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1 Introduction

Numerous environmental problems we face today are caused by pollutants which ac-

cumulate stocks with a delay to their emissions. Often such delays are due to a time

consuming transportation processes, in which the pollutants travel from the emitting

source to the place where they accumulate. As a prime example think of chlorofluoro-

carbons (CFCs), which cause the depletion of the stratospheric ozone layer that shields

the earth’s surface from ultraviolet radiation. Once released, the CFCs need 5–10 years

to reach a height of about 30 km, where the depletion of the ozone layer starts. Other

examples for pollutants with delayed stock accumulation include nitrate and pesticide

run-off from agricultural cultivation, which seep away and accumulate in the groundwa-

ter and decrease its quality as drinking water (UNEP 2002).

In this paper we analyze delayed pollution stock accumulation in a continuous time

optimal control framework, thereby merging two distinct strands of economic literature.

A first strand deals with the optimal control of instantaneously accumulating stock pol-

lutants. While some contributions (e.g., Gradus and Smulders 1993, Keeler et al. 1972,

Van der Ploeg and Withagen 1991, Smith 1977, Goulder and Mathai 2000) analyze

steady-state growth in highly aggregated Ramsey-type optimal growth models with en-

vironmental pollution, others focus on the complex system dynamics of environmental

problems caused by stock pollutants. For example, Falk and Mendelsohn (1993) ana-

lyze the optimal emissions of greenhouse gases, Baumgärtner et al. (2007) and Moslener

and Requate (2007) analyze the dynamic interaction of different stock pollutants, and

Goeschl and Perino (2007) investigate optimal R&D expenditures if technologies give

rise to stock pollutants. A second strand deals with the delayed accumulation of capital.

While Asea and Zak (1999), Bambi (2008) and Rustichini (1989) analyze growth models

with one capital good, Benhabib and Rustichini (1991), Boucekkine et al. (1997) and

Boucekkine et al. (2005) investigate cyclical behavior in vintage capital models. Heinzel

and Winkler (2007) and Winkler (2008) analyze optimal structural change in the energy

sector, assuming that power plants exhibit a time-to-build feature.

A shared result across the second literature strand is that capital accumulation mod-

els with delays exhibit oscillatory optimal paths. Therefore, one would expect a similar

result for delayed stock accumulation models. If we, however, introduce a delay into a

standard pollution control model (e.g., Falk and Mendelsohn 1993), the optimal paths

show monotonic behavior, as in the case of instantaneous stock accumulation. The rea-

son for this difference is that the standard pollution control model exhibits an objective
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function which is additively separable in the stock and the control, while this is not

the case in capital accumulation models. We show in section 2 that for delayed stock

accumulation the functional form of the objective function plays a crucial role for the

qualitative system dynamics. While delayed stock accumulation problems exhibit oscil-

latory paths in general (no matter if we accumulate capital or pollutants), the optimal

paths are monotonic if the objective function is additively separable in the control and

the stock variables.

The importance of this finding crucially hinges upon the reason why objective func-

tions are mostly assumed to be additively separable in pollution control problems. In

section 3 we show that the additively separable form can be thought of as an approx-

imation to a more complex general objective function. If this is the case, one has to

be careful with imposing such an approximation in delayed accumulation problems, as

this may be a misspecification of the original problem. Moreover, we show that this

qualitative difference may also be quantitatively relevant. Therefore, we set up a simple

delayed pollution control model in section 4, which exhibits an objective function which

is not additively separable in the stock and the control. We approximate an additively

separable objective function and solve both the general and the approximated control

problem numerically for instantaneous and delayed stock accumulation. We find that

the approximation performs considerably worse in case of delayed compared to instanta-

neous stock accumulation. Our result challenges the use of additively separable welfare

functions as “good” approximations to more general objective functions, at least in the

case of delayed stock accumulation.

