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Abstract
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1 Introduction

Suppose a society or committee takes several project decisions in series. When projects

are durable, individuals risk their utility losses accumulating over time if they repeat-

edly belong to the minority under the simple majority rule. If individuals are risk-

averse, this is undesirable from an ex ante perspective. In this paper we propose

minority voting as a scheme that can partially protect individuals from the risk of

repeated exploitation. Minority voting is most conveniently demonstrated in a two-

period set-up. Under minority voting, only individuals belonging to the minority in

the first period are allowed to vote in the second period.

The core idea and motivation of minority voting in the context of social decisions can

be illustrated by a simple example. Three persons who enjoy going out together can

either go to the cinema, where they can choose between two films, or to a restaurant,

where they again have a choice of two, e.g. Italian or Chinese. Suppose that, using

simple majority rule, two of them can assert their preferred decision in the first stage

(e.g. going to the cinema), while the third person might have preferred the other

alternative (going to a restaurant). In order to minimize the losses that occur by going

to the cinema, the third person, i.e. the minority in the first stage, obtains the sole

right to choose which film they will see. This example is a demonstration of minority

voting. A group takes several decisions in series, and these decisions are linked because

the second choice depends on the first. The minority in the first instance is given the

exclusive right to make the choice in the second stage.

The same idea is illustrated by the following infrastructure project example where a

community decides about two technologically independent projects. Suppose a city

making a decision first on whether to build a new expressway and second on whether

to build an airport, thus increasing air traffic and noise. The city can decide on each

project by simple majority voting. Under minority voting, the expressway is also

decided upon by the simple majority rule. However, only the minority from the first

stage of voting will vote on whether to build the airport. Such a procedure gives

individuals who may be living close to the new road and thus suffering from increasing

noise a better chance of protecting themselves from further noise pollution due to

additional air traffic. Vice versa, individuals who want better and faster traffic routes
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may have better chances of realizing at least one of the infrastructure projects, as a

defeat in the first stage may exclude opponents from involvement in the decision on

the airport.

Our examples illustrate the basic trade offs of minority voting. In comparison with

repeated simple majority rule, minority voting, on the one hand, protects individuals

from being outvoted repeatedly. On the other hand, some individuals are excluded

from decisions in the second period, which creates negative externalities. The theme of

this paper is to identify the circumstances under which minority voting is preferable to

repeated simple majority voting for technologically independent projects. Our findings

indicate that minority voting is superior to repeated simple majority voting as soon

as the degree of risk aversion exceeds some threshold value. In such circumstances,

increasing the future voting power of minorities today goes hand in hand with an

increase in aggregate efficiency.

Minority voting may invite strategic behaviour. Under minority voting, the property

of all equilibria in the first period is the formation of the smallest majority and thus

largest minority as being in the majority eliminates the future voting right. Hence,

individuals will only support a project in the first period if their benefits are high and

if they are pivotal in forming a majority. Since the minority in the first period is

always composed of almost half of the committee, the danger of dictatorship in future

decisions is avoided by strategic voting.1

Our paper is part of the literature on linking voting across problems. Jackson and Son-

nenschein (2005) show that, when problems are repeated many times, full efficiency

can be reached at the limit and that this insight essentially applies to any collective

decision problem. Casella (2005) introduces storable votes mechanisms, where a com-

mittee makes binary decisions repeatedly over time and where agents may store votes

over time.2 Qualitative voting as introduced by Hortala-Vallve (2005) is closely related

to storable votes. Individuals obtain a stock of votes at the start and hence can decide

in the following ballots on what issue to exert more or less influence, i.e. to cast more

1For a committee of three members the minority necessarily consists of one member, hence the
decision scheme is dictatorial in the second period.

2Cummulative voting is closely related to the storable votes mechanism as under this voting scheme
individuals can again cast more than one vote for one alternative (see for example Sawyer and MacRae
(1962), Brams (1975), Cox (1990), Guinier (1994) or Gerber, Morton, and Rietz (1998)).
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or less votes.

Linkages of voting across issues can also occur through vote trading which goes back

at least to Buchanan and Tullock (1962) and Coleman (1966), and has been developed

amongst others by Brams and Riker (1973), Ferejohn (1974), Philipson and Snyder

(1996) or Piketty (1994). We focus on other collective decision problems, where earlier

decisions may have a durable impact, thus making it very costly to be in the minority

at the earlier stage and very valuable to have more voting rights in the future. By

introducing minority voting, we make a new proposal for addressing the most difficult

issue in designing collective decisions: how to design processes that bridge two core

principles: (a) ‘same right for each person to influence outcomes’ and (b) ‘respecting

and protecting minorities’ (see e.g. Guinier (1994) or Issacharoff, Karlan, and Pildes

(2002)).

The paper is structured as follows: In section 2 we introduce the model, e.g. the

society, the utility functions and the new voting scheme. The voting equilibria of the

two-period game of our model are described in section 3. We provide a general welfare

comparison in section 4. Section 4.2 deals with case where the first-period project

is not adopted and hence no utility impact of the first project on the second period

occurs. The case where the first-period project is realized will be discussed in section

4.3. The last part of the interim comparison is given in section 4.4 where we assume

that individuals have constant absolute risk aversion, i.e. we derive a result for a

special utility function. An ex-ante comparison between both voting schemes in the

case of constant absolute risk-aversion is presented in section 5. This leads to the main

result of this paper. In section 7 we compare MV with SM regarding the axiomatic

properties. Section 8 concludes, and the Appendix contains the proofs (part A), tables

(part B) and graphics (part C).
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2 The Model

2.1 The Set-up

We consider a committee of N (N uneven) individuals that meets twice – today (period

t = 1) and tomorrow (period t = 2) – to vote on a proposal that affects the utility of

all members. In each period t = 1, 2, the collective decision is binary. Specifically, the

committee decides in each period between the status quo and a project.

2.2 Utility Functions and Aggregate Welfare

The payoff in both periods is given as follows:

• In the first period, individual i’s utility is given by ui1 = f(a1zi1). The committee

decision is represented by the indicator variable a1 and assumes two values: a1 = 0

denotes the status quo, and a1 = 1 represents the new project, which changes the

status quo. The variable zi1 represents the benefits from the project for individual

i in period t = 1. We assume that zi1 takes one of the values {−1,−γ, γ, 1},
γ ∈ (0, 1), with equal probability. The utility function f is assumed to be concave,

strictly increasing and integrable. The utility of the status quo is normalized to

zero. Individuals with zi1 ≥ 0 (zi1 < 0) are called project winners (project

losers) respectively. Individuals are ordered by their first-period preferences, i.e.

i < j ⇒ zi1 ≤ zj1 has to hold.

• We assume that the project in the first period may be durable, i.e. it has lasting

consequences, and it represents the status quo in the second period if a1 = 1.

In the second period, a new project arises upon which the committee decides.

We use a2 to denote the indicator variable specifying whether the new project

in period t = 2 is adopted (a2 = 1) or rejected (a2 = 0). Such a set-up is in

line with the spirit of our infrastructure example in the Introduction. Utility of

individual i in the second period is given by

ui2 = f(εa1zi1 + a2zi2)

where zi2 is assumed to be uniformly distributed on [−1, 1] and ε is the deprecia-

tion rate of the impact of the first-period project. The polar cases ε = 1 (ε = 0)
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cover the cases where the first-period project is completely (not) durable.

• Overall expected utility of individual i is given by

W := W1 + δW2

where W1 :=
N∑

i=1

ui1 is the first-period aggregate utility,

W2 :=
N∑

i=1

ui2 is the second-period aggregate utility,

δ ∈ (0, 1] denotes the discount factor.

We will do an interim comparison in section 4, i.e. in the case where first-period

preferences {zi1}N
i=1 are given, and an ex ante comparison in section 5 where the

{zi1}N
i=1 are not yet distributed. Hence, we define

E1 := expected value in the ex ante case, i.e. at the beginning of t = 1

E2 := expected value in the interim case, i.e. at the beginning of t = 2

We add the index MV (minority voting) or SM (simple majority rule) to W1 and

W2 to distinguish between the two voting schemes (the corresponding definitions are

presented in the next section). We use the utilitarian criterion, i.e. the minority voting

scheme MV is called superior to or socially more efficient than SM if WMV ≥ W SM .

Furthermore, we assume that the committee members observe the realization of utilities

in the first period so that the values {zi1}N
i=1 are common knowledge.

Some remarks regarding our set-up are in order. We work with discrete uniform distri-

bution in the first period, as this simplifies the formal analysis and makes it tractable.

While we could also work with a discrete distribution in the second period, a con-

tinuous distribution allows an easier presentation of the proofs. The assumption that

first-period utilities are commonly known is essential, and we comment on the imcom-

plete information case in the concluding section.
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2.3 Voting Rules

We compare two voting schemes: repeated simple majority voting (SM) and minority

voting (MV). While SM is standard and the equilibria in a setting with only two

alternatives are obvious, MV is a new voting scheme defined as follows: In the first

period, a simple open majority voting scheme takes place. If the status quo and the

project receive the same number of votes, the winner is determined by a tie-breaking

procedure where status quo and the project are selected with probability 1
2
. Since voting

takes place openly, we can split the committee into three groups: voting winners, voting

losers, and absentees, depending on whether an individual has voted for the winning

alternative, the losing alternative or has abstained from voting. The number of voting

winners, voting losers, and absentees is denoted by Nw, N l and Na, respectively. Thus,

we have

N = Nw + N l + Na, Nw ≥ N l

Minority voting is now simply defined as

MV: In the second period, only voting losers are allowed to vote.3

Note that voting losers are not necessarily project losers, i.e. individuals with negative

utility, if the first-period project is realised. Similarly, voting winners may not be

project winners.

It is obvious that MV invites strategic voting. Suppose that in the first period members

vote sincerely. Suppose that the size of the majority is larger than N+1
2

. Then, at least

one member of the majority has an incentive to vote against his preferences. The

outcome is not affected but this member can preserve his voting right for the second

period. However, such attempts are limited by the fact that joining voting losers may

turn this group into voting winners, thus eliminating future voting rights.

