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Abstract 
 
The paper considers an economy which is constrained by natural resource use 
and driven by knowledge accumulation. Resources are essential inputs in all 
the sectors. It is shown that population growth and poor input substitution are 
not detrimental but, on the contrary, even necessary for obtaining a sustainable 
consumption level. We find a new type of Hartwick rule defining the condi-
tions for a constant innovation rate. The rule does not apply to capital but to 
labour growth, the crucial input in research. Furthermore, it relates to the sec-
toral structure of the economy and to demographic transition. The results con-
tinue to hold with a backstop technology and are extended for the case of 
minimum resource constraints. 
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1    Introduction 
Population growth and natural resource scarcity are often perceived as severe threats to sustain-
able development. World population is currently growing fast and will continue to grow in the 
future. It is confronted with a natural resource supply that is ultimately limited. Declining oil 
production in several regions and reports about proven reserves which are lower than previously 
estimated are clear indications of the boundaries set by nature. Total use of natural resources and 
energies will have to shrink in future centuries, even when several energy and raw material de-
posits have been fully exploited so far. This is a fundamental change in economic history be-
cause up to now, the expanding world economy has relied on growing resource input. 
 The negative (Malthusian) perception of population growth is well represented in the 
literature, see e.g. Meadows et al. (1972) and Ehrlich and Ehrlich (1990). Similarly, in neo-
classical growth and capital resource models, see Solow (1974), Stiglitz (1974), and Dasgupta 
and Heal (1974, 1979), population growth is unfavourable for development. Regarding resource 
constraints, finance ministers and central bank heads from the world's seven largest economies 
said that the high oil prices were a threat to global prosperity, see Financial Times (2008). Dif-
ferent and more positive indications stem from models using recent growth theory. Here it is 
emphasised that labour not only uses resources but also builds substitutes for resources. More-
over, the size of the labour force may determine the intensity of dynamic scale effects, notably 
in knowledge creation. Also, resource substitution is likely to promote technology development. 
But are these new theory elements powerful enough to change the general perception of popula-
tion growth and resource scarcity? With humans constituting an important part of nature, a posi-
tive answer should please not only economists. 

The present paper asks whether and how it is possible to obtain positive innovation and 
consumption growth under free market conditions even when population is growing and re-
source stocks are bounded. The model has the following features, which build on empirical 
regularities. First, unlike the majority of existing literature, the model does not 
postulate that population grows at a zero or a constant exponential rate. Instead, we assume a 
dynamic law reflecting a Malthusian perspective as well as demographic transition, see e.g. 
Tamura (2000) and de la Croix and Doepke (2003), which extends the standard framework in 
resource models. Endogenous population growth and knowledge are also treated in Kremer 
(1993), but there natural resources and the demographic transition are disregarded. In the re-
source context, population dynamics have recently been analysed in Asheim et al. (2007) who 
assume (exogenous) quasi-arithmetic population growth. Second, non-renewable resources are 
assumed to be an essential input in all sectors of the economy, including the innovation sector. 
This is usually not considered, with the exception of Groth and Schou (2002), who argue that 
resources are an important element in the technologies of present-day economies. Endogenous 
innovations drive the growth process but are severely constrained by natural resources; resource 
use restricts the emergence of productive knowledge and plays a similar role as the scarce in-
vestment funds in the theory of recombinant growth, see Weitzman (1998) and Tsur and Zemel 
(2007). The innovation sector supplements the rest of the economy by producing intermediates 
and final consumer goods, see especially Romer (1990) and Grossman and Helpman (1991) for 
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the theoretical foundations and Bovenberg and Smulders (1995), Barbier (1999), Scholz and 
Ziemes (1999), Smulders (2000), Grimaud and Rougé (2003), and Xepapadeas (2006) for the 
combination with resource economics.  

Third, the model assumes poor substitution between inputs in intermediates production. 
This reflects that, in empirical studies, the elasticity of substitution between natural resources 
and other inputs, specifically labour and capital, is estimated to be less than unity, see e.g. Chris-
topoulos and Tsionas (2002) and Kemfert (1998). Poor input substitution is often disregarded in 
resource models because of its complexity; it has been used in Bretschger (1998) for renewable 
resources and in Bretschger and Smulders (2006) for exhaustible resources and a constant popu-
lation. Fourth, sectoral change, which impacts resource use, will be reproduced by the model. 
Economies are undergoing a substantial structural change during long-run development. Be-
tween 1979 and 2002, the share of total employment in manufacturing decreased by 30 % in 
Europe and 34 % in the US, while employment in the research sector rose by 28 % in Europe 
and 40 % in the US, see GGDC (2004). In López, Anriquez and Gulati (2007) structural change 
is identified as a major topic in the sustainability debate. Fifth, physical capital has no impact on 
the growth rate in this model, because the scope for physical capital build-up is limited by mate-
rial balance constraints, as emphasised by Cleveland and Ruth (1997). Population growth, non-
renewable resources, and most of the model’s assumptions might be called “unfavourable” con-
ditions for development: they seem to limit both the scope for input substitution and the capacity 
to accumulate capital as a compensation for lower resource use. Nevertheless, the present paper 
shows that sustainable growth is feasible under these conditions. 
 We find that issues, which have been described as critical (or even lethal) before, turn 
out to be superable, neutral, or even positive under the assumptions of the model, which ex-
plains the qualification “seemingly unfavourable” in the title of the paper. In particular, it will 
turn out that population growth is not detrimental for growth but even needed to ensure enough 
innovation. This helps the economy during the transition phase and increases the chance of de-
veloping a backstop technology, which is favourable in the long run. Specifically, the capital-
producing effect of labour is highly useful to compensate for fading resource use in research. In 
addition, poor input substitution fosters sectoral change, which turns out to be a central mecha-
nism sustaining economic growth. These elements constitute a new condition for a constant 
innovation rate, which we interpret as a new form of the Hartwick rule (Hartwick 1977) for a 
knowledge-driven multi-sector economy. 
 Our general results are in line with earlier contributions, in particular with Simon (1981) 
who labelled labour − i.e. imagination coupled to the human spirit − as “ultimate resource”, 
Boserup (1965) who finds a positive impact of population density on development in (poor) 
agrarian societies, and Johnson (2001) who emphasised the role of knowledge for development 
with a growing population. The present paper provides a coherent model-based foundation of 
their reasoning. When introducing non-renewable resources, we primarily think of fossil fuels 
and, in a somewhat broader sense, of energy supplies. However, one can interpret the resource 
input in a broader fashion, as the world as a materially closed economy is confronted with a 
fixed supply of raw materials needed for physical capital, housing etc. In addition, basic needs 
like food have an essential material component.  
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 In accordance with Hartwick (1977) and many contributions of new growth theory, 
including Romer (1990), we focus on the market solutions of the model. The topic suggests 
doing so, as population policy is a very critical tool in general and sustainability problems are 
worldwide, where policy is difficult to implement. The combination of (i) a specific law of mo-
tion for population, (ii) the essential use of a non-renewable resource in all sectors of the econ-
omy, and (iii) poor input substitution in the intermediate goods sector entails that structural 
change becomes an important ingredient of development. Accordingly, besides characterising 
the steady state, we also focus on the nature of the transition phase. This is in contrast to most 
growth models, but is an appropriate procedure here as the adjustment period turns out to be an 
important part of development. In addition, the nature of the steady state depends on the charac-
teristics of the transition phase, so that development becomes path-dependent. An element of 
long-run development with natural resources is the possible emergence of a so-called backstop 
technology, see Tsur and Zemel (2005). We will include this technology, although not as a cen-
tral part and in a basic way, similar to Dasgupta, Heal and Majumdar (1977).  

