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1 Introduction

Collective decision rules are often applied in distributing resources among individuals in

a society. In order to achieve efficiency and fairness, various collective choice processes

with endogenous agenda setting have been proposed.1 In an important and influential

paper, Baron and Ferejohn (1989) (henceforth BF) propose a model of legislative bar-

gaining with an endogenous agenda setting. A body of legislators, each representing

the voters of their district, decide about how to distribute some benefits. With an

open amendment rule, the proposed allocation is either seconded or amended prior to

vote. In the former case, it is voted up or down. In the latter case, there is a ‘run-off’

election between the original proposal and the amendment. The winner becomes the

standing proposal in the next round.

BF characterize the stationary equilibria when the process repeats itself until an allo-

cation is seconded and receives a majority of the votes. They show that a three-group

equilibrium occurs. The agenda-setter proposes that the cake be distributed between

himself and a subset of voters (second group) that form a majority of voters. The third

group contains the remaining individuals who do not receive anything. Those members

who obtain resources will move the proposal if they are recognized next. If, however,

one individual in the third group is recognized, the member will offer an amendment

chosen in such a way as to defeat the motion on the floor, and the legislature will move

to the next period. Hence the initial proposal is not necessarily accepted in the first

session, which implies a costly delay.

BF assume that the agenda-setter does not differentiate between individuals who will

move his proposal if recognized next (and vote for it against status quo) and those who

will not second his proposal if recognized next but will vote for the proposal if it is

pitted against the status quo. We will analyze this problem and answer the question

what happens, if the agenda-setter distinguishes between these two groups and thus

forms a proposal consisting of four groups.

In addition, we show in this paper that the agenda-setter may want to offer four-group

proposals, so BF’s three-group equilibrium does not always hold in such circumstances.

1Baron and Ferejohn (1989), Harrington (1986), Harrington (1990), Banks and Gasmi (1987),
Ferejohn, Fiorina, and McKelvey (1987), Epple and Riordan (1987).
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We give a complete characterization of the set of stationary equilibria for simple and

super majority rules. Such equilibria are either of the three-group or four-group type.

We identify sets of parameters where three-group or four-group equilibria occur. As a

rule, four-group equilibria obtain if the size of legislature is larger.

The paper is organized as follows: In the next section we outline the legislative process.

In section three we identify the types of stationary equilibria. In section four we provide

the general theorem that characterizes stationary equilibria and discuss the relationship

to BF. In the fifth section, we identify numerically the parameter constellations where

three-group or four-group equilibria occur. Section six concludes.

2 The Model

2.1 The Problem

We consider the problem of a group of N individuals (legislators) distributing one unit

of benefits (N odd and N > 1) amongst themselves. Individuals are indexed by i, j,

k, or l. All individuals are assumed to be risk-neutral and have utility functions

Ui =
∞∑

t=0

δt xit

where xit is the share of the cake individual i receives in period t. Since the cake can

only be distributed once, xit can only be positive for one period at most.2 The discount

factor δ is assumed to be identical across individuals. The distribution of the cake is

governed by a collective choice process containing a voting rule and by a recognition

rule that determines which individual can make a proposal. Of course, an allocation

is Pareto-efficient if and only if the whole cake is distributed in the first period, i.e. in

t = 0.

2Theoretically, it would be possible to distribute the cake partially over many periods. But this is
weakly dominated for proposal-makers, so this possibility is neglected in our analysis.
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2.2 The Amendment Process and Open Rules

We examine the legislative process with open rules introduced by Baron and Ferejohn

(1989). With an open rule the floor is subject to an amendment. Under an open rule,

a member who is in a position to make a proposal or an amendment has to take into

account the fact that his proposal will be pitted against another proposal. The entire

collective choice process under an open rule is given by

Period t=0

(i) The first agenda-setter A is recognized by fair randomization and sets a proposal

xA = (x1
A, ...xN

A ). This proposal is called the motion on the floor.

(ii) The second agenda-setter B is recognized randomly. He can move the proposal

xA to a vote against the status quo, or he makes an amendment xB.

(iii) Voting takes place either between xA and status quo or between xA and xB. If

there is a vote between the status quo and a proposal, then an α-majority rule

is applied (for a given α ∈ [0.5, 1]). If there is a vote between two proposals, the

proposal that receives most of the votes is accepted and the game moves to the

next period.

(iv) If xA competes against the status quo and is voted up, the benefits are distributed.

If xA is voted down, the game moves to the next period.

Period t=1

(v) Depreciation of the cake with discount factor δ.

(vi) If xA has lost against the status quo in the previous period, the game continues

with (i), i.e. with recognition of a first agenda-setter.

(vii) If xA has been pitted against xB, the winner will get the same status as proposal

xA in period t=0, i.e. the winner becomes the motion on the floor. The game

continues with (ii), i.e. with recognition of an amendment-setter.

Note that the game ends if and only if a proposal is moved and wins a majority against

the status quo.
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Like BF, we simplify the analysis by the following tie-breaking rule: If an individual is

indifferent between two proposals he will vote for the one proposed last.3

2.3 Equilibrium Concept

We adopt the concept of stationary equilibria introduced by BF. The idea is that an

individual will act the same way if he is in the same situation. To capture the notion of

stationary equilibria, BF introduce structurally equivalent subgames defined as follows:

Definition

Two subgames are structurally equivalent if

1. the extant agendas at the initial nodes of the subgames are identical;

2. the sets of individuals who may be recognized next are the same;

3. the strategy sets of individuals are the same.

An equilibrium is said to be stationary if the continuation values are the same for each

structurally equivalent subgame. A consequence of this definition is that the strategies

are stationary in a stationary equilibrium. Stationary strategies are necessarily history-

independent, and members are assumed to believe that moves off the equilibrium path

are accidents that will not reoccur in future play. As observed by BF, in any stationary

equilibrium the second proposal is a permutation of the first proposal. The reason is as

follows: Any legislator recognized as second agenda-setter will only propose a distribu-

tion of the cake if this proposal wins against the proposal on the floor. After winning

the ballot against the first proposal, the second agenda-setter faces the same situation

as the prior agenda-setter. Therefore, in a stationary equilibrium the amendment will

be a permutation of the first proposal as a suitable amendment will win against the

proposal on the floor because of our tie-breaking rule and the first proposal generates

the maximal expected payoff for an agenda setter.