2 A generic pollution control model with delayed stock

accumulation

We introduce a generic optimal control problem with one pollutant that accumulates

with a delay and show that the system dynamics crucially depends on whether the

objective function is additively separable in the emissions and the stock. Throughout

the paper partial derivatives are denoted by subscripts, derivatives with respect to the

sole argument are denoted by primes and derivatives with respect to time are denoted

by dots.

Suppose a social planner, who solves the following optimization problem:

max
e(t)

∫
∞

0

F
(
s(t), e(t)

)
exp[−ρt] dt , ρ > 0 , (1)
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subject to:

ṡ(t) = e(t−τ) − γs(t) , τ, γ > 0 , (2a)

e(t) ≥ 0 , (2b)

s(0) = s0 ≥ 0 , (2c)

e(t) = ξ(t) ≥ 0 , t ∈ [−τ, 0) , (2d)

where ρ is the constant and positive discount rate, τ denotes the delay between the

emission and the accumulation of the pollutant and γ is the constant and positive de-

terioration rate of the stock s. F is a twice continuously differentiable generic felicity

function, which is a function of emissions e and the pollution stock s. We assume that

F is increasing in e and decreasing in s, strictly and jointly concave in both arguments,

and satisfies Inada conditions. These assumptions ensure that there exists a unique inte-

rior solution. In addition, we impose that emissions are non-negative and specify initial

conditions for the pollution stock, s0, and an initial emission path ξ for the time interval

[−τ, 0).

The dynamics of the stock s is governed by the delayed differential equation (2a),

which represents the standard form (except for the delay) used in stock accumulation

problems in economics. At time t the stock increases by the emissions at time t−τ ,

and deteriorates at the constant rate γ. Thus, the model exhibits inertia, as the stock

s reacts with a delay to a variation of the control e. As a consequence, the path of the

stock s in the time interval t ∈ [0, τ ], which we denote by σ(t), is completely determined

by the initial stock s0 and the initial path ξ:

σ(t) = s0 exp[−γt] +

∫
τ

0

ξ(t′ − τ) exp[−γ(t − t′)] dt′ , t ∈ [0, τ ] . (3)

To solve problem (1), we apply the generalized Maximum principle derived in El-Hodiri

et al. (1972) for delayed optimal control problems and derive the following present-value

Hamiltonian H:1

H = F
(
s(t), e(t)

)
exp[−ρt] + λ(t+τ)e(t) − γλ(t)s(t) , (4)

where λ denotes the costate variable or shadow price of the stock s.

Assuming that the Hamiltonian H is continuously differentiable with respect to emis-

1 As the assumed properties of F ensure an interior solution, we do not need to explicitly check for the
non-negativity of emissions e.
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sions e, the following necessary conditions hold for an optimal solution:

Fe

(
s(t), e(t)

)
exp[−ρt] = −λ(t+τ) , (5a)

λ̇(t) = γλ(t) − Fs

(
s(t), e(t)

)
exp[−ρt] . (5b)

These necessary conditions are also sufficient for the existence of a unique interior solu-

tion if, in addition to the assumed curvature properties of F , the following transversality

condition holds:

lim
t→∞

[λ(t)s(t)] = 0 . (5c)

Solving equation (5b) by using the transversality condition (5c) yields:

λ(t) =

∫
∞

t

Fs

(
s(t′), e(t′)

)
exp[−ρt′] exp[−γ(t′ − t)] dt′ . (6)

Now, the economic interpretation of the necessary and sufficient conditions is straightfor-

ward. The shadow price λ(t) equals the net present value of all future disutility stemming

from a marginal increase of stock s at time t. Equation (5a) says that along the optimal

path the net present value of the utility gain of a marginal increase in emissions has to

equal the net present value of the utility loss induced by the resulting increase in the

pollution stock. As the pollution stock accumulates with a timelag τ , the net present

value of the utility loss induced by a marginal unit of emissions at time t is equal to

λ(t+τ).