The remainder of the paper is organised as follows. Section 2 develops the model with 
natural resource use and endogenous innovations. Section 3 presents the results for transitional 
dynamics and for different scenarios regarding population growth. In section 4, the nature of the 
long-run equilibrium is analysed. Finally, section 5 concludes. 
 
 
2    The model 
The framework uses a standard expansion-in-varieties approach to model growth through inno-
vations. Labour and non-renewable natural resources, which depict material inputs, are intro-
duced as primary input factors. Differentiated intermediate services are the inputs for final 
goods production and knowledge capital is accumulated by endogenous R&D-activities through 
positive spillovers. Innovations are embodied in new intermediate goods varieties. They in-
crease the productivity of the aggregate intermediate input. For the long run, a possible switch in 
technologies is evaluated to consider the effects of backstop technologies. Through this setting, 
the simplest case of a sectoral economy with endogenous innovations can be depicted in a very 
basic yet general way. The simultaneous motion of the three stocks knowledge, resources, and 
population drives the final results.  
 
2.1 Firms 
 
The model economy consists of three different sectors, which are R&D, intermediate services, 
and final goods, each with a different type of operating firm. R&D firms use labour L and non-
renewable resources R as rival inputs and public knowledge κ as non-rival input to produce in-
cremental technical change. Specifically, they generate the know-how for new intermediate 
goods in the form of designs. n denotes  the number of intermediate goods at each point in time. 
With  denoting the derivative of n with respect to time and n gL  and gR  the labour and re-
source inputs into R&D, the production of new designs  is given by: n
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1

g gn L Rα α κ−= ⋅ ⋅  (0 1)α< <     .                    (1) 
 

Time indices are omitted whenever there is no ambiguity. According to (1), R and L are both 
essential inputs into research. It reflects that labour can never become an inessential input in the 
long run and that research institutions always need some resources, like fossil fuels for heating 
and transportation or mineral products or other materials for machines and experiments. With 
positive spillovers from R&D to public knowledge, we get nηκ =  where η  denotes the inten-
sity of the externalities; with proportional spillovers (see Romer 1990 and Grossman and Help-
man 1991) we have 1η =  so that κ = n, which will be used below. Consequently, the growth 
rate of the number of designs (= the innovation rate) g becomes: 
 

             1
g g

ng L R
n

α α−= = ⋅   .                (1’) 

With perfect competition in the research sector, the market value of an innovation np  equals the 
per-unit costs of designs, which depend on the labour wage w, the resource price Rp  and n: 
 
         ( ) ( )1(1 ) /n Rp w pα αα α −= ⋅ − n  .       (2) 
  
Y-firms assemble intermediate goods ix  on fully competitive markets to final output Y  under a 
CES-production function restriction; i is used as an index with [0, ]i n∈ . Provided that the costs 
to produce ix -goods are equal for all x-firms, we obtain ..(i )ix x x= ∀  so that Y is determined 
by:  

      
1 1

0

n

iY x di n
β

ββ β
−

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ X                           (3) 

        ( ; 0 1X n x β= ⋅ < < ) 
 
In (3), the gains from diversification, given by (1-β)/β, determine the impact of additional varie-
ties n on output Y (and the effect of the innovation rate g on consumption growth). n has to be 
interpreted as a productivity index for total input of intermediates X in Y-production; it emerges 
from the symmetry assumption in the CES function so that (3) is clearly distinct from a Cobb-
Douglas function. Intermediate goods firms use L and R as inputs to produce intermediate goods 
under the restriction of a CES production function; exploiting that the x-firms are all symmetri-
cal we can write: 

/( 1)
( 1) / ( 1) /(1 )[ ]X XX L R

σ σ
σ σ σ σλ λ

−
− −= ⋅ + − ⋅         (4) 

            ( 0 , 1λ σ< < )     
 
with σ  being the elasticity of substitution between L and R, assumed to be lower than unity. (4) 
reflects the relevant input substitution process governing the dynamic behaviour of the econ-
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omy, while the relationship between n and X in (3) determines the efficiency of final goods pro-
duction. Input substitution is supplemented by intersectoral substitution when inputs move from 
intermediates to research, which is the structural change modelled within this framework. 
 
2.2 Inputs  
 
Resources are owned by the households. The total stock of resource R at time τ is denoted by 
S(τ); its depletion occurs according to: 
 

S = −R , with  given and (0)S ( ) 0S τ ≥  for all τ.              (5) 
 

The population growth rate  is positive and assumed to reflect a Malthusian perspective as 
well as demographic transition; fertility and mortality have both to be considered. In particular, 
we postulate that  depends positively on productivity growth which increases living standards, 
decreases mortality (better health system), and may lower opportunity costs of parenting. In 
addition,  is assumed to be negatively affected by real wage growth because wages determine 
opportunity costs of parenting and the scope for retirement provision. Using 

L̂

L̂

L̂
Yp  for the price of 

output Y,  for the real wage, and  for productivity growth we obtain: / Yw p Â
 

      and           (6) ˆˆ ˆ ˆ ˆ( )YL A w pξ ξ ⎡ ⎤= ⋅ Γ = − − ≥⎣ ⎦ 0

             L ξμ= ⋅ Γ                   (6’) 
 

        ( , 0ξ μ > ) 
 

where ξ serves as “population response” parameter, μ is a constant representing population size, 
and hats denote growth rates. Below we set ( )ˆ 1 /A β β g⎡ ⎤= −⎣ ⎦  which seems to be a natural 
choice because it represents productivity growth in final goods production according to (3). It 
appears as an advantage to use a single parameter for population response; the alternative func-
tion  is also feasible but does not yield additional insights, see the appen-
dix. As we have , a higher 

1 2
ˆˆ ˆ ˆ( YL A w pξ ξ= − − )

ˆ 0Γ > ξ  means higher population growth. Equilibrium on labour and 
resource markets is given by: 
 
     X gL L L= +                       (7) 

    X gR R R= +                       (8) 
 

2.3 Individuals 
 
Let us denote individual consumption by . Each agent born in t maximises the discounted 
stream of individual utility: 

c

 

          ( )( ) log ( )t

t
U t e c dρ τ τ τ

∞ − −= ∫         (9)  
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where ρ  is the pure time preference rate. Individual financial wealth, denoted by z, equals the 
per capita value of assets representing R&D firms, i.e. /nz p n L= . In addition, each agent owns 
a share  /s S L=  of the resource stock, and sells /q R L=  units of extracted resource to produc-
ing firms, receiving a royalty Rp  (extraction costs are set to zero for simplicity). The dynamic 
budget constraint for each individual reads: 
 
                  (10)  ˆ( ) R Yz r L z p q w p c= − + + −
 
where r the interest rate on financial wealth, while (5) implies the dynamic resource constraint: 
 
                  ˆs q L s= − − ⋅              (11) 
 
The consumer problem consists of maximizing (9) subject to (10) and (11) using c and q as con-
trol variables, and z and s as state variables. The current-value Hamiltonian reads: 
  
