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∗ Valuable comments by Stefan Baumgärtner, Lucas Bretschger, Marco Lehmann-Waffenschmidt, Nor-
mann Lorenz, Till Requate, Maik Schneider, Marcel Thum and Christian Traeger are gratefully
acknowledged. The usual disclaimer applies.



1 Introduction

How to accomplish the transition to a low-carbon energy industry in a socially optimal
way is the subject of an ongoing debate. For instance, while the EU promotes emission
reduction via environmental regulations that cap emissions (e.g. European Commission
2005), the US concentrate on technology policy to foster energy efficiency and progress
in clean technologies (e.g. US Government 2002).1 Typically, investments in the energy
sector concern particularly long-lived and cost-intensive capital goods. They are also
associated with particularly long construction times. Following the liberalisation of en-
ergy markets in most industrialized countries, such investment decisions are now mainly
governed by private actors. At the same time, due to their environmental impact, they
have long-term consequences for the society as a whole. Thus, apart from environmental
preferences, time preferences on both the social and private levels are likely to play a
key role in the transition to a low-emission energy industry. However, the long-standing
debate on the correct determination and relationship of social and private time prefer-
ence rates in economics has mostly been focussing on the optimal discounting of public
projects (e.g. Groom et al. 2005, Lind et al. 1982, Luckert and Adamowicz 1993, Portney
and Weyant 1999, Weitzman 2001). The welfare-theoretic implications for private invest-
ments have, thus far, only occasionally been alluded (rare exceptions include Arrow and
Lind 1970, Baumol 1968, Grant and Quiggin 2003, Hirshleifer 1966).

We address this latter question in the specific context of energy sector transformation,
where it is of a particular importance. We study the transition from an established
polluting to a new clean energy technology. Our model combines two particular time-
related features. First, we assume that the creation of new capital goods needs a positive
time span σ. That is, there is a time lag σ between the costs of investment and the new
capital goods becoming productive. Second, we assume the social rate of time preference
to stay below the private. That means that individual actors are more impatient to
consume than society as a whole. In addition, we consider two kinds of technological
change, gradual and structural, which correspond to two competing emission reduction
options. By gradual technological change, we understand the gradual refinement of the
existing technology via an end-of-pipe abatement technology. By structural technological
change, we mean the introduction of a new clean technology. We assume that the new
technology is only to be produced and that it may replace the established one. We
show that the two externalities the model integrates, the emission externality as well
as the split of social and private time preference rates, create, in a mutually reinforcing
way, less favorable circumstances for the introduction of the new and the replacement
of the old energy technology compared to the social optimum. The time lag in capital
accumulation amplifies the distortion induced by the diverging time preference rates.
We show how the two distortions can be internalized by a combination of environmental
and technology policies.

Our paper contributes to the wide-spanned literature on induced technological change

1 This impasse between the EU and the US is not only reflected in the US refusal to ratify the Kyoto
protocol, but also an important issue in the recent political debate about international climate change
mitigation agreements for the post-Kyoto era.
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and the environment. In this literature, the intertemporal nature of the climate change
problem is mostly addressed either in endogenous growth or integrated assessment mod-
els. Top-down approaches study induced technological change by applying one repre-
sentative aggregated production technology, which becomes more efficient and/or less
polluting by technological change (e.g. Goulder and Mathai 2000, Müller-Fürstenberger
and Stephan forthcoming, Nordhaus 2002, Newell et al. 1999). In bottom-up approaches,
induced technological change also allows for structural change between competing tech-
nologies (e.g. Gerlagh and Van der Zwaan 2003, Goulder and Schneider 1999, Van der
Zwaan et al. 2002). They all have in common that they model technological change en-
dogenously as a gradual improvement resulting either from R&D investments or learning
by doing. Thus far, this literature has been focussing on positive spillovers to other firms
from the innovation process or dynamic increasing returns stemming from learning by
using, learning by doing or network externalities typically related to the diffusion of new
technologies as sources of market failure inducing technology policy (Jaffe et al. 2005).
We neglect these further components of long-run technological change and rather adopt,
as in Winkler (forthcoming), a medium-term perspective with qualitatively invariable
technologies, in order to concentrate on the welfare-theoretic consequences of the split
of social and private time preference rates and the time-to-build feature.

Although derived from a stylized theoretical model, our results have direct policy
implications. First, we provide a new reason why environmental regulation should be
complemented by technology policy. Second, our results give new theoretical support
for a non-distortionary subsidizing of new less polluting energy technologies. Third, our
analysis can substantiate Porter and van der Linde’s (1995) claim that “well-designed”
environmental regulations exhibit a double dividend providing both for less pollution
and a higher competitiveness.

The paper is organized as follows. Section 2 introduces the model and discusses the
assumption of the split of social and individual rates of time preference. In sections 3 and
4, the intertemporal optimization problems are solved and conditions of investment and
replacement derived for the cases of the social optimum and an unregulated competitive
market economy, respectively. Section 5 shows how the two distortions, stemming from
the emissions and the split of social and individual rates of time preference, can be inter-
nalized via environmental and technology regulation. We discuss our model assumptions
and policy implications in section 6. Section 7 concludes.

2 The model

Consider an economy composed of two vertically integrated sectors, the energy sector and
the investment sector. Labor constitutes the only primary input, which by assumption
is fixed to unity at all times t.

The energy sector comprises two technologies, an established and a new one. The
established technology is assumed to be fully set up at the beginning of the planning
horizon. As a consequence, we do not explicitly consider capital for the established
technology, but include the costs of employing and maintaining the capital stock into
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the labor costs which are normalized to 1. The established technology generates one unit
of energy x for every unit of labor l1 employed. In addition, each unit of energy produced
gives rise to one unit of an unwanted and harmful joint output j:

x1(t) = l1(t) = j(t) . (1)

Abatement effort a per unit of output (partially) disarms the joint output. The function
G denotes the fraction of the joint output j which is disarmed by abatement. G is
assumed to be twice continuously differentiable, satisfying G(0) = 0, G′ > 0, G′′ < 0 and
lima→∞ G(a) = 1. Moreover, the Inada conditions lima→0 G′(a) = ∞, lima→∞ G′(a) = 0
are imposed ensuring that the abatement effort a along the optimal path is strictly
positive and finite as long as l1 is positive. Then, net emissions e equal the amount of
joint output j minus abatement:

e(t) = x1(t)
(

1 − G(a(t))
)

. (2)

The new technology employs λ units of labor together with κ units of the capital good
k to produce one unit of energy:

x2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

. (3)

Assuming an efficient labor allocation among the three production processes in the two
sectors, i.e. 1 = (1 + a(t))l1(t) + l2(t) + i(t) ∀t, an initial capital stock of k(0) = 0,
and intertemporal welfare as defined in equations (6) and (7) below, full employment of
the capital stock can be shown to be efficient (Winkler 2005), and equation (3) yields

x2(t) = l2(t)
λ

= k(t)
κ

. Without loss of generality the new technology does not produce
any unwanted joint outputs. As energy is supposed to be homogeneous, total energy
production x equals:

x(t) = x1(t) + x2(t) . (4)

The investment sector employs one unit of labor to produce one unit of the capital
good. We assume that the creation of new capital goods needs a positive time span σ.
That is, there is a time-lag σ between the costs of investment i and the emergence of
productive capital k. The intuition behind this assumption is twofold. On the one hand,
power plants are not built in a day but need substantial time for creation.2 On the other
hand, the time-lag σ can also be identified with the time required for the R&D of a new
technology. In addition, the capital stock k deteriorates at the constant and exogenously
given rate γ, implying the following equation of motion:

dk(t)

dt
= i(t − σ) − γk(t) , γ > 0 . (5)

2 In general, the time span σ strongly depends on the type of plant produced. While a new nuclear
power plant may take five to seven years to be built, a gas co-generation plant is set up in a year or
two.
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Due to the time-lag σ the equation of motion for the capital stock (5) constitutes a
retarded differential-difference equation. Thus, variations of the capital stock k do not
only depend on parameters evaluated at time t but also on parameters evaluated at the
earlier time t − σ.

To close the model we consider a representative consumer who derives instantaneous
utility from energy consumption and disutility from net emissions.3 Like Arrow and
Kurz (1970: 116) we assume that the representative consumer’s private rate of time
preference differs from the social. That is, the representative consumer applies different
intertemporal weights between welfare today and welfare tomorrow compared to a social
planner maximizing social welfare. For the sake of simplicity, we consider instantaneous
welfare to be additively separable in energy consumption x and net emissions e. As a
consequence, the representative consumer (privately) maximizes

Wp =

∫ ∞

0

[

U(x(t)) − D(e(t))
]

exp[−ρpt] dt , (6)

whereas, at the same time, the social planner maximizes

W =

∫ ∞

0

[

U(x(t)) − D(e(t))
]

exp[−ρt] dt , (7)

where U and D are twice differentiable functions with U ′ > 0, U ′′ < 0, and limx→0 U ′ =
∞ and D′(0) ≥ 0, D′ > 0 for any positive amount of emissions e, and D′′ > 0. We
assume that the private rate of time preference ρp is higher than the socially efficient
rate ρ, i.e. ρp > ρ, which is in line with empirical findings (e.g. Lazaro et al. 2001).

To further motivate our assumption we briefly introduce two reasons why private
and social rates of time preference may differ. The first refers to the well established
fact in finance that there exists a (negative) spread between government and private
security rates of any maturity.4 Considering a framework where problems of adverse
selection prevent risk-averse individuals from insuring against systematic labour income
risk, Grant and Quiggin (2003) show that, for prudent behavior in the sense of Kimball
(1990) (i.e. marginal utility is strictly convex), the incapacity to fully pool idiosyncratic
risk leads to an enhanced risk premium for equity. The second reason has been advanced
by Gollier (2002). His aim is to determine the socially optimal discount rate for public
projects the time horizons of which extend far beyond the longest maturity of any
security available. He shows, again for the case of prudence, that uncertain growth leads
to a social discount rate that is smaller than in the case of certain growth and, moreover,
declines over time.

