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Abstract

We examine an auction in which the seller determines the supply after observing

the bids. We compare the uniform price and the discriminatory auction in a setting

of supply uncertainty. Uncertainty is caused by the interplay of two factors: the

seller’s private information about marginal cost, and the seller’s incentive to sell

the profit-maximizing quantity given the received bids. In every symmetric mixed

strategy equilibrium, bidders submit higher bids in the uniform price auction than

in the discriminatory auction. In the two-bidder case this result extends to the set of

rationalizable strategies. As a consequence, we find that the uniform price auction

generates higher expected revenue for the seller and higher trade volume.
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1 Introduction

In a variable supply auction the seller determines the quantity to be sold after observing

the bids. This form of trade has recently gained popularity in a variety of markets, e.g.

markets for electricity, emission permits and initial public offerings (IPOs), yet it is most

common in Treasury auctions. As noted by Nyborg, Rydqvist and Sundaresan (2002),

the Treasury departments of many countries, e.g. Switzerland, Mexico, Sweden, Finland,

Germany, Norway, Italy,1 adjust the quantity to be issued in response to the bidding in

their regular auctions for government debt. Despite the regularity of these auctions and

the high volumes traded, little is known about how ex post variations of supply affect

bidding.

In this paper we examine a simple model of a variable supply auction. We explore how

rational bidders behave in the uniform price and the discriminatory auction when supply

is uncertain and depends on the submitted bids. Our analysis provides a ranking of these

two commonly used auction formats in terms of revenue for the seller and average trading

volume.

We assume that a single seller with constant marginal cost of production offers multiple

units of a good to two or more buyers in an auction. Buyers are risk neutral and face

uncertainty about the marginal cost of the seller. In the first stage of the game, bidders

simultaneously submit their individual bids for one unit to the auctioneer. In the second

stage of the game, given the received bids and the production cost, the seller decides

on the supply quantity so as to maximize profit. We study two types of auctions. In

the discriminatory auction, the seller acts as a perfectly discriminating monopolist with

respect to the received bids, and in the uniform price auction the seller charges all winning

bidders the same price determined by the lowest winning bid.2

We show that in every symmetric (mixed strategy) equilibrium buyers bid higher in

the uniform price auction with a probability of one. In the two-bidder case this result

holds for all rationalizable bids. As a result, the uniform pricing leads to higher expected

revenue for the seller. We also find (under a convexity condition) that the uniform price

auction generates higher average trade volume.

At first sight these results might seem counterintuitive: standard monopoly theory

tells us that a price discriminating monopolist sells a higher quantity and realizes higher

profits. The major difference here, of course, is that bidders are strategic when submitting

1See Heller and Lengwiler (2001), Umlauf (1993, pp. 316–317), Nyborg et al. (2002), Keloharju,
Nyborg and Rydqvist (2005) and Rocholl (2004) for descriptions of the Treasury auction procedures in
Switzerland, Mexico, Sweden, Finland and Germany, respectively. In these countries the Treasuries use a
discriminatory auction and determine supply ex-post. Scalia (1997) and Bjonnes (2001) report that the
Treasury auctions in Norway and Italy, respectively, are uniform price auctions with variable supply.

2In some versions of the uniform price auction the winning bidders pay the highest losing bid, but this
method does not seem to have relevance in practice and we do not consider it further here.
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their bids. In a subgame perfect equilibrium, when bidders anticipate price discrimination,

they will adjust their bids accordingly so as to counterbalance the discriminatory power

of the seller. We show here that the commitment not to price discriminate in the uniform

price auction will promote competition among bidders and eventually raise bid prices. As

a consequence, the seller will be able to charge higher prices and sell a higher quantity.

The results of our model could serve a dual purpose. On the one hand, it offers

a possible explanation of the recent empirical findings on Treasury auctions which are

largely in support of uniform pricing (see Goldreich 2007, Malvey and Archibald 1998,

Umlauf 1993). On the other hand, and more importantly, it could serve as a guide for

future empirical research by hypothesizing that supply uncertainty causes bids to rise more

in the uniform price auction than in the discriminatory auction. For instance, Nyborg

et al. (2002, p.422) have already conjectured that bidder reaction to supply uncertainty is

reflected in the empirical data on bidding, yet so far it has been unclear how these effects

might work under the two pricing rules.

To gain intuition into how supply uncertainty affects bids in our model, we explore

how increasing a bid influences the chances of winning and the payment of a bidder in

uniform price and discriminatory auctions. We observe that, for both pricing rules, raising

a bid raises the probability of winning. Increasing a bid, however, is less costly in the

uniform price auction: whereas in the discriminatory auction winning bids are paid with

a probability of one, in the uniform price auction all winners pay the lowest winning bid.

So, in the uniform price auction, bidders with higher bids free ride on their lower bidding

counterparts since all bidders pay the same amount. However, by submitting higher bids

bidders can avoid (part of) the risk of not being served in the cases of high marginal cost

in which there will be a reduction in supply. In equilibrium this creates a tendency for

higher bidding in the uniform price auction.

Most closely related to our framework is the model of Lengwiler (1999), where bidders’

uncertainty about seller’s marginal cost is modelled in a similar fashion. Yet, Lengwiler

restricts bidders’ choice to the announcement of bid quantities at two exogenously given

prices – high and low. He proved that the uniform price and the discriminatory auc-

tions have perfect equilibria. Since the characterization of equilibria in such a setting is

rather difficult, both auctions could not be compared in terms of revenue for the seller or

efficiency.

There are two reasons why we reach here more definitive conclusions about revenue and

efficiency. First, we focus on prices, which allows us to more closely examine the tradeoff

between probability of winning and payment. Second, we utilize a new methodological

approach. We identify bounds on the set of rationalizable bids in the two-bidder case and

the set of symmetric mixed strategy equilibria in the more-than-two-bidder case. This

allow us to compare the two auctions without the need to solve explicitly for the equilibria,
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which seems technically unfeasible even in this relatively simple model.

The theoretical literature on fixed supply multi-unit auctions is in favor of discrimi-

natory pricing. The primary concern with the uniform price auction is the existence of

low-price equilibria. Back and Zender (1993) extend a model first introduced by Wilson

(1979) and demonstrate that there are low-price equilibria in which bidders submit kinked

demand schedules. Wang and Zender (2002) find that, if submission of non-competitive

bids is allowed, the uniform price auction always has equilibria with lower expected rev-

enues than the equilibria of the discriminatory auction. Nyborg and Strebulaev (2004)

develop a model allowing for short squeezes, and show that the discriminatory auction

leads to more short squeezing and higher revenue than the uniform price auction.

In all these models there is no strategic role for the seller. This element, in contrast,

is central to the auction games presented here and we demonstrate how it reverses the

auction ranking in a strategic bidding model. Moreover our analysis does not rely on the

standard argument that the uniform price auction weakens the winner’s curse in common

value auctions (see, e.g. Milgrom and Weber 1982), and yet the uniform price auction is

found to be superior.

The paper is organized as follows. Section 2 presents the assumptions of the model

and the theoretical framework. Analysis and results are in Section 3. Section 4 explores to

what extent the results are applicable in more general settings, and Section 5 concludes.

2 The model

A monopoly seller offers multiple units of an asset to n ≥ 2 prospective buyers. The asset

has common value to buyers denoted by v and the seller has no information about that

common value.3 The seller will use a variable supply auction to sell the good. Each buyer

i ∈ {1, 2, . . . , n} is risk neutral and submits a price bid for a single unit. The monopolist

observes privately his constant marginal cost c, only the distribution of which is known

to bidders. This distribution has support [0, c], where c ≥ v. The distribution function is

denoted by F (c) and its density function by f(c). The latter is taken to be continuous,

strictly positive in the interval [0, c] and differentiable in the interval (0, c). Further, it is

assumed log-concave, i.e.
(
ln F (c)

)′
=

f (c)

F (c)

3A fully satisfactory approach would probably require that bidders have different privately observed
signals of that common value. We will see that even in this simple model significant complexities arise
especially in the analysis of the uniform price auction. Later we discuss that our results are robust to
small asymmetries in the valuations of bidders, so this assumption is made primarily for notational clarity
(for similar approach see e. g. Back and Zender 2001, Kremer and Nyborg 2004, McAdams 2007).
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is a monotonically decreasing function.4 We assume also that bidders are not able to pay

infinitely large bid prices, that is, bids are restricted to an interval [0,m], where m > v is

an arbitrarily large, but finite number.