3A variant of MV is to allow absentees in the first period to keep their voting right. Then, only
voting losers and absentees are allowed to vote in the second period.
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3 Equilibria under MV

In this section we analyze the existence and style of voting equilibria under MV. In order

to eliminate implausible equilibria, we exclude weakly dominated voting strategies and

look for perfect Bayesian Nash equilibria in pure strategies. We start with the second

period where the simple majority rule is applied. Therefore, all individuals i who have

voting right in t = 2 will vote in favor of their preferences zi2 (if weakly dominated

strategies are eliminated). This uniquely determines the second-period equilibrium.

We will therefore concentrate next on the first period.

3.1 Existence

We start with some simple observations regarding the nature of perfect Bayesian Nash

equilibria under the MV rule. Let I− be the set of all project losers in the first period:

I− = {i ∈ {1, .., N} : zi1 < 0}

The number of project losers will be denoted by k, i.e. k = |I−|.4

Proposition 1

For first-period equilibria the following statement holds:

(i) Na = 0.

(ii) If the number of project losers k ≥ N+1
2

, then N+1
2

project losers will vote for

a1 = 0. The rest of the committee favors a1 = 1. The status quo prevails.

(iii) If k < N+1
2

, then N+1
2

project winners will vote for a1 = 1. All other individuals

will vote for a1 = 0. The project is adopted.

The proof of Proposition 1 is given in Appendix A.

We note that the equilibrium is not unique. Suppose there are k < N+1
2

project losers,

then we have
(

N−k
N−1

2
−k

)
=

(
N−k
N+1

2

)
possible partitions of the project winners into two

groups, i.e. N+1
2

individuals who vote for the project and belong to the voting winners,

and N−1
2
− k individuals who vote against it and thereby belong to the voting losers.

4|S| denotes the number of pairwise different elements in a set S.
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Any combination of strategies that satisfies Proposition 1 represents an equilibrium.

This is summarized by the following corollary:

Corollary 1

In the first period there are
(

N−k
N+1

2

)
voting equilibria under MV if k < N+1

2
, and

(
k

N+1
2

)

voting equilibria if k ≥ N+1
2

.

3.2 Equilibrium Refinement

The decision of individual i in t = 1 will be denoted by ai1, i.e. ai1 = 1 if individual

i votes for the change or project and ai1 = 0 if individual i votes against it. An

equilibrium is given by a tuple of decision strategies (ai1)i∈{1,...,N}. As a consequence of

the indeterminacy of equilibria in t = 1, we apply a plausible refinement that we will

call ‘Maximal Magnanimity’ (MM).

MM: Voters who benefit most from a decision form the majority, i.e.

• if k ≥ N+1
2

, then ai1 =

{
0, i ≤ N+1

2

1, otherwise

• if k < N+1
2

, then ai1 =

{
0, i < N+1

2

1, otherwise
.

MM is a coordination device with the idea that individuals who benefit more from

a decision than others do not take advantage of joining the minority (recall that we

assumed in section 2.2 that individuals are ordered by their first-period benefits zi1).

Individuals who benefit little may switch sides in order to keep their voting right, if

this does not affect the outcome.

As a tie-breaking rule, we assume that in the case of indifference individuals have the

same probability of belonging to the minority: Suppose we have a committee consisting

of 21 members of whom 5 members have first-period benefits of −1 (they obtain indices

between 1 and 5), 3 members with first-period benefits of −γ (they obtain the indices

6 - 8 and vote against the project), and 13 members with benefits of 1. The last group

divides itself into voting winners and voting losers by fair randomization to obtain the

equilibrium voting behaviour, i.e. the members draw their own index (between 9 and

21) randomly. The resulting voting strategy is a pure strategy according to MM.
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3.3 Welfare Comparison

The following lemma simplifies the welfare comparison.

Lemma 1

MV is interim superior to SM if and only if WMV
2 ≥ W SM

2 .

Lemma 1 follows from the observation that the decision in the first period is the same

under MV and SM, i.e.

a1 = 1 ⇔ |{i : zi1 ≥ 0}| ≥ N + 1

2
.

4 The Second Period

In this section we compare E2[W
MV
2 ] and E2[W

SM
2 ] and derive some general expressions

for the welfare comparison between SM and MV in the second period.

4.1 General Characterization

In the second period, voting equilibria are unique and individuals vote sincerely. Every

individual who has the right to vote will select ai2 = 1 if and only if zi2 ≥ 0 as this

is a strictly dominant strategy for individuals with zi2 > 0 and we have assumed the

tie-breaking rule that individuals who are indifferent vote in favor of the project. The

voting schemes only differ with respect to the number of individuals participating in

the tally. As stated in Proposition 1, the equilibrium number of individuals who keep

their voting right in the second period under MV is N−1
2

. While the whole committee

votes under SM, only N−1
2

individuals vote under MV.

Suppose in t = 2 there are w individuals who are allowed to vote. The expected

welfare of an agent who has certain preferences in t = 2 depends on the probability of

his belonging to the winning majority, denoted by P (w). If w is odd, this occurs if at

least w−1
2

persons vote in the same way. If w is even, this occurs either if w
2

individuals

vote in the same way or there is a tie-break in favor of the preferences of the agent

10



under consideration in the case of a tally, i.e. if w
2
− 1 persons vote in the same way.

P (w) is given by

P (w) =

{
1

2(w−1)

∑w−1
i=w−1

2

(
w−1

i

)
, if w odd

1
2(w−1)

∑w−1
i=w

2

(
w−1

i

)
+ 1

2

(
w−1
w
2
−1

)
1

2w−1 , if w even

The second term of P (w) in case w is even stems from the tie-breaking rule. By using

the following equalities we can simplify the former expression:

bxc := max{n ∈ N : n ≤ x}
2w−1 =

∑w−1
i=0

(
w−1

i

)

⇒ ∑w−1
i=w−1

2

(
w−1

i

)
= 2w−2 + 1

2

(
w−1
w−1

2

)
if w odd

∑w−1
i=w

2

(
w−1

i

)
= 2w−2 if w even

⇒ P (w) = 1
2w

(
w−1
bw−1

2
c
)

+ 1
2

As the number of individuals with a voting right in t = 2 equals N under SM, while

only N−1
2

individuals vote under MV, the expected utility of a first-period voting loser

under MV is higher than under SM: P (N) < P (N−1
2

). The probability of winning

decreases if the number of individuals with voting right increases. By contrast, voting

winners in t = 1 under MV have no influence on the decision in t = 2. The probability

that their preferred decision will be taken is equal to 1
2
, which is smaller than P (N).

Hence voting winners from t = 1 are worse off under MV than voters under SM. We

will show that if risk aversion exceeds some threshold the gain of being a voting loser

under MV outweighs ex ante the loss of being a voting winner. In the following we

define some general formula for the aggregate welfare.
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4.1.1 Simple Majority Rule

Given a vector of realizations {zi1}N
i=1 the second-period aggregate expected utility is

given by

E2[W
SM
2 ] =

N∑
i=1

[1

2
P (N)

∫ 1

0

f(εa1zi1 + zi2)dzi2 +
1

2
(1− P (N))f(εa1zi1)

+
1

2
P (N)f(εa1zi1) +

1

2
(1− P (N))

∫ 0

−1

f(εa1zi1 + zi2)dzi2

]

=
1

2

N∑
i=1

[
P (N)

∫ 1

0

f(εa1zi1 + zi2)dzi2

+ (1− P (N))

∫ 0

−1

f(εa1zi1 + zi2)dzi2 + f(εa1zi1)
]
.

The aggregate expected utility mainly consists of four parts for each individual i:

Having non-negative second-period benefit zi2 and winning with probability 1
2
P (N)

(hence, a2 = 1), having non-negative zi2 but losing (i.e. a2 = 0) with probability

1
2
(1 − P (N)), having negative zi2 and winning (i.e. a2 = 0) with probability 1

2
P (N),

and finally having negative zi2 and losing (i.e. a2 = 1) with probability 1
2
(1 − P (N)).

This basic structure is also given under MV, but there we have to distinguish between

the first N−1
2

individuals who keep the voting right and hence win with probability

P (N−1
2

) and the last N+1
2

individuals who loose their voting right and win in the

second period with probability 1
2
. This calculation is given in the next section.

It will be useful to define

∆E2[W
SM
2 ] = 2E2[W

SM
2 ]−

N∑
i=1

f(εa1zi1)

=
N∑

i=1

[
P (N)

∫ 1

0

f(εa1zi1 + zi2)dzi2 + (1− P (N))

∫ 0

−1

f(εa1zi1 + zi2)dzi2

]
.

∆E2[W
SM
2 ] captures the differential impact on aggregate expected utility if the second

project is undertaken in t = 2. It will be easier to analyze than E2[W
SM
2 ].
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4.1.2 Minority Voting

As we have shown in Proposition 1, the number of voting losers in equilibrium equals

N−1
2

for N odd. Because of MM, the first N−1
2

individuals form the minority if a1 = 1.

If a1 = 0 the minority is formed by individuals N+3
2

..N . In that case E2[ui2] = E2[u] for

all individuals i, since no utility impact occurs from the first-period project. Therefore

a change in the numeration of the individuals does not affect the value E2[W
MV
2 ]:

without loss of generality we can assume that individuals 1...N−1
2

form the minority.