The importance of both arguments for the present analysis is obvious. In liberalized
markets, (private) utilities rely upon the private financial market to finance investments

3 Obviously, CO2 is a stock and not a flow pollutant. However, assuming that the negative externality
on utility is caused by the emissions and not the global stock simplifies further calculations without
impacting on our qualitative results (for further discussion, see section 6).

4 The issue has been discussed in a broad literature in both economics and finance particularly following
the statement of the so-called equity-premium and risk-free rate puzzles (e.g. Mehra and Prescott
1985, Weil 1989).
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in new technologies. Any distortion of it affects private investment. The factual inability
of financial markets to reflect and to insure long-term risks associated with investment
projects, such as those related to anthropogenic climate change, constitutes a case for
welfare-enhancing government intervention. In view of the ongoing discussion with re-
spect to causes and policy treatments we omit, however, an endogenous explanation of
the split of time preference rates and rather focus on the implications of this assumption.

3 Social optimum

We now derive the optimal plan for the development of the model economy. As outlined
in section 2, social welfare is assumed to be given by equation (7). Thus, the social
planner solves the following maximization problem:

max
a(t),i(t)

W =

∫ ∞

0

[

U(x(t)) − D(e(t))
]

exp[−ρt] dt , (8a)

subject to

x(t) =
1 − λ

κ
k(t) − i(t)

1 + a(t)
+

1

κ
k(t) , (8b)

e(t) =
(

1 − G(a(t))
)

[

1 − λ
κ
k(t) − i(t)

1 + a(t)

]

, (8c)

dk(t)

dt
= i(t − σ) − γk(t) , (8d)

i(t) ≥ 0 , (8e)

l1(t) ≥ 0 , (8f)

k(0) = 0 , (8g)

i(t) = ξ(t) = 0, t ∈ [−σ, 0) . (8h)

For the dynamics of the model economy it is important that, due to the linearity of the
production techniques, two corner solutions can occur along the optimal development
path. Either, it can be optimal to only use the established technology at all times, which
corresponds to i(t) = 0 ∀ t. Or, if investment in the new technology is optimal (i.e.
i(t) > 0 ∀ t), the new technology may eventually fully replace the established one and
thus l1(t) = 0 ∀t ≥ t′. As a consequence, we have to explicitly check these two corner
solutions, apart from the inner solution, in order to characterize the complete dynamics
of the model economy.

3.1 Necessary and sufficient conditions for the social optimum

To solve the optimization problem (8), we apply the generalized maximum principle
derived in El-Hodiri et al. (1972) for time-lagged optimal control problems. One obtains
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the following present-value Hamiltonian H:

H =
[

U(x(t)) − D(e(t))
]

exp[−ρt]

+ qx(t)

[

1 − λ
κ
k(t) − i(t)

1 + a(t)
+

1

κ
k(t) − x(t)

]

+ qe(t)

[

(

1 − G(a(t))
)1 − λ

κ
k(t) − i(t)

1 + a(t)
− e(t)

]

(9)

+ qk(t + σ)i(t) − qk(t)γk(t)

+ qi(t)i(t)

+ ql1(t)
1 − λ

κ
k(t) − i(t)

1 + a(t)
,

where qk denotes the costate variable or shadow price of the capital stock k, and qx,
qe, qi and ql1 denote the Kuhn-Tucker parameters for the (in)equality conditions (8b),
(8c), (8e) and (8f). Assuming the Hamiltonian H to be continuously differentiable with
respect to the control variables a and i, the following necessary conditions hold for an
optimal solution:

qx(t) = U ′(x(t)) exp[−ρt] , (10a)

qe(t) = −D′(e(t)) exp[−ρt] , (10b)

qx(t)l1(t)

1 + a(t)
= −qe(t)l1(t)

[

G′(a(t)) +
1 − G(a(t))

1 + a(t)

]

+
ql1(t)l1(t)

1 + a(t)
, (10c)

qx(t)

1 + a(t)
= −qe(t)

[

1 − G(a(t))

1 + a(t)

]

+ qk(t + σ) + qi(t) −
ql1(t)

1 + a(t)
, (10d)

dqk(t)

dt
= qe(t)

λ(1−G(a(t))

κ(1+a(t))
− qx(t)

1+a(t) − λ

κ(1+a(t))
+ qk(t)γ +

ql1(t)λ

κ(1+a(t))
, (10e)

qi(t) ≥ 0 , qi(t)i(t) = 0 , (10f)

ql1(t) ≥ 0 , ql1(t)l1(t) = 0 . (10g)

As the maximized Hamiltonian is concave (cf. Appendix A.1), the necessary conditions
(10a)–(10g) are also sufficient if, in addition, the following transversality condition holds:

lim
t→∞

qk(t)k(t) = 0 . (10h)

Due to the strict concavity of the maximized Hamiltonian, the optimal solution is also
unique.

Conditions (10a) and (10b) state that along the optimal path the shadow price of
energy equals the marginal utility of energy and the shadow price of net emissions equals
the marginal disutility of net emissions. From condition (10g) we know that ql1l1 = 0 ∀ t.
Hence, the last term in condition (10c) equals 0 and, as long as l1(t) > 0, we achieve by
inserting conditions (10a) and (10b):

U ′(x(t)) = D′(e(t)) [G′(a(t)) (1 + a(t)) + 1 − G(a(t))] . (11)
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This condition expresses that along the optimal path (and as long as condition (8f) is not
binding) the utility (in current values) of an additional marginal unit of energy equals
the disutility (in current values) of the emissions that it induces. Along the optimal
path this equation determines the optimal value of the abatement effort a per unit of
output x1. If inequality (8f) is binding and thus l1 equals 0, condition (10c) reduces to
the truism 0 = 0. It is obvious, however, that if the established technique is not used at
all, the optimal abatement effort a = 0 as no emissions have to be abated.

As noted above, the optimal system dynamics of the optimization problem (8) splits
into three cases, an interior solution and two corner solutions. In Appendix A.2 we derive
the system of functional differential equations for the system dynamics and show that
each case exhibits a (different) stationary state. In particular, the stationary state of
the interior solution represents a saddle point, i.e. for all sets of initial conditions there
exists a unique optimal path which converges towards the stationary state.

We first restrict our attention to the case of an interior solution, i.e. qi(t) = ql1(t) = 0.
Together with transversality condition (10h), and inserting conditions (10a) and (10b),
condition (10e) can be unambiguously solved:

qk(t) =

∫ ∞

t

U ′(x(s))(1+a(s)−λ) + D′(e(s))λ
(

1−G(a(s))
)

κ(1+a(s))
exp[−γ(s−t)−ρs)]ds . (12)

Thus, along the optimal path the shadow price for the capital stock equals the net present
value of all future welfare gains of one additional marginal unit of the capital good. As
capital goods are long-lived, they contribute over the whole time horizon (increasingly
less though due to deterioration). The fraction under the integral equals the marginal
instantaneous welfare gain of an additional unit of capital, which comprises two compo-
nents. The first is the direct welfare gain due to the energy produced. It is positive if
the new technology needs less labor input per unit of output than the established one,
i.e. λ < 1 + a. The second term is always positive and denotes the welfare gain due to
emissions abated by switching from the established to the new production technique.

Inserting conditions (10a) and (10b) in equation (10d) yields:

U ′(x(t)) + D′(e(t))
(

1 − G(a(t))
)

1 + a(t)
exp[−ρt] = qk(t + σ) (13)

The equation states that along the optimal path the present value of the welfare loss by
investing in one marginal unit of new capital, which is given by the present value welfare
gain of the alternative use of one marginal unit of labor in the established production
technique (left-hand side), equals the net present value of the sum of all future welfare
gains by using the new capital good in production. As the investment needs the time
span σ to become productive capital, the sum of all future welfare gains of an investment
at time t is given by the shadow price of capital at time t+σ, qk(t+σ). Note that equation
(13) implies that qk is always positive along the optimal path. As a consequence, the
second term of the fraction in equation (12) outweighs the first.
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3.2 Conditions for investment and replacement

However, so far it is not clear to which of the three possible stationary states the system
will tend. In the following, we derive conditions for the exogenous parameters identifying
which of the three possible cases for the system dynamics applies. In fact, these conditions
determine whether there is any investment in the new technology, and if so, whether the
established technology is eventually fully replaced by the new one. We start with the
investment condition.

In order to derive a condition which identifies whether investment is optimal, we
assume the economy to stay in the no investment corner solution and derive a condition
for which the corner solution violates the necessary and sufficient condition for an optimal
solution. The following proposition states the result.

Proposition 1 (Investment condition in the social optimum)
Given the optimization problem (8), the new technology is innovated, i.e. i(t) > 0, if and
only if the following condition holds:

1 + a0 +
1 − G(a0)

G′(a0)
> λ + κ(γ + ρ) exp[ρσ] , (14)

where a0 is determined by the unique solution of the implicit equation:

U ′(1 − a0)

D′
(

(1 − a0)(1 − G(a0))
) = G′(a0)(1 + a0) + 1 − G(a0) . (15)

Proof: See Appendix A.4.

Condition (14) for the investment in the new technology has an intuitive economic
interpretation. In the corner solution without investment the left-hand side corresponds
to the unit costs of energy production of the established technology UC0

T1
, the right-hand

side to the unit costs of energy production of the new technology UC0
T2

. Thus, condition
(14) states that for the new technology to be innovated its unit costs of production have
to be below those of the established technology, i.e. UC0

T2
< UC0

T1
.