3Note that abstention is a weakly dominated strategy since in the case of indifference there is no
gain from abstention. We can therefore neglect abstention.
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3 Stationary Equilibria

3.1 Observations

In this section, we identify the types of stationary equilibria. We start with some

simple observations that motivate the construction of the equilibria. A member who

has gained initial recognition for making a proposal takes into account the fact that his

proposal must be sufficiently attractive to a subset of members to be seconded if one of

those members is recognized for making an amendment. The amount of benefits that

the initial agenda-setter must offer other members so that his proposal will be moved

is denoted by M . Furthermore, he has to garantuee that in a ballot against status

quo a majority votes for his proposal. BF state that the agenda-setter offers M to

m ≥ N−1
2

individuals if the simple majority rule is applied. The number m determines

the probability of a proposal being moved and therefore accepted.

We examine α-majority rules (1
2
≤ α ≤ 1) and allow that the equilibrium number

m of individuals receiving M could be smaller than αN − 1 and in particular smaller

than N−1
2

. A fourth group may arise, consisting of individuals who are offered a certain

amount called T , so that they do not move the proposal when recognized next but vote

for a proposal against the status quo. In that case, the group with members obtaining

T forms an α-majority with the group that obtains M and the agenda-setter. We

summarize this observation in the following proposition.

Proposition 1

An optimal proposal structure is characterized by

• A subset of size m obtains M which is defined as the minimal amount such that

these individuals will move the proposal when recognized next.

• A subset of size max{αN − 1−m, 0} obtains T which is defined as the minimal

amount such that an individual will vote for a proposal against status quo.

• A subset of size min{N − αN, N −m− 1} obtains.

• The agenda-setter gets the leftover: 1−mM −max{αN − 1−m, 0}T .
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We will later characterize precisely the values M , T and m. Two simple observations

help to sharpen the intuition. First, an individual when recognized as second agenda-

setter has - one period later - the same power as the first agenda-setter (if he offers

an amendment). Therefore, M has to be the discounted continuation value of the

agenda-setter.

Second, if a ballot against status quo occurs, all individuals are equal regarding future

periods as no agenda-setter for the next period is determined. Hence, T will correspond

to the ex ante continuation value of all individuals before any further recognition.

Note that two different types of equilibria can occur.

Three-group equilibrium

• The agenda-setter obtains xa = 1−mM .

• m individuals obtain M with m ≥ αN − 1.

• N − 1−m members receive zero.

Four-group equilibrium

• The agenda-setter obtains xa = 1−mM − (αN − 1−m)T .

• m individuals obtain M with 0 < m < αN − 1.

• αN − 1−m members obtain T .

• (1− α)N members receive zero.

The intuition for the existence of four-group equilibria runs as follows: The agenda-

setter faces the following trade-offs: He must make a proposal sufficiently attractive

to a subset of members such that these individuals will move the proposal if they are

recognized next. The larger the subset of such members is, the more expensive it is,

and the smaller is the share of the agenda-setter. The agenda-setter simultaneously

has to ensure that there are enough votes if a proposal is voted up or down. For the

latter purpose, a smaller amount of benefits is needed as these individuals do not count

with the value of being recognized. Hence, it may be optimal for the agenda-setter to

create four groups in his proposal.
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3.2 Amendment Choice

We next examine the determination of an amendment. As stated in the last section,

in equilibrium, any amendment will be a permutation of the proposal on the floor. We

first discuss which type of permutation will win against a prior proposal characterized

by Proposition 1. In the case where m > N−1
2

, any permutation wins the ballot. Every

individual who receives at least M under an amendment (except the first agenda-setter)

and the amendment-setter will vote for it. If m ≤ N−1
2

, the amendment-setter cannot

choose any permutation to win against the first proposal. It is not necessarily ensured

that N+1
2

individuals obtain at least as much as under the proposal on the floor. This

is illustrated by the following example.

Example: Suppose that a legislature consisting of N = 11 individuals uses an α-

majority rule with α = 0.75, i.e. a majority of 9 individuals is required to adopt a

proposal. We consider a first proposal and an amendment that is a permutation of the

first proposal. The proposals are illustrated in the following table.

Table A: First proposal and amendment.

1

xa

0

2

M

T

3

M

T

4

M

T

5

M

T

6

T

0

7

T

M

8

T

M

9

T

M

10

0

M

11

0

xa

First proposal

Amendment

xa denotes the share of the agenda-setter, i.e. we assume that individual 1 is the first

agenda-setter and individual 11 is recognized as second agenda-setter. Furthermore,

we assume that m = 4 < N−1
2

= 5 individuals obtain M (individuals 2 to 5). Hence, a

group of 4 = αN −m − 1 individuals (individuals 6 to 9) is offered T under the first

proposal. We will show later that 0 < T < M < xa which is assumed here. Hence, the

amendment-setter and all individuals who obtain M under the amendment vote for it,

i.e. m + 1 = 5 = N−1
2

. All other individuals vote for the first proposal. Therefore, this

amendment would not win.

In the following we assume that the second agenda-setter chooses the amendment in

the spirit of the priority (or tie-breaking) rule of BF. This allows us to compare our

results with BF and replicate their result. The priority rule is part of Proposition 2

and Proposition 3. We will discuss the significance of the priority rules and the work
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of Primo (2007) on this issue in section 4.4.

Since the equilibrium strategies differ depending on whether m ≥ N−1
2

or m < N−1
2

,

we differentiate between these two cases. First, we provide the equilibrium in the case

where m ≥ N−1
2

. The special case α = 1
2

and m ≥ N−1
2

is the BF result.

3.3 The Case m ≥ N−1
2

Proposition 2

Suppose that a society uses the α-majority rule (α ∈ [0.5, 1]) and a random recognition

rule within an open rule amendment process. The number m of individuals who receive

enough to move a proposal is exogenously restricted to m ≥ N−1
2

. Then a stationary

equilibrium exists and is given by the following:

• The individual recognized first makes a proposal x: M to m members (where

N − 1 ≥ m ≥ N−1
2

), T to max{αN − 1−m, 0} other members, xa = 1−mM −
max{αN − 1−m, 0}T to himself, and 0 to the rest.

• If the member recognized next is one of those m individuals, he moves the previous

proposal. The proposal x is accepted with a majority of max{m + 1, αN} votes.