The aggregate expected utility under minority voting in t = 2 is given by

E2[W
MV
2 ] =

N−1
2∑

i=1

[1

2
P (

N − 1

2
)

∫ 1

0

f(εa1zi1 + zi2)dzi2 +
1

2
(1− P (

N − 1

2
))f(εa1zi1)

+
1

2
(1− P (

N − 1

2
))

∫ 0

−1

f(εa1zi1 + zi2)dzi2 +
1

2
P (

N − 1

2
)f(εa1zi1)

]

+
N∑

i=N+1
2

[1

4

∫ 1

0

f(εa1zi1 + zi2)dzi2 +
1

4
f(εa1zi1)

+
1

4

∫ 0

−1

f(εa1zi1 + zi2)dzi2 +
1

4
f(εa1zi1)

]

=
1

2

[N−1
2∑

i=1

(
P (

N − 1

2
)

∫ 1

0

f(εa1zi1 + zi2)dzi2 + (1− P (
N − 1

2
))

∫ 0

−1

f(εa1zi1 + zi2)dzi2

)

+
1

2

N∑

i=N+1
2

∫ 1

−1

f(εa1zi1 + zi2)dzi2

]
+

1

2

N∑
i=1

f(εa1zi1)

Again we define:

∆E2[W
MV
2 ] = 2E2[W

MV
2 ]−∑N

i=1 f(εa1zi1)

=
∑N−1

2
i=1

[
P (N−1

2
)
∫ 1

0
f(εa1zi1 + zi2)dzi2 + (1− P (N−1

2
))

∫ 0

−1
f(εa1zi1 + zi2)dzi2

]

+1
2

∑N
i=N+1

2

∫ 1

−1
f(εa1zi1 + zi2)dzi2

4.1.3 Comparison

As stated in Lemma 1 we need to derive a condition for E2[W
MV
2 ] ≥ E2[W

SM
2 ] to

show under what circumstances MV is superior to SM. We will analyze the general

13



case where second-period utility is given by a concave and increasing utility function

f(εa1zi1 + zi2). We will use the following lemma for the upcoming analysis:

Lemma 2

E2[W
MV
2 ] ≥ E2[W

SM
2 ] is equivalent to ∆E2[W

MV
2 ] ≥ ∆E2[W

SM
2 ].

Note that the expression a1zi1 is either zi1 ∈ {−1,−γ, γ, 1} in the case where the first

project is adopted (a1 = 1) or zero if the project is rejected (a1 = 0). To simplify

notation, in the following we use zi1 instead of a1zi1 which remains unaffected in the

case of adoption (a1 = 1) and which is set to zero in the case of rejection (a1 = 0).

Futhermore, we define

F (zi1, zi2) :=

∫ zi2

−1

f(εzi1 + z̃i2)dz̃i2.

With this notation we obtain for the second period

Proposition 2

The MV voting scheme is superior to the SM rule if and only if

(P (
N − 1

2
)− P (N))

N−1
2∑

i=1

[
F (zi1, 1) − 2F (zi1, 0) + F (zi1,−1)

]

−(P (N)− 1

2
)

N∑

i=N+1
2

[
F (zi1, 1) − 2F (zi1, 0) + F (zi1,−1)

]
≥ 0 (1)

The proof of Proposition 2 is given in Appendix A.

Let A(zi1) denote the term F (zi1, 1) − 2F (zi1, 0) + F (zi1,−1). With this notation we

obtain

Lemma 3

Suppose f is a concave, increasing function. Then

(i) A(zi1) ≥ 0 for all i ∈ {1, ..., N}.

(ii) A(zi1) ≥ A(zj1) ⇔ zi1 ≤ zj1

The proof of Lemma 3 is given in Appendix A.
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The condition for MV to be superior to SM stated in Proposition 2 amounts to

(P (
N − 1

2
)− P (N))

N−1
2∑

i=1

A(zi1)− (P (N)− 1

2
)

N∑

i=N+1
2

A(zi1) ≥ 0

Recall that P (N−1
2

) > P (N) > 1
2
. Hence, the first summand represents the expected

utility gain of voting losers if MV is used. The second summand indicates the utility

loss of first-period voting winners. Their probability of winning shrinks in the second

period. Hence, the question we have to answer is whether the gain of voting losers can

outweigh the expected utility loss of voting winners.

The overall comparison MV versus SM depends crucially on two parameters. First,

the more durable a project is, i.e. the higher ε is, the lower is the loss of first-period

voting winners under MV. Their utility gain from the first period lessens potential loss

in the second period. Second, if people are more risk-averse, they will want to reduce

the risk of large losses, so the MV voting scheme becomes more attractive to them.

4.2 The case a1 = 0

In this section we analyze the relation between SM and MV if the status quo prevails

in t = 1, i.e. if a1 = 0.5 In that case the utility of the second period is independent of

zi1, i.e. A(zi1) = A∀ i ∈ {1, ..., N}. Hence, condition (1) in Proposition 2 is equivalent

to

A ·
(N − 1

2
[P (

N − 1

2
)− P (N)]− N + 1

2
[P (N)− 1

2
]
)
≥ 0 (2)

If we assume strictly increasing utility functions f we have A > 0. Thus inequality (2)

is equivalent to

N − 1

2
[P (

N − 1

2
)− P (N)]− N + 1

2
[P (N)− 1

2
] ≥ 0 (3)

With this inequality we can show the following proposition.

Proposition 3

Suppose a committee of N members whose utility can be described by a strictly in-

creasing, concave function f . In the case where a1 = 0 (i.e. z1,1, ..., zN+1
2

,1 < 0), SM is

superior to MV.

5The rejection of a project is equivalent to the case where projects are not durable, i.e. ε = 0.
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The proof can be found in Appendix A.

The intuition for Proposition 3 is obvious. If a1 = 0, there is no impact from first-

period choices on second-period utility. Hence, there is no risk of repeated exploitation

and hence, restricting voting rights is not socially desirable.

Note that we obtain the same result if ε = 0, i.e. if the first project (realized or not)

exhibits no utility impact on the second period.

4.3 Durable Projects: a1 = 1 and ε 6= 0

In this section we analyze the case where the first-period project is accepted. Indi-

viduals who suffer from this project get a higher probability of compensation for this

utility loss under MV. We proceed with the result of Proposition 2, i.e. inequality (1)

in general.

Proposition 2 states that MV is superior to SM if and only if inequality (1) is fulfilled.

If the project of period 1 is accepted and ε > 0, then all individuals with different

zi1-values have different expected utilities for t = 2, i.e. we cannot neglect the index

i. Given this situation, we still can simplify inequality (1) by using the median value

of the A(zi1)’s. We define AL := 2
N−1

∑N−1
2

i=1 A(zi1) as the average A(zi1) value of the

first-period voting losers and AW := 2
N+1

∑N
i=N+1

2
A(zi1) respectively for the voting

winners. With these definitions inequality (1) is equivalent to

∑N−1
2

i=1 [P (N−1
2

)− P (N)]AL −
∑N

i=N+1
2

[P (N)− 1
2
]AW ≥ 0

⇔ N−1
2

[P (N−1
2

)− P (N)]AL ≥ N+1
2

[P (N)− 1
2
]AW

⇔ (N−1)[P (N−1
2

)−P (N)]

(N+1)[P (N)− 1
2
]

≥ AW

AL

(4)

• The LHS of inequality (4)
(N−1)[P (N−1

2
)−P (N)]

(N+1)[P (N)− 1
2
]

=: Q(N) is a fixed value for N given.

We have shown in the proof of Proposition 3 that Q(N) < 1 ∀ N ∈ N, N odd.
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• The RHS depends on several parameters, e.g. the first-period benefits zi1 of all

individuals or other parameters that might be needed for the utility function f ,

e.g. a level of risk aversion. We already know from Lemma 3 that AW ≤ AL, i.e.

the RHS is also less than or equal to 1.

In the following we derive an approximation for the LHS. The RHS depends on the

utility function f which is not specified yet. Therefore, we will derive more results for

the RHS in the next section where we assume a specific utility function that exhibits

constant absolute risk aversion. We will show that the RHS is decreasing in the level of

risk aversion and hence, that there exists a level of risk aversion r such that inequality

(4) is fulfilled, i.e. MV is superior to SM.

An Approximation for the LHS

The function P (w) describes the value of a binomially distributed random variable

X: P (w) = P(X ≥ w−1
2

), i.e. the probability that at least w−1
2

other individuals

vote in the same way as the individual under consideration. Binomially distributed

random variables can be approximated by the normal distribution (for further details

see Appendix A).

We obtain

P (
N − 1

2
) ∼ 1− 1√

π

∫ bN−3
4
c− 1

2

−∞
exp(−y2)dy

and

P (N) ∼ 1− 1√
π

∫ (N−1
2

)−
1
2

−∞
exp(−y2)dy

With this approximation we can calculate the limit of the LHS. 6

lim
N→∞

(
(N − 1)(P (N−1

2
)− P (N))

(N + 1)(P (N)− 1
2
)

) = lim
N→∞

Q(N) =
√

2− 1

The following graph shows Q(N) for N ∈ [3, 150]. The horizontal line indicates the

limit
√

2 − 1. Note that Q(N) is always greater than
√

2 − 1 for all N that can be

6The whole calculation is given in Appendix A.
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described by N = 4b+3 with b ∈ N (in the following we will denote this by N ≡ 3(4)),

while Q(N) <
√

2 − 1 if N ≡ 1(4). The reason is that the size of the minority in

equilibrium is an even number if N ≡ 1(4) and we have P (2b) = P (2b + 1) ∀ b ∈ N:

The probability of winning in t = 2 - and hence the probability of minimizing loss in the

first period - does not increase monotonically in N−1
2

under MV (N−1
2

can take odd and

even numbers), while the probability does increase monotonically in N under SM (we

consider only odd numbers of individuals). Comparing MV and SM, the probability of

winning in t = 2 - and hence the probability of minimizing loss in the first period - is

lower if N ≡ 1(4) and higher if N ≡ 3(4).

N

12080

0.1

100

0.5

0.6

40 140

0.4

20

0.2

60

0.3

Figure 1: Q(N) =
(N−1)(P (N−1

2
)−P (N))

(N+1)(P (N)− 1
2
)
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The function Q(N) is oscillating, which makes it difficult to derive a general condition

on AW

AL
. We therefore use the limit of Q(N) just derived as a lower boundary of Q(N)

if N ≡ 3(4) and obtain the condition: MV is superior to SM if

√
2− 1 ≥ AW

AL

.

This condition is only sufficient if N−3
4
∈ N. An immediate consequence is that we have

to differentiate between cases where either N ≡ 3(4) or N ≡ 1(4).