We eliminate the shadow price λ(t) by differentiating equation (5a) with respect to

time and inserting into equation (5a). We derive, together with the equation of motion

(2a), the following system of differential equations, the solution of which determines the

optimal emission path e(t) (t ≥ 0) and the optimal stock dynamics s(t) (t ≥ τ):

ė(t) =
1

Fee

(
s(t), e(t)

)
{
(γ + ρ)Fe

(
s(t), e(t)

)
+ Fs

(
s(t+τ), e(t+τ)

)
exp[−ρτ ]

+Fes

(
s(t), e(t)

)[
γs(t) − e(t−τ)

]}
, (7a)

ṡ(t) = e(t−τ) − γs(t) , (7b)

Note that ė and ṡ also depend on advanced (i.e., at a later time) and on retarded (i.e., at

an earlier time) variables. Hence, (7) forms a system of neutral type functional differential

equations which is difficult to solve analytically, as even the linear approximation around

the stationary state exhibits, in general, no closed form analytical solution. Nevertheless,
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it is possible to derive some qualitative properties of the system dynamics, which are

summarized in the following propositions.

Proposition 1 (Stationary state)

The system of functional differential equations (7) exhibits a unique stationary state

(s⋆, e⋆), which is determined by the following system of implicit equations:

−
Fs(s

⋆, e⋆)

Fe(s⋆, e⋆)
= (γ + ρ) exp[ρτ ] , (8a)

e⋆ = γs⋆ . (8b)

The proof is given in the appendix.

To derive qualitative properties of the system dynamics in a neighborhood around the

unique stationary state, we linearize the system of functional differential equations (7)

around the stationary state (s⋆, e⋆). The following proposition states the properties of

the roots of the characteristic equation of the linearized system.

Proposition 2 (Roots of the characteristic equation)

The characteristic equation of the linear approximation of the system of functional dif-

ferential equations (7) exhibits

• in general an infinite number of complex roots with unbounded positive real parts

and an infinite number of complex roots with unbounded negative real parts, and

• one positive and one negative real solution, in the special case that Fes(s
⋆, e⋆) = 0.

The proof is given in the appendix.

Proposition 2 implies that the stationary state (s⋆, e⋆) is, in either case, a saddle

point. As a consequence, there exists a unique optimal path which converges towards the

stationary state.2 The qualitative system dynamics crucially depends on the functional

form of the felicity function F . In general, the convergence towards the stationary state

is oscillatory, as it is governed by the superposition of an infinite number of exponentially

damped oscillations. In the special case that Fes(s
⋆, e⋆) = 0 the convergence towards the

stationary state is exponentially and, therefore, monotonic.

2 If the characteristic equation exhibits purely imaginary roots, the system dynamics may exhibit limit-

cycles. That is, the optimal paths oscillate around the stationary state without converging towards or
diverging from it. As purely imaginary roots can only occur “accidentally” (by well chosen endogenous
parameters), we do not explicitly consider limit cycles in the following. Limit-cycles in the case of
delayed optimal control problems have been discussed, among others, by Rustichini (1989) and Asea
and Zak (1999).
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To better understand what happens with the system dynamics in case of Fes(s
⋆, e⋆) =

0, we consider the special case that the felicity function F is additively separable in both

arguments (which guarantees that Fes = 0). Then, the system of functional differential

equations (7) reduces to a system of ordinary first order differential equations, where

the initial stock s0 and the initial path ξ translate into the new initial condition s̃(0) =

s̃0 = σ(τ), which is given by equation (3) for t = τ . To see this, we set F
(
e(t), s(t)

)
=

E
(
e(t)

)
+ S

(
s(t)

)
and s̃(t) = s(t+τ) and derive:

ė(t) =
1

E ′′

(
e(t)

)
{
(γ + ρ)E ′

(
e(t)

)
+ S

(
s̃(t)

)
exp[−ρτ ]

}
, (9a)

˙̃s(t) = e(t) − γs̃(t) . (9b)

We see that the crucial difference between equation (9a) and the corresponding equation