The unit costs of production of the first technology comprise three components, the
‘pure’ labor costs per unit of energy production, the labor costs for abatement per unit,
and the social costs of unit emissions in terms of labor. The unit costs of production of
the non-polluting new technology comprise, apart from the ‘pure’ labor costs, the costs
for building up and maintaining the necessary capital good in terms of labor. Obviously,
the capital costs per unit of output depend positively on the capital intensity κ, the
dynamic characteristics γ and σ of the capital good production, as well as on the time
preference rate ρ. In particular, the longer the time-lag σ and the higher the rate of time
preference ρ the higher are the unit costs of energy of the new technology.5

Despite the infinite time horizon and the linearity of the two production techniques,
condition (14) does not guarantee full replacement of the established technology by

5 In general, the unit costs of energy during transition periods are not constant, as consumption and
emission levels change over time. Thus, they are not necessarily given by UC0

T1
and UC0

T2
.
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the new technology in the long run. In the following, we deduce conditions for which
complete or partial replacement occur in the long run. In formal terms, full replacement
of the established by the new production technique is given by the full replacement
corner solution l1(t) = 0. The line of argument to derive a condition for full replacement
is similar to the inference of proposition 1. We investigate under which conditions a full
replacement stationary state, in which all labor is used to employ and maintain the fully
developed new technology, is consistent with the necessary and sufficient conditions for
an optimal solution as given by equations (10a)–(10h). The following proposition states
the result.

Proposition 2 (Full replacement condition in the social optimum)
Given the optimization problem (8) and assuming U ′(x∞)−D′(0) 6= 0, full replacement of
the established technology by the new one in the long-run stationary state is consistent
with the necessary and sufficient conditions for a social optimum, if and only if the
following condition holds:

1 +
D′(0)

U ′(x∞) − D′(0)
≥ λ + κ(γ + ρ) exp[ρσ] , (16)

where x∞ is given by x∞ = 1
λ+κγ

.

Proof: See Appendix A.5.

The economic interpretation of the full replacement condition (16) is analogous to the
one of the investment condition (14). Full replacement can only take place if the costs
per unit of output of the new technology in the full replacement stationary state UC∞

T2

(right-hand side) are smaller than or equal to the costs of the established technology
UC∞

T1
(left-hand side). As there are no emissions, there are no labor costs for abatement

effort in the full replacement stationary state. Thus, the unit costs of the established
technology only consist of the ‘pure’ labor costs plus the social costs, which stem from
emissions. In the common case that the first marginal unit of emissions does not induce
any environmental damage, i. e. D′(0) = 0 (e.g. D is a power function), the unit costs
of the established technology reduce to the ‘pure’ labor costs of production. Note that
condition (16) is not well defined, if limx→x∞ U ′(x) = D′(0) holds. However, also in this
special case full replacement will occur if, in addition, condition (14) holds because the
welfare gain of an additional unit of labor assigned to the old technology vanishes while
the shadow price of capital, which is the net present value of all future welfare gains
of an additional unit of capital, remains positive. The unit costs of the new technology
are identical in both situations as they do not depend on the level of emissions and its
implied disutility.6

For full replacement to occur conditions (14) and (16) must hold at the same time.
Thus, a straightforward corollary from propositions 1 and 2 is that partial replacement
of the established by the new technology (i.e. the long-run stationary state is an interior
solution) takes place, if condition (14) holds but condition (16) is violated.

6 In fact, the unit costs of the new technology are the same among all possible stationary states.
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Corollary 1 (Partial replacement condition in the social optimum)
Given the optimization problem (8) and that U ′(x∞)−D′(0) 6= 0, partial replacement of
the established technology by the new one is optimal in the long-run stationary state, i.e.
the long-run stationary state is an interior solution, if and only if the following condition
holds:

1 + a0 +
1 − G(a0)

G′(a0)
> λ + κ(γ + ρ) exp[ρσ] > 1 +

D′(0)

U ′(x∞) − D′(0)
, (17)

where x∞ = 1
λ+κγ

and a0 is given by the unique solution of the implicit equation (15).

In sum, investment is never optimal if the labor costs per unit of output of the new
technology, UCT2

= UC0
T2

= UC∞
T2

, are higher than the labor costs per unit of output of
the established technology in the no investment corner solution, UC0

T1
. If investment is

optimal, i.e. UCT2
< UC0

T1
, full replacement in the long-run stationary state is optimal

if, in addition, UCT2
≤ UC∞

T1
holds. Otherwise, i.e. UC∞

T1
< UCT2

< UC0
T1

, the new tech-
nology will partly replace the established technology in the optimal long-run stationary
state.

4 Unregulated competitive market equilibrium

We now assume that the allocation of the model economy is determined by the decisions
of individual actors in an unregulated market regime. We assume competitive markets for
labor, capital and energy, in which one representative household and two representative
firms interact. We suppose that all markets are cleared at all times, and thus supply
equals demand. As emissions are free, though negatively valued by the household, the
firms do not account for them in their market decisions. We consider a representative
consumer who exhibits different preferences in an individual compared to a social decision
context. More precisely, we assume that in the market regime the preferences of the
representative consumer are given by equation (6), which differs from equation (7) by a
higher rate of time preference ρp.

Analogously to the analysis of the social optimum we derive conditions for investment
in the new technology and for the replacement of the established technology in the
long-run stationary state. We study how the emission externality and the split of time
preference rates affect these conditions.

4.1 The household’s market decisions

The household is assumed to own the two firms and the total labor and capital endow-
ment of the economy. Thus, the household chooses between selling labor to the firms at
the market price of labor w or to invest labor in the accumulation of capital k, which the
household rents to the firms at the market price of capital r. In addition, the household
buys energy x at the market price of energy p. As the household cannot incur debts, the
following budget constraint has to hold for all times t:

p(t)x(t) = w(t)
(

1 − i(t)
)

+ r(t)k(t) + π1(t) + π2(t) , (18)
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where π1 and π2 denote the profits of firm 1 and 2. In addition, capital can be accumu-
lated according to equation (5).

The household is assumed to maximize its intertemporal welfare (6), i.e. the household
solves the following maximization problem:

max
i(t)

∫ ∞

0

[

U(x(t)) − D(e(t))
]

exp[−ρpt] dt , (19a)

subject to

p(t)x(t) = w(t)
(

1 − i(t)
)

+ r(t)k(t) + π1(t) + π2(t) , (19b)

dk(t)

dt
= i(t − σ) − γk(t) , (19c)

i(t) ≥ 0 , (19d)

k(0) = 0 , (19e)

i(t) = ξ(t) = 0, t ∈ [−σ, 0) . (19f)

Thus, the present value Hamiltonian HH reads:

HH =
[

U(x(t)) − D(e(t))
]

exp[−ρpt] (20a)

+ qb(t)
[

w(t)
(

1 − i(t)
)

+ r(t)k(t) − p(t)x(t)
]

(20b)

+ qk(t + σ)i(t) − qk(t)γk(t) (20c)

+ qi(t)i(t) , (20d)

where qk denotes the costate variable or shadow price of the capital stock k, and qb and
qi denote the Kuhn-Tucker parameters for the (in)equality conditions (19b)and (19d).
The strict concavity of the Hamiltonian HH can be shown following a similar line of
argument as in Appendix A.1 and ensures a unique solution.

Assuming that the Hamiltonian HH is continuously differentiable with respect to the
control variable i the following necessary conditions hold for an optimal solution:

qb(t)p(t) = U ′(x(t)) exp[−ρpt] , (21a)

qb(t)w(t) = qk(t + σ) + qi(t) , (21b)

−
dqk(t)

dt
= qb(t)r(t) − qk(t)γ , (21c)

qi(t) ≥ 0 , qi(t)i(t) = 0 . (21d)

Due to the concavity of the Hamiltonian, the necessary conditions (21a)–(21d) are also
sufficient if in addition a transversality condition analogous to condition (10h) holds.
Together with condition (21a), condition (21c) can be unambiguously solved to yield:

qk(t) = exp[γt]

∫ ∞

t

qb(s)r(s) exp[−γs]ds . (22)
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4.2 The firms’ market decisions

Taking prices as given, the firms maximize their profits in the competitive market equi-
librium. Firm 1 produces energy according to the first production technology described
by equations (1) and (8c). Thus, the profit π1 at time t is given by:

π1(t) = p(t)l1(t) − w(t)
(

1 + a(t)
)

l1(t) . (23)

Firm 1 chooses l1 and a such as to maximize the net present value of all future profits
which is equivalent to maximize the profit π1 at all times t. As the negative externality of
emissions is not accounted for in the unregulated market economy, abatement effort a is
a pure cost to the firm, and thus a(t) = 0 is a necessary condition for a profit maximum.
As π1 is linear in l1, π1 is non-negative for any l1 > 0 as long as output prices exceed
input prices. Hence, the labor demand of firm 1 is given by the following correspondence:

l1(t)











= ∞ , if p(t) > w(t)

∈ [0,∞) , if p(t) = w(t)

= 0 , if p(t) < w(t)

. (24)

Firm 2 produces energy according to the second production technology described by
equation (3). Thus, the profit π2 at time t equals:

π2(t) =
1

κ
p(t)k(t) −

λ

κ
w(t)k(t) − r(t)k(t) , (25)

which is a linear function of k. As a consequence, the profit π2 is non-negative for any
k > 0 as long as the value of outputs exceeds the value of inputs. Analogously to firm 1,
firm 2 demands as much capital as possible together with λ

κ
k units of labor, if the value

of the output exceeds the value of the inputs. Thus, the demand of firm 2 is given by
the following correspondence:

k(t)











= ∞ ∧ l2(t) = λ
κ
k(t) = ∞ , if p(t) > λw(t) + κr(t)

∈ [0,∞) ∧ l2(t) = λ
κ
k(t) , if p(t) = λw(t) + κr(t)

= 0 ∧ l2(t) = 0 , if p(t) < λw(t) + κr(t)

. (26)

4.3 Necessary and sufficient condition for the market equilibrium

In the market equilibrium all markets clear and thus supply equals demand. As in
the social optimum, the market solution may exhibit two corner solutions, in whichthe
household never invests in capital or the total labor endowment is used to employ and
maintain the capital stock. In the former case firm 2 is unable to operate, while in the
latter case firm 1 is driven out of the market.