4.4 Utility with Constant Absolute Risk Aversion

In this section we apply the result derived in section 4.3 on the concave utility function

f(zi1, zi2) = − exp(−r(εa1zi1 + zi2)).

The parameter r > 0 can be used to describe the risk aversion of the individuals.

This function exhibits constant absolute risk aversion.7 No matter how large or small

the utility, or rather the potential utility loss or gain is, risk aversion always remains

constant.

Benefits zi1 are already known. Again we assume throughout this section that a1 = 1

(the case a1 = 0 was given in section 4.2) and ε > 0, i.e. the first project is durable.

Hence, more than half of the individuals have a non-negative utility gain from the

project proposed in period 1.

The condition we have to check is condition 4: MV is superior to SM if

(N − 1)[P (N−1
2

)− P (N)]

(N + 1)[P (N)− 1
2
]

≥ AW

AL

.

We have shown that the LHS converges to
√

2 − 1 as N becomes large. With the

concrete utility function f(zi1, zi2) = −e−r(εzi1−zi2) we can now analyze the RHS in

more detail.

As the critical function A(zi1) we obtain

A(zi1) =
1

r
exp(−rεzi1)

[
exp(−r) + exp(r)− 2

]

7Absolute risk aversion is given by − f ′′(x)
f ′(x) = r with x = εa1zi1 + zi2..
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From this it follows that

AW

AL

=

2
N+1

∑N
j=N+1

2
A(zj1)

2
N−1

∑N−1
2

i=1 A(zi1)
=

2
N+1

∑N
j=N+1

2
exp(−rεzj1)

2
N−1

∑N−1
2

i=1 exp(−rεzi1)

=
N − 1

N + 1

∑N
j=N+1

2
exp(−rεzj1)

∑N−1
2

i=1 exp(−rεzi1)

where exp(−rεzi1) ≥ exp(−rεzj1) ∀j ≥ i. Therefore we can conclude that if there exist

i, j ∈ {1, ..., N} with zi1 6= zj1 then AW < AL, i.e. AW

AL
is strictly smaller than 1.

We want to show that there exists a r ≥ 0 such that for all combinations of first-period

benefits {zi1}i∈{1,...,N} MV is better than SM. Therefore the next question is under what

conditions AW

AL
is monotonically decreasing in r.

0 ≥ ∂
AW
AL

∂ r

⇔ 0 ≥ ∑N
j=N+1

2
(−εzj1) exp(−rεzj1)

∑N−1
2

i=1 exp(−rεzi1)

−∑N−1
2

i=1 (−εzi1) exp(−rεzi1)
∑N

j=N+1
2

exp(−rεzj1)

⇔ 0 ≥ ε
∑N−1

2
i=1

∑N
j=N+1

2
(zi1 − zj1) exp(−rε(zi1 + zj1))

Recall that zi1 ≤ zj1 as i ∈ {1, ..., N−1
2
} while j ∈ {N+1

2
, ..., N}, i.e. i < j, and that

zi1, zj1 ∈ {−1,−γ, γ, 1} with γ ∈ (0, 1). Therefore the term (zi1 − zj1) can take the

following values: −2, −1− γ,−1+ γ,−2γ and 0, i.e. zi1− zj1 ≤ 0 ∀ i, j. Furthermore,

we can conclude that at least one factor is strictly smaller than zero as long as there

exists at least one pair of individuals (i, j) with different benefits if the first-period

project is realized (zi1 6= zj1), i.e. AW

AL
is strictly decreasing in this case. We obtain the

following proposition:

Proposition 4

Assume a society with N ≥ 2 individuals who have benefits zi1 ∈ {−1,−γ, γ, 1} from

a durable project in t = 1 and assume that there exists at least one individual who

suffers from the project in t = 1 and that there exist two individuals with different

first-period preferences.

Then there exists a critical level of risk aversion R, such that MV is better than SM if

individuals’ utility can be described by f(x) = − exp(−rx) with parameter r ≥ R.
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Proposition 4 indicates that MV is interim superior to SM if individuals are sufficiently

risk-averse and if there is at least one individual who suffers from the first-period

project. Note that we have also assumed throughout this section that the project is

adopted in t = 1. The critical value R depends on N , ε and γ. The proof of Proposition

4 is given in Appendix A.

Because of the monotonicity of AW

AL
with respect to r, Proposition 4 also indicates that

MV becomes better the larger r is, i.e. the more risk-averse individuals are. The

critical level of risk aversion R = R(N, ε, γ) is determined by the requirement that the

maximal value of AW

AL
does not exceed Q(N), i.e.

R = arg min
r
{r :

AW

AL

(r) ≤ Q(N) ∀ {zi1}N
i=1}.

Using the approximation of Q(N) we derive an algebraic expression for an upper bound-

ary R̂ of R that gives us the following information: MV is better than SM for all r ≥ R̂

and may be better for some smaller r, depending on the size of the legislature N . The

result is given in the following corollary:

Corollary 2

Given the situation of Proposition 4 with N ≡ 3(4), we obtain as upper boundary R̂

for the critical value R

R̂(N, ε, γ) =
1

2εγ
log

( N√
2

+
3
√

2− 4

2(
√

2− 1)

)
.

The proof of Corollary 2 is given in Appendix A.

Observations:

• If the first-period project depreciates rapidly, i.e. ε is very small, then R̂ becomes

larger. The individuals have to be more risk-averse for MV to be preferable over

SM.

• If individuals either benefit or suffer strongly from the first-period project (γ → 1)

then the loss of belonging to the project losers and therefore to the minority is

significant even for slightly risk-averse individuals. Moreover, the lasting utility

gain from the first-period project is higher for voting winners. The MV voting

scheme becomes more efficient even if r - the rate of absolute risk aversion - is

small (R̂(N, ε, γ) decreases as γ goes up).
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• R̂(N, ε, γ) is increasing in N . If the committee becomes larger, then the indi-

viduals have to be more risk-averse for MV to be superior to SM. An immediate

consequence is that MV should only be applied on middle-sized or small commit-

tees in this context which indeed seems plausible.

In Appendix B a number of tables are provided that give values of R̂(N, ε, γ) for large

N . There are also results of the direct comparison max(AW

AL
) ≤ Q(N) in the case of

small N , since in these cases the approximation via
√

2− 1 is rather poor. The tables

indicate that especially for a high ε, i.e. when the project is durable, the necessary

degree of risk aversion R̂(N, ε, γ) is very low (< 8). Considering infrastructure projects,

a high ε seems to be plausible.

In the next section we set out to derive an ex ante comparison between MV and SM,

i.e. when first-period benefits are not yet distributed.

5 The Main Result for the First Period

In this section we derive the ex ante welfare comparison for the utility function with

absolute risk aversion, given by f(x) = − exp(−r x), r > 0. We already know that

MV is superior to SM if a1 = 1, ε 6= 0 and individuals are sufficiently risk-averse. On

the other hand, we have shown in section 4.2 that MV is worse than SM if a1 = 0 or

ε = 0, i.e. in the case where there is no utility impact from the first-period project.

The remaining question is whether MV could be ex ante socially more efficient than

SM, i.e. when {zi1}N
i=1 are not yet known and all cases could occur. Can the losses

incurred by non-durable projects or non-accepted projects accruing between MV and

SM be compensated by the gain that the minority experiences?

According to Lemma 1 we can use the ex ante expected welfare of the second period

for the comparison. According to Lemma 2 it is sufficient to compare

∆E1[W
MV
2 ] and ∆E1[W

SM
2 ].
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5.1 Ex-Ante Perspective for Constant Absolute Risk Aversion

We have the following situation: zi1 ∈ {−1,−γ, γ, 1} with γ ∈ (0, 1), where each value

has the same probability, i.e. 1
4
. We assume that the first-period project is durable,

i.e. ε > 0. The set of all project losers is denoted by I−:

I− := {i ∈ {1, ..., N} : zi1 < 0}

We distinguish between two cases.

1. |I−| ≤ N−1
2

.

2. |I−| ≥ N+1
2

.

In the first case, the proposal in t = 1 is adopted, i.e. a1 = 1, in case two the status

quo prevails.

In this section we do not assume that individuals are ordered by their benefits. We

still apply maximal magnanimity.

5.1.1 The Case |I−| ≤ N−1
2

Since utility in the first period is the same under both voting schemes, we only examine

the expected utility in the second period. To obtain ∆E1[W
MV
2 ] and ∆E1[W

SM
2 ], we

will sum up the expected utility of the second period if the second project is undertaken

for all possible realizations of first-period preferences {zi1}N
i=1. The MV scheme yields
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∆E1[W
MV
2 ]

= 1
4N

{ ∑N−1
2

β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·
[
β1[P (N−1

2
)F (−γ, 1) + (1− 2P (N−1

2
))F (−γ, 0) + (P (N−1

2
)− 1)F (−γ,−1)]

+β2[P (N−1
2

)F (−1, 1) + (1− 2P (N−1
2

))F (−1, 0) + (P (N−1
2

)− 1)F (−1,−1)]

+α[P (N−1
2

)F (γ, 1) + (1− 2P (N−1
2

))F (γ, 0) + (P (N−1
2

)− 1)F (γ,−1)]

+(N−1
2
− β1 − β2 − α)[P (N−1

2
)F (1, 1) + (1− 2P (N−1

2
))F (1, 0)

+(P (N−1
2

)− 1)F (1,−1)]

+N+1
2

1
2
[F (1, 1)− F (1,−1)]

]

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·
[
β1[P (N−1

2
)F (−γ, 1) + (1− 2P (N−1

2
))F (−γ, 0) + (P (N−1

2
)− 1)F (−γ,−1)]

+β2[P (N−1
2

)F (−1, 1) + (1− 2P (N−1
2

))F (−1, 0) + (P (N−1
2

)− 1)F (−1,−1)]

+(N−1
2
− β1 − β2)[P (N−1

2
)F (γ, 1) + (1− 2P (N−1

2
))F (γ, 0)

+(P (N−1
2

)− 1)F (γ,−1)]

+(α− N−1
2

+ β1 + β2)
1
2
[F (γ, 1)− F (γ,−1)]

+(N − α− β1 − β2)
1
2
[F (1, 1)− F (1,−1)]

]}

where α denotes the number of individuals i with zi1 = γ and β1 (β2) denotes the

number of individuals i with zi1 = −γ (zi1 = −1).