(7a) is that equation (9a) only depends on e(t) and s(t+τ), and not simultaneously on

e(t), e(t+τ), e(t−τ), s(t) and s(t+τ). That is, the same variable is not evaluated at

different times but only at one point in time. In addition, the time structure of equation

(9a) and (9b) is identical (e is evaluated at a time which lies τ earlier than the time at

which s is evaluated) and, therefore, can be reduced to an ordinary differential equation

by variable transformation. Thus, the result that for F additively separable the system

dynamics is monotonic hinges on two crucial features. On the one hand, with F being

additively separable, the first and second derivatives depend only either on s or e and

the cross derivative Fes vanishes, which leads to the fact that in equation (9a) the same

variable is only evaluated at one point in time. On the other hand, the equation of

motion of the stock (9b) is of the same structure, as it depends on variables which are

only evaluated at one point in time and, in addition, the delay structure is the same as

the resulting delay structure in equation (9a).3

In summary, if the felicity function is additively separable, the optimal system dy-

namics shows a monotonic convergence towards the stationary state, as is the case for

instantaneous stock accumulation. However, if the felicity function is not additively sep-

arable, the system dynamics exhibits, in general, oscillatory behavior. As the importance

of this finding crucially depends on when do models exhibit additively separable felicity

functions and why, we shall discuss felicity functions in environmental economics in the

next section.

3 This implies that the monotonicity result is not valid for arbitrary equations of motion. In fact, the
most general form of the equation of motion preserving this characteristic is ṡ = G

(
e(t−τ)

)
−H

(
s(t)

)
,

where G and H are two monotonically increasing functions.
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3 Felicity functions in environmental economics

In most economic models the felicity function F is represented by an instantaneous

welfare function V , which measures the utility of the optimizing agent at time t. In

environmental economics, the instantaneous welfare function can be of two types:

1. V solely depends on consumption. In this case “nature” does not influence the

agents’ utility directly, but only indirectly as source of consumption or input factors

of production. In general, it is assumed that emissions increase and the pollutant

stock decreases consumption:

F = V (c) , c = c(e, s, ·) , ce > 0 , cs < 0 . (10)

2. V depends on consumption and “environmental quality” q. The idea is that environ-

mental quality is a direct source of utility. In general, it is assumed that emissions

increase consumption, while the pollutant stock decreases environmental quality:

F = V (c, q) , c = c(e, ·) , ce > 0 , q = q(s, ·) , qs < 0 . (11)

As V is, in general, an increasing and concave function, the felicity function is not per

se additively separable in either case.

However, most environmental economic models assume felicity functions, which are

additively separable. In fact, in partial equilibrium models the objective is often to find

the net present minimum of the sum of abatement costs, depending on the amount of

pollutant emissions, and costs due to environmental damage, depending on the pollutant

stock (e.g., Falk and Mendelsohn 1993, Goulder and Mathai 2000, and Moslener and

Requate 2001). Thus, the felicity function F reads

F = −
[
C(e) + D(s)

]
, (12)

where C are the abatement costs, depending on emissions e, and D are the costs caused

by environmental damage, which hinge upon the pollution stock s. Obviously, this is

an approximation either to the first case (neglecting diminishing marginal utility of

consumption and consumption additively separable in the emissions and the stock),

or the second case (neglecting diminishing marginal utility of consumption and utility

additively separable in consumption and environmental quality). In general equilibrium

models, instantaneous utility V is often of the second type, but assumed to be additively
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separable in consumption and environmental quality (e.g., Baumgärtner et al. 2007,

Goeschl and Perino 2007, and Van der Ploeg and Withagen 1991):4

F = U
(
c(e)

)
− D

(
q(s)

)
, (13)

where U denotes utility derived from consumption and D denotes utility loss caused by

environmental damage. The main motivation for the additively separable form is ana-

lytical tractability. Therefore, we also consider this form to be rather an approximation

than the real underlying relationship.