In a variable supply auction, after receiving the bids, the seller decides on supply

quantity so as to maximize profit. We model this scenario as a two-stage game. The

payoffs of the players depend on the bids, the supply quantity and the payment rule of

the auction. We first introduce some general notation for the players’ payoffs and provide

standard definitions of equilibrium and rationalizability for an arbitrary variable supply

auction game. Then we specify these payoffs separately for the uniform price and the

discriminatory auction.

Pure strategies

Each bidder i submits a price bid xi to the auctioneer, indicating the (highest) price he is

willing to pay for a unit. The vector of submitted bids is denoted by x and the bid vector

of all bidders except bidder i by x−i. Let us consider an arbitrary trade mechanism. Since

the seller can condition the supply on the received bids, his strategy is a mapping from

the set of bid vectors and possible values of the privately observed marginal cost c into

supply quantity:

φ : [0,m]n × [0, c] → {0, 1, 2, .., n}.

Assume that, after observing bids x and marginal cost c, the seller supplies quantity q.

We denote seller’s profit by rS(x; q, c) and the payoff (or the net consumer surplus) of

bidder i by ri(x; q). If the seller supplies according to the strategy φ(·), the expected

payoff of bidder i is

Ri(x; φ) =

∫ c

0

ri

(
x; φ(x, c)

) · f(c) dc.

Mixed strategies

A mixed strategy σi of bidder i is a probability distribution over the set of pure strategies

[0,m]. The set Σ of mixed strategies is the set of probability distributions defined on

([0,m],B), where B is the Borel σ-field on [0,m]. A mixed strategy profile of all bidders

is denoted by σ and a mixed strategy profile of all fellow bidders of bidder i by σ−i. The

4This property of the distribution implies “monotone hazard rate”, which is standard in auction
theory. It guarantees in single-unit first-price auctions that bidders with higher valuations submit higher
bids. It is satisfied by most common distributions: uniform, normal, logistic, chi-squared, exponential
and Laplace. See Bagnoli and Bergstrom (2005) for a more complete list and for results allowing the
identification of distributions with monotone hazard rates.
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expected payoff of bidder i when bidders play mixed strategies is defined as

Ri(σ; φ) =

∫
Ri(x; φ)dσ(x).

If the seller has marginal cost of c and bidders play mixed strategies, the seller’s expected

revenue is

RS

(
σ; φ(x, c), c

)
=

∫
rS

(
x; φ(x, c), c

)
dσ(x).

Definitions

We will focus on the subgame perfect equilibria in the general case and on rationalizable

strategies in the special case of two bidders.

Definition 1 (subgame perfect equilibrium). The mixed strategy profile σ∗ and the supply

function of the seller φ∗ constitute a subgame perfect equilibrium (short: equilibrium), if

the following conditions (SS) and (MS) hold.

Second stage

For every vector of declared bids x and every value of the marginal costs c, the auc-

tioneer sets the supply quantity so as to maximize profit:

φ∗(x, c) ∈ arg max
q∈{0,1,2,..,n}

rS(x, q, c). (SS)

First stage

In the first stage of the game the strategy of every bidder i maximizes his expected payoff,

given the strategies of the other bidders and optimal supply function of the seller:

Ri(σ
∗
i , σ

∗
−i; φ

∗) ≥ Ri(σi,σ
∗
−i; φ

∗) ∀σi ∈ Σ. (MS)

Reduced game

We will further on consider only optimal behavior of the seller in the second stage of the

trade mechanisms we analyze. From now on we will, therefore, write

Ri(σi,σ−i) instead of Ri(σi,σ−i; φ
∗),

always assuming that the seller supplies a profit maximizing quantity. We will similarly use

Ri(xi,x−i) instead of Ri(xi,x−i; φ
∗) and RS(σ; c) instead of RS(σ; φ∗(x, c), c). Condition

(MS) requires that bidders’ strategies constitute a Nash equilibrium in the reduced game.
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Definition 2 (rationalizable strategies). Let Σ0
i := Σ and for each i recursively define

Σk
i =

{
σi ∈ Σk−1

i : ∃σ−i ∈ conv Σk−1
−i such that

Ri(σi,σ−i) ≥ Ri(σ
′
i,σ−i) for all σ′i ∈ Σk−1

i

}
.

conv Σk−1
−i stands for the convex hull of the set Σk−1

−i , i.e. the smallest convex set that

contains it. The set of rationalizable strategies5 for player i is defined as

Σrat
i =

∞⋂

k=0

Σk
i .

The rationalizable (or strategically sophisticated) strategy profiles are (mixed) strategy

profiles which survive the serial deletion of strategies not belonging to the best responses

of the players. Obviously, in a symmetric game the sets of rationalizable strategies for all

players are equal. For notational brevity we will, therefore, omit the index i and write

Σrat instead of Σrat
i . The set of rationalizable strategies and the set surviving the iterated

deletion of strictly dominated strategies coincide in two-player games.6 This property will

be useful later on when discussing the implications of Theorem 4.

3 Analysis of the uniform price and the discrimina-

tory auction

In both the uniform and the discriminatory auction the seller orders the bids in a descend-

ing order and serves them until the supply q is exhausted. Whereas in the uniform price

auction all winning bidders pay a price equal to the lowest winning bid (called stopout

price), in the discriminatory auction all winners are charged their own bid prices. Let us

introduce some additional notation to describe the players’ payoffs. Take an arbitrary bid

5For brevity and ease of access, we stick to the definition and the notation of Fudenberg and Tirole
(1991, p. 49, Definition 2.3). Although this definition does not introduce the notion of a belief system
as the original definition does (see Bernheim 1984, pp. 1013–1014, Definitions 3.1–3.3), it is equivalent
to Bernheim’s (1984) definition. The only difference is that Fudenberg and Tirole (1991) consider only
games with a finite strategy space (see also Pearce 1984), whereas Bernheim (1984), similarly to the
model presented here, considers a more general strategy space, which is a compact subset of an Euclidean
space.

6Easily accessible proofs can be found in Fudenberg and Tirole (1991, pp. 51–52) and Pearce (1984,
pp. 1048–1049, Appendix B, Lemma 3). These proofs are conducted for games with finite strategy
spaces, but the claim is also valid for the compact strategy sets of our model (for this argument consult
Bernheim 1984, p. 1016).
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vector x. Order the bids in a descending order. For that purpose define the function

ϕx : {1, 2, . . . , n} → {1, 2, . . . , n},

where ϕx(j) = k, if bidder j submitted the k -th highest bid. If two or more bids are

equal, then the function ϕ orders them arbitrarily. Further we define

τ (x) =
(
τ1(x), τ2(x), . . . , τn(x)

)
,

where τk(x) is the k-th highest bid if the bids are ordered in a descending order. The

stopout price then is τq(x). The payoff of bidder i in the uniform price auction is

rU
i (x; q) =





v − τq(x) for ϕx(i) ≤ q,

0 for ϕx(i) > q.

The payoff of bidder i in the discriminatory price auction is

rD
i (x; q) =





v − xi for ϕx(i) ≤ q,

0 for ϕx(i) > q.

The payoffs of the auctioneer in the uniform price and in the discriminatory auction are,

respectively,

rU
S (x; q, c) = q · (τq(x)− c

)
,

rD
S (x; q, c) =

q∑
j=1

(
τj(x)− c

)
.

Next we start with the analysis of the two auctions.

Discriminatory auction (D)

Theorem 1. The rationalizable strategy set ΣD of the discriminatory auction contains a

unique strategy for each bidder. This is a pure strategy in which every bidder submits the

bid zD, which is defined by the unique solution of the equation

v − z =
F (z)

f (z)
. (D)

This is graphically illustrated in Figure 1. The proof of this theorem is quite straight-

forward due to the linear production cost assumption. In the discriminatory auction the

seller is acting as a perfectly discriminating monopolist with respect to the submitted
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bids. Since all winning bidders have to pay their bids, all bids which exceed (or are at

least not lower than) the marginal cost c will be served.7

zD zU

F (z)
f(z)

1
2
· F (z)

f(z)

v

z

v − z

Figure 1: zD and zU are the unique solutions of the equations (D) and (U) (see Theorem 1
and Theorem 2).