   [ ] ( )1 2

ˆlog ( )L R YH c r g z p q w p c q Lν ν= + − + + − − + ⋅ s           (12)  

 
where 1 2,ν ν  denote the costate variables. Necessary conditions for an interior solution are given 
by the following first order and transversality conditions: 
 

11/ Yc p ν=                  (13) 

1 2Rpν ν=                  (14) 

1 1
ˆ( )r Lν ρ ν= − −         (15)     

2
ˆ( )L 2ν ρ ν= +                       (16) 

   ( )
1lim ( ) ( ) 0tv z e ρ τ

τ
τ τ − −

→∞
⋅ ⋅ =             (17) 

   ( )
2lim ( ) ( ) 0tv s e ρ τ

τ
τ τ − −

→∞
⋅ ⋅ =              (18) 

 
The transversality conditions (17) and (18) require that total firm and resource wealth each ap-
proaches a value of zero in the long run. Differentiating (13) logarithmically with respect to time 
and using (15) yields the Keynes-Ramsey rule: 
 
              ˆˆ ˆYc p r L+ = − − ρ             (19) 
 
while differentiating (14) logarithmically with respect to time and using (15) and (16) gives the 
Hotelling rule: 
           ˆ Rp r=              (20) 
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The transversality conditions (17) and (18) yield:1

 

                  (21) 
[ ]ˆ( ) ( ) ( )

1lim ( ) ( ) lim ( ) ( ) 0t t

r u L u du r u du

nz e L t p n e

τ τ

τ τ
τ τ τ

⎡ ⎤− − −⎣ ⎦ −

→∞ →∞

∫ ∫
⋅ = ⋅ =

 

          
ˆ ( )

1lim ( ) ( ) lim ( ) 0t

L u du

s e L t S

τ

τ τ
τ τ−

→∞ →∞

∫
⋅ = =      .          (22) 

 
Condition (21) rules out Ponzi games, as it requires the value of financial assets not to grow 
asymptotically at a rate exceeding the rate of interest. Condition (22) is a standard efficiency 
requirement: the resource stock must be asymptotically exhausted, since leaving unexploited 
resources in the ground would imply an inefficient extraction plan. The clearing of goods mar-
kets requires: 
 
       /Y L c=  .       (19’) 
       
As no resources are used to assemble differentiated goods to final output, expenditures can be 
expressed in terms of Y or X, i.e. Y xp Y p X= . 

As innovations lead to new goods (i.e. there is no perfect substitute for them) the market 
form in the intermediate sector is monopolistic competition. The demand for an intermediate 
good can be derived from (3), see the appendix. Accordingly, the mark-up over marginal costs 
for the optimal price of an intermediate good is 1/β, so that we get the per-period profit flow to 
each design holder:    

 
(1 ) /xp X nπ β= −                      (23) 

 
 On capital markets, the return on innovative investments (consisting of the direct profit 
flow π  and the change in value of the design) is equalised to the return on a riskless bond in-
vestment of size np : 

 
n np r pπ + = ⋅                            (24) 

 

                                                           

1  From (15), we can substitute 
ˆ( ) ( ) ( )

1 1( ) ( ) t
t r u L u du

v v t e
τ

ρ τ
τ

⎡ ⎤− − −⎣ ⎦∫=  in (17), obtaining 

. For any initial value of the shadow price of individual wealth, 
, this condition requires satisfying (21), where the central term is obtained by substituting the 

definition of individual wealth 

ˆ( ) ( )

1lim ( ) ( ) 0t
r u L u du

v t z e
τ

τ τ
⎡ ⎤− −⎣ ⎦

→∞
∫ =

1( ) 0v t >

( ) ( ) ( ) / ( )nz p n Lτ τ τ τ=  and the demographic rule . 

Similarly, plugging 

ˆ ( )
( ) ( ) t

L u du
L L t e

τ

τ ∫=
ˆ( ) ( )

2 2( ) ( ) t
t L u du

v v t e
τ

ρ τ
τ

⎡ ⎤− + ⎣ ⎦∫=  in (18) implies  Taking 
 outside the limit and substituting s(τ)=S(τ)/L(τ) yields (22). 

ˆ ( ) ( )

2lim ( ) 0.t
L u du s

v t e
τ

τ

τ

⎡ ⎤
⎣ ⎦

→∞
∫ =

2 ( )v t
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3    Steady state and transition  
3.1   Long-run innovation rate 
 
We label the cost share of labour in intermediate goods production with d; observing the fact 
that the mark-up factor in intermediates production is 1/β we have: 
 

      X

x

wLd
p Xβ

≡                      (25) 

 
while 1- d denotes the resource share in intermediates production. Calculating relative factor 
demands of profit-maximising x-firms, we obtain from (4) for the relative share size: 
 

          
1

1 1 R

d w
d p

σσλ
λ

−
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠

                    (26)  

 
We are now ready to give the first result: 
    

Proposition 1      The steady-state innovation rate depends on the relative size of the popula-
tion response parameter ξ  and the output elasticity of the resource in the research sector 
1 α− ; it is given by:  
 
        if  1( ) 0g ∞ = α ξ− >     (27a) 

  
11( )

1
g

ξσξ
σξ λμ

ξ λ
−⎛ ⎞ −⎛ ⎞∞ = ⋅ ⋅⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

   if  1 α ξ− =     (27b) 

       if  ( )g ∞ = ∞ 1 α ξ− <     (27c) 

 
Proof     The appendix shows that the steady-state innovation rate amounts to: 

                [ ]
1 1

1 1( ) ( ) 1 ( ) ( )g d d
α ξ α

σ σμ α
− − −

−− −∞ = ⋅ ∞ − ∞ = Ω ∞λ       (28) 

    where ( ) 1
1 /

α
α α α

−
⎡ ⎤= −⎣ ⎦ , [ ]

(1 )
1(1 ) /

α σ
σλ λ λ

−
−= − . 

 
Given poor input substitution, d continuously decreases such that ( ) 0d ∞ = , see the appendix. 

Then, [ ]
1
11 ( )d

α
σ

−
−

−− ∞ =1 and long-run innovation is governed by the term 
1

1( )d
α ξ

σ
− −

−∞ . The drag 

from fading resource input is given by 
1
1( )d

α
σ

−
−∞ , the counterforce through increasing population 

is represented by  1( )d
ξ
σ

−
−∞ .  ▪ 

 
According to (27a-c), the necessary condition for positive innovation and growth in the long run 
reads 1ξ α≥ − . This is a challenging result: in a knowledge-driven economy, positive popula-
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tion growth turns out not to be detrimental but, on the contrary, to be needed in order to sustain 
economic growth. Put differently, low population growth is a curse because it limits innovation 
and therefore development. This will also hold true for the case with a backstop technology, see 
section 4. In reality, the output elasticity 1 α−  is probably less than 2-3 percent so that an elas-
ticity of ξ  equalling this value appears to be realistic. 
 The model suggests that labour is indeed the ultimate resource, as it is highly productive 
in the accumulation of knowledge capital (and the development of the backstop). In (27a) and 
(27c), population response ξ  governs the adjustment speed when α  is given. The benchmark 
case with  is interesting because it offers useful theoretical insights.1ξ = − α 2 It can be inter-
preted as a new kind of “Innovation Hartwick rule” (see Hartwick 1977) for a multi-sector 
knowledge economy, with the following features: 

(i) the growing input compensating for the fading resource is not capital but labour, 
which is central in the dynamic research sector, 

(ii) labour growth reflects demographic transition, such that the response of popula-
tion to macroeconomic conditions (ξ) decides on the nature of development 
with given technology (α), 

(iii) resource use in research delivers the decisive technology parameter (1-α) in an 
economy which also comprises sectors which are not accumulating inputs, 

(iv) the rule yields a constant innovation rate in the long-run steady state. 
 