Under the simple majority rule we obtain

∆E1[W
SM
2 ]

=
1

4N

N−1
2∑

β1=0

N−1
2
−β1∑

β2=0

N−β1−β2∑
α=0

(
N

β1

)(
N − β1

β2

)(
N − β1 − β2

α

)

·
[
β1[P (N)F (−γ, 1) + (1− 2P (N))F (−γ, 0) + (P (N)− 1)F (−γ,−1)]

+β2[P (N)F (−1, 1) + (1− 2P (N))F (−1, 0) + (P (N)− 1)F (−1,−1)]

+α[P (N)F (γ, 1) + (1− 2P (N))F (γ, 0) + (P (N)− 1)F (γ,−1)]

+(N − β1 − β2 − α)[P (N)F (1, 1) + (1− 2P (N))F (1, 0) + (P (N)− 1)F (1,−1)]
]
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5.1.2 The Case |I−| ≥ N+1
2

If the majority has negative benefits in connection with the first project, the status

quo prevails, i.e. a1 = 0. In this case F (zi1, zi2) reduces to F (zi2). If we set zi1 = 0 for

all individuals i, we obtain the same result as in the case a1 = 0. Therefore we identify

F (zi2) with F (0, zi2) and obtain

∆E1[W
MV
2 ] =

1

2

{ N − 1

2

[
P (

N − 1

2
)F (0, 1) +

(
1− 2P (

N − 1

2
)

)
F (0, 0)

+

(
P (

N − 1

2
)− 1

)
F (0,−1)

]
+

N + 1

2

1

2
[F (0, 1)− F (0,−1)]

}

∆E1[W
SM
2 ] =

1

2
N

[
P (N)F (0, 1) + (1− 2P (N))F (0, 0) + (P (N)− 1)F (0,−1)

]

The factor 1
2

represents the probability that at least N+1
2

individuals have negative

first-period benefits.

5.2 Comparison

5.2.1 Existence of a critical value of risk aversion R∗

With the results of section 5.1.1 and section 5.1.2 we can show that there is indeed

a critical value of risk aversion R∗ such that MV is ex ante superior to SM if the

individuals’ level of risk aversion r is greater than R∗. If individuals fear the potential

loss from belonging to the minority under SM, then MV becomes more attractive to

them. We first show the existence of R∗.

Proposition 5

Suppose a society of N members, whose utility in both periods (t = 1, 2) can be

described by f(x) = − exp(−r x) with r > 0. Then there exists a critical value R∗ such

that MV is ex ante superior to SM if r ≥ R∗.

The proof of Proposition 5 is given in Appendix A. The intuition of this result is clear:

the more risk-averse individuals are, the more important is the potential loss under SM

if they belong to the minority and hence, the more attractive is MV.
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5.2.2 Calculation of R∗

Proposition 5 suggests that the welfare gain due to MV, i.e. ∆E1[W
MV
2 ]−∆E1[W

SM
2 ],

is monotonically increasing in risk aversion. We did not need this property to show the

existence of a critical level of risk aversion at which MV becomes more attractive than

SM. We now turn to the numerical determination of R∗ for which monotonicity of the

welfare gain is needed. A constructive approach for the critical level of risk aversion

R∗ is given in the following proposition.

Proposition 6

Let R∗ be determined by the following equation

∆E1[W
MV
2 ](R∗)−∆E1[W

SM
2 ](R∗) = 0.

Then the MV scheme becomes socially more efficient than SM if risk aversion r of all

individuals is greater than R∗.

The proof of Proposition 6 follows directly from Lemma 4 and Lemma 5 which are

described below. To formulate the lemmas, we start with equation (6) from the proof

of Proposition 5 that describes the expected welfare differences and which takes the

following form:

∆E1[W
MV
2 ]−∆E1[W

SM
2 ]

=
C

r
(e−r + er − 2)

[
c1e

−rε + c2e
−rεγ + c3e

rε + c4e
rεγ + c5

]

with some constants C, c1, c2, c3, c4 and c5. Regarding these constants the following

lemma holds.

Lemma 4

The constants C, c3, c4 are positive, c1, c5 are negative. Furthermore, c1 < c2 < c3 = c4.

A proof is given in Appendix A.

Lemma 4 implies that the utility gain for voting losers under minority voting with

benefits zi1 = −γ or zi1 = −1 has a positive effect on the welfare difference (c3, c4 > 0),

while the utility loss of minority winners under MV (with benefits zi1 = 1) has a

negative effect (c1 < 0). Moreover, the utility gain through strategic voting does not

compensate these project winners for the utility loss of being a voting winner.
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Individuals with zi1 = γ are more likely to switch sides due to strategic voting than

individuals with zi1 = 1. The resulting utility gain under MV is higher. Hence, their

overall utility change might even have a positive effect on the difference ∆E1[W
MV
2 ]−

E1[∆W SM ]2. However, numerical results suggest that individuals with zi1 = γ also

have a negative utility change from SM to MV, i.e. c2 < 0.

With this result we can show the monotonicity of ∆E1[W
MV
2 ]− E1[∆W SM

2 ].

Lemma 5

The welfare gain due to MV, i.e. ∆E1[W
MV
2 ]−∆E1[W

SM
2 ], is monotonically increasing

in r.

The proof of Lemma 5 is given in Appendix A.

Lemma 5 finally proves Proposition 6: If we can determine R∗ such that ∆E1[W
MV
2 ](R∗)−

∆E1[W
SM
2 ](R∗) = 0, we know that MV is better than SM if the absolute risk aversion

of all individuals is greater than R∗. We give some examples in the next section.

5.2.3 Examples

In this subsection we provide some numerical examples and focus on N = 3, i.e. the

society consists of 3 individuals. Rearranging equation (6) yields

∆E1[W
MV
2 ]−∆E1[W

SM
2 ] =

1

64 r
(e−r + er − 2)

[
−8.5e−rε − 5.5e−rεγ + 3erε + 3erεγ − 8

]
.

We assume that r > 0 and obtain

∆E1[W
MV
2 ]−∆E1[W

SM
2 ] = 0

⇔ −8.5e−rε − 5.5e−rεγ + 3erε + 3erεγ − 8 = 0

We give sample plots for R∗ (see figure 2).

The upper line indicates the case ε = 0.1, the middle line represents ε = 0.5, and the

lower line is ε = 0.9. Note that we can make the same observations as in section 4.4

concerning R(N, ε, γ): R∗ is decreasing in γ and ε.

Graphics for N = 5 and N = 7 are given in Appendix C.
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Figure 2: R∗ for N = 3, ε ∈ {0.1, 0.5, 0.9}, γ ∈ [0, 1]
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6 MV and Important Properties of SM

It is useful to recapitulate the axiomatic properties of MV in relation to SM. The

(repeated) simple majority rule has some important properties: it satisfies neutrality,

i.e. all alternatives are treated equally, and anonymity in the sense that every vote

has the same impact on the outcome of the election, i.e. all voters are treated equally.

Furthermore, the decision function based on the simple majority rule is well defined,

single valued and satisfies positive responsiveness, i.e. if a group is indifferent or in

favor of an alternative x and all preferences remain the same except the preferences of

one single individual that change in favor of alternative x then the group decision also

becomes favorable to x. In fact, the simple majority rule is the only voting scheme

fulfilling all these properties (see May (1952)). Moreover, it is irrelevant whether the

voting process is open or closed (in our setting). Individuals always vote in favor of

their preferences as they do not have to gain anything by deviating from this strategy.

Furthermore, knowing the voting behaviour of other committee members does not

change the own voting or the output. We will analyze MV regarding these properties.

Neutrality: The MV scheme does satisfy neutrality as the status quo and the projects

proposed are treated equally in each period. This property is always satisfied when

two alternatives are competing and 50% are needed for acceptance.

Anonymity: MV satisfies anonymity in the first period and anonymity within the

group that keeps the voting right in the second period. Moreover, as all individuals

are ex ante identical, they have the same probability of keeping or loosing their voting

right and hence, MV satisfies ex ante anonymity.

Positive responsiveness and well defined, single valued decision function:

In the first period the MV scheme satisfies these properties as the first-period project

is realized if and only if the number of individuals with non-zero benefits from this

project is greater or equal than N+1
2

. In the second period we have to make the same

distinction as for anonymity: MV satisfies positive responsiveness and well defined,

single valued decision function for the group of individuals who have voting right in

t = 2, but not for the individuals who loose their second-period voting right.
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Secret ballots: In our setting voting takes place openly. The minority has to be

identified in order to determine who keeps and who looses the voting right in the

second period. Since secret ballots may be a desirable axiom, we give an alternative

formulation of MV with secret ballots.

Secret ballot under MV:

• There are two projects that will be realized in two consecutive periods t = 1, 2.

• The voting takes place in period t = 0. The committee decides about both

projects simultaniously. The votes of one individual have to be linked, e.g. mak-

ing the crosses on one sheet of paper.

• Evaluation:

1. The votes for the first project are counted and the project decision is deter-

mined. If there is a tally, the tie-breaking rule is used, i.e. every alternative

wins with probability 1
2
.

2. The ballots of the minority are identified. Their second vote is identified

using their ballot papers.

3. The decision over the second project is determined.

Under this voting scheme we assume that an individual’s decisions on both projects are

handed in together. Therefore the minority’s second-project choice can be identified

without knowing which person belongs to the voting losers. It is sufficient to know the

first-project vote and the linked second-project vote. The most important requirement

is that the second decision is already identified when the first decision takes place.

This seems plausible as our introductory examples illustrate (e.g. the infrastructure

example): the projects are pre-planned and linked in certain ways which translates

into the durable impact of the first-period project in our setting.