The optimal supply quantity of the seller takes the form

φ∗D(x, c) = max{k : τk(x) ≥ c}.

For the payoff of bidder i we obtain

rD
i (x; φ∗D) =





v − xi for xi ≥ c,

0 for xi < c.

The payoff of each bidder is independent of the other bids. The expected consumer surplus

of bidder i is thus

RD
i (x) = (v − xi)F (xi).

From the first order condition it follows that the maximizer zD is the unique solution of

equation (D). Existence and uniqueness8 of zD follow from the assumption that F (c) is

log-concave. In the bidding stage of the game, the bid zD is a strongly dominant strategy

7In fact the auctioneer is indifferent between selling or not selling units to bidders who quoted a price
equal to marginal cost. This detail is not important here as such an event happens with zero probability
because the distribution F (c) is atomless.

8Consider the function G(z) = v − z − F (z)
f(z) . Observe that G(0) = v > 0 and G(v) = −F (v)

f(v) < 0 (F is
log-concave). The continuity of G(z) guarantees that the equation G(z) = 0 has a solution in the interval
(0, v) (by the Intermediate Value Theorem). The log-concavity of F requires that F (z)

f(z) is a monotonically
increasing function, therefore G(z) is strictly monotonically decreasing. Thus the equation G(z) = 0 has
a unique solution.
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for each player.9 Since the payoff of each bidder is independent of how other buyers bid,

there is indeed no competition in the discriminatory auction. Moreover, as all bidders

have the same valuation for the good, they submit equal bids, and price discrimination

does not materialize. As we will show, in the same scenario the uniform price auction

promotes competition among bidders.

Uniform price auction (U)

The two bidder case

In this case x = (x1, x2), and with the notation we introduced τ1(x) = max{x1, x2};
τ2(x) = min{x1, x2}. The payoff of the monopolist is

RU
S (x, q, c) =





0 for q = 0,

τ1(x)− c for q = 1,

2(τ2(x)− c) for q = 2.

Second stage:

The optimal supply strategy of the auctioneer is given by

φ∗U(x, c) =





0 for c > τ1(x),

1 for τ1(x) > c > 2 · τ2(x)− τ1(x),

2 for 2 · τ2(x)− τ1(x) > c.

The equalities occur with probability 0 and are therefore omitted.

First stage:

Now we can characterize the expected payoff of bidder i:

RU
i (xi, x−i)

=





(v − xi) ·
(
F (xi)− F (2x−i − xi)

)
+ (v − x−i) · F (2x−i − xi) for xi ≥ x−i,

(v − xi) · F (2xi − x−i) for xi < x−i.
(3.1)

The next Theorem establishes several important properties of the expected payoff func-

tion. See Figures 1 and 2 for graphical illustrations of these properties.

9Bidding zD maximizes the the buyer’s expected surplus, so one might be tempted to think that
the seller expected revenue must be minimal for the discriminatory auction. As we will see, however,
these auctions are not zero-sum games because they lead to different average trading volumes, and thus
different social surplus. So, a ranking cannot be provided on the basis of such an argument.
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Theorem 2. The expected profit function has the following properties; ∂+
i RU

i (xi, x−i)

denotes the partial derivative from above with respect to xi:

(i) RU
i (xi, x−i) is continuous in (xi, x−i),

(ii) RU
i (xi, x−i) = 0 for 0 ≤ xi ≤ x−i/2,

(iii) ∂+
i RU

i (xi, x−i) > 0 for xi = x−i < v,

(iv) ∂iR
U
i (xi, x−i) > 0 for x−i

2
< xi < min{x−i, zU}, where zU is the unique solution

of the equation

v − z =
1

2
· F (z)

f (z)
, (U)

(v) There exists δ > 0 such that

∂iR
U
i (xi, x−i) > 0 for x−i < xi < min{x−i + δ, zU}.
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δ

zU

zU

x−i

xi

∂+
i Ri(·) > 0

∂+
i Ri(·) = 0

Figure 2: In the dash-line area the payoff of bidder i is zero (see property (ii)). In the vector
area the bidder’s payoff increases in the direction of the arrows (see properties (iii),
(iv) and (v)).

Proof.

Statements (i) and (ii) follow directly from equation (3.1). To prove (i) observe that for

xi = x−i both lines in (3.1) are equal to (v−xi) ·F (xi). The intuition behind (ii) is simple.

If 0 ≤ xi ≤ x−i/2, it is not profitable for the seller to service bidder i for any realization

of the marginal cost c, which means that with a probability of one bidder i is not served.

11



To prove statement (iii) note that for xi = x−i we obtain

∂i
+RU

i (xi, x−i) = (v − xi) · (f(xi) + f(2x−i − xi))− F (xi)

+ F (2x−i − xi)− (v − x−i) · f(2x−i − xi)

= (v − xi) · f(xi) > 0.

Statement (iv) follows from the (in)equalities

∂iR
U
i (xi, x−i) = (v − xi) · f (2xi − x−i) · 2− F (2xi − x−i)

= 2f (2xi − x−i)
[
(v − xi)− F (2xi − x−i)

2f (2xi − x−i)

]

> 2f (2xi − x−i)
[
(v − xi)− F (xi)

2f (xi)

]

> 2f (2xi − x−i)
[
(v − zU)− F (zU)

2f (zU)

]
= 0.

Notice that the last two inequalities apply because, as assumed, F
f

is a monotonically

increasing function. A rigorous proof of property (v) can be found in Appendix A. Here

we illustrate only the main idea. We exploit the already established properties (i) and

(iii) and the fact that pre-images of open sets under continuous mappings are open to

reach the conclusion that in an open neigborhood around the set

{(xi, x−i) | xi = x−i < zU}

the partial derivative from above with respect to xi is positive. The claim follows.

As a consequence of Theorem 2 and equation (3.1) we obtain the statement:

Corollary 1. The (pure strategy) best response correspondence x∗i of each bidder i, has

the following properties:

x−i /∈ x∗i (x−i) , (3.2)

x∗i (0) = {zD}, (3.3)

xi < v for all xi ∈ x∗i (v) . (3.4)

Proof. (3.2) follows from (iii); (3.3) and (3.4) follow from (3.1).

(3.2) implies that the uniform price auction has no symmetric subgame perfect equilibrium

in pure strategies. (3.3) and (3.4) further imply that the best response correspondence

is not continuous, which points to the generic difficulty for the existence of pure strategy

equilibria. Indeed, if the best response were continuous, it should cross the 45◦ line, which

does not happen here because of (3.2). In subsection 3 we calculate the best response for
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an example of uniformly distributed marginal cost. See Figure 6 for an illustration of the

best response correspondences for that numerical example. The next Theorem provides

an equilibrium existence result.

Theorem 3 (equilibrium existence). The uniform price auction has a mixed strategy

equilibrium.

Proof. The existence is guaranteed by Glicksberg’s (1952) theorem, since the expected

payoff function RU
i (xi, x−i) is continuous (see property (i)) and the support [0,m] of the

bids is a convex and compact set.

Theorem 4 (rationalizable strategies). The set of rationalizable strategies of the uniform

price auction contains only mixed strategies with support in the interval [zU , v]:

σ
(
[zU , v]

)
= 1 for all σ ∈ ΣU .

As remarked earlier, the Theorem applies also for the sets of mixed strategies which

survive the serial deletion of strongly dominated strategies. One can easily check10 that

zU > zD; therefore, it follows from Theorems 1 and 4 that the rationalizable bids in the

uniform price auction are (almost surely) higher than those in the discriminatory auction.

Before providing a proof of Theorem 4, let us explain why rational players bid higher

in the uniform price auction. Consider the case in which bidder i submitted a bid at

least as high as his fellow bidder (xi ≥ x−i) and let us compare the changes in his payoff

resulting from an increase of his bid under the two pricing rules. In both auction formats

the winning probability F (xi) will clearly increase equally. While in the discriminatory

auction the bidder has to pay his new bid with a probability of one, in the uniform price

auction he pays on average less: he pays the bid price of his fellow bidder when both

bidders are served. In this case, increasing his bid is more profitable (or at least less

unprofitable) under the uniform pricing rule. Consider now the case (xi < x−i). In this

scenario bidder i is served with higher probability under the discriminatory than under

the uniform price auction: F (xi) > F (2xi − x−i). Therefore, in the uniform price auction

this bidder will want to compensate for this lower probability by increasing his bid. This

very characteristic of the uniform price payment rule creates incentives for higher bidding.