The innovation rate in (27b) depends positively on: 

(i) the size of the population (μ), 
(ii) the population response parameter (ξ), 
(iii) the elasticity of substitution in intermediates production (σ). 

 
In (27a) and (27c), these parameters determine the convergence speed. To confirm these state-
ments we now analyse the transition phase. 
 
3.2    Systems dynamics 
 
The sectoral depletion rates are defined as: 
 

           X
X

Rv
S

≡   and  g
g

R
v

S
≡                      (29) 

We then state: 
 
Lemma 1:  The dynamics of the system are fully given by the differential equations for d, g, , 
and 

Xv
gv , which read: 

                                                           
2  It is not studied because it has a high statistical probability; in this regard it is of the same quality as the Hartwick 
rule or the often-used assumptions of unitary substitution elasticities or proportional knowledge spillovers, see Romer 
(1990). The well-known criticism of Solow (1956) of the Harrod-Domar model was in fact not primarily on the knife-
edge character of the result but on the assumed fixed input proportions causing it.  
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(1 )(1 )(1 ) ( )dgd d gβσ

α β
⎡ ⎤−

= − − − Ω −⎢ ⎥
⎣ ⎦

                          (30) 

                      [ ](1 )( 1 ) 1 ˆ ( )
(1 )(1 )

g d
g g

d
α ξ σ

ρ
σ

⎡ + Ω − + − −
= − + Ω −⎢ − −⎣ ⎦

d g
⎤
⎥         (31) 

    ˆ
(1 )X X X g

dv v d v v
d

ρ
⎡

= − + + −⎢ −⎣ ⎦

⎤
⎥                             (32)  

     ˆˆ
(1 )(1 )g gv v g d v vα

α σ
⎡ ⎤

= + + +⎢ − −⎣ ⎦
X g ⎥                      (33)  

 

            where: ( )
1 1

1 11
g

gL d d
L

α ξ α
σ σμαλ

− − −
−− −Ω ≡ = ⋅ ⋅ − > 0 , see also (28). 

 
Proof:   See the appendix.  ▪ 
 
The steady state of the system is given by 0X gd g v v d= = = = = . From (30) we can verify that 
then we have  as stated in the proof of proposition 1, see (28). In the same way, 
using (31) − and (A.40) from the appendix for 

( ) ( )g ∞ = Ω ∞
ˆ( )d ∞  − we can confirm that indeed 

. (32) says that ( ) ( )g ∞ = Ω ∞ ( ) ( )X gv v ρ∞ + ∞ =  which is confirmed when using (33) combined 
with (A.40). This certifies that the dynamic system is consistent with proposition 1. We use the 
fact that the system is decomposable: (30) and (31) constitute a system alone, providing final 
solutions for the innovation rate g and the sectoral labour share d.  
 We use phase diagrams of this subsystem for the different cases of (27). In each case we 
describe the transition phase and the associated long-term equilibrium. We use the assumption 
of poor substitution in the production of intermediate goods (σ  < 1) throughout, avoiding the 
knife-edge assumption σ = 1 often used in literature. Under all scenarios regarding population 
growth, this entails a crowding out of labour from the intermediate sector, which supports eco-
nomic dynamics through lower (nominal) wages. Goods prices decrease as well while the num-
ber of varieties increases during adjustment; thus, decreasing nominal wages are indeed com-
patible with constant or increasing well-being in this model. Consumption growth and backstop 
technologies are treated in section 4. 
 
3.3 Population growth and transition 
 
When population responds weakly to its determinants given in (6), i.e. when ξ  takes a low 
value, population growth is low and innovation during transition is moderate because the fading 
resource input cannot be fully replaced by additional labour input. Indeed, it is that: 
 
Proposition 2      With low population growth, i.e. with 1ξ < − α , the economy converges 
along a saddle-path  to a state without innovation and production in the long run. 

 11



Proof    In figure 1, the dynamics are depicted with a phase diagram in the d-g-space for 
. The location and the shape of the (1 )ξ < − α 0d =  and the 0g = curves are explained in the 

appendix.  ▪ 
 

*** Figure 1 **** 
about here 

 
As becomes clear from figure 1, innovation steadily decreases and ultimately ceases in the long 
run. With given production technology (constant α), it is weak population growth (a low ξ) that 
leads to this outcome. A constant population unambiguously falls into this category. Provided 
that population growth is higher, the steady decline in the innovation rate can be avoided. We 
arrive at: 
 
Proposition 3      With intermediate population growth, i.e. when (1 )ξ = − α , the economy 
approaches on a saddle path a long-term equilibrium with constant positive innovation growth.  
 

 *** Figure 2 **** 
about here 

   
Proof       In figure 2, the dynamics are depicted in the d-g-space. The location and the shape of 
the  and the 0d = 0g = curves are explained in the appendix. The innovation rate approaches a 
constant on the Y axis following a saddle path, which lies between the two loci for  and 

. The equilibrium satisfies the transversality conditions. Using logarithmic differentials, 
(21) reads 

0d =
0g =

ˆ ˆlim ( ) ( ) ( ) 0nn p r
τ

τ τ τ
→∞

+ − ≤  which becomes with (2) ˆlim ( ) ( ) 0w r
τ

τ τ
→∞

− ≤ ; this is satis-

fied for , see (26) and (A.7) in the appendix. Any path converging to d=1 must be ruled 
out since  would imply 

ˆ 0d <
ˆ 0d > ˆ ( ) ( ) 0w rτ τ− > . ˆlim ( ) 0S

τ
τ

→∞
≤  is always satisfied with ( ) 0R τ > , 

see (22). Thus, the economy jumps on the saddle path and asymptotically approaches the equi-
librium given by (27b). ▪ 
 

In the long-run steady state, the drag of decreasing resource input in the research sector 
must be exactly compensated by increasing labour input. Using realistic parameter values (see 
the appendix for the numbers) exhibits that the half-life of convergence is much longer than, for 
example, with the neo-classical growth model. High values of population response ξ  and μ  are 
positive for innovation growth. This clearly exhibits the importance of sufficient labour supply 
to support R&D-activities in the long run. The discount rate has two opposing effects on innova-
tion: on the one hand, a high discount rate discourages investments; but on the other hand, it 
accelerates the price increase of natural resources and therefore sectoral reallocation of labour. 
According to (27b), the two opposing effects are of the same size so that the impact of ρ is ex-
actly zero.  

 12



 Following the discussion up to now, high population growth accelerates the innovation 
rate; we arrive at: 
 
Proposition 4      With high population growth, i.e. when 1ξ > − α , the economy follows a path 
with an increasing innovation rate as long as the backstop technology is not available.  
 