• If the member recognized next is one of the N − 1 − m individuals, he makes

a proposal that is a permutation of x: xa to himself, M to m other members,

excluding the first agenda-setter and including all individuals who would have

received zero or T in the first proposal. The other individuals who obtain M or

T in this proposal are chosen randomly among the m members who were offered

M in the initial proposal. This amendment defeats the prior proposal.

• An individual will vote for a proposal (against the status quo) if he receives at

least T .

The proof of Proposition 2 is given in the appendix. The equilibrium proposal is

uniquely determined by m that depends (uniquely) on the discount factor δ, the re-

quired size of majority α and the size of the legislature N . In the following, we denote

the equilibrium strategies in Proposition 2 by index L indicating the “large” m. The

proposal is denoted by xL, the strategies are called L-strategies.

9



According to the proof of Proposition 2, the equilibrium function mL(δ, α, N) is given

by

mL(δ, α,N) = arg max
m

(V m
a (xL))

with

V m
a (xL) =

m
N−1

+
[
(1− m

N−1
)(1− m+1

N−1
)A1 δ2 − m

N−1
h

]
T

1 + m2

N−1
δ − (1− m

N−1
)
(

1
N−1

+ (1− m+1
N−1

)A2
)

δ2

where we use the abbreviations

A1 =
1

B

( h

N − 1
(1− m

N − 1
)δ

)

A2 =
δ

B

[ m

N − 1
+ δ

(
1− m

N − 1

)(N −m− 2

m

)( 1

N − 1

)]

B = 1− 2m−N + 2

m

(
1− m

N − 1

)
δ − N −m− 2

m

(
1− m + 1

N − 1

)(
1− m

N − 1

)
δ2

h = max{αN − 1−m, 0}
T =

mδ

N((1− δ)(N − 1) + mδ)
(1)

V m
a (xL) denotes the expected value of the individual recognized first if he offers the

equilibrial proposal xL.

In the next section we examine the case where m has to be smaller than N−1
2

.

3.4 The Case m < N−1
2

In this section we derive an equilibrium for the same situation as in section 3.3, but we

assume exogenously that m has to be smaller than N−1
2

. An immediate result is that

only four-group equilibria can occur.

Proposition 3

Suppose a society of N individuals using the α-majority rule with α ≥ 1
2

in an open rule

amendment process. The number m of individuals who are offered enough to move the

proposal is exogenously restricted to m < N−1
2

. Then a stationary equilibrium exists

and is given by

• The agenda-setter recognized first makes a proposal x: M to m members (where

1 ≤ m < N−1
2

), T to αN −m−1 other members, xa = 1−mM − (αN −m−1)T

to himself, and 0 to the rest.
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• If the individual recognized next is one of the m members, he will move the

proposal to a vote against the status quo. The proposal is accepted with an

α-majority.

• If the individual recognized next is one of the members who receive T or zero in

the first proposal, he will offer an amendment that is a permutation of the first

proposal:

xa to himself, zero to the previous agenda-setter, M to m members chosen ran-

domly from the N−2−m individuals who received T or zero in the first proposal.

All remaining members of the group that received zero or T under the first pro-

posal obtain T in the amendment. The individuals who received M in the first

proposal receive zero or T , which is again chosen randomly.

• All members who receive at least T will favor the proposal if it is pitted against

status quo.

The proof of Proposition 3 is given in the appendix. Again, the equilibrium in this

case is uniquely determined by m that depends on δ, α and N . In the following, we

assign this equilibrium by index S (for “small” m), e.g. the proposal will be denoted

by xS.

The proof of Proposition 3 yields

mS(δ, α, N) = arg maxm(V m
a (xS))

with

V m
a (xS) =

m
N−1

+

[
(1− m

N−1
)(1−m+1

N−1
)D1

E
δ2−m(αN−m−1)

N−1

]
T

1+ m2

N−1
δ−(1− m

N−1
)

[
1

N−1
+(1−m+1

N−1
)D2

E

]
δ2

where D1, D2 and E are given by

D1 := (1− m
N−1

)( m
N−m−2

) m
N−1

pk δ + (1− m
N−m−2

) m
N−1

pl

D2 := ( m
N−m−2

) m
N−1

δ + ( m
N−m−2

)(1− m
N−1

) 1
N−1

δ2 + (1− m
N−m−2

) 1
N−1

δ

E := 1− ( m
N−m−2

)(1− m
N−1

)(1− m+1
N−1

) δ2 − (1− m
N−2−m

)(1− m+1
N−1

) δ

with pk = 1 − min{ (1−α)N
m

, 1} and pl = min{αN−1−m
N−2m−2

, 1}. Note that pk denotes the

probability of an individual who received M in the first proposal obtaining T (instead
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of zero) under an amendment, while pl denotes the probability of an individual who

received T or zero in the first proposal obtaining T under an amendment.

The value T is again given by equation (1). However, the values T S and TL differ since

T = T (m, δ,N) and mS 6= mL. Moreover, T is increasing in m. We therefore obtain

the result that T S < TL because mS < mL.

4 The Overall Equilibrium

In the previous section we derived equilibria restricted by the assumptions that either

m ≥ N−1
2

or m < N−1
2

, using some tie-breaking rules regarding the choice of amend-

ments. We will now summarize these results to cover both cases and formulate our

main result.

4.1 The Main Result

In equilibrium, an agenda-setter will always maximize his share of the cake. He will

therefore compare the expected payoffs under both restrictions m ≥ N−1
2

and m < N−1
2

and choose the alternative with the higher expected value.

Theorem 1

Suppose a society with N members using the α-majority rule with α ≥ 1
2

and discount

factor δ ∈ [0, 1] in an open amendment process. Then a stationary equilibrium exists

and is given by

• The agenda-setter recognized first calculates V mL

a (xL) and V mS

a (xS). He sets

m∗ =

{
mL, V mL

a (xL) ≥ V mS

a (xS)

mS, V mL

a (xL) < V mS

a (xS)
(2)

• If m∗ = mL then all individuals play the L-strategies according to Proposition 2.

If m∗ = mS then all individuals play the S-strategies according to Proposition 3.

Henceforth we denote the compounded equilibrium proposal by x∗.
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4.2 Properties of the Equilibrium

It is useful to discuss some properties of the equilibrium.