We now move on to provide the main idea of the proof of the Theorem 4. The rigorous

but more technical proof can be found in Appendix A.

Sketch of proof of Theorem 4 (rationalizable strategies).

It is intuitive that rational players do not bid higher than their valuation (see Part 1 of

the proof in Appendix A). The more interesting part is to show that bidders do not bid

10This follows directly from the fact that zD solves equation (D), zU solves equation (U), and F (c) is
log-concave (see Figure 1).
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below zU . Property (v) of Theorem 2 reads:

There exists δ > 0 such that

∂iR
U
i (xi, x−i) > 0 for x−i < xi < min{x−i + δ, zU}.

This property is depicted in Figure 2, where we can see that in a small neighborhood

above the 45◦ line the payoff of bidder i is increasing in his bid. We use now this property

to state:

Bidders who play rationalizable strategies do not bid below zU , i.e.

σ
(
[0, zU ]

)
= 0 for all σ ∈ ΣU .

The proof of this statement is relegated to Appendix A (see Part 2 of the proof therein).

The idea is to divide the interval [0, zU) into small intervals of length δ (in the sense of

statement (v) of Theorem 2), where zU/δ = N is an integer number. We denote the

intervals

Ik = [(k − 1) · δ, k · δ) for k = 1, 2, . . . N ; I0 = ∅,

as illustrated in Figure 3. By an iterative procedure we show that mixed strategies placing

positive probability on I1, I2, . . . , IN are not rationalizable. For that purpose we use the

properties of bidders’ payoff functions as stated in Theorem 2.

The general case

In this subsection we discuss the case in which an arbitrary number of n ≥ 2 bidders

participate in the uniform price auction. We formally derive bidders’ payoff function and

show that it is continuous in the vector of declared bids (see Lemma 1). This finding is

used to verify that the uniform price auction has a symmetric mixed strategy equilibrium

(Theorem 5).

We further prove that in a symmetric equilibrium bids in the uniform price auction are

with a probability of one higher than bids in the discriminatory auction (Theorem 6).

First, we derive bidders’ payoff function. Let x be an arbitrary bid vector and q, q′ ∈
{0, . . . , n}. Define τ0(x) := v. The seller weakly prefers to sell q instead of q′ units if and

only if

(
τq(x)− c

) · q ≥ (
τq′(x)− c

) · q′.

14
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Figure 3: The dark colored rectangle depicts the boundaries of the support of the rationalizable
strategies in the uniform price auction. The triangles illustrate the serial elimination
of mixed strategies placing positive probability on the intervals I1, I2, . . . , IN .

Thus the seller will not supply more than q units if and only if

c ≥ c−q (x) :=





maxq<q′≤n
q·τq(x)−q′·τq′ (x)

q−q′ for q < n,

0 for q = n.

He will not supply less than q units if and only if

c ≤ c+
q (x) :=





min0≤q′<q
q·τq(x)−q′·τq′ (x)

q−q′ for q ≥ 1,

c for q = 0.

So, the seller optimally supplies the quantity q for c ∈ [c−q , c+
q ]. The set of winners is then{

j | ϕx(j) ≤ q
}
, and all winners pay the stopout price τq(x). The expected payoff of an

arbitrary bidder i is thus

RU
i (x) =

n∑
q=0

(
v − τq(x)

) · P (q;x) · 1{ϕx(i)≤q},

where

P (q;x) := Prob
(
c+
q (x) > c > c−q (x)

)
= max

{
F

(
c+
q (x)

)− F
(
c−q (x)

)
, 0

}
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is the probability that exactly q units are sold. Now we can state:

Lemma 1 (continuity). RU
i (x) is continuous in x.

See Appendix A for a proof.

Theorem 5 (existence). The uniform price auction has a symmetric mixed strategy equi-

librium.

The Theorem follows immediately from Becker and Damianov (2006). There it is

shown that symmetric games with continuous payoffs and compact and convex strategy

spaces possess symmetric mixed strategy equilibria. Now we can formulate our main

result for the general case:

Theorem 6. In every symmetric equilibrium σ∗
U of the uniform price auction, bids are

almost always higher than in the discriminatory auction:

σ∗U
(
(zD, v]

)
= 1.

Sketch of the proof. Although the idea of the proof is simple, the proof itself is quite

technical and lengthy. It is relegated to Appendix B. Here we provide only the basic

intuition and sketch the most important argument. It is clear that in every symmetric

mixed strategy equilibrium buyers do not bid higher than their valuation. The more

interesting part is to show that in every symmetric equilibrium buyers bid almost surely

higher than zD. We denote by z∗ the lower bound of the support of a symmetric mixed

strategy equilibrium:

z∗ = max{z | σ∗U
(
[z, v]

)
= 1}.

The proof proceeds by contradiction. We assume that there exists a symmetric mixed

strategy equilibrium for which z∗ ≤ zD. We consider a deviation strategy of an arbitrary

bidder i, which shifts the probability mass of an interval Zε
∗ := [z∗, z∗ + ε) to the point

z∗ + ε and show that for a sufficiently small ε > 0 the deviation is profitable. Thus we

reach a contradiction to the equilibrium assumption.

Revenue and average trade volume

Theorem 4 states that the supports of the rationalizable strategy sets in the uniform

price and the discriminatory auction are disjoint in the two-bidder case. In Theorem 6,

we further argue that in the general case the supports of the symmetric mixed strategy

eqilibrium sets in the two auctions are disjoint. Bidders submit higher bids in the uniform

price auction with a probability of one. As a consequence of these Theorems, we obtain

a ranking of the auction formats in terms of revenue for the auctioneer and efficiency.
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Revenue

Theorem 7 (revenue). For any given value of the marginal cost c, the expected revenue

of the uniform price auction is at least as high as that of the discriminatory auction:

(a) for all rationalizable strategies in the two-bidder case

RU
S (σU ; c) ≥ RD

S (σD; c) for n = 2 and all σD ∈ (ΣD)n,σU ∈ (ΣU)n, (R2)

(b) for all symmetric mixed strategy equilibria in the general case

RU
S (σ∗

U ; c) ≥ RD
S (σ∗

D; c) for n ≥ 2. (Rn)

Expected revenue in the uniform price auction is strictly higher when positive quantities

of the good are traded.

Proof. The uniform price auction generates higher expected revenue because bids are

higher. For c < zD positive quantities will be traded both in the uniform price and the

discriminatory auction. In this case we can prove (Rn) by using Theorems 6 and 1:

RU
S (σ∗

U ; c) > rU
S (zD, . . . , zD; c) = rD

S (zD, . . . , zD; c) = RD
S (σ∗

D; c).

The proof of (R2) is analogous; apply Theorems 4 and 1. For c > zD there will be no

trade in the discriminatory auction. If there are bids in the uniform price auction, which

exceed c, then at least one of them will be served, and the uniform price auction will again

be strictly more profitable. If all bids in the uniform price auction are below c, then there

will be no trade in the two auction formats. This is the only case in which the uniform

price and the discriminatory auction will generate the same revenue.

Average trade volume

The average trading quantity11 resulting from the mixed strategy profile σ(x) is given as

follows:

Q(σ) =

∫
Q(x)dσ(x),

where

Q(x) =

∫ v

0

φ∗(x, c) · f(c)dc.

11Average trading quantity can be taken in this setting also as an efficiency measure. Note that buyers
are only served when v ≥ c since they submit bids not higher than v and the seller does not serve bids
below c. This means that trade takes place only when desirable ex-post. The mechanism which induces a
higher probability for sale, i.e. higher average turnover, can, therefore, be considered as the more efficient
mechanism. We have to point out, however, that higher average turnover does not necessarily imply
higher efficiency in Pareto sense or ex-ante higher sum of the surplus of market participants.
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Theorem 8 (average trade quantity). If the marginal cost distribution function is convex

(F ′′ ≥ 0), the average trade quantity in the uniform price auction is higher than that in

the discriminatory auction:

(a) for all rationalizable strategies in the two-bidder case

QU(σU) > QD(σD) for n = 2 and all σD ∈ (ΣD)n,σU ∈ (ΣU)n, (E2)

(b) for all symmetric mixed strategy equilibria in the general case

QU(σ∗
U) > QD(σ∗

D) for n ≥ 2. (En)

Proof. Recall that P (q;x) denotes the probability with which the seller will sell quantity

q if the vector of bids is x. The average quantity sold in the uniform price auction can be

expressed as a function of the ordered bids:

QU(x) = QU(τ (x)) =
n∑

q=1

q · P (q;x) =
∑

{q|c+q >c−q }
q · P (q;x).