Proof      During transition the innovation rate increases because the inflow of labour in the re-
search sector, determined by the population growth parameter ξ , overcompensates the increas-
ing scarcity of the resource input in the research sector. ▪ 

 
This super-exponential growth path is abandoned as soon as backstop technologies and/or mini-
mum resource constraints emerge, which is treated in the next section, see figure 3. 
 
4    Long-run development 
In the long run, the growth rates of innovation and consumption depend on whether a backstop 
technology is available or not. Long-term income depends on the transition period, as it is a 
function of the number of varieties which result from cumulated research efforts in the past. A 
different income level may arise in the long run if the economy operates under a minimum re-
source constraint. This constraint says that a minimal resource input is needed to keep produc-
tion running. Finally, in a world of structural change, adjustment costs affect the final results. 
These topics are treated in the following, with a focus on consumption growth. 
 
4.1 No backstop technology 
 
Following (3), aggregate consumption growth  is determined by:  Ŷ
 
     Ŷ g Xβ ˆ= +      (34) 
 
with (1 ) /β β β= − . X̂  is negative because of the decreasing input of R into intermediate goods 
production. Labour gradually moves from the intermediate to the innovation sector, which in-
creases R&D activities. In order to have positive consumption growth, the equilibrium innova-
tion growth rate g must be big enough to compensate for the drag of R in the X-sector. In the 
(very) long run, d becomes (approximately) zero, resource use is given by ˆ

XR ρ= −  (see A.33 
in the appendix), which yields X̂ ρ= − . Inserting (27b) into (34) we thus obtain: 
 

    
11ˆ

1
Y

ξσξ
σξ λ βμ ρ

ξ λ
−⎛ ⎞ −⎛ ⎞= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

         (35) 

 
Whether consumption growth is positive in the long run depends on the parameters. High inno-
vation growth, large gains from diversification and monopoly power (low β), and a large popu-
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lation size (high μ) favour positive (aggregate) consumption growth, whereas a high discount 
rate has a negative effect on consumption dynamics. Note that the negative effect of the discount 
rate stems from the negative effect of resource use on intermediates production and not from 
investment behaviour.  

In order to get long-term per capita consumption growth we need to calculate Y Lg g− . 
From time-differentiating (1’) we get for constant g that ˆ ˆ(1 ) 0gL Rα α+ − = . Noting that 
ˆ

gR ρ= −  (see A. 41 in the appendix) in the long run we derive asymptotic population growth 
with a constant innovation rate according to: 

 
1L̂ α ρ

α
−

=                (36) 

 
so that we get for per capita consumption growth : ĉ
 

        
11ˆ

1
c

ξσξ
σξ λ 1βμ ρ

ξ λ α
−⎛ ⎞ −⎛ ⎞= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

  .                (37) 

 
Again, high innovation growth, large gains from diversification, and a large labour force are the 
best means to compensate for a positive discount rate, which is now weighted by 1/α due to 
positive population growth. For positive (sustainable) growth in the long run, the discount rate 
must be bounded from above according to: 
 

              
11ˆ 0

1
c

ξσξ
σξ λα βμ ρ

ξ λ
−⎛ ⎞ −⎛ ⎞≥ ⇔ ≥⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠

                   (38) 

 
A special case applies when the economy needs a minimum resource input to operate, see sec-
tion 4.3. 
 
4.2 With backstop technology  
 
When interpreting R as fossil fuels, it is likely that a backstop technology will become available 
at some point in the future. This new technology could build on resources like solar, wind, 
and/or tidal power or similar energies, all of them being renewable (as long as the sun is shi-
ning). To fully endogenise the backstop would go beyond the scope of this paper. But we formu-
late necessary conditions for the emergence of a backstop along historical experience with the 
so-called “general purpose technologies”. We note that the largest innovations, like the mo-
veable type printing by Gutenberg, the steam engine by Watt, and the computer, were achieved 
by actively combining a multitude of existing technologies. Thus we assume that a backstop 
technology can only emerge when a lot of knowledge is accumulated already and research acti-
vities in an economy are high in general. Accordingly, the successful development of the back-
stop is tied to two conditions. The first is that accumulated knowledge in the economy has to 
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exceed a critical level, i.e. ( )κ τ κ≥ . Second, it requires a critical research level in the economy, 
i.e. ( )g gτ ≥ . As soon as the backstop is available, it fully substitutes for the resource at current 
market prices. If it is never available, we have κ = ∞ . According to historical experience, gene-
ral purpose technologies are not anticipated by individuals. We assume the transition to the 
backstop technology to be smooth (e.g. there are no price jumps) so that a modification of the 
households’ intertemporal optimisation problem is not warranted.  We now state results for low 
and high population growth. Following proposition 2 we have: 
 
Corollary 1   With low population growth, i.e. when (1 )ξ < − α , the backstop technology is 
never developed and the decline of economic activities becomes inevitable. 
 
Proof     Figure 1 shows that for low population growth the innovation rate decreases over time. 
Accordingly, the condition ( )g gτ >  for any τ is either fulfilled at the beginning of the optimi-
sation or never. ▪ 
 
The critical level for knowledge, i.e. ( )κ τ κ≥ , prevents the policy option of investing heavily in 
innovations during a short period of time. Moreover, as the backstop comes as an externality for 
individuals, there is no incentive for an agent to promote the backstop in any way. On the con-
trary, with high population growth innovation rate and knowledge stock become high so that the 
emergence of a backstop becomes possible. Following proposition 4 we have:  
 
Corollary 2   Higher population growth causes faster adjustment to the equilibrium with a 
backstop technology. 
 
Proof     Figure 3 shows the corresponding dynamics in the d-g-space for the case 1ξ α> − . On 
the saddle path, the innovation rate and the labour share reach point C, where we assume 

( )κ τ κ≥ so that both variables d and g remain in C forever. ▪  
 
 

 *** Figure 3 **** 
about here 

 
 
The economy switches to a constant supply of B, fully replacing R, which will happen if not 
κ = ∞ . As we focus on market outcomes and the backstop comes as a pure externality, there is 
no specific pre-arrival activity by any agent in the economy. In the model, the backstop resource 
B replaces R in (1), (4), and (8), where we then postulate a fixed supply of B to be equal to the 
quantity demanded in the two sectors. The price is equal to a given , which is the constant 
unit production cost of the backstop resource. A constant  results when the opposing effects 
of learning (causing a decreasing ) and of increasing scarcities  (causing an increasing ) 
have the same size. Following (4) and (25), the share of the backstop resource in intermediates 
production can be expressed as: 

Bc
Bc

Bc Bc
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(1 )B X xc B d p Xβ⋅ = −        (39) 
 

From the profit maximisation of the research labs we have: 
 

 (1 )g

g B

B w
L c

α
α
−

=            (40) 

 
The labour share in intermediates production now evolves according to: 
 

  ˆ ˆ(1 )(1 )d wλ σ= − −   .     (41) 
 
To find the equilibrium of the system with the backstop resource, hypothetically suppose that 
(nominal) wages decrease over time. With poor input substitution, this would imply that, follow-
ing (41), d falls so that 1  increases and d− XB  rises, following (39). With a given B this would 
decrease gB , which harms research and growth. Obviously, this is not an optimum. On the other 
hand, a constant wage implies a constant d, a constant allocation of energy to the two sectors 
and a constant population, according to (A.10), see the appendix. The constant input of labour 
and energy in research yields constant innovation and consumption growth rates which is the 
optimum outcome in the case of a backstop technology. Individuals with rational expectation 
choose this development path. With a backstop technology, the model resembles the approach 
of Grossman and Helpman (1991, ch. 5) which provides constant growth rates due to constant 
returns to research. Summarising, we thus find that for any point in time after the backstop arri-
val: 

(i) d becomes constant, i.e. sectoral change stops, 
(ii) the innovation rate becomes constant,  
(iii) the population growth rate becomes zero, and 
(iv) per-capita consumption is constantly increased in the long run. 