Property 1: x∗a ≥ M∗

The property is proved by contradiction: Suppose x∗a < M∗ = δV m∗
a (x∗). Then using

equation (3) in the proof of Proposition 2 we obtain

V m∗
a (x∗) <

N − 1−m

N − 1− δ m
δV m∗

L (x∗) ≤ V m∗
L (x∗).

V m∗
a (x∗) denotes the expected value of the agenda-setter, while V m∗

L (x∗) denotes the

expected value of an individual who receives 0 under the proposal x∗. Therefore this

is a contradiction.

Property 2: The probability that a proposal is accepted may be lower than in the BF

model.

Property 2 follows from the following consideration: The number of individuals receiv-

ing M represents the probability of a proposal being seconded and therefore accepted.

If a four-group equilibrium is formed with m∗ = mS, this probability becomes lower

than one half. The probability that a proposal will be accepted shrinks, also in t = 0.

This implies higher costly delay than in the BF model.

Property 3: Playing the S-strategies generates a less equal distribution than playing

the L-strategies.

A four-group equilibrium with m∗ = mS generates a less equal distribution. The num-

ber of individuals who receive at least something remains the same, i.e. αN , but while

mS + 1 individuals receive more in comparison with the L-strategies, the third group

consisting of αN − 1−mS individuals obtains less.

Taking derivatives of T with respect to N , δ, or m yields the following properties:

Property 4: The amount T is decreasing in N.

A consequence of this property is that a four-group equilibrium becomes more attractive

for the agenda-setter, the larger N is. Our simulation results suggest that for all

α ∈ [0.5, 1] and δ ∈ [0, 1] there is a critical value N̂ such that a four-group equilibrium

arises if N ≥ N̂ . Furthermore, only equilibria with m∗ < N−1
2

will occur for N

sufficiently large.
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Property 5: The amount T is increasing in δ.

Individuals are more patient if δ is large. The agenda-setter must offer a higher amount

for individuals to vote for his proposal if it is pitted against status quo. Moreover, it

is straightforward to show that T ∈ [0, 1
N

].

Property 6: The amount T is increasing in m.

The intuition of this result is as follows: If the probability of a proposal being moved

and therefore accepted rises, then the expected value of an individual before first recog-

nition will rise, i.e. T will rise.

It is intuitively clear that we also have T ≤ M . Individuals who receive M support

the proposal in two ways. First, they will move the proposal if recognized to make an

amendment, and second they will vote for a proposal if it is pitted against status quo.

The amount T only covers the vote for a proposal against status quo. The agenda-setter

has to offer more to an individual who is already recognized for making an amendment

than to an individual who is not recognized.

Note that equality between M and T occurs if and only if δ = 1 and α = 1, i.e. when

unanimity is required and individuals are infinitely patient. In this case, the agenda-

setter recognized first will offer 1
N

to everybody. This proposal is moved and accepted

in the first period, i.e. in t = 0.

4.3 Relation to Baron-Ferejohn Model

We look at the special case α = 1
2
. Baron and Ferejohn (1989) state that if the simple

majority rule is applied within an open amendment process, then every stationary

equilibrium involves the proposal x∗ = xL, i.e. m∗ ≥ N−1
2

, and all individuals play the

L-strategies. With the following proposition, which is proved in the appendix, we show

that there are parameter constellations (given by α = 0.5, δ ∈ [0, 1], N ≥ 3) where

four-group equilibria occur, and, moreover, where a stationary equilibrium does not

necessarily include the L-strategies, i.e. x∗ 6= xL. This amends the theorem of BF.
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Proposition 4

Suppose α = 1
2
.

(i) If m is constrained by m ≥ N−1
2

, only three-group equilibria arise.

(ii) A three-group equilibrium may not exist.

(iii) There exist four-group equilibria.

The proof of Proposition 4 is given in the appendix.

As already noted, we obtain the same result as BF if we set α = 1
2

and restrict m

to m ≥ N−1
2

, as we use the same priority rule regarding the type of amendments in

equilibrium as BF. In the next section we will discuss alternative of priority rules.

4.4 Priority Rules for Amendment Choice

Our results have been derived for an amendment setting that reflects two considera-

tions. First, it is never optimal to bribe the first agenda-setter to vote for the second

proposal. The price is too high. Therefore, the prior agenda-setter obtains 0 under

an amendment in equilibrium. Second, as the amendment-setter is indifferent about

whom to give M , T or 0 among the remaining N− individuals as long as his proposal

wins, we have chosen a particular priority rule. This rule is in the spirit of BF and

allows us to replicate their result. Furthermore, the priority rule reflects an element of

’fairness’: The second agenda-setter gives M first to individuals who have received T

or 0 under the first proposal. Primo (2007) has observed that an amendment can follow

other randomization strategies when deciding whom to make offers to and each of those

strategies can be sustained as a distinct equilibrium with slightly different payoffs. Our

results can be extended in the spirit of Primo (2007) to other randomization strategies

which produces distinct four-group and three-group equilibria.

In the next section we look in more detail at parameter constellations where L- or

S-strategies are played and therefore three- or four-group equilibria occur.
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5 L- versus S-Strategies

5.1 Graphic Examples

As we have shown in the previous section, there are situations where a four-group

equilibrium leads to a higher expected value for an agenda-setter than a three-group

equilibrium. To give an impression of the relation between the outcomes using the

L-strategies and the S-strategies, we provide some numerical examples in this section.

We choose α = 0.5 and δ ∈ {0.1, 0.5, 0.9} and plot V mL

a (xL) and V mS

a (xS). The size of

the legislature N runs from 3 to 150.

V_a

0.4

0.5

0.7

0.6

0.3

0.2

0.1

N

125 1507525 10050

0.8

V_a(x^L)                

V_a(x^S)                

Figure 1: α = 0.5, δ = 0.1

The graphs show that the four-group equilibrium with m < N−1
2

becomes more attrac-

tive the larger N is. The figures suggests the existence of a threshold N̂ such that only

four-group equilibria arise if N > N̂ .
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0.2

150

0.5

50

0.4

0.1

N

10025

V_a(x^L)                

V_a(x^S)                

Figure 2: α = 0.5, δ = 0.5

12525

0.3

N

15050

0.4

75

V_a

100

0.1

0.2

V_a(x^L)                

V_a(x^S)                

Figure 3: α = 0.5, δ = 0.9
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5.2 Calculations

The following tables illustrate results of Proposition 2 and Proposition 3. In the first

(Table 1a) we describe the L-strategies and indicate in the last column whether a four-

group equilibrium occurs. In the second table (Table 1b) the S-strategies are described.