The last equality implies that we need to sum only over the elements τq(x) for which

c+
q > c−q , as otherwise P (q;x) = 0. We write these quantities in an ascending order

l1, l2, . . . , lh and obtain

τl1(x) > τl2(x) > · · · > τlh(x).

For the sake of brevity, we will further write τlk instead of τlk(x). We will show that

QU(τl1 , τl2 , ..., τlh) ≥ QU(τl2 , τl2 , ..., τlh). (3.5)

We observe that c−l1 = c+
l2

and recall that c−l1 is a solution of the equation

l1 · (τl1 − c−l1) = l2 · (τl2 − c−l1), (3.6)

which means that the two dark rectangles in Figure 4 cover equal areas. Equation (3.6)

is equivalent to
τl1 − c−l1
τl2 − c−l1

=
l2
l1

.

From the convexity of F it follows that

F (τl1)− F (c−l1)

F (τl2)− F (c−l1)
≥ τl1 − c−l1

τl2 − c−l1
,
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Figure 4: Announced demand curve in the uniform price auction. The two pattern rectangles
cover equal areas.

and we obtain

F (τl1)− F (c−l1)

F (τl2)− F (c−l1)
≥ l2

l1
. (3.7)

The identities

QU(τl1 , τl2 , ...τlh)−QU(τl2 , τl2 , ...τlh)

= l1
[
F (τl1)− F (τl2)

]− (l2 − l1)
[
F (τl2)− F (c−l1)

]

= l1
[
F (τl1)− F (c−l1)

]− l2
[
F (τl2)− F (c−l1)

] ≥ 0

prove (3.5). The above argument can be applied iteratively (h − 1) times to verify the

inequality

QU(τl1 , τl2 , ...τlh) ≥ QU(τlh , τlh , ...τlh).

Now one can easily prove (En) by applying Theorem 6:

QU(σ∗
U) =

∫
QU(x)dσ∗

U(x) ≥
∫

QU(τh, τh, ...τh)dσ∗
U(x)

>

∫
QU(zD, zD, ...zD)dσ∗

U(x) = n · F (zD)

=

∫
QD(zD, zD, ...zD)dσ∗

D(x) = QD(σ∗
D).

The proof of (E2) is analogous (apply Theorem 4).
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A numerical example

We consider the following two bidder example: v = 1 and the marginal cost of the auc-

tioneer is uniformly distributed: f(c) = 1 for c ∈ [0, 1].
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Figure 5: Numerical example: v = 1, n = 2 and f(c) = 1 for c ∈ [0, 1]. The supports of the
rationalizable strategy sets in the two auction forms (the pattern areas) are disjoint.
Bids in the uniform price auction are higher with a probability of one.

In the discriminatory auction the two bidders bid zD = 1
2

with a probability of one.

This is their only rationalizable strategy. The support of all rationalizable strategies in

the uniform price auction lies in the interval

[zU , v] = [
2

3
, 1].

This is illustrated in Figure 5. The average trade quantities of the discriminatory auction

and the uniform price auctions are

QD =

∫ 1
2

0

2dc = 1, QU >
4

3
.
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Seller’s revenue is clearly higher in the uniform price auction. The payoff of bidder i in

the uniform price auction is

RU
i (xi, x−i) =





(1− xi)xi for xi > 2x−i,

(1− xi)
(
2xi − 2x−i

)
+ (1− x−i)(2x−i − xi) for 2x−i ≥ xi ≥ x−i,

(1− xi)(2xi − x−i) for x−i

2
≤ xi < x−i,

0 for xi < x−i

2
.

Discriminatory Auction Uniform Price Auction

0

0.5

0 0.5 1

1

0 0.5 1

0.5

0

145°

45°

x−i x−i

x∗i (x−i)

x∗i (x−i)

xi xi

Figure 6: Best responses and pure strategy equilibria (the thick dots) in the uniform price
and the discriminatory auctions. The support of the rationalizable strategies of the
uniform price auction lies within the square as has been proven in Theorem 4.

For the (pure strategy) best response correspondence of bidder i in the uniform price

auction we obtain

x∗i (x−i) =





1
2

for x−i < 3−√2
7

,

{16−3
√

2
28

, 1
2
} for x−i = 3−√2

7
,

3x−i+1
4

for x−i = (3−√2
7

, 3
4
),

{11
16

, 13
16
} for x−i = 3

4
,

x−i+2
4

for x−i ∈ (3
4
, 1].

For that numerical example the uniform price auction has two asymmetric subgame per-
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fect equilibria in pure strategies (see Figure 6 for a graphical illustration):

(x∗i,U , x∗−i,U) =
(

10
13

, 9
13

)
, i = 1, 2.

For the average trade quantity in equilibrium we obtain

QU =
18

13
>

4

3
.

Seller’s revenue is clearly higher in the uniform price auction.

4 Discussion

This paper presents a highly stylized model of competitive bidding in which the seller

controls supply ex post. The main result is that the endogenous supply decision, combined

with uncertainty about seller’s marginal cost, creates a greater tendency for bids to rise

in the uniform price auction than in the discriminatory auction. To what extent does this

tendency apply to more general settings?

Key element of the comparisons is the assumption that all bidders share the same

valuation. This assumption leads to low revenue in the discriminatory auction. Intuitively,

the purpose of holding a discriminatory auction is the discrimination among bidders. Price

discrimination does not materialize here because all bidders bid the same amount. This

result is robust to small differences in the information bidders may have about the common

value of the good. As long as bidders’ valuations are close, bids will also be close and

the discriminatory auction will be inferior from seller’s viewpoint. A more significant

disparity in the valuations will of course favor the discriminatory auction.

The assumption that bidders demand and can acquire only one unit does not seem to

be significant on its own. If a bidder desires several units and values each of these units

equally, then bids in the discriminatory auction will be the same as in the single-unit

case. This holds true because the payoff of each bidder does not depend on the bids of

the other bidders. We can show also for the uniform price auction that, if a bidder can

bid for more than one unit, and values all units equally, then he will submit equal bids

for all desired units. Different results are obtained when demand is downward sloping. In

the discriminatory auction, for instance, bidders will not bid the same price for each unit.

Such a scenario is analyzed in Nautz (1995) and Nautz and Wolfstetter (1997), however

in these models price is not determined endogenously.

Higher bids in the uniform price auction result from the interplay of two factors –

uncertainty about marginal cost and seller’s profit maximizing decision. Without uncer-

tainty it is easy to see that in the two auctions all bidders will submit bids equal to the
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marginal cost. Seller’s profit accrues from bidders’ uncertainty in both the uniform price

and the discriminatory auction. Uncertainty is more beneficial to the seller in the uniform

price auction format because of seller’s profit-maximizing behavior. This result might be

an important guide for empirical studies.

What is the role of the constant marginal cost assumption in the analysis? If marginal

cost were increasing, in the discriminatory auction the seller would generally want to

service only a subset of the bidders. In this case bidders’ decisions in the discriminatory

auction would no longer be independent of other bidders’ behavior, and there would

be competition among bidders. How equilibria would look like would depend on the

way the uncertainty is modelled. The basic intuition seems to carry over: raising a

bid raises the winning chances in the two auctions in a similar way, but is more costly

in the discriminatory auction. This informal argument favors uniform pricing. Providing

equilibrium existence results and obtaining closed form solutions for equilibrium bids does

not seem to be feasible and contains a host of new problems. As pointed out in Lengwiler

(1999), this makes the assumption of elastic supply analytically attractive. In a recent

contribution, LiCalzi and Pavan (2005) show that the seller can raise his revenues in the

uniform price auction by committing to an increasing supply schedule. The decision on

supply in this model, however, is not dependent on the bids.

Our analysis focused on the uniform price and the discriminatory auctions, but can the

seller learn bidders’ value by having them cross-report? If a voluntary report of the value

of other bidders has no consequences for the payoff of the reporting bidder, then there is

no guarantee that bidders will report truthfully. Bidders can coordinate on collectively

reporting a value which is much lower than v, and this will be an equilibrium. And even

if they fail to report the same value, the most unfavorable consequence for them is limited

to the situation in which they do not obtain an item. It can also be questioned whether

the seller can really commit not to serve individual bidders if this lowers his profits. So,

the seller’s potential to extract information by cross-reporting does not seem that great

in such a variable supply setting.