 
Result (iii) corresponds to the prediction that world population will be stable in the distant fu-
ture. Implication (iv) is the consequence of a constant aggregate X-production and a positive 
innovation growth rate, as is the case in basic endogenous growth models.  

Adopting a material interpretation of the resource R, recycling has a function which is 
similar to that of the backstop technology for energy. Regarding the minimum level, it is often 
assumed that a certain amount of material throughput is necessary to sustain economic activities 
in the long run. Recycling is the key to increasing the quantity of raw materials like metals etc. 
Assuming that a recycling technology becomes available at some point in time basically the 
same analysis as for the backstop applies. This holds true provided that it is possible to com-
pletely recycle the required (constant) quantity of material at a constant speed. If, however, it is 
not possible to recycle one hundred percent of the material, the minimum material requirement 
will not be met at some point in time and production in the model has to stop. Note that not all 
materials are non-renewable or predicted to be critical with regard to the minimum condition. 
For instance in food production, we primarily turn to the field of renewable natural resources. 

 16



Here, limited regeneration and complementary inputs like land and water are possible bottle-
necks for production. Regarding housing, natural supplies of materials seem to be (relatively) 
more abundant and partly renewable (e.g. timber).  
 
4.3 Minimum resource use 
 
In the present model, the progressive exhaustion of the resource stock decreases the labour in-
come share in the intermediate goods sector, while the labour share in the research sector re-
mains constant. As a consequence, the relative value of labour decreases and workers move 
from the intermediate goods to the R&D sector with a parallel increase in total labour force. 
Without a backstop technology, the economy evolves toward a steady state where the knowl-
edge stock grows to infinity, whereas natural resource use and the production of intermediate 
goods approach zero. The economy becomes “immaterial” in the long run because growth de-
pends on increasing knowledge with an ever-decreasing input of intermediate goods and re-
sources. In the long-run steady state, costs of innovations are (approximately) constant, that is 
the decreasing wages compensate for increasing resource prices.  

During transition, resource use becomes very low and even converges to zero in the 
very long run. Note that final goods production in (3) states that a sufficiently increasing knowl-
edge stock can compensate for fading intermediate services, which is independent of material 
use, so that (3) remains to be valid in the long run. But is this realistic? If a minimum resource 
input is needed for intermediates production we must write, instead of (4): 

 
 

/( 1)( 1) / ( 1) /(1 )[ X X ]X L R
σ σσ σ σ σλ λ

−− −= ⋅ + − ⋅ − R             (4’)   
 
 
Now a path leading to ( )XR Rτ <  causes consumption to fall back to zero as soon as the 

minimum resource input is reached. In principle, any path analysed in section 3 is a candidate 
for such a development. One might think about optimal strategies for agents anticipating this 
development, but this is beyond the scope of this paper. Just note that an unfavourable scenario 
including ( )XR Rτ <  is not the consequence of excessive growth during convergence. In the 
model, growth results from research which is less resource intensive than intermediates produc-
tion in the longer run so that moderation in the growth rate does not help the economy in any 
way. (Sufficiently) Increasing resource prices are the best way to get a smooth transition to 
backstop technologies. Zero production in the long run emerges as the model outcome from the 
combination of a minimum resource requirement and a lack of a backstop technology and/or 
incomplete recycling.  

 
4.4 Adjustment costs 
 
Two further issues could prevent the system from following the saddle paths depicted in figures 
1-3. First, as structural change is the main mechanism driving the result, any deviation from zero 
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adjustment cost can become critical for the outcome. Indeed, many causes for slow sectoral 
adjustments of labour, such as wage-setting procedures and efficiency wages, can be found in 
reality. Even more important, the research sector might require special skills which are not read-
ily available in the economy. It becomes immediately clear from the results that, once we have 
too slow an inflow of labour into the R&D-sector, innovation growth rates will decrease. Spe-
cifically, equation (A.10) in the appendix gives the percentage change of labour input into R&D 
as a function of the change of the labour wage and the labour share in X-production. Provided 
that wages do not adjust as indicated on an equilibrium convergence path, the percentage change 
of labour input in R&D becomes smaller, which entails a lower innovation growth rate accord-
ing to (1’). The same holds true for the world economy, where sectoral shifts are associated with 
international changes in the division of labour. 
 Also, several equations postulate perfect foresight of the agents that is we abstract from 
information costs. In addition to the usual assumptions regarding capital markets and the in-
tertemporal budget constraint, this model includes optimisation of resource owners. When devi-
ating from perfect information in the resource sector, it might be that price levels are too low or 
price increases are too slow (at least in a first phase), for instance due to myopia. As a conse-
quence, too little knowledge is accumulated and, combined with adjustment costs on labour 
markets, the increase of labour in the innovative sector becomes too sluggish compared to the 
model solution. 
 Turning to the issue of optimal economic growth, the market equilibrium reached in the 
present economy does not correspond to a first best-solution. Due to the positive spillovers in 
R&D, research efforts are too weak in equilibrium. Activities in the intermediate goods sector 
are also too low compared to the optimum because of monopolistic competition. This would 
lead to a static distortion in consumer expenditures if there were another consumer sector with 
goods priced at marginal costs. However, there is only one consumer sector in this economy. 
Regarding the intermediate goods sector, relative prices between goods reflect relative marginal 
cost, so that no static distortion arises. Thus, depending on the size of positive spillovers, policy 
could restore optimum sector size and provide optimal growth by subsidising research. Accord-
ing to the assumption, this would also have an impact on population growth.  
 
 
 
 
5    Conclusions 
The paper presents a model in which population growth is endogenous and supports sustainable 
consumption in an economy under non-renewable resource constraints. An increasing labour 
force is positive for growth because it fosters knowledge capital substituting for natural re-
sources. The knowledge creation effect of labour dominates the resource using effect because 
knowledge creation is labour intensive and knowledge is a public good, which can be equally 
used by all the agents even in case of population growth. It is also shown that increasing re-
source prices and low input substitution elasticities cause structural change, which helps innova-
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tion. Even a combination of several seemingly unfavourable conditions is thus not detrimental 
for long-run growth. On the contrary, the model suggests that labour and backstop technologies 
rather than natural inputs are the ultimate resources for an economy.  
 The results suggest that population policy is not only problematic because it affects 
families’ welfare and becomes easily paternalistic toward less developed countries, but because 
it might be counterproductive with respect to economic dynamics. To foster innovation and 
increasing living standards turn out to be the more efficient way to obtain sustainable consump-
tion. Thus the non-Malthusian results of this study do not suggest a laisser-faire policy; rather, 
by emphasising central mechanisms for development, the model indicates that the debate on 
population growth and the substitution of non-renewable resources should focus on issues like 
sectoral adjustment costs and the formation of long-term expectations. The results show that 
facilitating labour reallocation from knowledge-extensive to knowledge-intensive sectors is the 
best means to support sustainable development. The removal of subsidies to energy production 
(like the ones for coal in certain countries) and to shrinking and lagging sectors emerges as be-
ing desirable. The steady increase of resource prices is not seen as detrimental, quite to the con-
trary, it helps the economy to adjust in continuous small steps to a sustainable equilibrium. 
However, policies targeting at the population size cannot be advocated.  