First, we analyze the interior market equilibrium where both firms operate. From the
demand correspondences (24) and (26) of firm 1 and firm 2 we know that for positive
and finite levels of l1, l2 and k the following conditions hold:

w(t)

p(t)
= 1 ,

r(t)

p(t)
=

1

κ

(

1 + λ
w(t)

p(t)

)

=
1 − λ

κ
. (27)
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Solving equation (21a) for qb and taking into account conditions (27), we achieve for the
shadow price of capital qk

qk(t) =
1 − λ

κ
exp[γt]

∫ ∞

t

U ′(x(s)) exp[−(γ + ρp)s] ds , (28)

and the following necessary and sufficient condition for an interior market equilibrium:

U ′(x(t)) exp[−ρpt] = qk(t + σ) . (29)

Analogously to the corresponding condition (13) in the social optimum, equation (29)
states that along the optimal path the present value of the household’s welfare loss by
investing in one marginal unit of new capital, given by the present value welfare gain of
the alternative use of one marginal unit of labor in the established production technique
(left-hand side), equals the net present value of the sum of all future welfare gains by
using the new capital good in production. Both costs and benefits of investment are
smaller in the market equilibrium compared to the social optimum. However, in order to
decide how the unregulated market regime influences the conditions of investment and
replacement we have to check them explicitly.

4.4 Conditions for investment and replacement

Again, we assume the economy to stay in the no investment corner solution in order
to derive the investment condition. Given the stationary state with no investment in
capital at all times, we derive a condition on the exogenous parameters for which the
corner solution violates the necessary and sufficient condition (29) for an unregulated
market solution. The following proposition states this condition.

Proposition 3 (Investment condition in the competitive market equilibrium)
Given the optimization problem (19) of the representative household and the profit func-
tions (23) and (25) of firm 1 and firm 2, the new technology is innovated, i.e. i(t) > 0,
if and only if the following condition holds:

1 > λ + κ(γ + ρp) exp[ρpσ] . (30)

Proof: See Appendix A.6.

Condition (30) displays the unit costs of energy production of the established and the
new technology in the competitive market equilibrium. Again,the new technology has
to display lower unit costs of production than the established technology in order to be
innovated. As the social costs of pollution are not accounted for in the unregulated mar-
ket regime, firm 1 has no incentive to abate. The unit costs of energy of the established
technology reduce to the ‘pure’ costs of production, and are thus lower than socially op-
timal. The unit costs of energy of the new technology display the same composition as
in the social optimum. As they now depend on ρp > ρ, they exceed the socially optimal
unit costs of energy of the new technology. Thus, in the unregulated market equilibrium
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the new technology is disadvantaged in a twofold manner compared to the the social
optimum.

As there is no abatement, investment in the new technology according to condition
(30) always implies the full replacement of the initially established technology in the
long run. The following proposition states these results.

Proposition 4 (Full replacement in the competitive market equilibrium)
Given the optimization problem (19) of the representative household, the profit functions
(23) and (25) of firm 1 and firm 2, full replacement of the established technology by the
new one in the long-run stationary state is consistent with the necessary and sufficient
conditions for a competitive market equilibrium, if and only if the following condition
holds:

1 ≥ λ + κ(γ + ρp) exp[ρpσ] . (31)

In particular, this implies that partial replacement of the established technology by the
new one cannot occur in the unregulated market regime.

Proof: See Appendix A.7.

At first sight it might be puzzling that condition (30) is a strict inequality while condition
(31) also allows for the equality sign to hold. Condition (31) states the requirements for
a full replacement stationary state to be consistent with the necessary and sufficient
conditions for a market equilibrium. However, from the strict inequality (30) we know
that starting with a vanishing capital stock k(0) = 0 there is no investment at all times,
if the equality sign in (31) holds. Nevertheless, in the hypothetical situation that the
economy would already start with the full replacement capital stock k∞ = κ

λ+κγ
and

that, in addition, condition (31) holds with equality, the economy would stay in the full
replacement market equilibrium forever.

In sum, in the unregulated market economy the new technology has to exhibit lower
costs per unit of output than the ‘pure’ labor costs of the established technology to
be innovated. This holds as the social costs of emissions which are an inevitable joint
output of the old production technique are not accounted for in the market equilibrium.
Moreover, the unit costs of the new technology are higher in the unregulated market
equilibrium as compared to the social optimum. This difference is caused by the costs
of waiting until the new capital good becomes productive, which increases because of
the higher rate of time preference ρp of individual actors as compared to the social rate
of time preference ρ. Thus, in a mutually reinforcing way the emission externality and
the split of the rates of time preference imply that the new technology might not be
innovated in the competitive market equilibrium, although innovation would be socially
optimal.
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5 Competitive market equilibrium with emission tax and investment

subsidy

Now we consider how the social optimum can be implemented in a decentralized market
regime. In general, two independent instruments are needed to implement the social
optimum corresponding to the two externalities arising in the model. In fact, we study
the introduction of an emission tax τe to internalize the emission externality, and of an
investment subsidy τi to internalize the second distortion associated with the split of
time preference rates. We assume the emission tax to be a tax per unit of emissions,
collected directly from firm 1, and the investment subsidy to be a subsidy per unit of
investment, paid directly to the household.

5.1 The household’s and firms’ market decisions under regulation

The emission tax and the investment subsidy alter the profit function of firm 1 and
the household’s maximization problem. Thus, we have to reconsider the corresponding
decisions in a regulated market regime. Given a per unit tax τe per unit of emissions,
the profit function of firm 1 reads:

π1(t) = p(t)l1(t) − w(t)(1 + a(t))l1(t) − τe(t)
(

1 − G(a(t))
)

l1(t) . (32)

Firm 1 chooses both labor l1 and abatement effort a such as to maximize the net present
value of all future profits, which is equivalent to maximizing the profit π1 at all times t.
A necessary condition for profit maximization is

∂π1(t)

∂a(t)
= −l1(t)w(t) + τe(t)G

′(a(t))l1(t) = 0 , (33)

which is an implicit equation for the unique optimal abatement effort a⋆(t) as long as
l1(t) > 0. However, if l1(t) = 0, the optimal abatement effort a⋆(t) = 0 as no emissions
have to be abated. Again, the profit function π1(t) is linear in the labor demand l1(t).
Thus, the demand for l1(t) is given by the following correspondence:

l1(t)











= ∞ , if p(t) > w(t)
(

1 + a(t)
)

+ τe(t)
(

1 − G(a(t))
)

∈ [0,∞) , if p(t) = w(t)
(

1 + a(t)
)

+ τe(t)
(

1 − G(a(t))
)

= 0 , if p(t) < w(t)
(

1 + a(t)
)

+ τe(t)
(

1 − G(a(t))
)

, (34)

where the optimal abatement effort a is given by the solution of the implicit equation
τe(t)G

′(a(t)) = w(t) if l1(t) > 0, and a(t) = 0 if l1(t) = 0.
With an investment subsidy τi(t) paid per unit of investment i, the household’s budget

constraint equals:7

p(t)x(t) = w(t)
(

1 − i(t)
)

− τi(t)i(t) + r(t)k(t) + π1(t) + π2(t) . (35)

7 For the sake of consistency, a positive τe (τi) denotes a tax and a negative τe (τi) denotes a subsidy.
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Thus, the necessary and sufficient condition (21b) is replaced by:

qb(t)
(

w(t) + τi(t)
)

= qk(t + σ) + qi(t) . (36)

Neither the emission tax τe nor the innovation subsidy τi directly affect firm 2, and
thus the decision criteria of firm 2 remain unchanged.

5.2 Necessary and sufficient condition for the regulated market equilibrium

Given the adjusted equations (32) and (36), which replace equations (24) and (21b) of
section 4, we analyze how the interior market equilibrium changes if an emission tax τe

and an investment subsidy τi are enacted.
From conditions (33), (34) and (26) we derive the following conditions for an interior

market equilibrium where both firms operate (i.e. l1(t) > 0, i(t) > 0):

1 =
τe(t)

p(t)

[

G′(a(t))(1 + a(t)) + 1 − G(a(t))
]

, (37)

w(t)

p(t)
=

1 −
τe(t)
p(t)

(

1 − G(a(t))
)

1 + a(t)
, (38)

r(t)

p(t)
=

1 + a(t) − λ + λ
τe(t)
p(t)

(

1 − G(a(t))
)

κ(1 + a(t))
. (39)

Solving equation (21a) for qb and taking into account conditions (39) we achieve for the
shadow price of capital qk:

qk(t) =
exp[γt]

κ

∫ ∞

t

1 + a(s) − λ + λ
τe(s)
p(s)

(

1 − G(a(s))
)

1 + a(s)
U ′(x(s)) exp[−(γ+ρp)s] ds . (40)

Inserting qb and equation (38) into equation (36) yields

1 −
τe(t)
p(t)

(

1 − G(a(t))
)

1 + a(t)
U ′(x(t)) exp[−ρpt] = qk(t+σ)−

τi(t)

p(t)
U ′(x(t)) exp[−ρpt] , (41)

which together with equation (37) determines the interior market equilibrium for a given
emission tax τe and investment subsidy τi. Note that equations (37) and (41) determine
the market equilibrium only in terms of relative prices. Thus, one price can freely be
chosen as a numeraire.