5 Conclusion

The standard pricing techniques, the uniform pricing rule and the price discrimination

rule, are widely used by monopolists for the simultaneous sale of multiple units. When

a monopolist lacks information about demand, these pricing techniques often take the

form of an auction, in which the seller first collects bids from prospective customers and

then decides on a supply quantity so as to maximize profit. These auction forms, called

variable supply multi-unit auctions, are used on various markets ranging from Treasury

bills and IPOs to emission permits and electricity. They differ from the fixed supply
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multi-unit auctions in the sense that the seller participates in the price-setting process

as he controls the supply after the bidding. We modelled this scenario as a two-stage

game and compared these variable supply pricing mechanisms. We found that due to

the uncertainty about supply in a symmetric equilibrium the bidders bid higher in the

uniform price auction than in the discriminatory auction. This finding further implies

that the uniform price auction is more profitable for the seller and leads to higher average

trade volume.

The following intuition helps explain our results. In the discriminatory auction, the

winning probability of each bidder is not affected by the bids of his fellow bidders, as

the seller optimally serves every bid above his marginal cost. Since the bidders share

the same valuation, they submit equal bids. Thus, as in Lengwiler (1999), the right of

the seller to discriminate among bidders and charge different prices has no bite. Bidders

in the discriminatory auction do not compete at all; in the reduced form of the game a

bidder’s expected payoff is independent of how other bidders bid. In the uniform price

auction, on the other hand, the probability of winning as well as the final price depend

on all bids. Submitting higher bids in this auction format proves to be profitable as it

raises the probability of winning, but not necessarily the price a bidder has to pay. This

simple observation is employed to demonstrate that the uniform price auction induces a

more competitive environment and leads to higher equilibrium bids for any number of

bidders (see Theorems 4 and 6). Our results are derived without the need to compute the

equilibria precisely. Rather, we exploited the properties of the bidders’ payoff functions

and the equilibrium and rationalizability concepts.
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A Appendix

Proof of property (v) of Theorem 2: There exists δ > 0 such that

∂iR
U
i (xi, x−i) > 0 for x−i < xi < min{x−i + δ, zU}.

On the set K :=
{
(yi, y−i)

∣∣ 0 ≤ y−i ≤ zU , 0 ≤ yi ≤ v−zU

2

}
we define a function g : K → R

by

g(yi, y−i) = ∂iR
U
i (yi + y−i, y−i)

where for yi = 0 we mean the derivative from above. Notice that we simply expressed the

partial derivative as a function of y−i = x−i and the difference yi = xi−x−i. The function

g is continuous with g(0, y−i) > 0 for every y−i ∈ [0; zU ], so the set H := g−1
(
(0;∞)

)
of

points where the partial derivative is strictly positive is open12 in K with {0}×[0, zU ] ⊆ H.

Therefore, as [0, zU ] is compact, there exists13 a neighborhood [0, δ], δ > 0, of 0 in [0, v−zU

2
]

with [0; δ]× [0, zU ] ⊆ H.

Proof of Theorem 4:

Part 1: Bidders do not bid higher than their valuation if they play rationalizable strategies:

σ
(
(v, m]

)
= 0 for all σ ∈ ΣU .

For each σ ∈ Σ, define σ̂ ∈ Σ by

σ̂(B) = σ
(
B ∩ [0; v]

)
+ σ

(
(v; m]

) · 1v∈B for B ∈ B,

which means, a bidder with strategy σ̂ bids v whenever a bidder with strategy σ would

submit a bid from the interval (v; m]. We first remark that σ̂ always weakly dominates

σ, as bids above v lead to a strictly negative outcome when served. So a strategy σi of

player i with σi

(
(v; m]

)
> 0 will never be a best response to a strategy σ−i of player −i,

if player i has to pay more than v with strictly positive probability when the strategy

combination (σi, σ−i) is played.

Using this property, we will now show by induction that, with the notation of Defini-

tion 2, for k = 1, 2, . . .

σi /∈ ΣU,k
i , i = 1, 2, if σi

((
max{v, 2−km}; m])

> 0. (A.1)

We start with k = 1. As the other bid is never greater than m, bids from the inter-

12Here we use the fact that pre-images of open sets under continuous mappings are open, see e. g.
Königsberger (2002), p. 16.

13This follows from the so called “tube lemma”, see e. g. Königsberger (2002), p. 32.

25



val
(
max{v, m

2
}; m]

are served when the marginal cost of the seller is below v, which

will happen with a strictly positive probability. So, by the introductory remark, if

σi

((
max{v, m

2
}; m])

> 0, σ̂i will be strictly better than σi, regardless of what −i does.

Now assume that equation (A.1) holds for k−1. Bids above max{v, 2−km} are served

when the other bidder does not submit a bid above max{v, 2−(k−1)m} and the cost is

below v, which by induction happens with strictly positive probability if the other bidder

plays a strategy from ΣU,k−1
−i . So, for each strategy σi with σi

((
max{v, 2−km}; m])

> 0

the strategy σ̂i will be a strictly better response to any element of ΣU,k−1
−i , which proves

(A.1) for k.

Part 2: Bidders do not bid lower than zU if they play rationalizable strategies:

σ
(
[0, zU ]

)
= 0 for all σ ∈ ΣU .

Recall that

Ik = [(k − 1) · δ, k · δ) for k = 1, 2, . . . N ; I0 = ∅,

and let

Jk =
k⋃

l=0

Il = [0, kδ).

We will iteratively show that

ΣU,k
i ⊆ {σi | σi(Jk) = 0}, for k = 1, 2, .., N ; i = 1, 2, (A.2)

which is sufficient to prove the Lemma. Observe that (A.2) trivially holds for k = 0.

Assume that it holds for k − 1 < N for player −i. We will show that

ΣU,k
i ⊆ {σi | σi(Jk) = 0}. (A.3)

Assume on the contrary

∃σi ∈ ΣU,k
i with σi(Ik) > 0. (A.4)

We will now demonstrate that for each σ−i ∈ conv Σ
U,(k−1)
−i there exists σ̂i such that

RU
i (σ̂i, σ−i) ≥ RU

i (σi, σ−i). This will pose a contradiction to the above assumption (A.4),

namely that σi is a best response to some mixed strategy from the set conv Σ
U,(k−1)
−i .

Case 1: σ−i(J2k) > 0.
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Consider the strategy σ̂i :

σ̂i (B) = σi (B ∩ CIk) + σi (Ik) · 1kδ∈B for B ∈ B,

where CIk is the complement set of Ik (CIk ≡ M\Ik):

RU
i (σ̂i, σ−i)−RU

i (σi, σ−i)

≥
∫ ( ∫

RU
i (xi, x−i)dσ̂i(xi)−

∫
RU

i (xi, x−i)dσi(xi)
)
dσ−i(x−i)

=

∫ (
RU

i (kδ, x−i) · σi(Ik)−
∫

Ik

RU
i (xi, x−i)dσi(xi)

)
dσ−i(x−i)

=

∫ ∫

Ik

(
RU

i (kδ, x−i)−RU
i (xi, x−i)

)
dσi(xi)dσ−i(x−i) (A.5)

=

∫

CJ(k−1)

∫

Ik

(
RU

i (kδ, x−i)−RU
i (xi, x−i)

)
dσi(xi)dσ−i(x−i) (A.6)

> 0 (A.7)

(A.6) follows from (A.5) because we assumed that (A.2) holds for (k − 1) < N

for player −i. Further, from Theorem 2 follows that

RU
i (xi, x−i) < RU

i (kδ, x−i) if xi ∈ Ik and (k − 1) · δ ≤ x−i < 2kδ,

RU
i (xi, x−i) ≤ RU

i (kδ, x−i) if xi ∈ Ik and (k − 1) · δ ≤ x−i.

As by assumption σ−i(J2k) > 0 the inequality (A.7) is also valid.