In an extended model, learning effects in the intermediates sector could sustain the incen-
tive for a part of the labour force to remain in the intermediates sector in the long run, a straight-
forward extension of the present approach. The framework could also include that reallocating 
labour needs education efforts, which seems to be another possible direction for future research. 
In addition, or alternatively, one might assume that part of the population is not suited for em-
ployment in the research sector. A further extension of the model would be to introduce stock 
pollution, which represents another exhaustibility constraint similar to non-renewable resources.  
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Appendix 
 
This appendix explains the derivations of the equations in the main text in detail. If needed, 
more information is available from the author upon request. 
 
Profits 
To obtain (23), use the price index of final goods Y, which is written as: 
 

 ( )
1/(1 )

1

0

n

Y xjp p dj
ε

ε
−

−⎡ ⎤
= ⎢ ⎥
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∫        (A.1) 

 
With perfect competition in the Y-sector, this price equals the per-unit costs, so that differentiat-
ing (A.1) with respect to the price of intermediate good i yields, according to Shephard’s 
Lemma, the per-unit input coefficient /ix Y . Thus, the demand for intermediate good i be-
comes: 
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∫
        (A.2) 

 
For the case of many x-firms (large group case of Chamberlin), the denominator of (A.2) is 
given for the single firm so that the elasticity of demand for ix  is ε,  and the optimum mark-up 
over marginal costs is indeed 1/ β , with ( )1 /β ε= − ε . Hence, profits of x-firms used to com-
pensate research are a share 1 β−  of total sales.  
 
Innovation rate 
To characterise the steady state we first derive the steady state innovation rate. (1’) can be rew-
ritten as: 
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         (A.3) 

       
The innovation growth rate depends on the labour input in R&D, gL , and the relation of re-
source and labour input in the innovative sector. Cost minimisation in the R&D sector yields: 
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Using (26) we derive: 
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Combining (A.3), (A.4), and (A.5) yields: 
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− −−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−
−

=    (A.6) 

 
To determine the long-run values of gL  and d we log differentiate (26) and use (20) to write: 
 
  .      (A.7) ˆ ˆ(1 )(1 )( )d d wσ= − − − r

r

 
Expressing the transversality condition (21) in growth rates and using (2) we have: 
 
 ˆlim ( )wτ τ→∞ ≤  for lim ( ) 0gτ τ→∞ >      (A.8) 
 
From (A.8) and (A.7) we conclude that − for 1σ <  − the intermediate labour share d unambigu-
ously decreases over time and ultimately approaches zero; accordingly, labour steadily moves 
from intermediates production to research. Thus, the long-run steady state is characterised by  
 
 lim ( )gL Lτ τ→∞ =  and lim ( ) 0dτ τ→∞ = .      (A.9) 
 
To determine  and L we use (6) and (6’). From (3), (4), (20), and (25) we know that L̂

[ ]ˆ ˆ (1 ) /Y xp p gβ β= − −  [ ]ˆ (1 ) (1 ) /d w d r gβ β= ⋅ + − − − . Using (A.7) we thus derive 
 

 [ ] ˆˆ ˆ( 1) (1 )
1

L d w d r ξξ d
σ

= − + − = −
−

      (A.10) 

 
and write for the population level:        
 

 1L d
ξ
σμ

−
−= ⋅           (A.11) 

 
with , 0μ ξ > . Using (A.9) in (A.11) and inserting into (A.6) gives for the long run 
 

 

1
1( )( ) ( )

1 ( )
dg L

d

α
σ

αλ

−
−⎛ ⎞∞

∞ = ∞ ⎜ ⎟− ∞⎝ ⎠
 .                  (A.12) 

 
which directly yields (28) and (27) in the main. 
 
 
Alternative population response 
Using  instead of (6) leads to:  1 2

ˆˆ ˆ ˆ( YL A w pξ ξ= − − )
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 2
1 2

ˆˆ ( )
1

L g dξξ ξ
σ

= − −
−

                                 (A.13)   

 
which differs from (A.10) by the term 1 2( g)ξ ξ− . Obviously, the assumption 1ξ  > 2ξ   would 
directly support population growth, the innovation rate, and economic growth. But as long as we 
have no empirical information about the difference between 1ξ  and 2ξ  we prefer to assume that 
they are of equal size such that ( )1 2 0gξ ξ− = . 
 
 
Equations of motion 
Starting with (A.7) for the dynamics of the labour share d we calculate  by first dividing 
(24) by 

ŵ r−
np   

 

 ˆn
n

p r
p
π

+ =  ,        (A.14) 

 
and use (23) and (25) to have 
 

 
( ) ( )1 / 1

ˆx
n

n n

p X n wL
ˆx

np p
p nd p

β β
β

− −
+ = + = r .     (A.15) 

 
Calculating w as (value) marginal product from (1’) gives 
 
 1 1 /g g n nw L R p n p g n Lα αα α− −= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ g      (A.16) 
 
which can be solved for np . Inserting (A.16) into (A.15) yields 
  

 
( )1

ˆx
n

g

g L
p r

d L
α β

β
−

+ =  .       (A.17) 

 
Using (2) and (20) to calculate ˆnp  in (A.17) delivers 
 

 
( )1

ˆ (1 )x

g

g L
w r r

d L
α β

α α
β
−

+ + − = + g       (A.18) 

 
so that by rearranging we get 
 

 
( )1

ˆ( )g w r g
d

α β
α

β
− Ω −⎛ ⎞ + − =⎜ ⎟

⎝ ⎠
      (A.19) 

 

where  
g

gL
L

Ω ≡  and 
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( )11ˆ gw r g

d
α β

α β
⎡ ⎤− Ω −⎛− = −⎢ ⎜

⎝ ⎠⎣ ⎦

⎞
⎥⎟       (A.20) 

 
Inserting (A.20) into (A.7) yields 
 

 
( )11ˆ (1 )(1 ) gd d g

d
α β

σ
α β

⎡ ⎤− Ω −⎛= − − −⎢ ⎜
⎝ ⎠⎣ ⎦

⎞
⎥⎟      (A.21) 

   
and, after rearranging, (30) in the main text. To get the dynamics of the innovation rate in (31) 
we start from writing (7) in growth rates: 
 

 ˆ ˆ1 g g ˆ
x g

L L
L L

L L
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

L        (A.22) 

and 

 ˆ ˆ ˆ( ) ˆ
g X

g

LL L L
L

= − + XL    .               (A.23) 

 
From (A.3), (A.4), and (20) we derive, using differentials in logarithms:  
 
 ( )ˆ ˆ ˆ(1 )gL g w rα= − − −         (A.24)  
 
Employing (A.7) we get 
 

 1 ˆˆ ˆ
(1 )(1 )gL g d

d
α

σ
−

= −
− −

   .       (A.25) 

 
To get  we use (25) to write  ˆ

XL
 
         (A.26) ˆˆˆ ˆX xw L d p X+ = + + ˆ

 
which yields, using (19) and (19’): 
 