From the discussion in the previous section it is clear that, in the case of delayed stock

accumulation, the real felicity functions (10) and (11) give rise to oscillatory paths, while

the approximations (12) and (13) exhibit monotonic paths. In the following, we illustrate

that in case of delayed stock accumulation the solution of the approximated problem falls

not only qualitatively short of the solution of the real problem, but also quantitatively.

4 General versus additively separable felicity functions: an

illustration

In this section, we present a simple delayed stock accumulation model, which is of the

generic class discussed in section 2. Although it is inspired by the environmental problem

of the emission of chlorofluorocarbons (CFCs), it is applicable to various stock pollu-

tants. CFCs are a prime example of stock pollutants accumulating with a delay. They

have been widely used as cooling agents in refrigeration and air conditioning, as pro-

pellants in aerosols sprays and foamed plastics, and as solvents for organic matters and

compounds. The CFCs have been valued due to their favorable chemical and biological

characteristics. They are chemically inert, not inflammable and non-toxic. Unfortunately,

in the stratosphere the CFCs cause the depletion of the ozone layer which shields the

earth’s surface from ultraviolet radiation. Once released, the CFCs need 5–10 years to

reach a height of about 30 km, where the depletion of the ozone layer starts. Hence,

the stock of stratospheric CFCs reacts to the emissions of CFCs with a lag time of 5–10

years.

Consider an economy with a constant population normalized to 1. We assume that

labor is the sole input to the two available production processes in the economy. The

first production process produces a consumption good c with constant returns to labor.

4 Exceptions which do not assume an additively separable felicity function include Gradus and Smulders
(1993), and Keeler et al. (1972).
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Without loss of generality, we assume that one unit of labor produces one unit of the

consumption good. Thus, the amount of consumption equals the amount of labor l1

applied to consumption good production:

c(t) = l1(t) . (14)

In addition, the production of each unit of consumption good gives rise to one unit of

gross emissions. The second production process is an abatement process with decreasing

returns to scale. Denoting the amount of labor employed to the abatement process by

l2, the amount of abated emissions a is given by:

a(t) =
√

αl2(t) , α > 0 . (15)

Then, net emissions e equal to

e(t) = c(t) − a(t) = l1(t) −
√

αl2(t) . (16)

The emissions accumulate with a delay τ to a pollutant stock s and decay at the constant

rate γ, as given by equation (2a). The pollution stock s imposes a negative externality

with increasing marginal damage on the economy, as it reduces the effective labor force

l:5

l(t) = 1 − βs(t)2 , β > 0 . (17)

We consider a social planner who maximizes the net present value of all future con-

sumption by distributing the effective labor force among the two production processes.6

As an additional input of labor in both processes increases consumption, the labor con-

straint holds with equality along the optimal path: l1(t) + l2(t) = 1. Hence, we derive

for consumption c:7

c(t) = c
(
e(t), s(t)

)
=

1

2

[

2e(t) − α +
√

4α
(
1 − βs(t)2 − e(t)

)
+ α2

]

. (18)

5 In the case of CFCs, one might think of an increase in the rate of skin cancer with increasing stock
of the pollutant, which prevents increasingly more people from working.

6 For the sake of simplicity we abstract from decreasing marginal returns of consumption. However,
considering a concave instantaneous utility function would not alter our results qualitatively.

7 In addition, we assume that the pollution stock s in the time interval t ∈ [0, τ), which is completely
determined by the initial stock s0 and the initial path ξ, is always smaller than

√

1/β. Otherwise,
the total labor force would be annihilated before emission control becomes effective.
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α β γ ρ τ s0 ξ

3 0.002 0.1 0.03 0/10 10 1

Table 1: Exogenous parameters and initial values used for the numerical optimization.

Thus, we derive an optimal control problem with delayed stock accumulation of the class

discussed in section 2 with a felicity function F = c(e, s) as given by equation (10).