Case 2: σ−i(J2k) = 0. For the strategy σ̂i, where

σ̂i (B) = σi (B ∩ CIk) + σi (Ik) · 1 3v
4
∈B for B ∈ B

one observes that

RU
i (σ̂i, σ−i)−RU

i (σi, σ−i)

=

∫

CJ2k

∫

Ik

(
RU

i (
3v

4
, x−i)−RU

i (xi, x−i)
)
dσi(xi)dσ−i(x−i)

=

∫

CJ2k

∫

Ik

(
RU

i (
3v

4
, x−i)

)
dσi(xi)dσ−i(x−i) > 0. (A.8)

The inequality (A.8) holds because RU
i (3v

4
, x−i) > 0 for x−i ∈ [0, v].

Proof of Lemma 1: RU
i (x) is continuous in x.

Let x be an arbitrary bid vector. We will show that for any sequence of bid vectors

x(k), k = 1, 2, . . . , with x(k) → x we have RU
i (x(k)) → RU

i (x). Using the (easy to prove)
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inequality

|a′b′c′ − abc| ≤ |a′ − a| · b′c′ + a · |b′ − b| · c′ + ab · |c′ − c|,

which holds for arbitrary nonnegative reals a, b, c, a′, b′, c′, we obtain

∣∣RU
i (x(k))−RU

i (x)
∣∣

≤
n∑

q=0

∣∣τq(x
(k))− τq(x)

∣∣ · P (q;x(k)) · 1{ϕ
x(k) (i)≤q}

+
n∑

q=0

(
v − τq(x)

) · |P (q;x(k))− P (q;x)| · 1{ϕ
x(k) (i)≤q}

+
n∑

q=0

(
v − τq(x)

) · P (q;x) · |1{ϕ
x(k) (i)≤q} − 1{ϕx(i)≤q}|.

This inequality can be interpreted as a decomposition of the change in expected payoff of

bidder i into a price effect, a quantity effect and an allocation effect. As sums, differences,

products, quotients, minimums and maximums of continuous functions are continuous, so

are the functions c−q (·), c+
q (·), P (q; ·), and therefore

∣∣τq(x
(k))− τq(x)

∣∣ → 0, |P (q;x(k))− P (q;x)| → 0

for k → ∞, which means price and quantity effect tend to 0. To complete the proof, we

will now show that the allocation effect also tends to 0. This effect can be expressed as

∑
q∈Lx

(
v − τq(x)

) · P (q;x) · |1{ϕ
x(k) (i)≤q} − 1{ϕx(i)≤q}|,

where

Lx = {q | τq(x) > τq+1(x)}

because P (q;x) = 0 for q /∈ Lx.
14 In words, one needs to sum only over the positions in

the announced demand curve for which an increase in quantity leads to a decrease in the

stopout price. This holds true because if several bids are equal, the seller serves with a

probability of one either none or all of them. Observe now that there exists k0, such that

for all k ≥ k0 we have:

x
(k)
j < x

(k)
i if xj < xi and x

(k)
j > x

(k)
i if xj > xi for all i, j ∈ {1, . . . , n}. (A.9)

Then the inequalities

ϕx(i) ≤ q and ϕx(k)(i) ≤ q

14One observes that c−q = τq and c+
q ≤ τq. Hence P (q;x) = 0.
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are equivalent for q ∈ Lx and k ≥ k0, which completes the proof.

B Appendix

In this Appendix we prove Theorem 6: in every symmetric mixed strategy equilibrium of

the uniform price auction buyers bid with probability one higher than zD (the equilibrium

bid in the discriminatory auction). First we provide some auxiliary statements in the

form of several Lemmas.

Lemma 2. Let L(x−i) :=
[
0; min( {xj | j 6= i} ∪ {zD})

)
.

(i) For any i and any given x−i, the partial derivative ∂iRi(xi;x−i) exists in all but

finitely many points xi ∈ L(x−i).

(ii) The partial derivative of the bidder that submitted the lowest bid is nonnegative if

that bidder submitted a bid not higher than zD. Formally, for any x−i

∂iR
U
i (xi;x−i) ≥ 0,

for all xi ∈ L(x−i) for which ∂iR
U
i exists.

(iii) The partial derivative of the bidder that submitted the lowest bid is uniformly bounded

away from 0 if that bidder submitted a bid not higher than zD and is served with

positive probability. Formally, there exists ∂ > 0 such that for any x−i

∂iR
U
i (xi;x−i) > ∂

for all xi ∈ L(x−i) for which ∂iR
U
i exists and c+

i (xi;x−i) > 0.

Proof. (i) The expected payoff of bidder i is given by

RU
i (x) = (v − xi)F

(
c+
n (x)

)
.

As, by assumption, F is differentiable, we only have to show the differentiability of c+
n .

Observe that

c+
n (x) = min

0≤q<n

qτq(x)− nxi

q − n

and define

q̂(xi;x−i) := min arg min
0≤q<n

qτq(x)− nxi

q − n
,

then

c+
n (x) =

q̂(x)τq̂(x)(x)− nxi

q̂(x)− n
.
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We will now show that q̂(xi;x−i) is almost everywhere differentiable in xi and as a conse-

quence so will be c+
n (xi;x−i). Since q̂(xi;x−i), as a function of xi, takes only finitely many

integer values, monotonicity will be sufficient for it to be piecewise constant and therefore

differentiable in all but finitely many points. So, to complete the proof, we will show that

q̂(xi;x−i) is weakly decreasing in xi. Take x′i, x′′i with x′i < x′′i , let q′ := q̂(x′i;x−i) and

q′′ := q̂(x′′i ;x−i), and assume by contradiction that q′ < q′′. Observe that according to the

Definition of q̂(xi;x−i) the quantity q′ minimizes the quotient

qτq(x
′
i,x−i)− nx′i
q − n

,

and the quantity q′′ minimizes the quotient

qτq(x
′′
i ,x−i)− nx′′i
q − n

.

Considering the inequalities

q′′τq′′(x
′′
i ,x−i)− nx′′i
q′′ − n

− q′τq′(x
′′
i ,x−i)− nx′′i
q′ − n

=
q′′τq′′(x

′′
i ,x−i)− nx′′i
q′′ − n

− q′′τq′′(x
′′
i ,x−i)− nx′i
q′′ − n

+
q′′τq′′(x

′′
i ,x−i)− nx′i
q′′ − n

− q′τq′(x
′′
i ,x−i)− nx′′i
q′ − n

≥ q′′τq′′(x
′′
i ,x−i)− nx′′i
q′′ − n

− q′′τq′′(x
′′
i ,x−i)− nx′i
q′′ − n

+
q′τq′(x

′′
i ,x−i)− nx′i
q′ − n

− q′τq′(x
′′
i ,x−i)− nx′′i
q′ − n

=
n

n− q′′
(x′′i − x′i)−

n

n− q′
(x′′i − x′i)

> 0,

we reach a contradiction to the statement that q′′ minimizes the quotient

qτq(x
′′
i ,x−i)− nx′′i
q − n

.

(ii) For all c+
i (xi;x−i) ≤ 0, we have RU

i (xi;x−i) = 0 and thus ∂iR
U
i (xi;x−i) = 0. For the

case c+
i (xi;x−i) > 0 see the next part.

(iii) By assumption there are bids strictly higher than xi, therefore q̂(x) ≥ 1 and c+
n (x) <

xi. Let f := minc∈[0,c̄] f(c). As f is continuous and strictly positive in the interval [0, c̄] we

have f > 0. Recall also that F/f is increasing by assumption. Because c+
n (x) < xi < zD,
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the following (in)equalities are valid for all points in which the partial derivative exists:

∂iR
U
i (x) = (v − xi) · f

(
c+
n (x)

) · ∂ic
+
n (x)− F

(
c+
n (x)

)

= (v − xi) · f
(
c+
n (x)

) · n

n− q̂(x)
− F

(
c+
n (x)

)

≥ (v − xi) · f
(
c+
n (x)

) · n

n− 1
− F

(
c+
n (x)

)

=
n

n− 1
· f(

c+
n (x)

)(
v − xi − n− 1

n
· F

(
c+
n (x)

)

f
(
c+
n (x)

)
)

>
n

n− 1
· f ·

(
v − zD − n− 1

n
· F (zD)

f(zD)

)
=: ∂.

Observe that ∂ > 0 because

v − zD − n− 1

n
· F (zD)

f(zD)
> v − zD − F (zD)

f(zD)
= 0.