Choosing the price of energy p as numeraire we calculate the optimal emission tax
and the optimal investment subsidy. Comparing equation (37) with the corresponding
condition (11) in the social optimum we achieve for the optimal emission tax τ opt

e :

τe(t)
opt

p(t)
=

D′(e(t))

U ′(x(t))
. (42)
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For conditions (41) and (14) to coincide the investment subsidy τ
opt
i has to be set to:

τi(t)
opt

p(t)
= −

exp[−γ(t+σ)]

κU ′(x(t))

∫ ∞

t+σ

U ′(x(s))(1 + a(s) − λ) + D′(e(s))λ
(

1 − G(a(s))
)

1 + a(s)

× exp[−γs]
(

exp[−ρ(s − t)] − exp[−ρp(s − t)]
)

ds . (43)

Hence, if the two instruments are set in such a way that the market equilibrium is
identical to the social optimum, τ opt

e is always positive (i.e. emissions are taxed) and τ
opt
i

is always negative (i.e. investment is subsidized).
In the following, we consider how the conditions for investment and replacement, i.e.

the two corner solutions, change compared to the unregulated market economy when
an emission tax τe is raised from firm 1 and an investment subsidy τi is paid to the
household. We show that setting τe and τi as defined in equations (42) and (43) also
implements the social optimum in the corner solutions.

5.3 Conditions for investment and replacement

Again, we first assume that the economy stays in the no investment corner solution. We
derive a condition for positive investment to be a market equilibrium in the regulated
market regime with emission tax τe and investment subsidy τi. The following proposition
states this condition.

Proposition 5 (Investment condition in the regulated market regime)
Given the optimization problem (19) of the household with the adjusted budget constraint
(35), the profit functions (32) and (25) of firm 1 and firm 2, and the emission tax
τe(t)
p(t)

and the investment subsidy τi(t)
p(t)

in units of the numeraire p, the new technology is

innovated in the market equilibrium, i.e. i(t) > 0, if and only if the following condition
holds:

1 + a0 +
1 − G(a0)

G′(a0)
> λ +

[

1 +
τ 0
i

τ 0
e G′(a0)

]

κ(γ + ρp) exp[ρpσ] , (44)

where τ 0
e = τe(t)

p(t)
, τ 0

i = τi(t)
p(t)

evaluated at the no investment stationary state and a0 is
determined by the unique solution of the implicit equation:

1 = τ 0
e

(

G′(a0)(1 + a0) + 1 − G(a0)
)

. (45)

Condition (44) for the market equilibrium is identical to the corresponding condition
for the social optimum (14), if τ 0

e and τ 0
i are set as follows:

τ 0
e =

D′(e0)

U ′(x0)
> 0 , (46)

τ 0
i =

D′(e0)
[

(1+a0−λ)G′(a0)+1−G(a0)
]

κU ′(x0)

(

exp[−ρpσ]

γ + ρp

−
exp[−ρσ]

γ + ρ

)

< 0 , (47)

where x0 = 1 − a0 and e0 = (1 − a0)(1 − G(a0)).

17



Proof: See Appendix A.8.

Condition (44) displays the unit costs of energy production of the established and of
the new technology in the no investment market equilibrium when an emission tax τe

is imposed and an innovation subsidy τi is paid. Imposing the emission tax τe enforces
the incorporation of the social costs of emissions into the unit costs of production of
the established technology. By setting τ 0

e equal to the ratio between marginal damage
from environmental degradation and marginal benefit from consumption the unit costs
of production of the established technology are raised to their socially optimal level and
thus the emission externality is internalized. However, it is obvious from condition (44)
that an emission tax does not suffice for the market equilibrium to resemble the socially
optimal outcome. In addition, an investment subsidy has to be paid, lowering the unit
costs of energy production for the new technology to their level at the social optimum.
Note that conditions (46) and (47) are identical to the corresponding conditions (42) and
(43) for an interior market equilibrium evaluated at the no investment corner solution.

We will now derive the conditions for which full replacement of the established by the
new technology is a market equilibrium in the long run, given that the state imposes an
emission tax τe and pays an investment subsidy τi.

Proposition 6 (Full replacement condition in the regulated market regime)
Given the optimization problem (19) of the household with the adjusted budget constraint

(35), the profit functions (32) and (25) of firm 1 and firm 2, the emission tax τe(t)
p(t)

and

the investment subsidy τi(t)
p(t)

, full replacement of the established technology by the new one
in the long-run stationary state is consistent with the necessary and sufficient conditions
for a regulated market equilibrium, if and only if the following condition holds:

1 +
τ∞
e

1 − τ∞
e

≥ λ +

[

1 +
τ∞
i

1 − τ∞
e

]

κ(γ + ρp) exp[ρpσ] , (48)

where τ∞
e = τe(t)

p(t)
, τ∞

i = τi(t)
p(t)

evaluated at the long-run stationary state.

Condition (48) for the market equilibrium is identical to the corresponding condition
for the social optimum (16), if τ∞

e and τ∞
i are set as follows:

τ∞
e =

D′(0)

U ′(x∞)
≥ 0 , (49)

τ∞
i =

U ′(x∞)(1 − λ) + D′(0)λ

κU ′(x∞)

(

exp[−ρpσ]

γ + ρp

−
exp[−ρσ]

γ + ρ

)

< 0 , (50)

where x∞ = 1
λ+κγ

.

Proof: See Appendix A.9.

Note that, although in the case of full replacement the external effect from the emissions
vanishes, the emission tax has to be raised if D′(0) > 0 for the market equilibrium to
resemble the social optimum. If D′(0) = 0, then the optimal tax in the full replacement
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stationary state is given by τ∞
e = 0. However, the optimal investment subsidy τ∞

i has
to be negative in any case.

As in the social optimum, conditions (44) and (48) have to hold simultaneously for
full replacement to occur in the regulated market regime in the long run. Moreover, if
the emission tax τe and the investment subsidy τi are such that condition (44) is always
fulfilled but condition (48) is always violated, the economy exhibits a market equilibrium
where both technologies are used, i.e. there is a partial replacement of the established
by the new technique.

6 Discussion

Before discussing model assumptions and policy implications, we briefly summarize our
findings. Recall that there are two energy technologies available in the economy. The first
gives rise to emissions which can be partly abated by an end-of-pipe technology. The
resulting net emissions impose a negative externality on society. The second is clean but
needs some time σ before investment becomes productive. Moreover, the intertemporal
valuation is deterred by the split between the private and social rates of time preference.
Whether the second technology (partly) replaces the first one hinges on the exogenously
given parameters and on whether and to what extent the emission externality and the
split of time preferences are corrected by an emission tax τe and an investment subsidy
τi. Figure 1 illustrates the findings.
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Figure 1: Full replacement, partial replacement, and no investment in the unregulated
market equilibrium and the social optimum.

In the unregulated market regime UCT1
always equals 1. Thus, the combination of

the unit costs of production of the two technologies associated with the investment and
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replacement conditions is always represented by a point on the UCT2
axis in Figure 1.

For example, point A denotes a situation where no investment in the new technology
takes place in the unregulated market regime, though full replacement would be socially
optimal (point Aso). Imposing an emission tax τe increases the unit costs of the estab-
lished technology (upwards shift in Figure 1). In the social optimum the unit costs of

the established technology equal 1 + a0 + 1−G(a0)
G′(a0)

. The introduction of an investment
subsidy decreases the unit costs of the new technology shifting the UCT2

to the left. In
general, the social optimum in a market regime can only be implemented by combin-
ing environmental and technology policies (moving from Aun to Aso). In the example in
Figure 1, the sole imposition of the emission tax would lead to a partial replacement
of the established technology (shift from Aun to Atax), and the sole imposition of the
investment subsidy leaves the economy in the no-investment stationary state (shift from
Aun to Asub).

In sum, environmental policy alone tends to favor gradual over structural change as
private investors overestimate the unit costs of the new technology compared to the
social optimum. On the other hand, technology policy alone induces no gradual change
because the negative externality imposed by the emissions is not taken into account. As
no abatement effort is undertaken and, hence, the unit costs of the established technology
are underestimated, structural change is in tendency disadvantaged compared to the
social optimum.

6.1 Model assumptions

The crucial assumption for our results to hold is that the social and individual rates of
time preference differ. In section 2 we discussed different reasons for the split particularly
relevant in the present context. However, to keep our model tractable we have abstained
from an endogenous explanation and focused on its effect. The split of time preference
rates is the more important the more the consequences of actions undertaken today
spread into the future. The shift from a carbon-intensive to a carbon-neutral energy
industry happens on a timescale of several decades. Thus, in the context of mitigating
climate change even a small split between the private and social rate of time preference
can have a significant impact.

The other distinctive feature of our model, the time-lagged accumulation of the spe-
cific capital good of the new technology, is not crucial for our qualitative results, but
amplifies the overestimation of the unit costs of production of the new technology caused
by the split in time preference rates. The energy industry is a prime example for ex-
hibiting substantial time-lags between the costs of investment and new capital to become
productive. As a consequence, we consider the split in time preferences to be particularly
important in the context of the technological transition of energy systems where both
long time horizons and substantial time lags come together. In our opinion, this justifies
the additional mathematical obstacles incurred by the time-lagged equation of motion.

In our model we consider a flow pollutant, whereas the accumulation of greenhouse
gases in the atmosphere causing the rise of global mean temperature is a stock-pollutant
problem. This simplification does not qualitatively affect our results. Rather, for a stock
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pollutant, the split of time preference rates would imply an underestimation of the future
damages from emissions today by the individual households compared to the social
planner. As a consequence, the unit costs of production of the established technology
would be further underestimated in the unregulated market economy.