Now m is always smaller than αN − 1. The proposal consists of four groups: The

agenda-setter receiving xa = 1−mM − (αN − 1−m)T , the individuals who receive

M = δV m∗
a (x∗), the individuals who obtain T , and the other members who obtain zero.

In the last column we indicate whether the S-strategies occur in equilibrium. The

calculations are made for α = 0.75, δ ∈ {0.1, 0.5, 0.9} and N ∈ {5, 11, 101, 1001}.

Further tables are given in the appendix. Table 2a (2b) describes the L-strategies (S-

strategies) for α = 0.5 and δ ∈ {0.1, 0.5, 0.9}. Tables 3a and 3b delineate the L- and

S-strategies, respectively, for α = 0.9 and δ ∈ {0.1, 0.5, 0.9}. The last tables 4a (4b)

illustrate the L-strategies (S-strategies) for α = 1, i.e. when unanimity is required,

and δ ∈ {0.1, 0.5, 0.9}.

Table 1a.

N α δ mL ML TL V mL

a (xL) xa 4-group-equil.

5 0.75 0.1 4 0.07 0.02 0.7 0.714
11 0.75 0.1 10 0.05 0.009 0.5 0.5
101 0.75 0.1 50 0.014 0.0005 0.14 0.28 X
1001 0.75 0.1 500 0.0019 0.00005 0.019 0.038 X

5 0.75 0.5 3 0.18 0.09 0.356 0.467
11 0.75 0.5 5 0.105 0.03 0.21 0.4 X
101 0.75 0.5 50 0.017 0.0033 0.034 0.066 X
1001 0.75 0.5 500 0.0018 0.00033 0.0037 0.007 X

5 0.75 0.9 2 0.23 0.16 0.26 0.42 X
11 0.75 0.9 5 0.12 0.07 0.14 0.23 X
101 0.75 0.9 50 0.015 0.008 0.017 0.03 X
1001 0.75 0.9 500 0.0016 0.0008 0.0018 0.003 X
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Table 1 b.

N α δ mS MS T S V mS

a (xS) xa V mS

a (xS) > V mL

a (xL)

5 0.75 0.1 1 0.024 0.0054 0.242 0.966
11 0.75 0.1 4 0.034 0.0039 0.34 0.85
101 0.75 0.1 32 0.016 0.00034 0.156 0.49 X
1001 0.75 0.1 99 0.005 0.000011 0.05 0.5 X

5 0.75 0.5 1 0.11 0.04 0.22 0.82
11 0.75 0.5 4 0.104 0.026 0.207 0.5
101 0.75 0.5 13 0.033 0.0011 0.066 0.5 X
1001 0.75 0.5 44 0.011 0.00004 0.022 0.49 X

5 0.75 0.9 1 0.19 0.14 0.21 0.57
11 0.75 0.9 4 0.12 0.07 0.14 0.28 X
101 0.75 0.9 9 0.035 0.0044 0.039 0.39 X
1001 0.75 0.9 29 0.013 0.0002 0.014 0.48 X

The tables confirm the relationship derived in section 5.1 between L- and S-strategies

for α > 0.5. The strategy m = mS yields a higher expected payoff for the agenda-

setter if N is sufficiently large. The tables also illustrate examples where a four-group

equilibrium occurs with x∗ = xL, i.e. m∗ ≥ N−1
2

. One such parameter constellation is

given by δ = 0.5, α = 0.75 and N = 11.

Note that the share xa that the agenda-setter proposes for himself is much higher in

the proposal xS even if V mS

a (xS) < V mL

a (xL). This is because the probability of a

proposal being seconded and hence adopted is much smaller under S-strategies. The

higher risk of being rejected when using the S-strategies is compensated by a higher

payoff if accepted.

6 Conclusion

We have examined the BF model of an open amendment rule, using the concept of

stationary equilibria. We have shown that the equilibrium consideration of BF need

to be amended, as the possibility of a four-group equilibrium has to be taken into

account. We have proved that there is a situation where the BF equilibrium is not an

equilibrium. Moreover, calculations indicate that a four-group equilibrium is always
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better if the number of individuals N is sufficiently large.

Our results may have implications for two areas of research. First, the BF approach has

been applied to a wide variety of questions and has been investigated experimentally

(e.g. Frechette, Kagel, and Lehrer (2002)). Hence, as far as the role of open rules is

concerned, our results call for some qualifications. Second, the comparison between

closed and open rules in legislatures may be amended. On the one hand, the power of

the member recognized under an open rule may be still considerably high. On the other

hand, the costs of delay under open rules may be much higher, as the probability of a

proposal being accepted is lower than one half in four-group equilibrium with x∗ = xS.
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7 Appendix

Proof of Proposition 2

We would like to calculate the continuation value of the agenda-setter. Note, that his

’real’ share of the cake, denoted by xa, is the left-over of the cake after paying other

individuals to move the proposal and / or to vote for his proposal against status quo,

i.e. the whole cake is distributed and xa = 1−mM −max{αN − 1−m, 0}T . We will

calculate the amounts M and T in a first step.

• Calculation of M :

Let Va denote the continuation value of the agenda-setter. The amount needed

to bribe legislators to move the proposal is given by the discounted continuation

value of the agenda-setter. We obtain the condition

M ≥ δVa .

Since every agenda-setter a will maximize his own share xa we can assume equal-

ity.

• Calculation of T :

Using symmetry we have that conditional on acceptance in the next period the

continuation value for each individual is 1
N

as every agenda-setter will propose to

distribute the whole cake and individuals are ex ante identical. The probability

that a proposal is accepted in a particular period is given by P[A] = m
N−1

, if m is

the number of legislators that are bribed to move the proposal. The critical value

needed for an individual to vote for a proposal (against status quo) - without being

recognized as agenda-setter - is denoted by T and is equal to the continuation

payoff from rejecting a proposal (in a ballot against status quo). Thus, T is given

by

T = P[A]δ
1

N
+ (1− P[A])P[A]

δ2

N
+ (1− P[A])2P[A]

δ3

N
+ ...

and accordingly solves the following equation

T = δ
[
P[A]

1

N
+ (1− P[A])T

]
.
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Isolating T yields

T =
δP[A]

N [1− δ(1− P[A])]
=

δm

N [N − 1− δ(N − 1−m)]
.