Lemma 3. For any x ∈ [0, v]n and any ε > 0 for which xi +ε ≤ v the following inequality

holds:

Ri(xi + ε;x−i)−Ri(xi;x−i) ≥ −1 · ε.

Proof. The inequality applies because an increase in the bid of bidder i can lead to an

increase in the stop-out price (with some probability), but does not lower the winning

chances of that bidder.

Lemma 4. Let x be such that there exists x with x ≤ xj < n
n−1

· x for all j. Then

c+
n (x) > 0 (that means, the bidder with the lowest bid is served with positive probability).

Proof. We have

c+
n (x) >

nx− (n− 1) · n
n−1

· x
n− n + 1

= 0.

Lemma 5. If all bidders except one (say, bidder i) submit a bid of x ∈ [0, v) (that means,

xj = x for j 6= i) then there exist ε > 0 and ∂̃ > 0 such that for xi ∈ [x, x + ε) the

following holds:15 ∂iR
U
i (xi, x, . . . , x) > ∂̃.

Proof. From

RU
i (xi, x, . . . , x) = (v − x) · F(nx− xi

n− 1

)
+ (v − xi) ·

(
F (xi)− F

(nx− xi

n− 1

))

15For xi = x we mean the derivative from above.
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we obtain the partial derivative function

∂iR
U
i (xi, x, . . . , x) = − v − x

n− 1
· f(nx− xi

n− 1

)−
(

F (xi)− F
(nx− xi

n− 1

))

+ (v − xi) ·
(

f(xi) +
1

n− 1
f
(nx− xi

n− 1

))
,

which is continuous in xi. As ∂iR
U
i (x, x, . . . , x) = (v− x) · f(x) > 0, there exist ε > 0 and

∂̃ > 0 such that ∂iR
U
i (xi, x, . . . , x) > ∂̃ for xi ∈ [x, x + ε).

Lemma 6. Let x be such that there exist bidders i, j, k with xi ≥ xk and

xj > xk + (n− 1)2(xi − xk).

Then

∂+
i RU

i (x) = 0.

Proof. Observe that ϕx(i) ≤ (n− 1).16 We have

c+
ϕx(i)(x) ≤ xi · (n− 1)− xj

n− 2
, c−ϕx(i)(x) ≥ n · xk − (n− 1) · xi.

The identities

xi · (n− 1)− xj

n− 2
< n · xk − (n− 1) · xi ⇔

xi · (n− 1)− xj < n · (n− 2) · xk − (n− 2) · (n− 1) · xi ⇔
xj > (n− 1)2 · xi − n · (n− 2) · xk ⇔
xj > (n− 1)2 · xi − [(n− 1)2 − 1] · xk ⇔
xj > xk + (n− 1)2(xi − xk),

verify that

c+
ϕx(i)(x) < c−ϕx(i)(x) for xj > xk + (n− 1)2(xi − xk),

which completes the proof. With these preliminaries we can prove now Theorem 6.

Proof of Theorem 6.

Let σ∗ be a symmetric equilibrium, and let z∗ = max
{
z

∣∣ σ∗i
(
[z, v]

)
= 1

}
be the lower

bound of the support of the bidders’ strategies in that equilibrium. Assume by contra-

diction z∗ ≤ zD. Take an arbitrary bidder i and consider a deviation strategy σε
i , which

16If bidder i submits also a bid of xk, we choose ϕx so that bidder i obtains a number lower than bidder
k.
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only shifts the probability mass of the small interval Zε
∗ = [z∗, z∗ + ε) to the point z∗ + ε:

σε
i (B) = σi

(
B ∩ CZε

∗
)

+ σi

(
Zε
∗
) · 1{z∗+ε∈B} for B ∈ B.

We will show that, for ε small enough, this deviation strategy will be more profitable

for player i, a contradiction to the equilibrium assumption. To show this, we define the

intervals

Z :=
[
z∗, v

]
, Zε

0 :=
[
z∗ + (n− 1)2ε, min{v,

n

n− 1
· z∗}

)

and the sets

Z = Zn−1, Zε =

(
{z∗} ∪

[
z∗ + (n− 1)2ε, v

])n−1

,

Zε
0 = (Zε

0)
n−1, Z∗ = {z∗}n−1.

Then we break down the set Z into the following four sets: Z \ Zε, Zε \ (Zε
0 ∪ Z∗), Zε

0

and Z∗. In the case of n = 3 bidders, taken from the perspective of bidder 3, all these

sets are represented in Figure 7. Consider the difference

RU
i (σε

i ,σ
∗
−i)−RU

i (σ∗i ,σ
∗
−i)

=

∫

Z\Zε

∫

Zε∗

(
RU

i (z∗ + ε,x−i)−RU
i (xi,x−i)

)
dσ∗i (xi)dσ∗

−i(x−i)

+

∫

Zε\(Zε
0∪Z∗)

∫

Zε∗

(
RU

i (z∗ + ε,x−i)−RU
i (xi,x−i)

)
dσ∗i (xi)dσ∗

−i(x−i)

+

∫

Zε
0

∫

Zε∗

(
RU

i (z∗ + ε,x−i)−RU
i (xi,x−i)

)
dσ∗i (xi)dσ∗

−i(x−i)

+

∫

Z∗

∫

Zε∗

(
RU

i (z∗ + ε,x−i)−RU
i (xi,x−i)

)
dσ∗i (xi)dσ∗

−i(x−i).

For ε > 0 small enough, we obtain lower bounds of the four terms by using Lemma 3 for

the first term, Lemmas 2 [(i)&(ii)] and Lemma 6 for the second one, Lemmas 2 [(i)&(iii)]

and Lemma 4 for the third one17 and Lemma 5 for the fourth term, which leads us to the

following (in)equalities.

17Lemma 4 guarantees that in the considered set c+
n (x) > 0; lemma 2 ensures the existence of ∂ > 0.
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x2 x2

v x1 x1z∗ + (n− 1)2εz∗
z∗

n
n−1 · z∗

x1

x2

x1

x2

x1

x2

x1

x2

Figure 7: The pattern ares represent the sets Z (upper-left), Zε (upper-right), Z \Zε (middle-
left), Zε \ (Zε

0 ∪ Z∗) (middle-right), Z∗ (lower-left) and Zε
0 (lower-right) for n = 3

bidders.
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RU
i (σε

i ,σ
∗
−i)−RU

i (σ∗i ,σ
∗
−i)

≥
∫

Z\Zε

∫

Zε∗

(−1) · (z∗ + ε− xi) dσ∗i (xi)dσ∗
−i(x−i)

+

∫

Zε\(Zε
0∪Z∗)

∫

Zε∗

0 · (z∗ + ε− xi) dσ∗i (xi)dσ∗
−i(x−i)

+

∫

Zε
0

∫

Zε∗

∂ · (z∗ + ε− xi) dσ∗i (xi)dσ∗
−i(x−i)

+

∫

Z∗

∫

Zε∗

∂̃ · ε dσ∗i (xi)dσ∗
−i(x−i)

=

∫

Zε∗

(z∗ + ε− xi)dσ∗i (xi) ·
(
(−1) · σ∗

−i

(Z \ Zε
)

+ ∂ · σ∗
−i

(Zε
0

))
+ ∂̃εσ∗

−i(Z∗).

We will prove that for sufficiently small ε > 0 the expression in the last line is positive.

To begin with, observe that limε→0 σ∗
−i

(Z \Zε
)

= 0. So, if there exists an ε > 0 for which

σ∗
−i

(Zε
0

)
> 0, then limε→0 σ∗

−i

(Zε
0

)
> 0. Consequently, limε→0

(
(−1) · σ∗

−i

(Z \ Zε
)

+ ∂ ·
σ∗
−i

(Zε
0

))
> 0. If, on the other hand, σ∗

−i

(Zε
0

)
= 0 for all ε > 0, then σ∗

−i

(Z \ Zε
)

= 0

and (−1) ·σ∗
−i

(Z \Zε
)
+ ∂ ·σ∗

−i

(Zε
0

)
= 0 for all ε > 0. In this case σ∗

−i(Z∗) > 0, because

z∗ was assumed to be the lower bound of the symmetric equilibrium mixed strategy. In

either case we can state the existence of an ε > 0 for which the expression in the last line

is positive and consequently RU
i (σε

i ,σ
∗
−i)−RU

i (σ∗i , σ
∗
−i) > 0, which completes the proof.
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