By modeling the energy technologies as linear and linear-limitational, we assume very
specific functional forms. The rationale is to account for the rigidities in energy produc-
tion due to technical and thermodynamic constraints. From a more technical point of
view, it is the linearity of the production functions which gives rise to the corner solutions,
which we exploit to derive conditions of investment and partial and full replacement.
As our focus is on the substitution effects between (the established and the new) energy
production technologies, the analysis abstracts from substitution possibilities among dif-
ferent production factors within the individual energy technologies. Moreover, taking a
medium-term perspective, we abstract from some typical long-run problems. First, we
neglect endogenous technological change in the sense that new technologies emerge or
technologies become more efficient over time. Second, we do not consider fuel inputs
explicitly and thus implicitly assume the finiteness of conventional energy sources to be
non-binding over the relevant time horizon. Finally, we abstract from growth. Obviously,
all these characteristics are important for successful climate-change mitigation strategies
but are not in the primary focus of our paper.

Finally, for the sake of a tractable model we abstract from a series of peculiarities of
the economics of electric power systems. First, the energy industry is subject to cycli-
cal demand fluctuations on different time-scales (for example day/night-time or sum-
mer/winter). As different energy technologies exhibit different turn-on/turn-off costs
and rigidities, a mix of energy technologies is in general preferable over ‘energy mono-
cultures’. Second, in contrast to our assumption of a perfectly competitive market, the
energy industry rather exhibits an oligopolistic market structure. As is well known from
the industrial organization literature, unregulated oligopolistic market regimes lead in
general to additional market failures, from which we abstract to concentrate on the
distortions imposed by emissions and diverging time preference rates.

6.2 Policy implications

Although the analysis has been carried out in a highly stylized theoretical framework,
direct policy implications can be drawn which are relevant for the regulation of the
energy industry and the optimal transition towards a cleaner energy system.

First, the analysis implies that for the transition towards a low-emission energy indus-
try the imposition of an environmental tax alone is in general not sufficient to implement
the socially optimal path.8 Rather, technology policy should complement environmental
policy. As a general result, this is not new. For, there is a series of well established causes
for technology policy associated with the process of technological transformation (e.g.
Jaffe et al. 2005). We derive this result without considering these cases. In our model, it
is the split of social and private time preference rates combined with the time-consuming

8 The equivalent result holds for the sole introduction of an emission permit trade scheme.
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nature of bringing a new technology into use which leads to the additional distortion.
Second, our analysis gives new theoretical support for policies that subsidize clean

energy technologies. According to our analysis the level of the subsidy should depend,
apart from the difference in time preference rates, on the labor intensity (λ), capital
intensity (κ), rate of capital depreciation (γ), and time lag in construction (σ) of the
new technology. Thus, we are rather skeptical about the efficiency of policies such as
the German “Erneuerbare-Energien-Gesetz” (Renewable Energy Sources Act) that sub-
sidizes only renewable energy technologies by feed-in tarifs oriented at the level of their
unit costs of production.9

Finally, in the environmental economics literature there has been a broad and often
critical discussion of Porter and van der Linde’s (1995) claim that a “well-designed”
environmental regulation may exhibit a double dividend in the sense of achieving both
less pollution and a higher competitiveness. The present analysis substantiates their
claim with respect to what constitutes a “well-designed” environmental regulation. As
obvious from the formulae of the unit costs of production of the established and the new
technology, gradual technological change always induces additional costs to the existing
technology, whereas structural technological change may exhibit higher, equal or lower
unit costs of production compared to the pure labor costs of the established technology.
It is the latter case in which the new technology offers a double dividend in the sense of
the Porter hypothesis (no emissions and lower unit costs).

7 Conclusion

In this paper, we study the interplay between gradual and structural change in the tran-
sition from an established polluting to a new clean energy technology. We develop a
dynamic general equilibrium model, where (i) the social stays below the private rate of
time preference, (ii) the creation of new productive capital is time-lagged, (iii) emissions
are negatively valued, and (iv) an (end-of-pipe) abatement technology is available. We
derive the ratio of the unit costs of energy of the two technologies as the decisive cri-
terion whether investment in the new and partial or full replacement of the established
technology occur.

We provide a new reason why environmental policy has to be supplemented by tech-
nology policy such as a non-distortionary investment subsidy, in order to achieve the
social optimum in a market regime. If only an emission tax is enacted the investment
decision is biased in favor of gradual technological change compared to the social op-
timum, as the costs of structural change are overestimated by private investors. Our
results constructively contribute to the Kyoto conflict between the United States and
the European Union. Instead of asking which of the two policies to apply, our findings
indicate that the correct question is how to optimally combine both policies.

9 At least from a medium-term perspective, which does not take into account long-run dynamic effects
like learning curves or induced technological change, the very high subsidies for photovoltaics (45.7–
62.4 €-cent per kWh, compared to 5.5–9.1 for wind energy and 7.16–15 for geothermal energy) raise
doubts about their efficient use in Germany.
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Of course, the analysis provides only a theoretical indication. It is up to further em-
pirical research to investigate how social and individual preferences actually differ in the
case of essential and desired goods, such as energy, the production of which is necessarily
linked to the by-production of a harmful joint output. This is particularly important to
derive concrete levels of investment subsidies for technology policies. Moreover, we did
not take into account the oligopolistic market structures which are common in energy
markets and the integration of which into our model constitutes a fruitful agenda for
further theoretical research.

Appendix

A.1 Concavity of the Hamiltonian along the optimal path

In the following, we show that the maximized Hamiltonian H0 is jointly concave in the variables
x, e, and k along the optimal path. H0 is the Hamiltonian H as defined in equation (9) in which
the optimal paths for a and i are substituted. Although we cannot derive the optimal paths for
a and i, we can eliminate them by employing the necessary conditions for an optimal solution.

The Hamiltonian (9) can be written as:

H = [U(x(t)) − D(e(t))] exp[−ρt] + qx(t)

[

1

κ
k(t) − x(t)

]

− qe(t)e(t)

+ qk(t + σ)i(t) − qk(t)γk(t) + qi(t)i(t) + ql1

1 − λ
κ
k(t) − i(t)

1 + a(t)
(A.1)

+
1 − λ

κ
k(t) − i(t)

1 + a(t)

[

qx(t) + qe(t)
(

1 − G(a(t))
)]

.

From the necessary condition (10d), we know that

qx(t) + qe(t)
(

1 − G(a(t))
)

1 + a(t)
= qk(t + σ) + qi(t) −

ql1(t)

1 + a(t)
. (A.2)

Inserting equation (A.2) into equation (A.1) yields the maximized Hamiltonian H0, in which
the control variables a and i are eliminated:

H0 = [U(x(t)) − D(e(t))] exp[−ρt] + qx(t)

[

1

κ
k(t) − x(t)

]

− qe(t)e(t)

+ qk(t + σ)

[

1 −
λ

κ
k(t)

]

− qk(t)γk(t) . (A.3)

Obviously, H0 is strictly concave, as it is the sum of concave and strictly concave functions.

�

A.2 Optimal transition dynamics and stationary states

The optimal system dynamics of the optimization problem (8) splits into three cases. The first
case corresponds to the corner solution i(t) = 0 ∀ t. In this case, there is no system dynamics
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at all. The system will remain in a stationary state where the labor endowment is fully used
up by energy production via the established technology and by abatement.

In the second case, the optimal system dynamics is an interior solution, i.e. i(t) > 0 and
l1(t) > 0 ∀ t holds along the optimal path. Then, the system dynamics is governed by the
following system of differential equations:

di(t)

dt
= Φ1(t)

[

(γ + ρ)D′(t)G′(t) +
exp[−ρσ]

κ

(

λD′(t+σ)G′(t+σ) + U ′(t+σ)
)

]

+ Φ2(t) [i(t−σ) − γk(t)] , (A.4a)

da(t)

dt
= Φ3(t)

[

(γ + ρ)D′(t)G′(t) +
exp[−ρσ]

κ

(

λD′(t+σ)G′(t+σ) + U ′(t+σ)
)

]

+ Φ4(t) [i(t−σ) − γk(t)] , (A.4b)

dk(t)

dt
= i(t−σ) − γk(t) , (A.4c)

where Φn(t) (n = 1, . . . , 4) are functions of i(t), a(t) and k(t), as shown in Appendix A.3 below.

As di(t)
dt

, da(t)
dt

and dk(t)
dt

also depend on advanced (i.e. at a later time) and on retarded (i.e. at
an earlier time) variables, equations (A.4) form a system of functional differential equations.10

In general, this system is not analytically soluble (not even in the linear approximation around
the stationary state). However, we show in Appendix A.3 that the unique stationary state,
given by the following implicit equations:

U ′(x⋆) = D′(e⋆)
[

G′(a⋆) (1 + a⋆) + 1 − G(a⋆)
]

, (A.5a)

γ + ρ = exp[−ρσ]
λD′(e⋆)G′(a⋆) + U ′(x⋆)

κD′(e⋆)G′(a⋆)
, (A.5b)

i⋆ = γk⋆ , (A.5c)

is a saddle point. Hence, for all sets of initial conditions there is a unique optimal path which
converges towards the stationary state. In general, these optimal paths are oscillatory and
exponentially damped.11

In the third case, which corresponds to the corner solution l1(t) = 0, the established tech-
nology will eventually be fully replaced by the new technology, and all labor is used to employ
and maintain the capital stock k. Thus, if the restriction l1(t) ≥ 0 is binding, there exists a
direct link between capital stock k and investment i:

k(t) =
κ

λ
(1 − i(t)) . (A.6)

Differentiating with respect to time t and inserting into the equation of motion for the capital
stock (8d), yields the following linear first-order differential-difference equation of the retarded
type, which governs the system dynamics:

di(t)

dt
+ γi(t) +

λ

κ
i(t−σ) = γ . (A.7)

10 For an introduction to functional differential equations see Asea and Zak (1999: section 2) and
Gandolfo (1996: chapter 27). A detailed exposition of linear functional differential equations is given
in Bellman and Cooke (1963) and Hale (1977).