Now we can calculate the continuation value Va of the agenda-setter. We obtain

Va =
m

N − 1
xa + (1− m

N − 1
)δVL (3)

where VL denotes the continuation value of a member recognized next who is offered

zero, e.i. a ’loser’. This covers the case where an amendment is made under which the

prior agenda-setter receives zero.

The continuation value VL is given by

VL =
m

N − 1
0 +

1

N − 1
δVa + (1− m + 1

N − 1
)δVW

With probability m
N−1

the proposal is moved and therefore accepted. With probability

1
N−1

the individual will be recognized as amendment-setter and with probability 1−m+1
N−1

an amendment is made by an other individual so that (using our tie-breaking rules)

the indvidual under consideration obtains M under the amendment, i.e. becomes a

’winner’.

The continuation value VW of an individual who is offered M is given by

VW =
m

N − 1
M + (1− m

N − 1
)δVS =

m

N − 1
δVa + (1− m

N − 1
)δVS

Again, the proposal will be accepted with probability m
N−1

(which includes recognizing

the individual under consideration as amendment-setter). With probability 1 − m
N−1

an amendment will be made under which he may obtain 0, T or M . VS denotes the

continuation value in this case, i.e. of a first proposal winner if an amendment is made.

The amendment-setter will offer 2m − N + 2 of the prior proposal winners M again.

They are chosen randomly. If the equilibrial proposal is a four-group equilibrium the

amendment-setter will also choose randomly αN − m − 1 prior proposal winners to

obtain T under the amendment. All other first proposal winners obtain zero. Note

that individuals who receive T act in the same way as individuals who obtain 0 in the

first proposal when they are recognized as amendment-setter, i.e. as second agenda-

setter.

22



This yields to

VS = 2m−N+2
m

[
m

N−1
δVa + (1− m

n−1
)δVS

]

+ N−m−2
m

[
m

N−1

(
max{αN−m−1,0}

N−2−m
T + (1− max{αN−m−1,0}

N−2−m
)0

)

+ 1
N−1

δVa + (1− m+1
N−1

)δVW

]

With this equation we can calculate Va (that depends on m) and then obtain

mL(δ, α,N) = max{m ≥ N − 1

2
: Va(m) ≥ Va(m

′) ∀ m′ ∈ {N − 1

2
, ..., N − 1}}

Calculation of Va:

Notation: h := max{αN −m− 1, 0} = number of individuals who are offered T .

VS =
(2m−N+2

m
)( m

N−1
) + (N−m−2

m
)( 1

N−1
)

1− (2m−N+2
m

)(1− m
N−1

)δ
δVa

+
(N−m−2

m
)(1− m+1

N−1
)

1− (2m−N+2
m

)(1− m
N−1

)δ
δVW +

(N−m−2
m

)( h
N−2−m

)( m
N−1

)

1− (2m−N+2
m

)(1− m
N−1

) δ
T

VW =
m

N − 1
δVa + (1− m

N − 1
) δVS

=
m

N − 1
δVa +

(1− m
N−1

)
[
(2m−N+2

m
)( m

N−1
) + (N−m−2

m
)( 1

N−1
)
]

1− (2m−N+2
m

)(1− m
N−1

)δ
δ2Va

+
(1− m

N−1
)(N−m−2

m
)(1− m+1

N−1
)

1− (2m−N+2
m

)(1− m
N−1

)δ
δ2VW

+
h

N−1
(1− m

N−1
)δ

1− (2m−N+2
m

)(1− m
N−1

) δ
T

⇔ VW =
m

N−1
+ (1− m

N−1
)(N−m−2

m
)( 1

N−1
)δ

1− (2m−N+2
m

)(1− m
N−1

)δ − (N−m−2
m

)(1− m+1
N−1

)(1− m
N−1

)δ2
δVa

+
(N−m−2

m
)( h

N−2−m
)( m

N−1
)(1− m

N−1
)δ

1− (2m−N+2
m

)(1− m
N−1

)δ − (N−m−2
m

)(1− m+1
N−1

)(1− m
N−1

)δ2
T

=:
m

N−1
+ (1− m

N−1
)(N−m−2

m
)( 1

N−1
)δ

B
δVa +

( h
N−1

)(1− m
N−1

)δ

B
T

=: A2 Va + A1 T
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⇒ VL =
1

N − 1
δVa + (1− m + 1

N − 1
) δVW

=
1

N − 1
δVa + (1− m + 1

N − 1
)A2 δVa

+(1− m + 1

N − 1
)A1 δ T

=
[ 1

N − 1
+ (1− m + 1

N − 1
)A2

]
δVa + (1− m + 1

N − 1
)A1 δ T

Inserting VL into Va we can calculate the continuation value of the agenda-setter,

depending on the exogenous parameter N, δ, α and the (maximizing) variable m.

Va =
m

N − 1
xa + (1− m

N − 1
) δVL

=
m

N − 1
(1−m δVa − hT )

+(1− m

N − 1
)
[ 1

N − 1
+ (1− m + 1

N − 1
)A2

]
δ2Va

+(1− m

N − 1
)(1− m + 1

N − 1
)A1 δ2 T

⇒ Va =
m

N − 1
− m2

N − 1
δVa

+(1− m

N − 1
)
[ 1

N − 1
+ (1− m + 1

N − 1
)A2

]
δ2Va

+
[
(1− m

N − 1
)(1− m + 1

N − 1
)A1 δ2 − m

N − 1
h

]
T

⇔ Va =

m
N−1

+
[
(1− m

N−1
)(1− m+1

N−1
)A1 δ2 − m

N−1
h

]
T

1 + m2

N−1
δ − (1− m

N−1
)
(

1
N−1

+ (1− m+1
N−1

)A2
)

δ2

= V m
1 (xL)

Note that the sum of the shares in the equilibrium proposal is 1:

xa + mM + max{αN − 1−m, 0}T + min{(1− α)N, N − 1−m}0 = 1.