 ˆˆˆ Xw L d r ρ+ = + −   .        (A.27) 
 
Using (A.7) and rearranging gives 
 

 1 ˆˆ 1
(1 )(1 )XL

d
d ρ

σ
⎡ ⎤

= − −⎢ − −⎣ ⎦
⎥   .      (A.28) 

 
Inserting (A.25) and (A.28) into (A.23) and using (A.10) we get 
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1 1ˆ ˆ ˆˆ 1 1

(1 )(1 ) 1 (1 )(1 ) (1 )(1 )g

Lg d d d
d L d d

α ξ 1 d̂ρ ρ
σ σ σ σ

⎧ ⎫⎡ ⎤ ⎡ ⎤− ⎪ ⎪= + − − − − + −⎨ ⎬⎢ ⎥ ⎢ ⎥− − − − − − −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
−  

 
and, by simplifying: 
 

 [ ](1 )( 1 ) 1 ˆˆ 1
(1 )(1 )

g d
( )g d

g d g
α ξ σ ρ

σ
⎡ ⎤+ Ω − + − −

= − − Ω −⎢ − −⎣ ⎦
g⎥     (A.29) 

 
which directly yields (31) in the main text. To get the dynamics of resource extraction in (32) 
and (33) we first calculate ˆ

XR , using the first order condition from profit maximisation in X-
production (see also 26): 
 

 
1

X

X R

L w
R p

σσλ
λ

−
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

        (A.30) 

 
to obtain with (25) 
 

1ˆ ˆ ˆ(1 ) ( )X Xd d R Lσ
σ
−⎛ ⎞= − −⎜ ⎟

⎝ ⎠
   .    (A.31) 

 
Inserting (A.28) into (A.31) yields 
 

1 1ˆ ˆ(1 ) ( 1 )
(1 )(1 )Xd d R d

d
σ ˆ ρ

σ σ
⎡ ⎤−⎛ ⎞= − − − −⎢ ⎥⎜ ⎟ − −⎝ ⎠ ⎣ ⎦

 .   (A.32) 

 
Solving (A.32) for ˆ

XR  and simplifying gives 
 

 ˆˆ
(1 )X

dR
d

d ρ= − −
−

        (A.33) 

 
Note that in τ = ∞  we have  such that 0d = ˆ ( )XR ρ∞ = − . Taking differentials in logs from (29) 
we get: 
 
          (A.34) ˆˆˆX xv R= − S
 
where with (5) and (8) we can express ( )ˆ / / x gS S S R S R R S= = − = − − /

g

 such that  

 
  .       (A.35) ˆˆX x xv R v v= + +

 
Inserting (A.33) into (A.35) gives (32) in the main text. Likewise we calculate ˆ

gR  taking differ-
entials in logs from (A.4) 
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 ˆ ˆ ˆg gR L w− = − r

ˆ

 .       (A.36) 
 
We further use (1’) to write 
 
 ˆˆ (1 )g gg Lα α= + − R         (A.37) 
 
which we solve for ˆ

gL  to use it in (A.36). Further using (A.7) to eliminate  in (A.36) we 
obtain 

ŵ r−

 

 ˆˆ ˆ
(1 )(1 )gR g

d
dα

σ
= +

− −
 .      (A.38) 

 
To get  we know that  but need to calculate ˆ ( )gR ∞ ˆ( ) 0g ∞ = ˆ( ) ( ) / ( ) 0d d d∞ = ∞ ∞ ≠ . In (24) and 

(A.14) we can exploit that in a long run equilibrium both ˆnp  and r  must be constant so that 
/ npπ  becomes constant as well. This says that ˆ ˆnpπ =  or 

 
 ˆˆ ˆ (1 )xp X w rα α+ = + −         (A.39) 
 
where ˆˆ xp X r ρ+ = −  through (19) and (19’). So we get with (A.7) 
 

 (1 )( )d σ ρ
α

−
∞ = −         (A.40) 

 
and with (A.38) we have 
 
 ˆ ( )gR ρ∞ = −   .       (A.41) 
 
Taking differentials in logs from (29) we get: 
 
          (A.42) ˆˆˆg gv R S= −

 
where with (5) and (8) we can again express ( )ˆ / / x gS S S R S R R S= = − = − − /  such that  

 
 ˆˆg g xv R v v= + + g  .       (A.43) 
 
Inserting (A.38) into (A.43) gives (33) in the main text. 
  
 
Phase diagrams 
The location and the shape of the 0d =  locus in the d-g-plane is found by setting (30) equal to 
zero in order to derive, after rearranging: 
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( )
1

1

dg dβ
α β

Ω
=

+
−

                      (A.44) 

 

with ( )
1 1

1 11d d
α ξ α

σ σμαλ
− − −

−− −Ω = ⋅ ⋅ − > 0  as above and when  denotes the value of g determined 

by the  locus. With  we get for 
dg

0d = 0d = Ω  
 0    if 1Ω = α ξ− >  
 μαλΩ =   if 1 α ξ− =  
    if 1Ω = ∞ α ξ− <   . 

With  we have  1d = μαλΩ =  in all cases.  Thus the 0d = locus for 0d =  yields 
    if 10dg = α ξ− >  
 dg μαλ=   if 1 α ξ− =  
   if 1dg = ∞ α ξ− <  
To obtain  for dg 1d =  we get from (A.44) 
 

 

( )

1

1
1

dg αλμ αλμ
β

α β

=
+

−

<    .      (A.45) 

 
The inequality sign in (A.45) makes clear that, for 1 α ξ− ≤ , the 0d =  locus is always down-
ward sloping when it is monotonous. For 1 α ξ− >  it must have a maximum in the range 

. These claims are easiest confirmed by numerical simulation, which we do, using the 
parameter values α = 0.9, σ = 0.3, ρ = 0.01, β = 0.9, and μ = 0.2 (alternative values lead to the 
same finding). A separate supplement to this paper shows the results of the numerical simula-
tions, including the behaviour of Ω . 

0 d< ≤1

For the  locus we conclude from (31) that, with 0g = 0d = , we get gg = Ω . Thus we have: 
    if 10gg = α ξ− >  

 gg μαλ=   if 1 α ξ− =  
   if 1gg = ∞ α ξ− <  

as it is for the  locus, which means that the two loci coincide on the vertical axis. To show 
that the  locus always lies below the 

0d =
0g = 0d =  locus in the d-g-space, (and the two curves 

thus never intersect for ), we build the difference 0 d< ≤1 gdg g gΔ = − , for which we use 
(A.44) and the corresponding equation for gg . We use the fact that gΔ  increases with  such 
that  gives the minimum value of 

Ω

0Ω = gΔ . Calculating gΔ with 0Ω =  yields: 
 

 
( )( )1 ( (1 )

dg
d d

αβρ
α β β σ α σ

Δ =
− + − + + −1)

     (A.46) 
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which is unambiguously positive for 0 1d< ≤ , provided that 1α σ+ > . This is a safe assump-
tion as  α  can be expected to be close to unity; most literature assumes 2α σ+ = , which is 
much higher. For 0d =  we get  as stated above. All these results are confirmed by nu-
merical simulation with the same parameters values, see the separate supplement. Figures 1-3 
are drawn accordingly. 

0gΔ =
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