

Φ2,v =
yv + JΓe−xvJ [(z̃ − xv) sin yvJ + yv cos yvJ ]

(z̃2 − 2z̃xv + x2
v + y2

v)(1 + J2Γ2e−2Jxv + 2JΓe−xvJ cos yvJ)
(72)

Optimal path of capital and consumption when divisible labor supply

The linearized system of mixed functional equations in capital and consumption is

k̇(t) = η11k(t− τ) + η12c(t) (73)

ċ(t) = ρc(t)− η22c(t + τ) + η21k(t). (74)

After some algebra, it is possible to rewrite the equations (73) and (74) as a second order mixed
functional differential equation in capital

k̈(t− τ)− η11k̇(t− 2τ)+ η22k̇(t)− ρk̇(t− τ)+ ρη11k(t− 2τ)− (η11η22 + η12η21)k(t− τ) = 0 (75)

with boundary conditions k(t) = ξ(t) and k̇(t) = η11ξ(t)− η12ζ(t) in t ∈ [−2τ, 0].5

In order to find a series expansion of solution of the equation (75), the finite Laplace trans-
formation technique has been introduced as suggested by Bellman and Cooke (Chapter 6, pages
197-205). After fixing the finite interval of time where we want to obtain the series expansion,
in our case t ∈ [0, T ], an a < 0 − 2τ and a b > T + 2τ has been chosen. The finite Laplace
transformation of k(t) in the interval (a, b) is

L(k(t)) =

b∫

a

k(t)e−ztdt. (76)

Applying it on equation (75), and taking the linear properties of the Laplace transformation
into account, we obtain

L(k̈(t−τ))−η11L(k̇(t−2τ))+η22L(k̇(t))−ρL(k̇(t−τ))+ρη11L(k(t−2τ))−(η11η22+η12η21)L(k(t−τ)) = 0.
(77)

After the calculation of the values of L(k̇(t)), L(k(t− τ)), L(k̇(t− 2τ)), L(k̇(t− τ)), L(k(t− 2τ)),
and L(k̈(t− τ)), we substitute them into equation (77), and rewrite it as

L(k(t)) =
φ(z)
h(z)

= g(z) (78)

with φ(z) and h(z) analytic functions. The solution of capital can be obtained through the
inverse finite Laplace transformation on the set of circle contours C` with ` = 1, 2, ..., centre in
the origin of the complex plane, and radius y`. Then the solution of capital is

k(t) =
∮

g(z)eztdz. (79)

5Observe also that the characteristic equation of (75) is exactly the same of the linearized system (??).
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Taking into account that g(z) is not complex differentiable in all of this domain due to the
singularities represented by the roots of h(z), by using the Residue theorem the solution of (79)
is:

k(t) =
∑

zr∈C`

Res

(
φ(z)
h(z)

, ezt

)

=
∑

zr∈C`

nzre
zrt (80)

where the residues nzr = φ(zr)
h′(zr) are defined in the complex field C. On the other hand, the solution

of consumption can be obtained through equation (73), observing that k̇(t) =
∑

zr∈C`

zrnzre
zrt.

Spectrum of Roots - Discrete Time

In this Appendix section the table of the moduli of the roots in the discrete time case is reported.

Table 1: Modulus of roots when indivisible labor supply (χ = 0.0)

Time to Build parameter (J)

hc(z) 1 2 3 4 5 6 7 8

|z1| − 11.03 3.31c 2.43 1.95c 1.74 1.59c 1.5

|z2| 0.94 3.31c 2.12c 1.95c 1.69c 1.59c 1.48c

|z3| 0.95 2.12c 1.69c 1.69c 1.53c 1.48c

|z4| 0.95 1.69c 1.48c 1.53c 1.42c

|z5| 0.95 1.48c 1.35c 1.42c

|z6| 0.96 1.35c 1.27c

|z7| 0.961 1.27c

|z8| 0.963

hk(λ)

|λ1| − 1.06 1.06 1.06 1.055 1.052 1.05 1.05

|λ2| 0.09 0.30c 0.47c 0.59c 0.68c 0.74c 0.79c

|λ3| 0.30c 0.47c 0.59c 0.68c 0.74c 0.79c

|λ4| 0.41 0.51c 0.58 0.66c 0.71c

|λ5| 0.51c 0.596c 0.66c 0.71c

|λ6| 0.596c 0.63c 0.67

|λ7| 0.63c 0.68c

|λ8| 0.68c

c Same modulus indicates conjugate complex roots and not repeated real roots
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Table 2: Modulus of roots when divisible labor supply (χ = −0.15)

Time to Build parameter (J)

H(z) 1 2 3 4 5 6 7 8

|z1| − 13.47 3.75c 2.53 2.02c 1.77 1.61c 1.51

|z2| − 1.89 3.75c 2.41c 2.02c 1.76c 1.61c 1.50c

|z3| 0.21 1.81 2.41c 1.94c 1.76c 1.60c 1.50c

|z4| 0.18 0.35c 1.72 1.94c 1.71c 1.60c 1.505c

|z5| 0.35c 0.47 1.63 1.71c 1.57c 1.505c

|z6| 0.32 0.45c 0.54c 1.57 1.57c 1.49c

|z7| 0.45c 0.54c 0.61 1.51 1.49c

|z8| 0.41 0.52c 0.60c 0.65c 1.46

|z9| 0.52c 0.60c 0.65c 0.693

|z10| 0.49 0.58c 0.64c 0.69c

|z11| 0.54 0.64c 0.69c

|z12| 0.62c 0.68c

|z13| 0.62c 0.68c

|z14| 0.59 0.66c

|z15| 0.66c

|z16| 0.63

c Same modulus indicates conjugate complex roots and not repeated real roots
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