Obviously, F = c(e, s) is not additively separable, and thus the optimal paths will, in

general, be non-monotonic. However, if we suppose that the labor costs of abatement

are small (i.e., α >> 1) and the consumption loss due to the stock externality is small

compared to overall consumption (i.e., β << 1), we can construct an additively separable

approximation of F . In a first step, we approximate the felicity function (18) by its first

order Taylor series around β = 0:

c
(
e(t), s(t)

)
≈

1

2

[

2e(t) − α +
√

4α
(
1 − e(t)

)
+ α2

]

−
α

√

α2 + 4α
(
1 − e(t)

)

︸ ︷︷ ︸

A

βs(t)2 . (19)

Second, as α is large, α2 outweighs 4α
(
1 − e(t)

)
and A is approximately equal to 1.

Thus, we obtain for the approximated felicity function F̂

F̂
(
e(t), s(t)

)
=

1

2

[

2e(t) − α +
√

4α
(
1 − e(t)

)
+ α2

]

− βs(t)2 . (20)

Note that F̂ is now additively separable in e and s, and of the form of equation (13). Ac-

cording to the discussion in section 2, we expect that the approximated felicity function

F̂ gives rise to monotonic optimal paths.

Now, we analyze the quality of the approximated felicity function (20) compared to

the original felicity function (18). From the derivation of the approximation it is obvious

that the approximation is better the larger is α and the smaller is β. However, in the

following we show that, for given parameter values α and β, the additively separable

felicity function (20) is a much better approximation to the original felicity function

(18) in case of instantaneous stock accumulation, compared to the case of delayed stock

accumulation.

As the optimal control problems with both the original and the approximated felic-

ity function cannot be solved analytically, we numerically solve the optimal paths of
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emissions and the pollution stock with the advanced optimal control software package

MUSCOD-II (Diehl et al. 2001, Leineweber et al. 2003), developed by the Simulation and

Optimization Group of the Interdisciplinary Center for Scientific Computing, University

of Heidelberg. Details of the numerical optimization method are discussed in Brandt-

Pollmann et al. (2008). The time horizon for the numerical optimization has been set

to 200 years, and all parameters have been chosen so that the system at time t = 200

is very close to the stationary state (for a more convenient exposition, the figures just

show times up to t = 100). The exogenous parameters and the initial values used for the

numerical optimization are given in Table 1. The parameter values have primarily been

chosen so as to illustrate clearly the different effects, and do not necessarily reflect the

characteristics of real environmental pollution problems.

To illustrate the qualitative difference between instantaneous and delayed stock accu-

mulation, we computed two different scenarios, one with instantaneous stock accumu-

lation (τ = 0), and one with delayed stock accumulation (τ = 10). For both scenarios

we derive the optimal paths for the original and the approximated felicity function.

From the implicit functions (8), we compute the stationary state values for the orig-

inal and the approximated additively separable felicity function, given the parameter

values stated in Table 1. For τ = 0, one derives (s⋆, e⋆) ≈ (6.14, 0.61) for the origi-

nal and (s⋆, e⋆) ≈ (6.12, 0.61) for the approximated case, and for τ = 10, one derives

(s⋆, e⋆) ≈ (6.66, 0.67) for the original and (s⋆, e⋆) ≈ (6.93, 0.69) for the approximated

felicity function. We see that the stationary state values for the original and the approx-

imated felicity function are closer together in case of instantaneous stock accumulation.

Thus, by just comparing long-run stationary states the additively separable felicity func-

tion seems a better approximation to the original one for instantaneous than for delayed

stock accumulation.

As Figure 1 (upper half) shows, this first impression is reinforced by the system

dynamics. For instantaneous stock accumulation (left side), the optimal paths for original

and approximated felicity functions show the same qualitative behavior. The emission

paths start substantially below their stationary state levels of about 0.61 and converge

monotonically towards them. Starting from an initial value of 10, the pollution stocks

decrease monotonically towards their stationary state values of about 6.14 for the original

and 6.12 for the approximated felicity function. Moreover, both the original and the

approximated optimal paths are also quantitatively very close together.