To sum up MV fulfills two of the five main properties of SM, i.e. neutrality and secret

ballots across both periods. In the first period all properties are satisfied. Because of

the restriction of the second-period voting right to voting losers, the MV scheme violates

anonymity, positive responsiveness and well defined, single valued decision function in
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the second period for the whole committee, but not for the group of individuals who

keep the voting right. Finally, anonymity is fulfilled from an ex ante point of view.

7 Conclusion

We have introduced a new 2-period voting scheme that strengthens the impact of

first-period voting losers. Moreover, this scheme improves the ex ante utility of the

whole society if individuals are sufficiently risk-averse. The minority voting scheme,

and especially the support of minorities, deserves further research. For instance, it

is useful to examine the case where the benefits {zi1}N
i=1 are not common knowledge.

Intuitively, individuals will not vote strategically in that case as they do not know

which alternative will obtain a majority of votes. This behavior leads to minorities of

a significantly smaller size than the majority which tends to weaken MV relative to

SM. However, in the case where all individuals have non-negative benefits MV becomes

more favorable than in the current set-up as all individuals would keep their voting

rights (because of unanimity). Overall, the question how extensions of our model shift

the balance between SM and MV is an entire research programme.
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8 Appendix A

Proof of Proposition 1

The first point is obvious, as abstention eliminates the voting right without any benefit.

Suppose the number of project losers k ≥ N+1
2

and there are more than N+1
2

project

losers who vote for a1 = 0 in the equilibrium, i.e. Nw − N l > 1. If individual i

belongs to the majority: i ∈ Nw, then assuming that all other individuals will play

their equilibrium strategies deviating from his strategy by voting for the new project

increases individual i’s payoff: the status quo still prevails and therefore ui1 = 0 but

i keeps his voting right in t = 2. Given |Nw − N l| = 1, no individual in the majority

has an incentive to deviate, as such a switch will change the committee decision, and

the individual under consideration still loses his voting right.

The same arguments hold mutatis mutandis for the third point of Proposition 1.

Proof of Proposition 2

We first rewrite ∆E2[W
MV
2 ] using the definition F (zi1, zi2) =

∫
f(εa1zi1 + zi2)dzi2.

∆E2[W
MV
2 ]

=
∑N−1

2
i=1

[
P (N−1

2
)
∫ 1

0
f(εzi1 + zi2)dzi2 + (1− P (N−1

2
))

∫ 0

−1
f(εzi1 + zi2)dzi2

]

+ 1
2

∑N
i=N+1

2

∫ 1

−1
f(εzi1 + zi2)dzi2

=
∑N−1

2
i=1

[
P (N−1

2
)(F (zi1, 1)− F (zi1, 0)) + (1− P (N−1

2
))(F (zi1, 0)− F (zi1,−1))

]

+ 1
2

∑N
i=N+1

2
(F (zi1, 1)− F (zi1,−1))

=
∑N−1

2
i=1

[
P (N−1

2
)F (zi1, 1)− (2P (N−1

2
)− 1)F (zi1, 0) + (P (N−1

2
)− 1)F (zi1,−1)

]

+ 1
2

∑N
i=N+1

2
(F (zi1, 1)− F (zi1,−1))

Similarly we obtain

∆E2[W
SM
2 ] =

N∑
i=1

[
P (N)F (zi1, 1)− (2P (N)− 1)F (zi1, 0) + (P (N)− 1)F (zi1,−1)

]
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A comparison yields

∆E2[W
MV
2 ] ≥ ∆E2[W

SM
2 ]

⇔ ∑N−1
2

i=1

[
F (zi1, 1)[P (N−1

2
)− P (N)]− F (zi1, 0)[2P (N−1

2
)− 2P (N)]

+F (zi1,−1)[P (N−1
2

)− P (N)]
]

+
∑N

i=N+1
2

[
F (zi1, 1)[1

2
− P (N)]

−F (zi1, 0)[1− 2P (N)] + F (zi1,−1)[1
2
− P (N)]

]
≥ 0

Rearranging terms proves Proposition 2.

Proof of Lemma 3

The function f is increasing and concave (in εa1zi1 + zi2 as a whole argument and both

in zi1 and zi2, i.e. ∂f(x)
∂x

≥ 0 and ∂2f(x)
∂x2 ≤ 0. Therefore we obtain f(x + 1) − 2f(x) +

f(x− 1) ≤ 0 because

f(x + 1)− f(x) ≤ f(x)− f(x− 1).

The integral F (zi1, zi2) is a convex function in zi2 because ∂2F (zi1,zi2)

∂z2
i2

= ∂f(εa1zi1+zi2)
∂zi2

≥ 0.

Hence,

F (zi1, 1)− F (zi1, 0) ≥ F (zi1, 0)− F (zi1,−1)

⇔ F (zi1, 1)− 2F (zi1, 0) + F (zi1,−1) ≥ 0

⇔ A(zi1) ≥ 0

Furthermore, we can conclude that A(zi1) ≥ A(zj1) ⇔ zi1 ≤ zj1 because

f(εzi1 + 1)− 2f(εzi1) + f(εzi1 − 1) ≤ 0 since f is concave.
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Proof of Proposition 3

We have to show that

N − 1

2
[P (

N − 1

2
)− P (N)]− N + 1

2
[P (N)− 1

2
] < 0

Because of the definition of P (w) this inequality is equivalent to

Pcond(N) :=
N − 1

2
N+1

2

( N−3
2

bN−3
4
c

)
− N

2N

(
N − 1

N−1
2

)
< 0 (5)

We show this inequality via complete induction. Note that Pcond(N) is oscillating.

That means Pcond(N) is decreasing with respect to N with N ≡ 3(4) and decreasing

with respect to N with N ≡ 1(4), but if we observe two odd numbers in a row then

the function may either decrease or increase. We therefore make a double induction.

1. The inequality holds for N = 3, N = 5 and N = 7:

• 2
22

(
0
0

)− 3
23

(
2
1

)
= −1

4
< 0

• 4
23

(
1
0

)− 5
25

(
4
2

)
= − 7

16
< 0

• 6
24

(
2
1

)− 7
27

(
6
3

)
= −11

32
< 0

2. Suppose inequality (5) holds for N ≥ 3. If Pcond(N + 4) ≤ Pcond(N) then inequality

(5) also holds for N + 4. We show this step for N ≡ 3(4) and N ≡ 1(4). This proves

the proposition.

Pcond(N + 4) =
N + 3

2
N+5

2

( N+1
2

bN+1
4
c

)
− N + 4

2N+4

(
N + 3

N+3
2

)

We obtain Pcond(N + 4) ≤ Pcond(N) if and only if

N+3

2
N+5

2

( N+1
2

bN+1
4
c
)− N+4

2N+4

(
N+3
N+3

2

) ≤ N−1

2
N+1

2

( N−3
2

bN−3
4
c
)− N

2N

(
N−1
N−1

2

)

⇔ (N + 3)2
N+3

2

( N+1
2

bN+1
4
c
)− (N + 4)

(
N+3
N+3

2

) ≤ (N − 1)2
N+7

2

( N−3
2

bN−3
4
c
)− 16N

(
N−1
N−1

2

)

⇔ 16N
(

N−1
N−1

2

)− (N + 4)
(

N+3
N+3

2

) ≤ (N − 1)2
N+7

2

( N−3
2

bN−3
4
c
)− (N + 3)2

N+3
2

( N+1
2

bN+1
4
c
)
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First we analyse the LHS.

16N

(
N − 1

N−1
2

)
− (N + 4)

(
N + 3

N+3
2

)

= 16N

(
N − 1

N−1
2

)
− (N + 4)

(N + 3)!

(N+3
2

)!2

= 16N

(
N − 1

N−1
2

)
− (N + 4)

(N + 3)(N + 2)(N + 1)N · (N − 1)!

(N+3
2

)2(N+1
2

)2(N−1
2

)!2

=

(
N − 1

N−1
2

)[
16N − (N + 4)

(N + 3)(N + 2)(N + 1)N

(N+3
2

)2(N+1
2

)2

]

=

(
N − 1

N−1
2

)[
16N − 16N(N + 4)(N + 2)

(N + 3)(N + 1)

]

= 16N

(
N − 1

N−1
2

)(
1− (N + 4)(N + 2)

(N + 3)(N + 1)

)

< 0

The LHS is smaller than zero for all odd numbers N . We show that the RHS is greater

or equal to zero for all N with N odd. For this purpose we first transform the RHS.

2
N+3

2

[
4(N − 1)

( N−3
2

bN−3
4
c

)
− (N + 3)

( N+1
2

bN+1
4
c

)]

= 2
N+3

2

[
4(N − 1)

( N−3
2

bN−3
4
c

)
− (N + 3)

(N+1
2

)!

bN+1
4
c!(N+1

2
− bN+1

4
c)!

]

= 2
N+3

2

[
4(N − 1)

( N−3
2

bN−3
4
c

)
− (N + 3)

(N+1
2

)(N−1
2

) · (N−3
2

)!

bN+1
4
c · bN−3

4
c! · (2 + N−3

2
− (bN−3

4
c+ 1))!

]

= 2
N+3

2

[
4(N − 1)

( N−3
2

bN−3
4
c

)
− (N + 3)

(N+1
2

)(N−1
2

) · (N−3
2

)!

bN+1
4
c · bN−3

4
c! · (N−1

2
− bN−3

4
c) · (N−3

2
− bN−3

4
c)!

]

= 2
N+3

2

( N−3
2

bN−3
4
c

)[
4(N − 1)− (N + 3)

(N+1
2

)(N−1
2

)

bN+1
4
c(N+1

2
− bN−3

4
c)

]

For the last step we need to distinguish between N ≡ 1(4) and N ≡ 3(4).

In the first case we have bN+1
4
c = N−1

4
, bN−3

4
c = N−5

4
and

N+1
2
− bN−3

4
c = N+7

4
.

If N ≡ 3(4), i.e. N+1
4

/∈ N, we obtain bN+1
4
c = N+1

4
, bN−3

4
c = N−3

4
and N+1

2
− bN−3

4
c =

N+5
4

.
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• Calculation of the RHS with N ≡ 1(4).