11 The system of functional differential equations (A.4) may also exhibit so-called limit-cycles, i.e. the
optimal paths oscillate around the stationary state without converging towards or diverging from it
(e.g. Asea and Zak 1999).
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The solution to this equation is analyzed in detail in Winkler et al. (2005). In general, the
optimal paths converge oscillatorily and exponentially damped towards the stationary state,
which is given by

i⋆ =
κγ

λ + κγ
, k⋆ =

κ

λ + κγ
. (A.8)

�

A.3 Saddle point stability of the interior solution

In order to show the saddle point property of the stationary state in the case of an interior
solution, i.e. if i(t) > 0 and l1(t) > 0 ∀ t along the optimal path, we investigate the following
general maximization problem:

max
a(t),i(t)

∫ ∞

0
F (i(t), a(t), k(t)) exp[−ρt] dt (A.9a)

subject to

k̇ = i(t−σ) − γk(t) , (A.9b)

i(t) = ξ(t) = 0, t ∈ [−σ, 0) , (A.9c)

which is equivalent to the optimization problem (8) in the case of an interior solution with

F = U

(

1 − λ
κ
k(t) − i(t)

1 + a(t)
+

k(t)

κ

)

− D

(

(

1 − G(a(t))
)1 − λ

κ
k(t) − i(t)

1 + a(t)

)

. (A.10)

The corresponding present-value Hamiltonian reads

H = F (t) exp[−ρt] + q(t+σ)i(t) − q(t)γk(t) , (A.11)

where q denotes the shadow price for the state variable k.
If the maximized Hamiltonian (A.11) is strictly concave, which is assumed in the following,

the following conditions are necessary and sufficient for an optimal solution:12

q(t+σ) = −Fi(t) exp[−ρt] , (A.12a)

Fa(t) = 0 , (A.12b)

q̇(t) = −Fk(t) exp[−ρt] + γq(t) , (A.12c)

lim
t→∞

q(t)k(t) = 0 . (A.12d)

Differentiating equations (A.12a) and (A.12b) with respect to time t, inserting (A.12a),

(A.12c) and (A.9b) into the resulting equations, and solving for di(t)
dt

, da(t)
dt

and dk(t)
dt

yields the

12 In the following, for presentational convenience, partial derivatives are denoted by subscripts and
only the time argument is stated explicitly.
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following set of functional differential equations:

di(t)

dt
=

Faa(t)

∆F (t)
[(γ + ρ)Fi(t) + exp[−ρσ]Fk(t+σ)]

+
Fia(t)Fak(t) − Faa(t)Fik(t)

∆F (t)
[i(t−σ) − γk(t)] , (A.13a)

da(t)

dt
=

Fia(t)

∆F (t)
[(γ + ρ)Fi(t) + exp[−ρσ]Fk(t+σ)]

+
Fia(t)Fik(t) − Fii(t)Fak(t)

∆F (t)
[i(t−σ) − γk(t)] , (A.13b)

dk(t)

dt
= i(t−σ) − γk(t) , (A.13c)

where ∆F (t) ≡ Fii(t)Faa(t) − Fia(t)
2.

Introducing the following abbreviations:

Φ1(t) =
Faa(t)

∆F (t)
, Φ2(t) =

Fia(t)Fak(t) − Faa(t)Fik(t)

∆F (t)
,

Φ3(t) = −
Fia(t)

∆F (t)
, Φ4(t) =

Fia(t)Fik(t) − Fii(t)Fak(t)

∆F (t)
,

and inserting Fi(t) and Fk(t+σ) yields the system of differential equations (A.4).

In the stationary state, di(t)
dt

= da(t)
dt

= dk(t)
dt

= 0 holds. Thus, the unique stationary state
(i⋆, a⋆, k⋆) is determined by the three implicit equations:

γ + ρ = − exp[−ρσ]
Fi(i

⋆, a⋆, k⋆)

Fk(i⋆, a⋆, k⋆)
, (A.14)

0 = Fa(i
⋆, a⋆, k⋆) , (A.15)

i⋆ = γk⋆ . (A.16)

Inserting Fi, Fa and Fk yields the equations (A.5).
In order to investigate the stability properties of optimization problem (A.9) in a neighbor-

hood around the stationary state (i⋆, a⋆, k⋆), we linearize the system of functional differential
equations (A.13) around the stationary state. Therefore, we first introduce the new variables

î(t) = i(t) − i⋆ , â(t) = a(t) − a⋆ , k̂(t) = k(t) − k⋆ . (A.17)

Applying the first-order Taylor approximation of the system (A.13) around the stationary state
(i⋆, a⋆, k⋆) yields:

d̂i(t)

dt
≈ Φ1 exp[−ρσ]

[

Fiki(t+σ) −
FiiFk

Fi
i(t) + Faka(t+σ) −

FiaFk

Fi
a(t) + Fkkk(t+σ)

−
FikFk

Fi

k(t)

]

+ Φ2 [u(t−σ) − γk(t)] , (A.18a)

dâ(t)

dt
≈ Φ3 exp[−ρσ]

[

Fiki(t+σ) −
FiiFk

Fi
i(t) + Faka(t+σ) −

FiaFk

Fi
a(t) + Fkkk(t+σ)

−
FikFk

Fi
k(t)

]

+ Φ4 [u(t−σ) − γk(t)] , (A.18b)

dk̂(t)

dt
≈ u(t−σ) − γk(t) , (A.18c)
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where all functions are evaluated at the stationary state (i⋆, a⋆, k⋆). Similar to the case of
ordinary linear first-order differential equations, the elementary solutions for î, â and k̂ are
exponential functions, and the general solution is given by the superposition of the elementary
solutions

î(t) ≈
∑

n

in exp[znt] , â(t) ≈
∑

n

an exp[znt] , k̂(t) ≈
∑

n

kn exp[znt] , (A.19)

where the in, an and kn are constants, which can (at least in principle) be unambiguously
determined by the set of initial conditions and the transversality condition. The eigenvalues zn

are the roots of the characteristic polynomial Q(z). The characteristic polynomial Q(z) for the
system of differential-difference equations (A.18) is given by the determinant of the Jacobian
of (A.18) minus the identity matrix times z:

Q(z) =

∣

∣

∣

∣

∣

∣

A11 − z A12 A13

A21 A22 − z A23

A31 A32 A33 − z

∣

∣

∣

∣

∣

∣

, (A.20a)

where

A11 = Φ1

{

Fik

(

exp[σ(z − ρ)] − exp[−σz]
)

+ Fii(γ + ρ)
}

+
FiaFak

∆F
exp[−σz] , (A.20b)

A12 = Φ1

{

Fak exp[σ(z − ρ)] + Fia(γ + ρ)
}

, (A.20c)

A13 = Φ1

{

Fkk exp[σ(z − ρ)] + Fik(2γ + ρ)
}

−
FiaFak

∆F
γ , (A.20d)

A21 = Φ2

{

Fik

(

exp[σ(z − ρ)] − exp[−σz]
)

+ Fii(γ + ρ)
}

−
FiiFak

∆F
exp[−σz] , (A.20e)

A22 = Φ2

{

Fak exp[σ(z − ρ)] + Fia(γ + ρ)
}

, (A.20f)

A23 = Φ2

{

Fkk exp[σ(z − ρ)] + Fik(2γ + ρ)
}

+
FiiFak

∆F
γ , (A.20g)

A31 = exp[−σz] , (A.20h)

A32 = 0 , (A.20i)

A33 = −γ . (A.20j)

Thus, one obtains for the characteristic polynomial Q(z):

Q(z) = −(z − γ − ρ)(z + γ) + Φ2

{

(z − γ − ρ) exp[−σz] − (z + γ) exp[σ(z − ρ)]
}

+
FaaFkk − F 2

ak

∆F
exp[−σρ] . (A.21)

Q(z) is a quasi-polynomial, which exhibits an infinite number of complex roots.
In order to determine whether the stationary state is a saddle point, we need to know the

signs of the real parts of the characteristic roots. Therefore, we show that the characteristic
polynomial Q(z) has an infinite number of roots with negative real part and an infinite number
of roots with positive real part and, thus, the stationary state is a saddle point.

First, note that the characteristic roots of Q(z) are symmetric around ρ/2, i.e., if z0 is
a characteristic root, then ρ − z0 is also a characteristic root (one can easily verify that
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Q(z0) = Q(ρ−z0)). Second, in order to apply Theorem 13.1 of Bellman and Cooke (1963: 441),
we introduce the new variable y = σz and multiply Q with σ2 exp[y]

Q(y) = −(y − σγ − σρ)(y + σγ) exp[y] − σΦ2

{

(y − σγ − σρ) − (y + σγ) exp[2y − σρ]
}

+ σ2 FaaFkk − F 2
ak

∆F
exp[y − σρ] . (A.22)

As Q(y) has no principal term, i.e. a term, where the highest power of y and the highest
exponential term appear jointly,13 Q(y) has “an unbounded number of zeros with arbitrarily
large positive real part” (ibid). However, as the characteristic roots are symmetric around ρ/2,
this implies that Q(y) has also an unbounded number of roots with arbitrarily large negative
real part.