The right side of Figure 1 shows the optimal paths for delayed stock accumulation.

Since there is a delay of τ = 101, the path for the pollution stock in the time interval
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Figure 1: Optimal system dynamics in case of instantaneous (left) and delayed (right)
stock accumulation for the original and the approximated felicity functions.
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τ ∆W ∆(s⋆, e⋆) max |∆c|
∫ 100

0
(∆c)2 dt

0 −0.001% −0.03% 1.35% 1.48 · 10−4

10 −5.55% 3.95% 1.94% 6.15 · 10−2

Table 2: Four different indices for the quality of approximation in case of instantaneous

and delayed stock accumulation

t ∈ [0, 10] is completely determined by the initial value s0 and the initial path ξ for

both the original and the approximated problem. We set the initial path to ξ = 1,

which is shown as the emission path in the time interval t ∈ [−10, 0] in the graph. This

implies that the stock stays constant at s0 = 10 for t ∈ [0, τ ]. The emission paths reflect

the results of section 2: the additively separable felicity function displays monotonic

convergence towards its stationary state value, whereas the original felicity function

displays non-monotonic and oscillatory. Moreover, the differences between approximated

and original felicity functions are over the whole time horizon substantially larger than

in the case of instantaneous stock accumulation. The differences are highest in the short

run. As a consequence, also the optimal path for the pollution stock differs markedly

from the optimal path derived from the additively separable approximation. The path

exhibits a pronounced dip between t = 10 and t = 30, which corresponds to the emissions

between t = 0 and t = 20, because of the delay τ .

In addition, we compute the real consumption, as given by equation (18), given the

optimal paths of the emissions and the pollution stock derived by the original and the

approximated felicity function. Figure 1 (lower half) shows the consumption paths and

the relative difference in the consumption paths.8 Again, we see that in the case of

delayed stock accumulation the difference in consumption is considerably higher than in

the case of instantaneous stock accumulation. To compare the quality of approximation

of the additively separable approximation more quantitatively, we compute four indices

summarized in Table 2: ∆W denotes the relative difference in overall welfare, ∆(s⋆, e⋆)

denotes the relative difference in the long-run stationary state values, max |∆c| denotes

the maximal (in absolute terms) consumption difference in instantaneous utility, and
∫ 100

0
(∆c)2 dt is the integral of the squared consumption differences over the first 100 year.

While the first measures captures approximation quality in terms of welfare (and, thus,

is the most important), the other measures capture differences in approximation quality

with respect to the optimal paths. For all indices the approximation is better the smaller

8 Note that consumption is identical to instantaneous welfare in this model.
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is the corresponding value. We see that according to all four indices the approximation

quality is much better for τ = 0 than for τ = 10. In particular, the difference in welfare

loss is substantial. While the overall welfare loss due to the approximation is just 0.001%

for τ = 0, it amounts to considerable 5.55% for τ = 10.

5 Conclusion

We have studied the optimal control of stock pollutants which accumulate with a delay.

For a generic problem with one stock and one control, we have shown that the system

dynamics crucially depend on the functional form of the felicity function. In general, the

system dynamics is characterized by non-monotonic and oscillatory paths, but exhibits

monotonic optimal paths if the felicity function is additively separable in the control

and the stock.

This result is important for the design of delayed optimal control models in a twofold

manner. First, one has to be aware that the functional form of the objective influences the

qualitative behavior of the optimal paths. Second, as illustrated by a numerical example,

approximations of the objective, which result in good quantitative approximations of the

original problem in case of instantaneous stock accumulation, may result in considerably

worse approximations in case of delayed stock accumulation.

Although the model discussed in this papers is highly abstract, there are some general

conclusions which can be drawn for the optimal control of delayed stock pollutants.