RHS = 2
N+3

2

( N−3
2

bN−3
4
c

)[
4(N − 1)− (N + 3)

(N+1
2

)(N−1
2

)

(N−1
4

)(N+7
4

)

]

= 2
N+3

2

( N−3
2

bN−3
4
c

)[
4(N − 1)− 4(N + 1)(N + 3)

(N + 7)

]

≥ 0

• Calculation of the RHS with N ≡ 3(4).

RHS = 2
N+3

2

(N−3
2

N−3
4

)[
4(N − 1)− (N + 3)

(N+1
2

)(N−1
2

)

(N+1
4

)(N+5
4

)

]

= 2
N+3

2

(N−3
2

N−3
4

)[
4(N − 1)− 4(N − 1)(N + 3)

(N + 5)

]

= 2
N+3

2

(N−3
2

N−3
4

)
4(N − 1)

[
1− N + 3

N + 5

]

≥ 0

if N ≥ 5. Since we have shown that Pcond(N) < 0 for N = 3, 5, 7 this inequality

completes the proof.

Approximation with Normal Distribution

Suppose X is a binomially distributed random variable with parameters n and p. If

n becomes sufficiently large and p remains fixed, then X is approximately normally

distributed with mean value µn = np and variance σ2
n = np(1− p), e.g.

PB[X ≤ c] ∼ PN [Y ≤ c +
1

2
]

where X ∼ B(n, p), Y ∼ N(µn, σ2
n), and P[X ≤ c] denotes the probability that a

random variable X adopts a value less or equal to c. The additional term +1
2

is called

continuity correction.

Now we want to apply this result to P (N). Note that P (N) = P[X ≥ N−1
2

] with

X ∼ B(N − 1, 1
2
). We obtain
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P (N) = 1− PB[X <
N − 1

2
]

∼ 1− PN [Y ≤ N

2
]

= 1− 1√
πN−1

2

∫ N
2

−∞
exp(−(x− N−1

2
)2

N−1
2

)dx

Using the substitution rule for integrals we obtain

1√
πN−1

2

∫ N
2

−∞
exp(−(x− N−1

2
)2

N−1
2

)dx =
1√
π

∫ 1
2
(N−1

2
)−

1
2

−∞
exp(−y2)dy

By the same arguments we can express P (N−1
2

) by

P (
N − 1

2
) = PB[X ≥ bN − 3

4
c]

∼ 1− 1√
πbN−3

4
c

∫ bN−3
4
c+ 1

2

−∞
exp(−(x− bN−3

4
c)2

bN−3
4
c )dx

= 1− 1√
π

∫ 1
2
bN−3

4
c− 1

2

−∞
exp(−y2)dy

The next step is to show that the approximation of the LHS of equation (4) in section

4.3 tends to
√

2−1 as N goes to infinity. Note that the approximation only yields good

results if N is sufficiently large. Another problem is that both the LHS of equation (4)

and its approximation are oscillating functions.
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The Limit of the Approximation

(N − 1)(P (N−1
2

)− P (N))

(N + 1)(P (N)− 1
2
)

' N − 1

N + 1

1− 1√
π

∫ 1
2
bN−3

4
c− 1

2

−∞ exp(−y2)dy − (1− 1√
π

∫ 1
2
(N−1

2
)−

1
2

−∞ exp(−y2)dy)

1− 1√
π

∫ 1
2
(N−1

2
)−

1
2

−∞ exp(−y2)dy − 1
2

=
N − 1

N + 1

1√
π

∫ 1
2
(N−1

2
)−

1
2

0
exp(−y2)dy − 1√

π

∫ 1
2
bN−3

4
c− 1

2

0
exp(−y2)dy

1
2
− (1

2
+ 1√

π

∫ 1
2
(N−1

2
)−

1
2

0
exp(−y2)dy)

=
(N − 1)

∫ 1
2
bN−3

4
c− 1

2

0
exp(−y2)dy

(N + 1)
∫ 1

2
(N−1

2
)−

1
2

0
exp(−y2)dy

− N − 1

N + 1

Note that

• ∫ x

0
exp(−y2)dy =

∑∞
k=0(−1)k x2k+1

(2k+1)k!
= x− x3

3
+ x5

5·2!
− x7

7·3!
± ...

• lim(an bn) = lim(an) lim(bn) and lim(an

bn
) = lim(an)

lim(bn)
if lim(bn) 6= 0.

• limN→∞ N−1
N+1

= limN→∞
(

N−3
N−1

) 1
2

= limN→∞
(

N−5
N−1

) 1
2

= 1

We assume that N ≡ 3(4) and obtain

lim
N→∞

(
(N − 1)(P (N−1

2
)− P (N))

(N + 1)(P (N)− 1
2
)

)

= lim
N→∞

(
(
N − 1

N + 1
)

1
2
bN−3

4
c− 1

2 − 1
3
(1

8
)bN−3

4
c− 3

2 + 1
5·2!

( 1
32

)bN−3
4
c− 5

2 − ...
1
2
(N−1

2
)−

1
2 − 1

3
(1

8
)(N−1

2
)−

3
2 + 1

5·2!
( 1

32
)(N−1

2
)−

5
2 − ...

− N − 1

N + 1

)

= lim
N→∞

(
N − 1

N + 1
) lim

N→∞
(

1
2
bN−3

4
c− 1

2 − 1
24
bN−3

4
c− 3

2 + 1
320
bN−3

4
c− 5

2 − ...
1
2
(N−1

2
)−

1
2 − 1

24
(N−1

2
)−

3
2 + 1

320
(N−1

2
)−

5
2 − ...

)− lim
N→∞

N − 1

N + 1

= lim
N→∞

(N − 3)
1
2

(N − 1)
1
2

lim
N→∞

(
1
2
(N−3

4
)−

1
2 − 1

24
(N−3

4
)−

3
2 + 1

320
(N−3

4
)−

5
2 − ...

1
2
(N−1

2
)−

1
2 − 1

24
(N−1

2
)−

3
2 + 1

320
(N−1

2
)−

5
2 − ...

)− 1

= lim
N→∞

(

1
2

√
4− 1

24
(N−3)−1

4−
3
2

+ 1
320

(N−3)−2

4−
5
2

− ...

1
2

√
2− 1

24
(N−1)−1

2−
3
2

+ 1
320

(N−1)−2

2−
5
2

− ...
)− 1

=

√
4√
2
− 1

=
√

2− 1
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In the case where N ≡ 1(4), e.g. bN−3
4
c = N−5

4
, one needs to adjust the intelligent 1 we

used in the calculation, i.e. one needs to multiply with limN→∞
(

N−5
N−1

) 1
2

= 1 to obtain

the same result.

Proof of Proposition 4

Let α1 and α2 denote the number of voting winners j with zj1 = 1 and zj1 = γ

respectively. Let β1 (β2, β3, β4) denote the number of voting losers i with zi1 = 1

(zi1 = γ, zi1 = −γ, zi1 = −1). Note that because of the assumptions either β4 ≥ 1 or

β3 ≥ 1.

AW

AL

=
(N − 1)

[
α1e

−rε + α2e
−rεγ

]

(N + 1)
[
β1e−rε + β2e−rεγ + β3erεγ + β4erε

]

Since exp(x) goes to infinity as x goes to infinity and exp(−x) goes to zero as x goes

to infinity, it follows that

lim
r→∞

AW

AL

= 0

Under the assumptions of this proposition AW

AL
is strictly monotonically decreasing.

For every tuple (zi1)
N
i=1, there exists r∗ such that MV is better than SM if utility is

described by exp(−rεzi1 + zi2) with r ≥ r∗. Since there are only finite possibilities how

preferences can be distributed among the N individuals, there exists an R = R(N, ε, γ)

such that AW

AL
(r) ≤ (N−1)[P (N−1

2
)−P (N)]

(N+1)[P (N)− 1
2
]

= Q(N) for all r ≥ R and all possible tuples

(zi1)
N
i=1.

Proof of Corollary 2

R̂ is determined by max(AW

AL
) ≤ √

2− 1. Therefore we first determine the combination

of benefits that maximizes

AW

AL

=
(N − 1)

[
α1e

−rε + α2e
−rεγ

]

(N + 1)
[
β1e−rε + β2e−rεγ + β3erεγ + β4erε

] .

First, β4 has to be zero because the denominator has to be as small as possible. By

the same argument β3 = 1, since there has to be at least one individual who suffers
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from the project. The numerator is maximal if α2 = N+1
2

and α1 = 0. Due to the

equilibrium refinement β1 has to be zero since otherwise individuals with the highest

benefit would have voted against the proposal. It follows that β2 = N−1
2
−1. We obtain

max(AW

AL
) = N−1

N+1

N+1
2

e−rγε

N−3
2

e−rγε+erγε

= N−1
N−3+2e2rγε

≤ √
2− 1

⇔ N − 1 ≤ (
√

2− 1)(N − 3) + 2(
√

2− 1)e2rγε

⇔ (2−√2)N−4+3
√

2

2(
√

2−1)
≤ e2rγε

⇔ 1
2εγ

log
(

N√
2

+ 3
√

2−4
2(
√

2−1)

)
≤ r

Since we are looking for the smallest R̂ such that MV is better than SM if risk aversion

r is greater than R̂ we obtain R̂ = 1
2εγ

log
(

N√
2

+ 3
√

2−4
2(
√

2−1)

)
.

Proof of Proposition 5

We use the already introduced notation A(zi1) = F (zi1, 1) − 2F (zi1, 0) + F (zi1,−1).