Proof of Proposition 3

The proof of Proposition 3 follows the same outline as the proof of Proposition 2. Again

we have

M = δVa

T =
δm

N [N − 1− δ(N − 1−m)]

24



and obtain as continuation value of the agenda-setter

Va =
m

N − 1
xa + (1− m

N − 1
) δ VL .

where VL is again the continuation value of an individual who receives zero in a proposal.

VL is given by

VL =
m

N − 1
0 +

1

N − 1
δ Va + (1− m + 1

N − 1
) δ VW

where VW denotes the continuation value of an individual who would have obtained 0

or T in the first proposal and therefore receives M = δVa (with probability m
N−m−2

) or

T or 0 (with probability 1− m
N−m−2

) in an amendment, i.e. becomes a ’winner’. Recall

that pl = min{αN−1−m
N−2m−2

, 1} denotes the probability of an individual who would have

received T or 0 under the first proposal obtaining T instead of 0 under an amendment.

With this notation we obtain

VW =
m

N −m− 2

[ m

N − 1
M + (1− m

N − 1
)δ VS

]

+ (1− m

N −m− 2
)(

m

N − 1
)
(
pl T + (1− pl) 0

)

+ (1− m

N −m− 2
)
[ 1

N − 1
δ Va + (1− m + 1

N − 1
)δ VW

]

VS denotes the continuation value of an individual who was offered M in the first

proposal and therefore receives 0 or T under an amendment. It is given by

VS =
m

N − 1

[
min{(1− α)N

m
, 1} 0 + (1−min{(1− α)N

m
, 1}) T

]

+
1

N − 1
δ Va + (1− m + 1

N − 1
)δ VW

Recall that pk = 1−min{ (1−α)N
m

, 1} denotes the probability of an individual who would

have received M under the first proposal obtaining T under an amendment. With this

notation and the equations obtained above we can calculate Va.
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VW = m
N−m−2

· m
N−1

δVa + m
N−m−2

(1− m
N−1

) m
N−1

· pk · δT
+ m

N−m−2
(1− m

N−1
) 1

N−1
δ2Va + m

N−m−2
(1− m

N−1
)(1− m+1

N−1
)δ2VW

+(1− m
N−m−2

) m
N−1

· pl · T + (1− m
N−m−2

) 1
N−1

δVa

+(1− m
N−m−2

)(1− m+1
N−1

)δVW

= Va

[
m

N−m−2
· m

N−1
δ + m

N−m−2
(1− m

N−1
) 1

N−1
δ2 + (1− m

N−m−2
) 1

N−1
δ
]

+VW

[
m

N−m−2
(1− m

N−1
)(1− m+1

N−1
)δ2 + (1− m

N−m−2
)(1− m+1

N−1
)δ

]

+T
[

m
N−m−2

(1− m
N−1

) m
N−1

· pkδ + (1− m
N−m−2

) m
N−1

· pl

]

⇒ VW = D2
E
· Va + D1

E
· T

⇒ VL = 1
N−1

δVa + (1− m+1
N−1

)δD2
E

Va + (1− m+1
N−1

)δD1
E

T

= δVa

[
1

N−1
+ (1− m+1

N−1
)D2

E

]
+ (1− m+1

N−1
)δD1

E
T

⇒ Va = m
N−1

(1−m · δVa − (αN − 1−m)T )

+(1− m
N−1

)
[

1
N−1

+ (1− m+1
N−1

)D2
E

]
δ2Va

+(1− m
N−1

)(1− m+1
N−1

)D1
E

δ2T

= Va

[
− m2

N−1
δ + (1− m

N−1
)( 1

N−1
+ (1− m+1

N−1
)D2

E
)δ2

]

+T
[
(1− m

N−1
)(1− m+1

N−1
)D1

E
δ2 − m(αN−1−m)

N−1

]

+ m
N−1

⇔ Va =
m

N−1
+

[
(1− m

N−1
)(1−m+1

N−1
)D1

E
δ2−m(αN−m−1)

N−1

]
T

1+ m2

N−1
δ−(1− m

N−1
)

[
1

N−1
+(1−m+1

N−1
)D2

E

]
δ2

= V m
a (xS)

Proof of Proposition 4

The first point is obvious. If we exogenously restrict m ≥ N−1
2

and use our tie-breaking

rules concerning the choice of amendments (that are in the spirit of BF), the resulting

equilibrium is equivalent to the theorem of BF. The three groups are the agenda-setter,

the individuals who receive zero, and the members who receive M .
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Without the restriction to m ≥ N−1
2

it is possible that the optimal strategy is to set

m∗ = mS, even if α = 0.5. This amends the theorem of Baron and Ferejohn (1989).

To prove the second point of Proposition 4, we show that the L-strategies do not form

a stationary equilibrium if

V mS

a (xS) > V mL

a (xL).

Suppose that V mS

a (xS) > V mL

a (xL) for some N and δ. Despite the fact that the very first

recognized agenda-setter is better off by proposing xS, we assume that the L-strategies

(i.e. BF strategies) are played but no proposal is accepted. The main question is if

the agenda-setter recognized next has an incentive to deviate from the BF strategy,

i.e. can he construct the four-group proposal with mS < N−1
2

such that it defeats the

prior proposal? Consider the following amendment:

The second agenda-setter offers xS
a to himself, T S to N−1

2
−mS individuals who received

zero under the first proposal (chosen randomly), zero to the first agenda-setter, and

δV mS

a (xS) to mS < N−1
2

individuals who are again chosen randomly between the other

individuals. All other members receive no benefits.

This proposal defeats the prior proposal since the amendment-setter and all individuals

who receive T S > 0 or MS = δV mS

a (xS) > ML will vote for the second proposal. As

we assumed that V mS

a (xS) > V mL

a (xL) = V mBF

a (xBF ), the second agenda-setter has an

incentive to deviate from playing the L-strategyc.

For the last point of Proposition 4 we have to show that there exists a situation (given

by N ∈ N, α = 1
2

and δ ∈ [0, 1]) such that V mS

1 (xS) > V mL

1 (xL). We give an example.

Set δ = 0.5 and N = 101. We obtain

V mL

a (xL) = 0.037 V mS

a (xS) = 0.068
xL

a = 0.07 xS
a = 0.48

mL = 50 mS = 14
ML = 0.019 MS = 0.034

T S = 0.0012

The expected value of the first agenda-setter using the S-strategies is nearly twice as

high as under the L-strategies.