First, there is an additional moment of inertia, because of the delay between the control

and the accumulation of stock, which demands increased caution and alertness in the

handling of delayed pollutants such as CFCs. Second, the application of an easy to

handle additively separable objective as a good approximation to the original problem

might be a misspecification because of the change of the qualitative behavior of the

optimal paths. Third, non-monotonic and oscillatory optimal paths may be difficult to

implement by environmental policy. Thus, even if the optimal (non-monotonic) emission

path is known, it might be not applicable because of institutional constraints.

However, this paper only scratches the tip of the iceberg of delayed optimal control

problems and leaves many open questions for future research. For example, it is not

obvious how the transition from τ = 0 to τ > 0 takes place quantitatively, although

the results clearly show that there is a qualitative difference in the optimal control

of instantaneous and delayed accumulation problems. Another interesting question, is

the analysis of ‘second best’ monotonic optimal paths, if the non-monotonic first best
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optimal path is not applicable due to institutional constraints.

15



Appendix

A.1 Proof of proposition 1

To derive the stationary state of the system of functional differential equations, we set

ṡ = ė = 0, which yields the implicit equations (8). The assumed curvature properties for

F assure the existence of a unique solution.

A.2 Proof of proposition 2

Linearizing the system of functional differential equations (7) around the stationary state

(s⋆, e⋆) yields the following system of differential-difference equations:9

ė(t) ≈ (γ + ρ)(e(t) − e⋆) +
F ⋆

es

F ⋆
ee

exp[−ρτ ](e(t+τ) − e⋆) −
F ⋆

es

F ⋆
ee

(e(t−τ) − e⋆)

+
F ⋆

es

F ⋆
ee

(2γ + ρ)(s(t) − s⋆) +
F ⋆

ss

F ⋆
ee

exp[−ρτ ](s(t+τ) − s⋆) , (A.1a)

ṡ(t) ≈ (e(t−τ) − e⋆) − γ(s(t) − s⋆) . (A.1b)

The general solution of the system of differential-difference equations can be written as

an infinite sum of exponential functions (Bellman and Cooke 1963, Boucekkine et al.

2005). Introducing the following abbreviations:

X =
F ⋆

es

F ⋆
ee

exp[−ρτ ] , Y =
F ⋆

es

F ⋆
ee

, Z =
F ⋆

ss

F ⋆
ee

exp[−ρτ ] + γ(γ + ρ) > 0 , (A.2)

we derive for the characteristic equation

Q(x) = x2 − ρx − X exp[τx](x + γ) + Y exp[−τx](x − ρ − γ) − Z = 0 . (A.3)

Q(x) is a quasi-polynomial, which exhibits, in general, an infinite number of roots with

negative real part and an infinite number of roots with positive real part. To see this, note

first that the characteristic roots are symmetric around ρ/2, i.e., if x0 is a characteristic

root, then ρ− x0 is also a characteristic root (one can easily verify that Q(x0) = Q(ρ−

x0)). Second, we introduce the new variable y = τx and multiply Q with τ 2 exp[y]

Q(y) = exp[y]
[
y2 − yρτ − τ 2Z

]
− exp[2y]τX(y + γτ) + τY (y − γτ − ρτ) , (A.4)

9 Functions evaluated at the stationary state (s⋆, e⋆) are denoted by a star.
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in order to apply Theorem 13.1 of Bellman and Cooke (1963: 441). As Q(y) has no

principal term, i.e., a term where the highest power of y and the highest exponential

term appear jointly,10 Q(y) has “an unbounded number of zeros with arbitrarily large

positive real part” (ibid). But as the characteristic roots are symmetric around ρ/2, this

also implies an unbounded number of roots with arbitrarily large negative real part.

For F ⋆

es
= 0, the characteristic equation (A.3) reduces to a quadratic equation:

Q(x) = x2 − ρx − Z , (A.5)

which exhibits the two real solutions

x1 =
ρ

2
−

√
(ρ

2

)2

+ Z < 0 , x2 =
ρ

2
+

√
(ρ

2

)2

+ Z > ρ . (A.6)

10 In this case, the principal term would be a term with y2 exp[2y].
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