�

A.4 Proof of Proposition 1

Assume that it is optimal not to invest at all times t. As a consequence, the economy will
remain in the no investment corner solution where no capital is accumulated. Hence, i(t) =
0, qi(t) ≥ 0 ∀ t and inequality (8e) is binding. All energy is solely produced by the established
production technique which implies that x0 = x0

1 = 1 − a0, x0
2 = 0, l01 > 0 and inequality (8f)

is not binding (i.e. ql1 = 0). The optimal abatement effort a0 is determined by equation (11) by
inserting x0 = 1 − a0 and e0 = x0(1 − G(a0)) which yields equation (15). Due to the assumed
curvature properties of U , D and G, there exists a unique solution for a0.

In the corner solution i(t) = 0, we derive the shadow price of capital q0
k(t) by inserting

equation (11) in equation (12) and solving the integral:

q0
k(t) = D′(e0)

[

(1 + a0 − λ)G′(a0) + 1 − G(a0)
]exp[−ρt]

κ(γ + ρ)
. (A.23)

Equating conditions (10c), and (10d) and inserting equations (10b) and q0
k(t + σ) yields the

following necessary and sufficient condition for the corner solution to be optimal:

D′(e0)G′(a0) exp[−ρt]−qi(t) = D′(e0)
[

(1+a0−λ)G′(a0)+1−G(a0)
]exp[−ρ(t + σ)]

κ(γ + ρ)
. (A.24)

Taking into account that qi(t) ≥ 0, dividing by D′(e0)G′(a0) and rearranging terms yields:

1 + a0 +
1 − G(a0)

G′(a0)
≤ λ + κ(γ + ρ) exp[ρσ] . (A.25)

Note that condition (A.25) is independent of t. This implies that it is optimal not to invest
at all times t, if it is optimal not to invest at time t = 0. Thus, if condition (A.25) holds,
the optimal solution of the optimization problem (8) is to remain in the no investment corner
solution forever.

This, in turn, implies that it is optimal to invest in the new technology, if and only if
condition (A.25) does not hold, which is exactly what condition (14) states.

�

13 In this case, the principal term would be a term with y2 exp[2y].
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A.5 Proof of Proposition 2

Assume that it is optimal in the long-run stationary state to use the total labor endowment
to employ and maintain the capital stock for the new technology, i.e. x∞

2 = 1
λ+κγ

. Then, all
output is solely produced by the new technology, i.e. x∞ = x∞

2 , x∞
1 = l∞1 = 0. In addition, no

emissions are produced and have to be abated, and thus e∞ = 0 and a∞ = 0.
Inserting conditions (10a) and (10b) into equation (10e) yields:14

−
dq∞k (t)

dt
=

U ′(x∞)(1 − λ) + D′(0)λ − q∞l1 λ

κ
exp[−ρt] − qk(t)γ . (A.26)

Together with the transversality condition (10h), equation (A.26) can be solved to yield:

q∞k (t) =
exp[−ρt]

κ(γ + ρ)

[

U ′(x∞)(1 − λ) + D′(0)λ − q∞l1 λ
]

. (A.27)

By inserting conditions (10a), (10b) and q∞k (t+σ) into equation (10d), and taking into account
that q∞l1 ≥ 0, we derive condition (16).

�

A.6 Proof of Proposition 3

Assume that it is optimal not to invest at all times t. As a consequence, the economy will
remain in the no investment corner solution where no capital is accumulated. Hence, i(t) =
0, qi(t) ≥ 0 ∀ t and inequality (21d) is binding. All energy is solely produced by the established
production technique (i.e. x0 = x0

1 = 1, x0
2 = 0).

From the demand correspondences (24) and (26) we know that

w(t)

p(t)
= 1 ,

r(t)

p(t)
≥

1

κ

(

1 − λ
w(t)

p(t)

)

=
1 − λ

κ
. (A.28)

Solving equation (21a) for qb and inserting it, together with conditions (A.28), in equation (22)
yields the following inequality for the shadow price of capital:

q0
k(t) ≥

1 − λ

κ(γ + ρp)
U ′(1) exp[−ρpt] . (A.29)

Inserting qb(t) and q0
k(t+σ) into equation (21b) and taking into account that qi(t) ≥ 0 yields the

following necessary and sufficient condition for the corner solution to be a market equilibrium:

U ′(1) exp[−ρpt] ≥
1 − λ

κ(γ + ρp)
U ′(1) exp[−ρp(t + σ)] . (A.30)

Dividing by U ′(1) exp[−ρpt] and rearranging terms yields that it is optimal to invest in the
new technology, if and only if condition (30) holds.

�

14 Note that ql1(t) is constant in current values in the stationary state and, thus, ql1(t) = q∞
l1

exp[−ρt]
with some constant q∞

l1
≥ 0 in present values.
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A.7 Proof of Proposition 4

Assume that it is optimal in the long-run stationary state to use the total labor endowment to
employ and maintain the capital stock for the new technology, i.e. l∞1 = 0, l∞2 = λ

λ+κγ
. Then,

all output is solely produced by the new technology, i.e. x∞ = x∞
2 = 1

λ+κγ
, x∞

1 = l∞1 = 0.
From the demand correspondences (24) and (26) we know that

w(t)

p(t)
≥ 1 ,

r(t)

p(t)
=

1

κ

(

1 − λ
w(t)

p(t)

)

. (A.31)

Solving equation (21a) for qb and inserting it, together with conditions (A.31), into equation
(22) yields for the shadow price of capital:

q∞k (t) =
1 − λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρpt] , (A.32)

where w∞ = w(t)
p(t) evaluated at the full replacement stationary state, and is thus a constant.

Inserting qb(t) and q∞k (t + σ) into equation (21b), we derive the following condition:

w∞U ′(x∞) exp[−ρpt] =
1 − λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρp(t + σ)] . (A.33)

Dividing by U ′(x∞)
κ(γ+ρp) exp[−ρp(t + σ)], taking into account that w∞ ≥ 1 and rearranging terms

yields condition (31).

�

A.8 Proof of Proposition 5

The proof is analogous to the proof of proposition 3. Assume that it is optimal not to invest

at all times t. As a consequence, the economy will remain in the no investment corner solution
where no capital is accumulated. Hence, i(t) = 0, qi(t) ≥ 0 ∀ t and the inequality (21d) is
binding. All energy is solely produced by the established production technique (i.e. x0 = x0

1 =
1 − a0, x0

2 = 0). We know from conditions (33), (34) and (26):

1 = τ0
e

(

G′(a0)(1 + a0) + 1 − G(a0)
)

, (A.34a)

w(t)

p(t)
= τ0

e G′(a0) , (A.34b)

r(t)

p(t)
≥

τ0
e

[

(1 + a0 − λ)G′(a0) + 1 − G(a0)
]

κ
. (A.34c)

Equation (A.34a) determines the profit maximizing abatement effort a0 of firm 1. Solving
equation (21a) for qb and inserting, together with conditions (A.34c), in equation (21c) yields
the following inequality for the shadow price of capital:

q0
k(t) ≥

τ0
e

[

(1 + a0 − λ)G′(a0) + 1 − G(a0)
]

κ(γ + ρp)
U ′(x0) exp[−ρpt] . (A.35)
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Inserting equation (A.34b), qb and q0
k into equation (36) and taking into account that qi(t) ≥ 0

we derive:

τ0
e G′(a0)U ′(x0) ≥

τ0
e

[

(1 + a0 − λ)G′(a0) + 1 − G(a0)
]

κ(γ + ρp)
U ′(x0) exp[−ρpσ]−τ0

i U ′(x0) . (A.36)

Dividing by τ0
e G′(a0)U ′(x0) and rearranging terms yields that the no investment corner solution

is a market equilibrium, iff:

λ +

[

1 +
τ0
i

τ0
e G′(a0)

]

κ(γ + ρp) exp[ρpσ] ≥ 1 + a0 +
1 − G(a0)

G′(a0)
. (A.37)

That, in turn, implies that in the regulated market equilibrium there is investment in the new
technology, if and only if condition (44) holds.

By setting τ0
e = D′(e0)

U ′(x0)
, condition (A.34a) which determines the profit maximizing abatement

effort a0 becomes identical to equation (15) which determines the socially optimal abatement
level. Furthermore, inserting τ0

e and τ0
i from equations (46) and (47) into condition (44) yields

(after some tedious calculations) the investment condition in the social optimum (14).

�

A.9 Proof of Proposition 6

Assume that using the total labor endowment to employ and maintain the capital stock for the
new technology in the long-run stationary state is a market equilibrium, i.e. l∞1 = 0, i∞ > 0
and q∞i = 0. Then, all output is solely produced by the new technology, i.e.x∞ = x∞

2 = 1
λ+κγ

and x∞
1 = l∞1 = 0. In addition, no emissions are produced and have to be abated and, thus,

e∞ = 0 and a∞ = 0. For this case, we know from the demand correspondences (34) and (26)
of firm 1 and firm 2:

w(t)

p(t)
≤ 1 −

τe(t)

p(t)
, (A.38a)

r(t)

p(t)
=

1

κ

(

1 − λ
w(t)

p(t)

)

. (A.38b)

Solving equation (21a) for qb and inserting it, together with condition (A.38b), in equation
(21c), yields for the the shadow price of capital:

q∞k (t) =
1 − λw∞

κ(γ + ρp)
U ′(x∞) exp[−ρpt] , (A.39)

where w∞ = w(t)
p(t) evaluated at the full replacement stationary state and thus is a constant.

Inserting qb, qk and inequality (A.38a) into equation (36), and taking into account that
qi(t) = 0, we derive the following condition:

(1 − τ∞
e )(λ + κ(γ + ρp) exp[ρpσ]) ≤ 1 − τ∞

i κ(γ + ρp) exp[ρpσ] . (A.40)

Dividing by (1 − τ∞
e ) and rearranging terms yields condition (48).

Furthermore, inserting τ∞
e and τ∞

i from equations (49) and (50) into condition (48) yields
(after some tedious calculations) the full replacement condition in the social optimum (16).

�
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