27



Tables for α = 0.5.

Table 2a

N α δ mL ML TL V mL

a (xL) xa 4-group equil.

5 0.5 0.1 4 0.07 0.02 0.714 0.714
11 0.5 0.1 10 0.05 0.009 0.5 0.5
101 0.5 0.1 50 0.014 0.0005 0.143 0.285
1001 0.5 0.1 500 0.0019 0.000053 0.019 0.038

5 0.5 0.5 3 0.178 0.086 0.356 0.5
11 0.5 0.5 5 0.11 0.03 0.226 0.43
101 0.5 0.5 50 0.02 0.0033 0.037 0.07
1001 0.5 0.5 500 0.002 0.00033 0.004 0.0077

5 0.5 0.9 2 0.26 0.16 0.29 0.477
11 0.5 0.9 5 0.15 0.074 0.161 0.274
101 0.5 0.9 50 0.019 0.008 0.021 0.037
1001 0.5 0.9 500 0.002 0.0008 0.0022 0.0039

Table 2b.

N α δ mS MS T S V mS

a (xS) xa V mS

a (xS) > V mL

a (xL)

5 0.5 0.1 1 0.024 0.0055 0.244 0.97
11 0.5 0.1 4 0.034 0.004 0.344 0.86
101 0.5 0.1 32 0.016 0.00034 0.16 0.49 X
1001 0.5 0.1 100 0.005 0.000011 0.05 0.498 X

5 0.5 0.5 1 0.115 0.04 0.23 0.86
11 0.5 0.5 4 0.11 0.026 0.22 0.54
101 0.5 0.5 14 0.034 0.0012 0.068 0.48 X
1001 0.5 0.5 44 0.011 0.000042 0.022 0.498 X

5 0.5 0.9 1 0.23 0.14 0.26 0.7
11 0.5 0.9 4 0.15 0.07 0.17 0.35 X
101 0.5 0.9 10 0.04 0.005 0.045 0.41 X
1001 0.5 0.9 31 0.0135 0.00022 0.015 0.48 X
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Tables for α = 0.9.

Table 3a.

N α δ mL ML TL V mL

a (xL) xa 4-group-equil.

5 0.9 0.1 4 0.07 0.02 0.7 0.714
11 0.9 0.1 10 0.05 0.009 0.5 0.5
101 0.9 0.1 50 0.014 0.00052 0.14 0.28 X
1001 0.9 0.1 500 0.002 0.000053 0.019 0.038 X

5 0.9 0.5 3 0.17 0.086 0.34 0.45 X
11 0.9 0.5 5 0.1 0.03 0.2 0.38 X
101 0.9 0.5 50 0.016 0.0033 0.032 0.06 X
1001 0.9 0.5 500 0.0017 0.00033 0.0034 0.007 X

5 0.9 0.9 3 0.21 0.17 0.23 0.29 X
11 0.9 0.9 5 0.1 0.074 0.12 0.19 X
101 0.9 0.9 50 0.013 0.008 0.015 0.025 X
1001 0.9 0.9 500 0.0013 0.0008 0.0015 0.0025 X

Table 3b.

N α δ mS MS T S V mS

a (xS) xa V mS

a (xS) > V mL

a (xL)

5 0.9 0.1 1 0.024 0.0054 0.24 0.96
11 0.9 0.1 4 0.034 0.004 0.34 0.85
101 0.9 0.1 31 0.016 0.00033 0.16 0.5 X
1001 0.9 0.1 99 0.005 0.000011 0.05 0.5 X

5 0.9 0.5 1 0.1 0.04 0.2 0.79
11 0.9 0.5 4 0.1 0.036 0.2 0.48
101 0.9 0.5 13 0.032 0.0011 0.065 0.49 X
1001 0.9 0.5 43 0.011 0.00004 0.022 0.5 X

5 0.9 0.9 1 0.17 0.14 0.19 0.48
11 0.9 0.9 3 0.106 0.066 0.117 0.29
101 0.9 0.9 8 0.032 0.004 0.036 0.4 X
1001 0.9 0.9 28 0.012 0.0002 0.014 0.48 X

These tables give examples of equilibria with x∗ = xL that consist of four groups.

The equilibria are given by the parameter constellations α = 0.9, N ∈ {5, 11}, and

δ ∈ {0.5, 0.9}.
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Tables for α = 1.

Table 4a.

N α δ mL ML TL V mL

a (xL) xa 4-group-equil.

5 1 0.1 4 0.071 0.02 0.71 0.714
11 1 0.1 10 0.05 0.009 0.5 0.5
101 1 0.1 50 0.014 0.00052 0.139 0.278 X
1001 1 0.1 500 0.002 0.00005 0.02 0.037 X

5 1 0.5 4 0.167 0.1 0.33 0.33
11 1 0.5 5 0.096 0.03 0.19 0.37 X
101 1 0.5 50 0.016 0.0033 0.031 0.06 X
1001 1 0.9 500 0.0017 0.00033 0.0033 0.0064 X

5 1 0.9 4 0.196 0.18 0.22 0.217
11 1 0.9 5 0.09 0.074 0.1 0.167 X
101 1 0.9 50 0.011 0.008 0.013 0.02 X
1001 1 0.9 500 0.0012 0.0008 0.0013 0.0022 X

Table 4b.

N α δ mS MS T S V mS

a (xS) xa V mS

a (xS) > V mL

a (xL)

5 1 0.1 1 0.024 0.0054 0.24 0.96
11 1 0.1 4 0.034 0.004 0.337 0.84
101 1 0.1 31 0.015 0.00033 0.15 0.498 X
1001 1 0.1 99 0.005 0.000011 0.05 0.5 X

5 1 0.5 1 0.1 0.04 0.2 0.78
11 1 0.5 4 0.096 0.026 0.19 0.46
101 1 0.5 13 0.032 0.0011 0.064 0.49 X
1001 1 0.5 43 0.011 0.000041 0.0215 0.5 X

5 1 0.9 1 0.16 0.14 0.17 0.43
11 1 0.9 3 0.094 0.066 0.105 0.25 X
101 1 0.9 8 0.03 0.004 0.033 0.38 X
1001 1 0.9 28 0.012 0.0002 0.013 0.47 X
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