The difference between the aggregated expected utilities is given by

∆E1[W
MV
2 ]−∆E1[W

SM
2 ]

=
1

4N

{ N−1
2∑

β1=0

N−1
2
−β1∑

β2=0

N−1
2
−β1−β2∑
α=0

(
N

β1

)(
N − β1

β2

)(
N − β1 − β2

α

)

·
[
(P (

N − 1

2
)− P (N))[β1A(−γ) + β2A(−1) + αA(γ) + (

N − 1

2
− α− β1 − β2)A(1)]

+(
1

2
− P (N))

N + 1

2
A(1)

]

+

N−1
2∑

β1=0

N−1
2
−β1∑

β2=0

N−β1−β2∑

α=N+1
2
−β1−β2

(
N

β1

)(
N − β1

β2

)(
N − β1 − β2

α

)

·
[
(P (

N − 1

2
)− P (N))[β1A(−γ) + β2A(−1) + (

N − 1

2
− β1 − β2)A(γ)]

+(
1

2
− P (N))[(α− N − 1

2
+ β1 + β2)A(γ) + (N − α− β1 − β2)A(1)]

]}

+
1

2
A(0)[

N − 1

2
P (

N − 1

2
)−NP (N) +

N + 1

4
] (6)
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Note that 1
2
− P (N) < 0, P (N−1

2
) − P (N) > 0 and N−1

2
P (N−1

2
) − NP (N) + N+1

4
< 0

(see proof of Proposition 3). Rearranging terms yields

∆E1[W
MV
2 ] ≥ ∆E1[W

SM
2 ]

⇔
[
P (N−1

2
)− P (N)

]
1

4N

(∑N−1
2

β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·[β1A(−γ) + β2A(−1) + αA(γ) + (N−1
2
− α− β1 − β2)A(1)]

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·[β1A(−γ) + β2A(−1) + (N−1
2
− β1 − β2)A(γ)]

)

≥
[
P (N)− 1

2

]
1

4N

(∑N−1
2

β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
N+1

2
A(1)

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·[(α− N−1
2

+ β1 + β2)A(γ) + (N − α− β1 − β2)A(1)]
)

+[NP (N)− N−1
2

P (N−1
2

)− N+1
4

]1
2
A(0)

All coefficients are positive (on both sides of this inequality). We also know that A(zi1)

is positive for all zi1 ∈ {−1,−γ, γ, 1}. To show that there is an R such that this

inequality holds for all r ≥ R, we first multiply the inequality by e−r and then evaluate

the convergence properties of each term, i.e. each A(zi1) separately. Note that on the

RHS there are only terms with A(0), A(γ) and A(1).

e−rA(−1) = 1
r
(er(ε−2) − 2er(ε−1) + erε) →∞ (r →∞)

e−rA(−γ) = 1
r
(er(εγ−2) − 2er(εγ−1) + erεγ) →∞ (r →∞)

e−rA(0) = 1
r
(e−2r − 2e−r + 1) → 0 (r →∞)

e−rA(γ) = 1
r
(er(−εγ−2) − 2er(−εγ−1) + e−rεγ) → 0 (r →∞)

e−rA(1) = 1
r
(er(−ε−2) − 2er(−ε−1) + e−rε) → 0 (r →∞)

The RHS multiplied by e−r tends to zero as r goes to infinity, while the LHS multiplied

by e−r tends to infinity. That means that there exists a smallest R ∈ R such that the

LHS is greater than the RHS.
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Proof of Lemma 4

The constants are given by

C = 1
4N

c1 =
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·
[
(P (N−1

2
)− P (N))(N−1

2
− α− β1 − β2) + (1

2
− P (N))N+1

2

]

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(1

2
− P (N))(N − α− β1 − β2)

c2 =
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(P (N−1

2
)− P (N))α

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)

·
[
(P (N−1

2
)− P (N))(N−1

2
− β1 − β2) + (1

2
− P (N))(α− N−1

2
+ β1 + β2)

]

c3 =
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(P (N−1

2
)− P (N))β2

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(P (N−1

2
)− P (N))β2

c4 =
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−1
2
−β1−β2

α=0

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(P (N−1

2
)− P (N))β1

+
∑N−1

2
β1=0

∑N−1
2
−β1

β2=0

∑N−β1−β2

α=N+1
2
−β1−β2

(
N
β1

)(
N−β1

β2

)(
N−β1−β2

α

)
(P (N−1

2
)− P (N))β1

c5 = 4N

2
[N−1

2
P (N−1

2
)−NP (N) + N+1

4
]

We immediately obtain C, c3 and c4 as positive since P (N−1
2

) − P (N) > 0. Secondly,

c5 < 0 because N−1
2

P (N−1
2

)−NP (N) + N+1
4

< 0. We now analyze the first summand

that determines c1. Note that the second summand is negative as 1
2
− P (N) < 0. The

first sum amounts to

N−1
2

P (N−1
2

)−NP (N) + N+1
4
− (α + β1 + β2)P (N−1

2
) < 0.

Therefore c1 is also proved to be negative. The relations between the coefficients are

obvious: c3 = c4 since the expected welfare gain of project losers when they form

a minority is the same (one can switch the role of β1 and β2 without changing the

results). Individuals with zi1 = γ expect a higher utility gain through strategic voting

than individuals with zi1 = 1 because of our MM assumption, but they also realize

utility losses by belonging to the voting winners. We obtain c1 < c2 < c3.
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Proof of Lemma 5

The factor 1
r
(e−r + er − 2) is positive and monotonically increasing for all r > 0. We

set

H(r) := c1e
−rε + c2e

−rεγ + c3e
rε + c4e

rεγ + c5.

Derivation with respect to r yields

∂H(r)

∂r
= −c1εe

−rε − c2εγe−rεγ + c3εe
rε + c4εγerεγ.

Note that
−c2γe−rεγ + c4γerεγ > 0

⇔ c4e
2rεγ > c2

which is fulfilled since ex > 1 ∀ x > 0 and c4 > c2. Using Lemma 4 and ε, γ > 0 yields
∂H(r)

∂r
> 0. Therefore ∆E1[W

MV
2 ]−∆E1[W

SM
2 ] is monotonically increasing in r as soon

as H(r) ≥ 0.
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9 Appendix B

Sample Values of R̂(N, ε, γ)

• The first tables contain R̂(N, ε, γ) for large N with N ≡ 3(4).

Table 1a: ε = 1/2.

γ/N 11 23 51 103 1003
1
4

8.35 11.23 14.37 17.17 26.26
1
2

4.18 5.61 7.19 8.58 13.13
3
4

2.78 3.74 4.79 5.72 8.75

Table 1b: γ = 1/4.

ε/N 11 23 51 103 1003
1
10

41.77 56.14 71.87 85.84 131.29
1
2

8.35 11.23 14.37 17.17 26.26
3
4

5.57 7.49 9.58 11.45 17.51
1 4.18 5.61 7.19 8.58 13.13

• The plot in section 4.3 shows that Q(N) >>
√

2− 1 if N is small and N ≡ 3(4).

For these numbers of committee members we want to calculate the ‘real’ R, e.g.

the minimal parameter R(N) such that (AW

AL
)max = Q(N). This gives us the

following values:

Table 2a: ε = 1
2
.

γ/N 3 7 11 15 19 23 27 31
1
4

2.77 6.16 8.13 9.32 10.3 11.08 11.72 12.28
1
2

1.39 3.08 4.06 4.66 5.15 5.54 5.86 6.14
3
4

0.92 2.05 2.71 3.11 3.43 3.69 3.91 4.09

Table 2b: γ = 1
4
.

ε/N 3 7 11 15 19 23 27 31
1
10

13.86 30.81 40.64 46.6 51.49 55.38 58.61 61.4
1
2

2.77 6.16 8.13 9.32 10.3 11.08 11.72 12.28
3
4

1.85 4.11 5.42 6.21 6.87 7.38 7.81 8.19
1 1.39 3.08 4.06 4.66 5.15 5.54 5.86 6.14

A comparison with the first tables 1(a,b) for N = 11 and N = 23 shows that the

values do not deviate strongly from R̂(N, ε, γ), which indicates that R̂(N, ε, γ)

44



is a good approximation even for small N . The ’real’ R is smaller than R̂, as

expected.

• The final tables contain the value of the parameter r such that

max AW

AL
= Q(N) for small N with N ≡ 1(4).

Table 3a: ε = 1
2
.

γ / N 5 9 13 17 21 25 29
1
4

8.79 9.52 10.32 11.05 11.73 12.26 12.85
1
2

4.39 4.76 5.16 5.53 5.87 6.13 6.42
3
4

2.93 3.17 3.44 3.68 3.91 4.09 4.28

Table 3b: γ = 1
4
.

ε / N 5 9 13 17 21 25 29
1
10

43.94 47.58 51.58 55.27 58.65 61.3 64.25
1
2

8.79 9.52 10.32 11.05 11.73 12.26 12.85
3
4

5.86 6.34 6.88 7.37 7.82 8.17 8.57
1 4.39 4.76 5.16 5.53 5.87 6.13 6.42

45



10 Appendix C

N = 5

Suppose N = 5. The equality that determines R∗ is given by

−2572e−rε − 1812e−rεγ + 400erε + 400erεγ − 3584 = 0

8Again we give a sample plot for R∗ with ε ∈ {0.1, 0.5, 0.9}.

10

0.6

gamma

5

10.4

15

0.80.20

R

25

20

epsilon=0.1             

epsilon=0.5             

epsilon=0.9             

Figure 3: N = 5, ε = 0.1, γ ∈ [0, 1]

Again, the upper line indicates the case where ε = 0.1, the middle line represents

ε = 0.5, and the lower line uses ε = 0.9.

8If N = 5 then ∆E1[WMV
2 ]−∆E1[WSM

2 ] = 1
45 r · 1

16 (e−r +er−2)[−2572e−rε−1812e−rεγ +400erε +
400erεγ − 3584].
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N = 7

Suppose N = 7. The equality that determines R∗ is given by

−92208e−rε − 57040e−rεγ + 29568erε + 29568erεγ − 90112 = 0

9Again we give samples for R∗.

0.6 0.80.40.20

14

12

10

4

2

gamma

R 8

6

1

epsilon=0.1             

epsilon=0.5             

epsilon=0.9             

Figure 4: N = 7, ε = 0.1, γ ∈ [0, 1]

9If N = 7 then ∆E1[WMV
2 ] − ∆E1[WSM

2 ] = 1
47 r

1
32 (e−r + er − 2)[−92208e−rε − 57040e−rεγ +

29568erε + 29568erεγ − 90112].
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